Files
swift-mirror/lib/IRGen/GenEnum.cpp
Joe Groff 5caa24ae51 IRGen: Use swift_retain/swift_release directly for T? value semantics.
A single-payload enum with a single-refcounted-pointer payload and a single empty case will use a nullable pointer representation, which can be handled directly by swift_retain and swift_release. Take advantage of this to avoid some branching when copying or destroying values of this shape, such as T? for class T.

Swift SVN r10556
2013-11-19 16:32:26 +00:00

3853 lines
150 KiB
C++

//===--- GenEnum.cpp - Swift IR Generation For 'enum' Types -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for algebraic data types (ADTs,
// or 'enum' types) in Swift. This includes creating the IR type as
// well as emitting the basic access operations.
//
// The current scheme is that all such types with are represented
// with an initial word indicating the variant, followed by an enum
// of all the possibilities. This is obviously completely acceptable
// to everyone and will not benefit from further refinement.
//
// As a completely unimportant premature optimization, we do emit
// types with only a single variant as simple structs wrapping that
// variant.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/Optional.h"
#include "swift/IRGen/Options.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
// @@@@
#include "llvm/Support/raw_ostream.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "NonFixedTypeInfo.h"
#include "GenMeta.h"
#include "GenProto.h"
#include "GenType.h"
#include "GenEnum.h"
#include "IRGenDebugInfo.h"
#include "ScalarTypeInfo.h"
using namespace swift;
using namespace irgen;
namespace {
/// An implementation strategy for an enum, which handles how the enum is
/// laid out and how to construct and destructure values inside the enum.
class EnumImplStrategy {
public:
struct Element {
EnumElementDecl *decl;
const TypeInfo *ti;
};
enum TypeInfoKind {
Opaque, ///< The enum has a NonFixedTypeInfo.
Fixed, ///< The enum has a FixedTypeInfo.
Loadable, ///< The enum has a LoadableTypeInfo.
};
protected:
std::vector<Element> ElementsWithPayload;
std::vector<Element> ElementsWithRecursivePayload;
std::vector<Element> ElementsWithNoPayload;
const TypeInfo *TI = nullptr;
TypeInfoKind TIK;
unsigned NumElements;
EnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik,
unsigned NumElements,
std::vector<Element> &&ElementsWithPayload,
std::vector<Element> &&ElementsWithRecursivePayload,
std::vector<Element> &&ElementsWithNoPayload)
: ElementsWithPayload(std::move(ElementsWithPayload)),
ElementsWithRecursivePayload(std::move(ElementsWithRecursivePayload)),
ElementsWithNoPayload(std::move(ElementsWithNoPayload)),
TIK(tik),
NumElements(NumElements)
{}
/// Save the TypeInfo created for the enum.
TypeInfo *registerEnumTypeInfo(TypeInfo *mutableTI) {
TI = mutableTI;
return mutableTI;
}
/// Constructs a TypeInfo for an enum of the best possible kind for its
/// layout, FixedEnumTypeInfo or LoadableEnumTypeInfo.
TypeInfo *getFixedEnumTypeInfo(llvm::StructType *T, Size S, llvm::BitVector SB,
Alignment A, IsPOD_t isPOD);
public:
virtual ~EnumImplStrategy() { }
/// Construct a layout strategy appropriate to the enum type.
static EnumImplStrategy *get(TypeConverter &TC,
CanType type,
EnumDecl *theEnum);
/// Given an incomplete StructType for the enum, completes layout of the
/// storage type, calculates its size and alignment, and produces the
/// TypeInfo for the enum.
virtual TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) = 0;
const TypeInfo &getTypeInfo() const {
assert(TI);
return *TI;
}
llvm::StructType *getStorageType() const {
return cast<llvm::StructType>(getTypeInfo().getStorageType());
}
IsPOD_t isPOD(ResilienceScope scope) const {
return getTypeInfo().isPOD(scope);
}
/// \group Indirect enum operations
/// Project the address of the data for a case. Does not check or modify
/// the referenced enum value.
/// Corresponds to the SIL 'enum_data_addr' instruction.
virtual Address projectDataForStore(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const = 0;
/// Overlay the tag value for a case onto a data value in memory.
/// Corresponds to the SIL 'inject_enum_addr' instruction.
virtual void storeTag(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const = 0;
/// Clears tag bits from within the payload of an enum in memory and
/// projects the address of the data for a case. Does not check
/// the referenced enum value.
/// Performs the block argument binding for a SIL
/// 'destructive_switch_enum_addr' instruction.
virtual Address destructiveProjectDataForLoad(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const = 0;
/// Emit a branch on the case contained by an enum explosion.
/// Performs the branching for a SIL 'destructive_switch_enum_addr'
/// instruction.
virtual void emitIndirectSwitch(IRGenFunction &IGF,
Address enumAddr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const = 0;
/// \group Loadable enum operations
/// Emit the construction sequence for an enum case into an explosion.
/// Corresponds to the SIL 'enum' instruction.
virtual void emitValueInjection(IRGenFunction &IGF,
EnumElementDecl *elt,
Explosion &params,
Explosion &out) const = 0;
/// Emit a branch on the case contained by an enum explosion.
/// Performs the branching for a SIL 'switch_enum' instruction.
virtual void emitValueSwitch(IRGenFunction &IGF,
Explosion &value,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const = 0;
/// Project a case value out of an enum explosion. This does not check that
/// the explosion actually contains a value of the given case.
/// Performs the block argument binding for a SIL 'switch_enum'
/// instruction.
