Files
swift-mirror/lib/Sema/ITCDecl.cpp
gregomni 5bb61795b6 Mark decls that are illegal due to generic inside non-generic decl or non-generic inside generic decl with setInvalid(), and avoid assertions
trying to set the superclass on classes in such situations by setting the superclass of an invalid decl to the error type.

This fixes a bunch of compiler crashes, and also changes some errors in other tests where the main error is the invalid declaration and now the
downstream errors can be a bit different because the decl has been invalidated.
2016-07-06 22:06:50 -07:00

356 lines
13 KiB
C++

//===--- ITCDecl.cpp - Iterative Type Checker for Declarations ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the portions of the IterativeTypeChecker
// class that involve declarations.
//
//===----------------------------------------------------------------------===//
#include "GenericTypeResolver.h"
#include "TypeChecker.h"
#include "swift/Sema/IterativeTypeChecker.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include <tuple>
using namespace swift;
//===----------------------------------------------------------------------===//
// Inheritance clause handling
//===----------------------------------------------------------------------===//
static std::tuple<TypeResolutionOptions, DeclContext *,
MutableArrayRef<TypeLoc>>
decomposeInheritedClauseDecl(
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl) {
TypeResolutionOptions options;
DeclContext *dc;
MutableArrayRef<TypeLoc> inheritanceClause;
if (auto typeDecl = decl.dyn_cast<TypeDecl *>()) {
inheritanceClause = typeDecl->getInherited();
if (auto nominal = dyn_cast<NominalTypeDecl>(typeDecl)) {
dc = nominal;
options |= TR_GenericSignature | TR_InheritanceClause;
} else {
dc = typeDecl->getDeclContext();
if (isa<GenericTypeParamDecl>(typeDecl)) {
// For generic parameters, we want name lookup to look at just the
// signature of the enclosing entity.
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
dc = nominal;
options |= TR_GenericSignature;
} else if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
dc = ext;
options |= TR_GenericSignature;
} else if (auto func = dyn_cast<AbstractFunctionDecl>(dc)) {
dc = func;
options |= TR_GenericSignature;
} else if (!dc->isModuleScopeContext()) {
// Skip the generic parameter's context entirely.
dc = dc->getParent();
}
}
}
} else {
auto ext = decl.get<ExtensionDecl *>();
inheritanceClause = ext->getInherited();
dc = ext;
options |= TR_GenericSignature | TR_InheritanceClause;
}
return std::make_tuple(options, dc, inheritanceClause);
}
static std::tuple<TypeResolutionOptions, DeclContext *, TypeLoc *>
decomposeInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType entry) {
TypeResolutionOptions options;
DeclContext *dc;
MutableArrayRef<TypeLoc> inheritanceClause;
std::tie(options, dc, inheritanceClause)
= decomposeInheritedClauseDecl(entry.first);
return std::make_tuple(options, dc, &inheritanceClause[entry.second]);
}
bool IterativeTypeChecker::isResolveInheritedClauseEntrySatisfied(
TypeCheckRequest::InheritedClauseEntryPayloadType payload) {
TypeLoc &inherited = *std::get<2>(decomposeInheritedClauseEntry(payload));
return !inherited.getType().isNull();
}
void IterativeTypeChecker::processResolveInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType payload,
UnsatisfiedDependency unsatisfiedDependency) {
TypeResolutionOptions options;
DeclContext *dc;
TypeLoc *inherited;
std::tie(options, dc, inherited) = decomposeInheritedClauseEntry(payload);
// FIXME: Declaration validation is overkill. Sink it down into type
// resolution when it is actually needed.
if (auto nominal = dyn_cast<NominalTypeDecl>(dc))
TC.validateDecl(nominal);
else if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
TC.validateExtension(ext);
}
// Validate the type of this inherited clause entry.
// FIXME: Recursion into existing type checker.
PartialGenericTypeToArchetypeResolver resolver(TC);
if (TC.validateType(*inherited, dc, options, &resolver)) {
inherited->setInvalidType(getASTContext());
}
}
bool IterativeTypeChecker::breakCycleForResolveInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType payload) {
std::get<2>(decomposeInheritedClauseEntry(payload))
->setInvalidType(getASTContext());
return true;
}
//===----------------------------------------------------------------------===//
// Superclass handling
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isTypeCheckSuperclassSatisfied(ClassDecl *payload) {
return payload->LazySemanticInfo.Superclass.getInt();
}
void IterativeTypeChecker::processTypeCheckSuperclass(
ClassDecl *classDecl,
UnsatisfiedDependency unsatisfiedDependency) {
// The superclass should be the first inherited type. However, so
// long as we see already-resolved types that refer to protocols,
// skip over them to keep looking for a misplaced superclass. The
// actual error will be diagnosed when we perform full semantic
// analysis on the class itself.
Type superclassType;
auto inheritedClause = classDecl->getInherited();
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// If this inherited type has not been resolved, we depend on it.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ classDecl, i }))) {
return;
}
// If this resolved inherited type is existential, keep going.
if (inherited.getType()->isExistentialType()) continue;
// If this resolved type is a class, we're done.
if (inherited.getType()->getClassOrBoundGenericClass()) {
superclassType = inherited.getType();
break;
}
}
// Set the superclass type.
if (classDecl->isInvalid())
superclassType = ErrorType::get(getASTContext());
classDecl->setSuperclass(superclassType);
}
bool IterativeTypeChecker::breakCycleForTypeCheckSuperclass(
ClassDecl *classDecl) {
