Files
swift-mirror/lib/SILAnalysis/GlobalARCSequenceDataflow.cpp
2014-06-01 23:03:52 +00:00

499 lines
17 KiB
C++

//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "global-arc-dataflow-analysis"
#include "GlobalARCSequenceDataflow.h"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILSuccessor.h"
#include "swift/SIL/CFG.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::arc;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
static bool isAutoreleasePoolCall(SILInstruction &I) {
ApplyInst *AI = dyn_cast<ApplyInst>(&I);
if (!AI)
return false;
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
return llvm::StringSwitch<bool>(FRI->getReferencedFunction()->getName())
.Case("objc_autoreleasePoolPush", true)
.Case("objc_autoreleasePoolPop", true)
.Default(false);
}
//===----------------------------------------------------------------------===//
// ARCBBState Implementation
//===----------------------------------------------------------------------===//
/// Merge in the state of the successor basic block. This is currently a stub.
void ARCBBState::mergeSuccBottomUp(ARCBBState &SuccBB) {
}
/// Initialize this BB with the state of the successor basic block. This is
/// called on a basic block's state and then any other successors states are
/// merged in. This is currently a stub.
void ARCBBState::initSuccBottomUp(ARCBBState &SuccBB) {
}
/// Merge in the state of the predecessor basic block. This is currently a stub.
void ARCBBState::mergePredTopDown(ARCBBState &PredBB) {
}
/// Initialize the state for this BB with the state of its predecessor
/// BB. Used to create an initial state before we merge in other
/// predecessors. This is currently a stub.
void ARCBBState::initPredTopDown(ARCBBState &PredBB) {
}
//===----------------------------------------------------------------------===//
// Reference Count State Implementation
//===----------------------------------------------------------------------===//
void TopDownRefCountState::merge(const TopDownRefCountState &Other) {}
void BottomUpRefCountState::merge(const BottomUpRefCountState &Other) {}
//===----------------------------------------------------------------------===//
// Top Down Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool
processBBTopDown(ARCBBState &BBState,
BlotMapVector<SILInstruction *,
TopDownRefCountState> &DecToIncStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// If the current BB is the entry BB, initialize a state corresponding to each
// of its owned parameters.
//
// TODO: Handle gauranteed parameters.
if (&BB == &*BB.getParent()->begin()) {
auto Args = BB.getBBArgs();
auto SignatureParams =
BB.getParent()->getLoweredFunctionType()->getInterfaceParameters();
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
SILArgument *A = Args[i];
ParameterConvention P = SignatureParams[i].getConvention();
DEBUG(llvm::dbgs() << "VISITING ARGUMENT: " << *A);
if (P != ParameterConvention::Direct_Owned)
continue;
TopDownRefCountState &State = BBState.getTopDownRefCountState(Args[i]);
State.initWithArg(A);
}
}
// For each instruction I in BB...
for (auto &I : BB) {
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count increment instruction...
if (isRefCountIncrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = I.getOperand(0).stripCasts();
TopDownRefCountState &State = BBState.getTopDownRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT! Known Safe: "
<< (State.isKnownSafe()?"yes":"no") << "\n");
// Continue processing in case this increment could be a CanUse for a
// different pointer.
}
// If we have a reference count decrement...
if (isRefCountDecrement(I)) {
// Look up the state associated with its operand...
Op = I.getOperand(0).stripCasts();
TopDownRefCountState &RefCountState = BBState.getTopDownRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
DecToIncStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING INCREMENT:\n"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs() << " FAILED MATCH INCREMENT:\n" <<
RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH. NO INCREMENT.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the decrement can affect any other pointers that we are
// tracking.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getTopDownStates()) {
// If the state we are visiting is for the pointer we just visited, bail.
if (Op && OtherState.first == Op)
continue;
// If we are tracking an argument, skip it.
if (!OtherState.second.isTrackingRefCountInst())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::
mergePredecessors(ARCBBState &BBState, SILBasicBlock *BB) {
// For each successor of BB...
unsigned i = 0;
for (auto Pred : BB->getPreds()) {
auto *PredBB = Pred;
// If the precessor is the head of a backedge in our traversal, clear any
// state we are tracking now and clear the state of the basic block. There
// is some sort of control flow here that we do not understand.
if (BackedgeMap[PredBB].count(BB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the predecessor and merge
// the predecessor in.
auto I = TopDownBBStates.find(PredBB);
assert(I != TopDownBBStates.end());
if (i++ == 0)
BBState.initPredTopDown(I->second);
else
BBState.mergePredTopDown(I->second);
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processTopDown() {
bool NestingDetected = false;
// For each BB in our reverse post order...