virtual void emitValueProject(IRGenFunction &IGF,
Explosion &inEnum,
EnumElementDecl *theCase,
Explosion &out) const = 0;
/// \group Delegated TypeInfo operations
virtual void getSchema(ExplosionSchema &schema) const = 0;
virtual void destroy(IRGenFunction &IGF, Address addr) const = 0;
virtual bool isIndirectArgument(ExplosionKind kind) const {
return TIK < Loadable;
}
virtual void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address dest) const {
if (TIK >= Loadable)
return initialize(IGF, params, dest);
Address src = TI->getAddressForPointer(params.claimNext());
TI->initializeWithTake(IGF, dest, src);
}
virtual void assignWithCopy(IRGenFunction &IGF, Address dest,
Address src) const = 0;
virtual void assignWithTake(IRGenFunction &IGF, Address dest,
Address src) const = 0;
virtual void initializeWithCopy(IRGenFunction &IGF, Address dest,
Address src) const = 0;
virtual void initializeWithTake(IRGenFunction &IGF, Address dest,
Address src) const = 0;
virtual void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const = 0;
virtual bool mayHaveExtraInhabitants(IRGenModule &IGM) const = 0;
virtual llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const = 0;
virtual void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const = 0;
/// \group Delegated FixedTypeInfo operations
virtual unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const = 0;
virtual llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const = 0;
/// \group Delegated LoadableTypeInfo operations
virtual unsigned getExplosionSize(ExplosionKind kind) const = 0;
virtual void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &e) const = 0;
virtual void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &e) const = 0;
virtual void assign(IRGenFunction &IGF, Explosion &e,
Address addr) const = 0;
virtual void initialize(IRGenFunction &IGF, Explosion &e,
Address addr) const = 0;
virtual void reexplode(IRGenFunction &IGF, Explosion &src,
Explosion &dest) const = 0;
virtual void copy(IRGenFunction &IGF, Explosion &src,
Explosion &dest) const = 0;
virtual void consume(IRGenFunction &IGF, Explosion &src) const = 0;
virtual llvm::Value *packEnumPayload(IRGenFunction &IGF,
Explosion &in,
unsigned bitWidth,
unsigned offset) const = 0;
virtual void unpackEnumPayload(IRGenFunction &IGF,
llvm::Value *payload,
Explosion &dest,
unsigned offset) const = 0;
};
/// Implementation strategy for singleton enums, with zero or one cases.
class SingletonEnumImplStrategy final : public EnumImplStrategy {
const TypeInfo *getSingleton() const {
return ElementsWithPayload.empty() ? nullptr : ElementsWithPayload[0].ti;
}
const FixedTypeInfo *getFixedSingleton() const {
return cast_or_null<FixedTypeInfo>(getSingleton());
}
const LoadableTypeInfo *getLoadableSingleton() const {
return cast_or_null<LoadableTypeInfo>(getSingleton());
}
Address getSingletonAddress(IRGenFunction &IGF, Address addr) const {
return IGF.Builder.CreateBitCast(addr,
getSingleton()->getStorageType()->getPointerTo());
}
public:
SingletonEnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: EnumImplStrategy(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(NumElements <= 1);
assert(ElementsWithPayload.size() <= 1);
}
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) override;
void emitSingletonSwitch(IRGenFunction &IGF,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const {
// No dispatch necessary. Branch straight to the destination.
assert(dests.size() <= 1 && "impossible switch table for singleton enum");
llvm::BasicBlock *dest = dests.size() == 1
? dests[0].second : defaultDest;
IGF.Builder.CreateBr(dest);
}
void emitValueSwitch(IRGenFunction &IGF,
Explosion &value,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
value.claim(getExplosionSize(value.getKind()));
emitSingletonSwitch(IGF, dests, defaultDest);
}
void emitIndirectSwitch(IRGenFunction &IGF,
Address addr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
emitSingletonSwitch(IGF, dests, defaultDest);
}
void emitValueProject(IRGenFunction &IGF,
Explosion &in,
EnumElementDecl *theCase,
Explosion &out) const override {
// The projected value is the payload.
if (getLoadableSingleton())
getLoadableSingleton()->reexplode(IGF, in, out);
}
void emitValueInjection(IRGenFunction &IGF,
EnumElementDecl *elt,
Explosion &params,
Explosion &out) const override {
// If the element carries no data, neither does the injection.
// Otherwise, the result is identical.
if (getLoadableSingleton())
getLoadableSingleton()->reexplode(IGF, params, out);
}
Address projectDataForStore(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
return getSingletonAddress(IGF, enumAddr);
}
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
return getSingletonAddress(IGF, enumAddr);
}
void storeTag(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
// No tag, nothing to do.
}
void getSchema(ExplosionSchema &schema) const {
if (!getSingleton()) return;
// If the payload is loadable, forward its explosion schema.
if (TIK >= Loadable)
return getSingleton()->getSchema(schema);
// Otherwise, use an indirect aggregate schema with our storage
// type.
schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
getSingleton()->getBestKnownAlignment()));
}
unsigned getExplosionSize(ExplosionKind kind) const {
if (!getLoadableSingleton()) return 0;
return getLoadableSingleton()->getExplosionSize(kind);
}
void loadAsCopy(IRGenFunction &IGF, Address addr, Explosion &e) const {
if (!getLoadableSingleton()) return;
getLoadableSingleton()->loadAsCopy(IGF, getSingletonAddress(IGF, addr),e);
}
void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e) const {
// Switching on a singleton does not require a value.
return;
}
void loadAsTake(IRGenFunction &IGF, Address addr, Explosion &e) const {
if (!getLoadableSingleton()) return;
getLoadableSingleton()->loadAsTake(IGF, getSingletonAddress(IGF, addr),e);
}
void assign(IRGenFunction &IGF, Explosion &e, Address addr) const {
if (!getLoadableSingleton()) return;
getLoadableSingleton()->assign(IGF, e, getSingletonAddress(IGF, addr));
}
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src) const {
if (!getSingleton()) return;
dest = getSingletonAddress(IGF, dest);
src = getSingletonAddress(IGF, src);
getSingleton()->assignWithCopy(IGF, dest, src);
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src) const {
if (!getSingleton()) return;
dest = getSingletonAddress(IGF, dest);
src = getSingletonAddress(IGF, src);
getSingleton()->assignWithTake(IGF, dest, src);
}
void initialize(IRGenFunction &IGF, Explosion &e, Address addr) const {
if (!getLoadableSingleton()) return;
getLoadableSingleton()->initialize(IGF, e, getSingletonAddress(IGF, addr));
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src)
const override {
if (!getSingleton()) return;
dest = getSingletonAddress(IGF, dest);
src = getSingletonAddress(IGF, src);
getSingleton()->initializeWithCopy(IGF, dest, src);
}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
if (!getSingleton()) return;
dest = getSingletonAddress(IGF, dest);
src = getSingletonAddress(IGF, src);
getSingleton()->initializeWithTake(IGF, dest, src);
}
void reexplode(IRGenFunction &IGF, Explosion &src, Explosion &dest) const {
if (getLoadableSingleton()) getLoadableSingleton()->reexplode(IGF, src, dest);
}
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest) const {
if (getLoadableSingleton()) getLoadableSingleton()->copy(IGF, src, dest);
}
void consume(IRGenFunction &IGF, Explosion &src) const {
if (getLoadableSingleton()) getLoadableSingleton()->consume(IGF, src);
}
void destroy(IRGenFunction &IGF, Address addr) const {
if (getSingleton() && !getSingleton()->isPOD(ResilienceScope::Local))
getSingleton()->destroy(IGF, getSingletonAddress(IGF, addr));
}
llvm::Value *packEnumPayload(IRGenFunction &IGF,
Explosion &in,
unsigned bitWidth,
unsigned offset) const override {
if (getLoadableSingleton())
return getLoadableSingleton()->packEnumPayload(IGF, in,
bitWidth, offset);
return PackEnumPayload::getEmpty(IGF.IGM, bitWidth);
}
void unpackEnumPayload(IRGenFunction &IGF,
llvm::Value *payload,
Explosion &dest,
unsigned offset) const override {
if (!getLoadableSingleton()) return;
getLoadableSingleton()->unpackEnumPayload(IGF, payload, dest, offset);
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const override {
// Fixed-size enums don't need dynamic witness table initialization.
if (TIK >= Fixed) return;
assert(!ElementsWithPayload.empty() &&
"empty singleton enum should not be dynamic!");
// Get the value witness table for the element.