classDecl->setSuperclass(ErrorType::get(getASTContext()));
return true;
}
//===----------------------------------------------------------------------===//
// Raw type handling
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isTypeCheckRawTypeSatisfied(EnumDecl *payload) {
return payload->LazySemanticInfo.RawType.getInt();
}
void IterativeTypeChecker::processTypeCheckRawType(
EnumDecl *enumDecl,
UnsatisfiedDependency unsatisfiedDependency) {
// The raw type should be the first inherited type. However, so
// long as we see already-resolved types that refer to protocols,
// skip over them to keep looking for a misplaced raw type. The
// actual error will be diagnosed when we perform full semantic
// analysis on the enum itself.
Type rawType;
auto inheritedClause = enumDecl->getInherited();
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// We depend on having resolved the inherited type.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ enumDecl, i }))) {
return;
}
// If this resolved inherited type is existential, keep going.
if (inherited.getType()->isExistentialType()) continue;
// Record this raw type.
rawType = inherited.getType();
break;
}
// Set the raw type.
enumDecl->setRawType(rawType);
}
bool IterativeTypeChecker::breakCycleForTypeCheckRawType(EnumDecl *enumDecl) {
enumDecl->setRawType(ErrorType::get(getASTContext()));
return true;
}
//===----------------------------------------------------------------------===//
// Inherited protocols
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isInheritedProtocolsSatisfied(ProtocolDecl *payload){
return payload->isInheritedProtocolsValid();
}
void IterativeTypeChecker::processInheritedProtocols(
ProtocolDecl *protocol,
UnsatisfiedDependency unsatisfiedDependency) {
// Computing the set of inherited protocols depends on the complete
// inheritance clause.
// FIXME: Technically, we only need very basic name binding.
auto inheritedClause = protocol->getInherited();
bool anyDependencies = false;
llvm::SmallSetVector<ProtocolDecl *, 4> allProtocols;
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// We depend on having resolved the inherited type.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ protocol, i }))) {
anyDependencies = true;
continue;
}
// Collect existential types.
// FIXME: We'd prefer to keep what the user wrote here.
SmallVector<ProtocolDecl *, 4> protocols;
if (inherited.getType()->isExistentialType(protocols)) {
allProtocols.insert(protocols.begin(), protocols.end());
continue;
}
}
// If we enumerated any dependencies, we can't complete this request.
if (anyDependencies)
return;
// Check for circular inheritance.
// FIXME: The diagnostics here should be improved... and this should probably
// be handled by the normal cycle detection.
bool diagnosedCircularity = false;
for (unsigned i = 0, n = allProtocols.size(); i != n; /*in loop*/) {
if (allProtocols[i] == protocol ||
allProtocols[i]->inheritsFrom(protocol)) {
if (!diagnosedCircularity &&
!protocol->isInheritedProtocolsValid()) {
diagnose(protocol,
diag::circular_protocol_def, protocol->getName().str());
diagnosedCircularity = true;
}
allProtocols.remove(allProtocols[i]);
--n;
continue;
}
++i;
}
// FIXME: Hack to deal with recursion elsewhere.
// We recurse through DeclContext::getLocalProtocols() -- this should be
// redone to use the IterativeDeclChecker also.
if (protocol->isInheritedProtocolsValid())
return;
protocol->setInheritedProtocols(getASTContext().AllocateCopy(allProtocols));
}
bool IterativeTypeChecker::breakCycleForInheritedProtocols(
ProtocolDecl *protocol) {
// FIXME: We'd like to drop just the problematic protocols, not
// everything.
protocol->setInheritedProtocols({});
return true;
}
//===----------------------------------------------------------------------===//
// Resolve a type declaration
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isResolveTypeDeclSatisfied(TypeDecl *typeDecl) {
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
// If the underlying type was validated, we're done.
return typeAliasDecl->getUnderlyingTypeLoc().wasValidated();
}
if (auto typeParam = dyn_cast<AbstractTypeParamDecl>(typeDecl)) {
// FIXME: Deal with these.
return typeParam->getArchetype();
}
// Module types are always fully resolved.
if (isa<ModuleDecl>(typeDecl))
return true;
// Nominal types.
auto nominal = cast<NominalTypeDecl>(typeDecl);
return nominal->hasType();
}
void IterativeTypeChecker::processResolveTypeDecl(
TypeDecl *typeDecl,
UnsatisfiedDependency unsatisfiedDependency) {
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (typeAliasDecl->getDeclContext()->isModuleScopeContext()) {
// FIXME: This is silly.
if (!typeAliasDecl->hasType())
typeAliasDecl->computeType();
TypeResolutionOptions options;
options |= TR_GlobalTypeAlias;
if (typeAliasDecl->getFormalAccess() == Accessibility::Private)
options |= TR_KnownNonCascadingDependency;
// Note: recursion into old type checker is okay when passing in an
// unsatisfied-dependency callback.
if (TC.validateType(typeAliasDecl->getUnderlyingTypeLoc(),
typeAliasDecl->getDeclContext(),
options, nullptr, &unsatisfiedDependency)) {
typeAliasDecl->setInvalid();
typeAliasDecl->overwriteType(ErrorType::get(getASTContext()));
typeAliasDecl->getUnderlyingTypeLoc().setInvalidType(getASTContext());
}
return;
}
// Fall through.
}
// FIXME: Recursion into the old type checker.
TC.validateDecl(typeDecl);
}
bool IterativeTypeChecker::breakCycleForResolveTypeDecl(TypeDecl *typeDecl) {
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
typeAliasDecl->setInvalid();
typeAliasDecl->overwriteType(ErrorType::get(getASTContext()));
typeAliasDecl->getUnderlyingTypeLoc().setInvalidType(getASTContext());
return true;
}
// FIXME: Generalize this.
return false;
}