for (auto *BB : reversed(PostOrder)) {
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = TopDownBBStates[BB];
BBState.init(BB);
mergePredecessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBTopDown(BBState, DecToIncStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Bottom Up Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool
processBBBottomUp(ARCBBState &BBState,
BlotMapVector<SILInstruction *,
BottomUpRefCountState> &IncToDecStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// For each non terminator instruction I in BB visited in reverse...
for (auto II = std::next(BB.rbegin()), IE = BB.rend(); II != IE;) {
SILInstruction &I = *II;
++II;
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count decrement instruction...
if (isRefCountDecrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = I.getOperand(0).stripCasts();
BottomUpRefCountState &State = BBState.getBottomUpRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT! Known Safe: "
<< (State.isKnownSafe()?"yes":"no") << "\n");
// Continue on to see if our reference decrement could potentially affect
// any other pointers via a use or a decrement.
}
// If we have a reference count decrement...
if (isRefCountIncrement(I)) {
// Look up the state associated with its operand...
Op = I.getOperand(0).stripCasts();
BottomUpRefCountState &RefCountState =
BBState.getBottomUpRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
IncToDecStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING DECREMENT:"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs() << " FAILED MATCH DECREMENT:"
<< RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH DECREMENT. Not tracking a "
"decrement.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the increment can act as a use for other values.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getBottomupStates()) {
// If this is the state associated with the instruction that we are
// currently visiting, bail.
if (Op && OtherState.first == Op)
continue;
// If we are tracking an argument, skip it.
if (!OtherState.second.isTrackingRefCountInst())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::
mergeSuccessors(ARCBBState &BBState, SILBasicBlock *BB) {
// Grab the backedge set for our BB.
auto &BackEdgeSet = BackedgeMap[BB];
// For each successor of BB...
ArrayRef<SILSuccessor> Succs = BB->getSuccs();
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
// If it does not have a basic block associated with it...
auto *SuccBB = Succs[i].getBB();
// Skip it.
if (!SuccBB)
continue;
// If the BB is the head of a backedge in our traversal, clear any state
// we are tracking now and clear the state of the basic block. There is
// some sort of control flow here that we do not understand.
if (BackEdgeSet.count(SuccBB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the successor and merge
// the successor in.
auto I = BottomUpBBStates.find(SuccBB);
assert(I != BottomUpBBStates.end());
if (i == 0)
BBState.initSuccBottomUp(I->second);
else
BBState.mergeSuccBottomUp(I->second);
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processBottomUp() {
bool NestingDetected = false;
// For each BB in our post order...
for (auto *BB : PostOrder) {
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = BottomUpBBStates[BB];
BBState.init(BB);
mergeSuccessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBBottomUp(BBState, IncToDecStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Top Level ARC Sequence Dataflow Evaluator
//===----------------------------------------------------------------------===//
void swift::arc::ARCSequenceDataflowEvaluator::init() {
assert((F.empty() || PostOrder.empty()) &&
"This should only be called if we have not initialized our post "
"order.");
// Initialize the post order data structure.
unsigned Count = 0;
for (auto PI = po_begin(&F), PE = po_end(&F); PI != PE; ++PI) {
PostOrder.push_back(*PI);
BBToPostOrderID[*PI] = F.size() - Count++ - 1;
}
// Then iterate through it in reverse to perform the post order, looking for
// backedges.
llvm::DenseSet<SILBasicBlock *> VisitedSet;
for (auto *BB : reversed(PostOrder)) {
VisitedSet.insert(BB);
for (auto &Succ : BB->getSuccs())
if (SILBasicBlock *SuccBB = Succ.getBB())
if (VisitedSet.count(SuccBB))
BackedgeMap[BB].insert(SuccBB);
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::run() {
assert((F.empty() || PostOrder.size()) &&
"F must be empty or PostOrder must be initialized with a post order.");
bool NestingDetected = processBottomUp();
NestingDetected |= processTopDown();
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
bool swift::arc::performARCSequenceDataflow(
SILFunction &F,
AliasAnalysis *AA,
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap) {
bool NestingDetected = false;
for (auto &BB : F) {
DEBUG(llvm::dbgs() << "\n<<< Processing New BB! >>>\n");
ARCBBState state(&BB);
// Perform the bottom up and then top down dataflow.
NestingDetected |= processBBBottomUp(state, IncToDecStateMap, AA);
NestingDetected |= processBBTopDown(state, DecToIncStateMap, AA);
}
return NestingDetected;
}