CanType eltTy
= ElementsWithPayload[0].decl->getArgumentType()->getCanonicalType();
llvm::Value *eltMetadata = IGF.emitTypeMetadataRef(eltTy);
llvm::Value *eltVWT
= IGF.emitValueWitnessTableRefForMetadata(eltMetadata);
Address vwtAddr(vwtable, IGF.IGM.getPointerAlignment());
Address eltVWTAddr(eltVWT, IGF.IGM.getPointerAlignment());
auto copyWitnessFromElt = [&](ValueWitness witness) -> llvm::Value* {
Address dest = IGF.Builder.CreateConstArrayGEP(vwtAddr,
unsigned(witness), IGF.IGM.getPointerSize());
Address src = IGF.Builder.CreateConstArrayGEP(eltVWTAddr,
unsigned(witness), IGF.IGM.getPointerSize());
auto val = IGF.Builder.CreateLoad(src);
IGF.Builder.CreateStore(val, dest);
return val;
};
copyWitnessFromElt(ValueWitness::Size);
auto flags = copyWitnessFromElt(ValueWitness::Flags);
copyWitnessFromElt(ValueWitness::Stride);
// If the original type had extra inhabitants, carry over its
// extra inhabitant flags.
auto xiBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
auto noXIBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
auto xiFlag = IGF.Builder.CreatePtrToInt(flags, IGF.IGM.SizeTy);
auto xiMask
= IGF.IGM.getSize(Size(ValueWitnessFlags::Enum_HasExtraInhabitants));
xiFlag = IGF.Builder.CreateAnd(xiFlag, xiMask);
auto xiBool = IGF.Builder.CreateICmpNE(xiFlag,
IGF.IGM.getSize(Size(0)));
IGF.Builder.CreateCondBr(xiBool, xiBB, noXIBB);
IGF.Builder.emitBlock(xiBB);
copyWitnessFromElt(ValueWitness::ExtraInhabitantFlags);
IGF.Builder.CreateBr(noXIBB);
IGF.Builder.emitBlock(noXIBB);
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
// FIXME: Hold off on registering extra inhabitants for dynamic enums
// until initializeMetadata handles them.
if (!getSingleton())
return false;
return getSingleton()->mayHaveExtraInhabitants(IGM);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
if (!getSingleton()) {
// Any empty value is a valid value.
return llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1);
}
return getSingleton()->getExtraInhabitantIndex(IGF,
getSingletonAddress(IGF, src));
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
if (!getSingleton()) {
// Nothing to store for empty singletons.
return;
}
getSingleton()->storeExtraInhabitant(IGF, index,
getSingletonAddress(IGF, dest));
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
assert(TIK >= Fixed);
if (!getSingleton())
return 0;
return getFixedSingleton()->getFixedExtraInhabitantCount(IGM);
}
llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
assert(TIK >= Fixed);
assert(getSingleton() && "empty singletons have no extra inhabitants");
return getFixedSingleton()
->getFixedExtraInhabitantValue(IGM, bits, index);
}
};
/// Implementation strategy for no-payload enums, in other words, 'C-like'
/// enums where none of the cases have data.
class NoPayloadEnumImplStrategyBase
: public SingleScalarTypeInfo<NoPayloadEnumImplStrategyBase,
EnumImplStrategy>
{
protected:
llvm::IntegerType *getDiscriminatorType() const {
llvm::StructType *Struct = getStorageType();
return cast<llvm::IntegerType>(Struct->getElementType(0));
}
/// Map the given element to the appropriate value in the
/// discriminator type.
virtual llvm::ConstantInt *getDiscriminatorIndex(EnumElementDecl *target)
const = 0;
public:
NoPayloadEnumImplStrategyBase(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: SingleScalarTypeInfo(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(ElementsWithPayload.empty());
assert(!ElementsWithNoPayload.empty());
}
void emitValueSwitch(IRGenFunction &IGF,
Explosion &value,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
llvm::Value *discriminator = value.claimNext();
// Create an unreachable block for the default if the original SIL
// instruction had none.
bool unreachableDefault = false;
if (!defaultDest) {
unreachableDefault = true;
defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
}
auto *i = IGF.Builder.CreateSwitch(discriminator, defaultDest,
dests.size());
for (auto &dest : dests)
i->addCase(getDiscriminatorIndex(dest.first), dest.second);
if (unreachableDefault) {
IGF.Builder.emitBlock(defaultDest);
IGF.Builder.CreateUnreachable();
}
}
void emitIndirectSwitch(IRGenFunction &IGF,
Address addr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
Explosion value(ExplosionKind::Minimal);
loadAsTake(IGF, addr, value);
emitValueSwitch(IGF, value, dests, defaultDest);
}
void emitValueProject(IRGenFunction &IGF,
Explosion &in,
EnumElementDecl *elt,
Explosion &out) const override {
// All of the cases project an empty explosion.
in.claim(getExplosionSize(in.getKind()));
}
void emitValueInjection(IRGenFunction &IGF,
EnumElementDecl *elt,
Explosion &params,
Explosion &out) const {
out.add(getDiscriminatorIndex(elt));
}
Address projectDataForStore(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
llvm_unreachable("cannot project data for no-payload cases");
}
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
llvm_unreachable("cannot project data for no-payload cases");
}
void storeTag(IRGenFunction &IGF, EnumElementDecl *elt, Address enumAddr)
const override {
llvm::Value *discriminator = getDiscriminatorIndex(elt);
Address discriminatorAddr
= IGF.Builder.CreateStructGEP(enumAddr, 0, Size(0));
IGF.Builder.CreateStore(discriminator, discriminatorAddr);
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const override {
// No-payload enums are always fixed-size so never need dynamic value
// witness table initialization.
}
/// \group Required for SingleScalarTypeInfo
llvm::Type *getScalarType() const {
return getDiscriminatorType();
}
static Address projectScalar(IRGenFunction &IGF, Address addr) {
return IGF.Builder.CreateStructGEP(addr, 0, Size(0));
}
void emitScalarRetain(IRGenFunction &IGF, llvm::Value *value) const {}
void emitScalarRelease(IRGenFunction &IGF, llvm::Value *value) const {}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
// No-payload enums are always POD, so we can always initialize by
// primitive copy.
llvm::Value *val = IGF.Builder.CreateLoad(src);
IGF.Builder.CreateStore(val, dest);
}
static constexpr IsPOD_t IsScalarPOD = IsPOD;
};
/// Implementation strategy for native Swift no-payload enums.
class NoPayloadEnumImplStrategy final
: public NoPayloadEnumImplStrategyBase
{
protected:
llvm::ConstantInt *getDiscriminatorIndex(EnumElementDecl *target)
const override {
// The elements are assigned discriminators in declaration order.
// FIXME: using a linear search here is fairly ridiculous.
unsigned index = 0;
for (auto elt : target->getParentEnum()->getAllElements()) {
if (elt == target) break;
index++;
}
return llvm::ConstantInt::get(getDiscriminatorType(), index);
}
public:
NoPayloadEnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: NoPayloadEnumImplStrategyBase(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(ElementsWithPayload.empty());
assert(!ElementsWithNoPayload.empty());
}
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) override;
/// \group Extra inhabitants for no-payload enums.
// No-payload enums have all values above their greatest discriminator
// value that fit inside their storage size available as extra inhabitants.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return getFixedExtraInhabitantCount(IGM) > 0;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
unsigned bits = cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
assert(bits < 32 && "freakishly huge no-payload enum");
return (1U << bits) - ElementsWithNoPayload.size();
}
llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
unsigned value = index + ElementsWithNoPayload.size();
return llvm::ConstantInt::get(IGM.getLLVMContext(),
APInt(bits, value));
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
auto &C = IGF.IGM.getLLVMContext();
// Load the value.
auto payloadTy = llvm::IntegerType::get(C,
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
src = IGF.Builder.CreateBitCast(src, payloadTy->getPointerTo());
llvm::Value *val = IGF.Builder.CreateLoad(src);
// Subtract the number of cases.
val = IGF.Builder.CreateSub(val,
llvm::ConstantInt::get(payloadTy, ElementsWithNoPayload.size()));
// If signed less than zero, we have a valid value. Otherwise, we have
// an extra inhabitant.
auto valid
= IGF.Builder.CreateICmpSLT(val, llvm::ConstantInt::get(payloadTy, 0));
val = IGF.Builder.CreateSelect(valid,
llvm::ConstantInt::getSigned(payloadTy, -1),
val);
val = IGF.Builder.CreateZExtOrTrunc(val, IGF.IGM.Int32Ty);
return val;
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
auto &C = IGF.IGM.getLLVMContext();
auto payloadTy = llvm::IntegerType::get(C,
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
dest = IGF.Builder.CreateBitCast(dest, payloadTy->getPointerTo());
index = IGF.Builder.CreateZExtOrTrunc(index, payloadTy);
index = IGF.Builder.CreateAdd(index,
llvm::ConstantInt::get(payloadTy, ElementsWithNoPayload.size()));
IGF.Builder.CreateStore(index, dest);
}
};
/// Implementation strategy for no-payload enums with C-compatible
/// enums where none of the cases have data.
class CCompatibleEnumImplStrategy final
: public NoPayloadEnumImplStrategyBase
{
protected:
llvm::ConstantInt *getDiscriminatorIndex(EnumElementDecl *target)
const override {
// The elements are assigned discriminators ABI-compatible with their
// raw values from C.
assert(target->hasRawValueExpr()
&& "c-compatible enum elt has no raw value?!");
auto intExpr = cast<IntegerLiteralExpr>(target->getRawValueExpr());
auto intType = getDiscriminatorType();
APInt intValue = IntegerLiteralExpr::getValue(intExpr->getDigitsText(),
intType->getBitWidth());
if (intExpr->isNegative())
intValue = -intValue;
return llvm::ConstantInt::get(intType->getContext(), intValue);
}
public:
CCompatibleEnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: NoPayloadEnumImplStrategyBase(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(ElementsWithPayload.empty());
assert(!ElementsWithNoPayload.empty());
}
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) override;
/// \group Extra inhabitants for C-compatible enums.
// C-compatible enums have scattered inhabitants. For now, expose no
// extra inhabitants.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return false;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return 0;
}
llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
llvm_unreachable("no extra inhabitants");
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
llvm_unreachable("no extra inhabitants");
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
llvm_unreachable("no extra inhabitants");
}
};
/// Common base class for enums with one or more cases with data.
class PayloadEnumImplStrategyBase : public EnumImplStrategy {
protected:
llvm::IntegerType *payloadTy = nullptr, *extraTagTy = nullptr;
// The number of extra tag bits outside of the payload required to
// discriminate enum cases.
unsigned ExtraTagBitCount = ~0u;
// The number of possible values for the extra tag bits that are used.
// Log2(NumExtraTagValues - 1) + 1 == ExtraTagBitCount
unsigned NumExtraTagValues = ~0u;
void setTaggedEnumBody(IRGenModule &IGM,
llvm::StructType *bodyStruct,
unsigned payloadBits, unsigned extraTagBits) {
// LLVM's ABI rules for I.O.U.S. (Integer Of Unusual Size) types is to
// pad them out as if aligned to the largest native integer type, even
// inside "packed" structs, so to accurately lay things out, we use
// i8 arrays for the payload and extra tag bits.
auto payloadArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
(payloadBits+7U)/8U);
SmallVector<llvm::Type*, 2> body;
// Handle the case when the payload has no storage.
// This may come up when a generic type with payload is instantiated on an
// empty type.
if (payloadBits > 0) {
payloadTy = llvm::IntegerType::get(IGM.getLLVMContext(),
payloadBits);
body.push_back(payloadArrayTy);
} else {
payloadTy = nullptr;
}
if (extraTagBits > 0) {
auto extraTagArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
(extraTagBits+7U)/8U);
body.push_back(extraTagArrayTy);
extraTagTy = llvm::IntegerType::get(IGM.getLLVMContext(),
extraTagBits);
} else {
extraTagTy = nullptr;
}
bodyStruct->setBody(body, /*isPacked*/true);
}
public:
PayloadEnumImplStrategyBase(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: EnumImplStrategy(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(ElementsWithPayload.size() >= 1);
}
void getSchema(ExplosionSchema &schema) const override {
if (TIK < Loadable) {
schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
TI->getBestKnownAlignment()));
return;
}
if (payloadTy)
schema.add(ExplosionSchema::Element::forScalar(payloadTy));
if (ExtraTagBitCount > 0)
schema.add(ExplosionSchema::Element::forScalar(extraTagTy));
}
unsigned getExplosionSize(ExplosionKind kind) const override {
return unsigned(ExtraTagBitCount > 0) + unsigned(payloadTy != nullptr);
}
Address projectPayload(IRGenFunction &IGF, Address addr) const {
assert(payloadTy && "has empty payload");
return IGF.Builder.CreateBitCast(addr, payloadTy->getPointerTo());
}
Address projectExtraTagBits(IRGenFunction &IGF, Address addr) const {
assert(ExtraTagBitCount > 0 && "does not have extra tag bits");
if (!payloadTy) {
return IGF.Builder.CreateBitCast(addr, extraTagTy->getPointerTo());
}
addr = IGF.Builder.CreateStructGEP(addr, 1,
Size(payloadTy->getBitWidth()/8U));
return IGF.Builder.CreateBitCast(addr, extraTagTy->getPointerTo());
}
void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e)
const {
assert(TIK >= Fixed);
if (payloadTy)
e.add(IGF.Builder.CreateLoad(projectPayload(IGF, addr)));
if (ExtraTagBitCount > 0)
e.add(IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr)));
}
void loadAsTake(IRGenFunction &IGF, Address addr, Explosion &e)
const override {
assert(TIK >= Loadable);
loadForSwitch(IGF, addr, e);
}
void loadAsCopy(IRGenFunction &IGF, Address addr, Explosion &e)
const override {
assert(TIK >= Loadable);
Explosion tmp(e.getKind());
loadAsTake(IGF, addr, tmp);
copy(IGF, tmp, e);
}
void assign(IRGenFunction &IGF, Explosion &e, Address addr) const override {
assert(TIK >= Loadable);
Explosion old(e.getKind());
if (!isPOD(ResilienceScope::Local))
loadAsTake(IGF, addr, old);
initialize(IGF, e, addr);
if (!isPOD(ResilienceScope::Local))
consume(IGF, old);
}
void initialize(IRGenFunction &IGF, Explosion &e, Address addr)
const override {
assert(TIK >= Loadable);
if (payloadTy)
IGF.Builder.CreateStore(e.claimNext(), projectPayload(IGF, addr));
if (ExtraTagBitCount > 0)
IGF.Builder.CreateStore(e.claimNext(), projectExtraTagBits(IGF, addr));
}
void reexplode(IRGenFunction &IGF, Explosion &src, Explosion &dest)
const override {
assert(TIK >= Loadable);
dest.add(src.claim(getExplosionSize(ExplosionKind::Minimal)));
}
protected:
/// Do a primitive copy of the enum from one address to another.
void emitPrimitiveCopy(IRGenFunction &IGF, Address dest, Address src) const{
// If the layout is fixed, load and store the fixed-size payload and tag.
if (TIK >= Fixed) {
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag)
= emitPrimitiveLoadPayloadAndExtraTag(IGF, src);
emitPrimitiveStorePayloadAndExtraTag(IGF, dest, payload, extraTag);
return;
}
// Otherwise, do a memcpy of the dynamic size of the type.
IGF.Builder.CreateMemCpy(dest.getAddress(), src.getAddress(),
TI->getSize(IGF),
std::min(dest.getAlignment().getValue(),
src.getAlignment().getValue()));
}
void emitPrimitiveStorePayloadAndExtraTag(IRGenFunction &IGF, Address dest,
llvm::Value *payload,
llvm::Value *extraTag) const {
if (payloadTy)
IGF.Builder.CreateStore(payload, projectPayload(IGF, dest));
if (ExtraTagBitCount > 0)
IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, dest));
}
std::pair<llvm::Value*, llvm::Value*>
getPayloadAndExtraTagFromExplosion(Explosion &src) const {
llvm::Value *payload = src.claimNext();
llvm::Value *extraTag = ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
return {payload, extraTag};
}
std::pair<llvm::Value*, llvm::Value*>
emitPrimitiveLoadPayloadAndExtraTag(IRGenFunction &IGF, Address addr) const{
llvm::Value *payload = nullptr;
llvm::Value *extraTag = nullptr;
if (payloadTy)
payload = IGF.Builder.CreateLoad(projectPayload(IGF, addr));
if (ExtraTagBitCount > 0)
extraTag = IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr));
return {payload, extraTag};
}
};
class SinglePayloadEnumImplStrategy final
: public PayloadEnumImplStrategyBase
{
EnumElementDecl *getPayloadElement() const {
return ElementsWithPayload[0].decl;
}
const TypeInfo &getPayloadTypeInfo() const {
return *ElementsWithPayload[0].ti;
}
const FixedTypeInfo &getFixedPayloadTypeInfo() const {
return cast<FixedTypeInfo>(*ElementsWithPayload[0].ti);
}
const LoadableTypeInfo &getLoadablePayloadTypeInfo() const {
return cast<LoadableTypeInfo>(*ElementsWithPayload[0].ti);
}
CanType PayloadTy;
llvm::Value *emitPayloadMetadata(IRGenFunction &IGF) const {
return IGF.emitTypeMetadataRef(PayloadTy);
}
/// More efficient value semantics implementations for certain enum layouts.
enum CopyDestroyStrategy {
/// No special behavior.
Normal,
/// The payload is POD, so copying is bitwise, and destruction is a noop.
POD,
/// The payload is a single Swift reference-counted value, and we have
/// a single no-payload case which uses the null extra inhabitant, so
/// copy and destroy can pass through to swift_retain/swift_release.
NullableSwiftRefcounted,
/// The payload is a single unknown-reference-counted value, and we have
/// a single no-payload case which uses the null extra inhabitant, so
/// copy and destroy can pass through to swift_retain/swift_release.
///TODO: NullableUnknownRefcounted,
};
CopyDestroyStrategy CopyDestroyKind;
public:
SinglePayloadEnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: PayloadEnumImplStrategyBase(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload)),
CopyDestroyKind(Normal)
{
assert(ElementsWithPayload.size() == 1);
// If the payload is POD, then we can use POD value semantics.
if (ElementsWithPayload[0].ti->isPOD(ResilienceScope::Component))
CopyDestroyKind = POD;
// If the payload is a single refcounted pointer and we have a single
// empty case, then the layout will be a nullable pointer, and we can
// pass enum values directly into swift_retain/swift_release as-is.
else if (tik >= TypeInfoKind::Loadable
&& ElementsWithPayload[0].ti->isSingleRetainablePointer(
ResilienceScope::Component)
&& ElementsWithNoPayload.size() == 1
// FIXME: All single-retainable-pointer types should eventually have
// extra inhabitants.
&& cast<FixedTypeInfo>(ElementsWithPayload[0].ti)
->getFixedExtraInhabitantCount(IGM) > 0) {
CopyDestroyKind = NullableSwiftRefcounted;
}
// TODO: Same for single unknown-refcounted pointers.
}
/// The payload for a single-payload enum is always placed in front and
/// will never have interleaved tag bits, so we can just bitcast the enum
/// address to the payload type for either injection or projection of the
/// enum.
Address projectPayloadData(IRGenFunction &IGF, Address addr) const {
return IGF.Builder.CreateBitCast(addr,
getPayloadTypeInfo().getStorageType()->getPointerTo());
}
Address projectDataForStore(IRGenFunction &IGF, EnumElementDecl *elt,
Address enumAddr) const override {
assert(elt == getPayloadElement() && "cannot project no-data case");
return projectPayloadData(IGF, enumAddr);
}
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
assert(elt == getPayloadElement() && "cannot project no-data case");
return projectPayloadData(IGF, enumAddr);
}
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) override;
private:
TypeInfo *completeFixedLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy);
TypeInfo *completeDynamicLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy);
public:
llvm::Value *packEnumPayload(IRGenFunction &IGF, Explosion &src,
unsigned bitWidth,
unsigned offset) const override {
PackEnumPayload pack(IGF, bitWidth);
// Pack payload.
pack.addAtOffset(src.claimNext(), offset);
// Pack tag bits, if any.
if (ExtraTagBitCount > 0) {
unsigned extraTagOffset
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits() + offset;
pack.addAtOffset(src.claimNext(), extraTagOffset);
}
return pack.get();
}
void unpackEnumPayload(IRGenFunction &IGF, llvm::Value *outerPayload,
Explosion &dest,
unsigned offset) const override {
UnpackEnumPayload unpack(IGF, outerPayload);
// Unpack our inner payload.
dest.add(unpack.claimAtOffset(payloadTy, offset));
// Unpack our extra tag bits, if any.
if (ExtraTagBitCount > 0) {
unsigned extraTagOffset
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits() + offset;
dest.add(unpack.claimAtOffset(extraTagTy, extraTagOffset));
}
}
void emitValueSwitch(IRGenFunction &IGF,
Explosion &value,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
auto &C = IGF.IGM.getLLVMContext();
// Create a map of the destination blocks for quicker lookup.
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
dests.end());
// Create an unreachable branch for unreachable switch defaults.
auto *unreachableBB = llvm::BasicBlock::Create(C);
// If there was no default branch in SIL, use the unreachable branch as
// the default.
if (!defaultDest)
defaultDest = unreachableBB;
auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
auto found = destMap.find(theCase);
if (found == destMap.end())
return defaultDest;
else
return found->second;
};
llvm::Value *payload = nullptr;
if (payloadTy)
payload = value.claimNext();
llvm::BasicBlock *payloadDest = blockForCase(getPayloadElement());
unsigned extraInhabitantCount
= getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGF.IGM);
// If there are extra tag bits, switch over them first.
SmallVector<llvm::BasicBlock*, 2> tagBitBlocks;
if (ExtraTagBitCount > 0) {
llvm::Value *tagBits = value.claimNext();
auto *swi = IGF.Builder.CreateSwitch(tagBits, unreachableBB,
NumExtraTagValues);
// If we have extra inhabitants, we need to check for them in the
// zero-tag case. Otherwise, we switch directly to the payload case.
if (extraInhabitantCount > 0) {
auto bb = llvm::BasicBlock::Create(C);
tagBitBlocks.push_back(bb);
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,0)), bb);
} else {
tagBitBlocks.push_back(payloadDest);
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,0)),
payloadDest);
}
for (unsigned i = 1; i < NumExtraTagValues; ++i) {
auto bb = llvm::BasicBlock::Create(C);
tagBitBlocks.push_back(bb);
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,i)), bb);
}
// Continue by emitting the extra inhabitant dispatch, if any.
if (extraInhabitantCount > 0)
IGF.Builder.emitBlock(tagBitBlocks[0]);
}
auto elements = getPayloadElement()->getParentEnum()->getAllElements();
auto elti = elements.begin(), eltEnd = elements.end();
if (*elti == getPayloadElement())
++elti;
// Advance the enum element iterator, skipping the payload case.
auto nextCase = [&]() -> EnumElementDecl* {
assert(elti != eltEnd);
auto result = *elti;
++elti;
if (elti != eltEnd && *elti == getPayloadElement())
++elti;
return result;
};
// If there are no extra tag bits, or they're set to zero, then we either
// have a payload, or an empty case represented using an extra inhabitant.
// Check the extra inhabitant cases if we have any.
unsigned payloadBits
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
if (extraInhabitantCount > 0) {
assert(payload && "extra inhabitants with empty payload?!");
auto *swi = IGF.Builder.CreateSwitch(payload, payloadDest);
for (unsigned i = 0; i < extraInhabitantCount && elti != eltEnd; ++i) {
auto v = getFixedPayloadTypeInfo().getFixedExtraInhabitantValue(
IGF.IGM, payloadBits, i);
swi->addCase(v, blockForCase(nextCase()));
}
}
// We should have handled the payload case either in extra inhabitant
// or in extra tag dispatch by now.
assert(IGF.Builder.hasPostTerminatorIP() &&
"did not handle payload case");
// If there's an empty payload, each tag value corresponds to a single
// empty case.
if (!payload) {
for (unsigned i = 1, e = tagBitBlocks.size(); i < e; ++i) {
assert(elti != eltEnd &&
"ran out of cases before running out of extra tags?");
IGF.Builder.emitBlock(tagBitBlocks[i]);
IGF.Builder.CreateBr(blockForCase(nextCase()));
}
} else {
// Handle the cases covered by each tag bit value.
unsigned casesPerTag = 1 << ExtraTagBitCount;
for (unsigned i = 1, e = tagBitBlocks.size(); i < e; ++i) {
assert(elti != eltEnd &&
"ran out of cases before running out of extra tags?");
IGF.Builder.emitBlock(tagBitBlocks[i]);
auto swi = IGF.Builder.CreateSwitch(payload, unreachableBB);
for (unsigned tag = 0; tag < casesPerTag && elti != eltEnd; ++tag) {
auto v = llvm::ConstantInt::get(C, APInt(payloadBits, tag));
swi->addCase(v, blockForCase(nextCase()));
}
}
}
// Delete the unreachable default block if we didn't use it, or emit it
// if we did.
if (unreachableBB->use_empty()) {
delete unreachableBB;
} else {
IGF.Builder.emitBlock(unreachableBB);
IGF.Builder.CreateUnreachable();
}
}
void emitDynamicSwitch(IRGenFunction &IGF,
Address addr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const {
auto payloadMetadata = emitPayloadMetadata(IGF);
auto numEmptyCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
ElementsWithNoPayload.size());
auto opaqueAddr = IGF.Builder.CreateBitCast(addr.getAddress(),
IGF.IGM.OpaquePtrTy);
// Create a map of the destination blocks for quicker lookup.
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
dests.end());
// If there was no default branch in SIL, use an unreachable branch as
// the default.
llvm::BasicBlock *unreachableBB = nullptr;
if (!defaultDest) {
unreachableBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
defaultDest = unreachableBB;
}
// Ask the runtime to find the case index.
auto caseIndex = IGF.Builder.CreateCall3(
IGF.IGM.getGetEnumCaseSinglePayloadFn(),
opaqueAddr, payloadMetadata, numEmptyCases);
// Switch on the index.
auto *swi = IGF.Builder.CreateSwitch(caseIndex, defaultDest);
// Add the payload case.
auto payloadCase = destMap.find(getPayloadElement());
if (payloadCase != destMap.end())
swi->addCase(llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
payloadCase->second);
// Add the empty cases.
unsigned emptyCaseIndex = 0;
for (auto &empty : ElementsWithNoPayload) {
auto emptyCase = destMap.find(empty.decl);
if (emptyCase != destMap.end())
swi->addCase(llvm::ConstantInt::get(IGF.IGM.Int32Ty, emptyCaseIndex),
emptyCase->second);
++emptyCaseIndex;
}
// Emit the unreachable block, if any.
if (unreachableBB) {
IGF.Builder.emitBlock(unreachableBB);
IGF.Builder.CreateUnreachable();
}
}
void emitIndirectSwitch(IRGenFunction &IGF,
Address addr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
if (TIK >= Fixed) {
// Load the fixed-size representation and switch directly.
Explosion value(ExplosionKind::Minimal);
loadForSwitch(IGF, addr, value);
return emitValueSwitch(IGF, value, dests, defaultDest);
}
// Use the runtime to dynamically switch.
emitDynamicSwitch(IGF, addr, dests, defaultDest);
}
void emitValueProject(IRGenFunction &IGF,
Explosion &inEnum,
EnumElementDecl *theCase,
Explosion &out) const override {
// Only the payload case has anything to project. The other cases are
// empty.
if (theCase != getPayloadElement()) {
inEnum.claim(getExplosionSize(inEnum.getKind()));
return;
}
if (payloadTy) {
llvm::Value *payload = inEnum.claimNext();
getLoadablePayloadTypeInfo().unpackEnumPayload(IGF, payload, out, 0);
} else {
assert(getLoadablePayloadTypeInfo()
.getSchema(ExplosionKind::Minimal)
.empty()
&& "empty payload with non-empty explosion schema?!");
}
if (ExtraTagBitCount > 0)
inEnum.claimNext();
}
private:
// Get the index of an enum element among the non-payload cases.
unsigned getSimpleElementTagIndex(EnumElementDecl *elt) const {
assert(elt != getPayloadElement() && "is payload element");
unsigned i = 0;
// FIXME: linear search
for (auto *enumElt : elt->getParentEnum()->getAllElements()) {
if (elt == enumElt)
return i;
if (enumElt != getPayloadElement())
++i;
}
llvm_unreachable("element was not a member of enum");
}
// Get the payload and extra tag (if any) parts of the discriminator for
// a no-data case.
std::pair<llvm::Value *, llvm::Value *>
getNoPayloadCaseValue(IRGenFunction &IGF, EnumElementDecl *elt) const {
assert(elt != getPayloadElement());
unsigned payloadSize
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
// Non-payload cases use extra inhabitants, if any, or are discriminated
// by setting the tag bits.
unsigned tagIndex = getSimpleElementTagIndex(elt);
unsigned numExtraInhabitants
= getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGF.IGM);
llvm::Value *payload = nullptr;
unsigned extraTagValue;
if (tagIndex < numExtraInhabitants) {
payload = getFixedPayloadTypeInfo().getFixedExtraInhabitantValue(
IGF.IGM, payloadSize, tagIndex);
extraTagValue = 0;
} else {
tagIndex -= numExtraInhabitants;
// Factor the extra tag value from the payload value.
unsigned payloadValue;
if (payloadSize >= 32) {
payloadValue = tagIndex;
extraTagValue = 1U;
} else {
payloadValue = tagIndex & ((1U << payloadSize) - 1U);
extraTagValue = (tagIndex >> payloadSize) + 1U;
}
if (payloadTy)
payload = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(payloadSize, payloadValue));
}
llvm::Value *extraTag = nullptr;
if (ExtraTagBitCount > 0) {
extraTag = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(ExtraTagBitCount, extraTagValue));
} else {
assert(extraTagValue == 0 &&
"non-zero extra tag value with no tag bits");
}
return {payload, extraTag};
}
public:
void emitValueInjection(IRGenFunction &IGF,
EnumElementDecl *elt,
Explosion &params,
Explosion &out) const {
// The payload case gets its native representation. If there are extra
// tag bits, set them to zero.
unsigned payloadSize
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
if (elt == getPayloadElement()) {
if (payloadTy) {
auto &loadablePayloadTI = getLoadablePayloadTypeInfo();
llvm::Value *payload
= loadablePayloadTI.packEnumPayload(IGF, params, payloadSize, 0);
out.add(payload);
}
if (ExtraTagBitCount > 0)
out.add(getZeroExtraTagConstant(IGF.IGM));
return;
}
// Non-payload cases use extra inhabitants, if any, or are discriminated
// by setting the tag bits.
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getNoPayloadCaseValue(IGF, elt);
if (payloadTy) {
assert(payload);
out.add(payload);
}
if (ExtraTagBitCount > 0) {
assert(extraTag);
out.add(extraTag);
}
}
private:
/// Emits the test(s) that determine whether the fixed-size enum contains a
/// payload or an empty case. Emits the basic block for the "true" case and
/// returns the unemitted basic block for the "false" case.
llvm::BasicBlock *
testFixedEnumContainsPayload(IRGenFunction &IGF,
llvm::Value *payload,
llvm::Value *extraBits) const {
auto *falseBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
// We only need to apply the payload operation if the enum contains a
// value of the payload case.
// If we have extra tag bits, they will be zero if we contain a payload.
if (ExtraTagBitCount > 0) {
assert(extraBits);
llvm::Value *zero = llvm::ConstantInt::get(extraBits->getType(), 0);
llvm::Value *isZero = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_EQ,
extraBits, zero);
auto *trueBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.CreateCondBr(isZero, trueBB, falseBB);
IGF.Builder.emitBlock(trueBB);
}
// If we used extra inhabitants to represent empty case discriminators,
// weed them out.
unsigned numExtraInhabitants
= getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGF.IGM);
if (numExtraInhabitants > 0) {
auto *payloadBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
auto *swi = IGF.Builder.CreateSwitch(payload, payloadBB);
auto elements = getPayloadElement()->getParentEnum()->getAllElements();
unsigned inhabitant = 0;
for (auto i = elements.begin(), end = elements.end();
i != end && inhabitant < numExtraInhabitants;
++i, ++inhabitant) {
if (*i == getPayloadElement()) {
++i;
if (i == end)
break;
}
auto xi = getFixedPayloadTypeInfo().getFixedExtraInhabitantValue(
IGF.IGM,
getFixedPayloadTypeInfo().getFixedSize().getValueInBits(),
inhabitant);
swi->addCase(xi, falseBB);
}
IGF.Builder.emitBlock(payloadBB);
}
return falseBB;
}
/// Emits the test(s) that determine whether the enum contains a payload
/// or an empty case. For a fixed-size enum, this does a primitive load
/// of the representation and calls down to testFixedEnumContainsPayload.
/// For a dynamic enum, this queries the value witness table of the payload
/// type. Emits the basic block for the "true" case and
/// returns the unemitted basic block for the "false" case.
llvm::BasicBlock *
testEnumContainsPayload(IRGenFunction &IGF,
Address addr) const {
auto &C = IGF.IGM.getLLVMContext();
if (TIK >= Fixed) {
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag)
= emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
return testFixedEnumContainsPayload(IGF, payload, extraTag);
}
auto *payloadBB = llvm::BasicBlock::Create(C);
auto *noPayloadBB = llvm::BasicBlock::Create(C);
// Look up the metadata for the payload.
llvm::Value *metadata = emitPayloadMetadata(IGF);
// Ask the runtime what case we have.
llvm::Value *opaqueAddr = IGF.Builder.CreateBitCast(addr.getAddress(),
IGF.IGM.OpaquePtrTy);
llvm::Value *numCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
ElementsWithNoPayload.size());
llvm::Value *which = IGF.Builder.CreateCall3(
IGF.IGM.getGetEnumCaseSinglePayloadFn(),
opaqueAddr, metadata, numCases);
// If it's -1 then we have the payload.
llvm::Value *hasPayload = IGF.Builder.CreateICmpEQ(which,
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1));
IGF.Builder.CreateCondBr(hasPayload, payloadBB, noPayloadBB);
IGF.Builder.emitBlock(payloadBB);
return noPayloadBB;
}
public:
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
const override {
assert(TIK >= Loadable);
switch (CopyDestroyKind) {
case POD:
reexplode(IGF, src, dest);
return;
case Normal: {
// Copy the payload, if we have it.
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getPayloadAndExtraTagFromExplosion(src);
llvm::BasicBlock *endBB = testFixedEnumContainsPayload(IGF, payload, extraTag);
if (payload) {
Explosion payloadValue(ExplosionKind::Minimal);
Explosion payloadCopy(ExplosionKind::Minimal);
auto &loadableTI = getLoadablePayloadTypeInfo();
loadableTI.unpackEnumPayload(IGF, payload, payloadValue, 0);
loadableTI.copy(IGF, payloadValue, payloadCopy);
payloadCopy.claimAll(); // FIXME: repack if not bit-identical
}
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
// Copy to the new explosion.
if (payload)
dest.add(payload);
if (extraTag) dest.add(extraTag);
return;
}
case NullableSwiftRefcounted: {
// Bitcast to swift.refcounted*, and hand to swift_retain.
llvm::Value *val = src.claimNext();
llvm::Value *ptr
= IGF.Builder.CreateIntToPtr(val, IGF.IGM.RefCountedPtrTy);
IGF.emitRetainCall(ptr);
dest.add(val);
return;
}
}
}
void consume(IRGenFunction &IGF, Explosion &src) const override {
assert(TIK >= Loadable);
switch (CopyDestroyKind) {
case POD:
src.claim(getExplosionSize(src.getKind()));
return;
case Normal: {
// Check that we have a payload.
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getPayloadAndExtraTagFromExplosion(src);
llvm::BasicBlock *endBB
= testFixedEnumContainsPayload(IGF, payload, extraTag);
// If we did, consume it.
if (payload) {
Explosion payloadValue(ExplosionKind::Minimal);
auto &loadableTI = getLoadablePayloadTypeInfo();
loadableTI.unpackEnumPayload(IGF, payload, payloadValue, 0);
loadableTI.consume(IGF, payloadValue);
}
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
return;
}
case NullableSwiftRefcounted: {
// Bitcast to swift.refcounted*, and hand to swift_release.
llvm::Value *val = src.claimNext();
llvm::Value *ptr
= IGF.Builder.CreateIntToPtr(val, IGF.IGM.RefCountedPtrTy);
IGF.emitRelease(ptr);
return;
}
}
}
void destroy(IRGenFunction &IGF, Address addr) const override {
switch (CopyDestroyKind) {
case POD:
return;
case Normal: {
// Check that there is a payload at the address.
llvm::BasicBlock *endBB = testEnumContainsPayload(IGF, addr);
// If there is, project and destroy it.
Address payloadAddr = projectPayloadData(IGF, addr);
getPayloadTypeInfo().destroy(IGF, payloadAddr);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
return;
}
case NullableSwiftRefcounted: {
// Load the value as swift.refcounted, then hand to swift_release.
addr = IGF.Builder.CreateBitCast(addr,
IGF.IGM.RefCountedPtrTy->getPointerTo());
llvm::Value *ptr = IGF.Builder.CreateLoad(addr);
IGF.emitRelease(ptr);
return;
}
}
}
private:
llvm::ConstantInt *getZeroExtraTagConstant(IRGenModule &IGM) const {
assert(TIK >= Fixed && "not fixed layout");
assert(ExtraTagBitCount > 0 && "no extra tag bits?!");
return llvm::ConstantInt::get(IGM.getLLVMContext(),
APInt(ExtraTagBitCount, 0));
}
/// Initialize the extra tag bits, if any, to zero to indicate a payload.
void emitInitializeExtraTagBitsForPayload(IRGenFunction &IGF,
Address dest) const {
if (TIK >= Fixed) {
// We statically know whether we have extra tag bits.
// Store zero directly to the fixed-layout extra tag field.
if (ExtraTagBitCount > 0) {
auto *zeroTag = getZeroExtraTagConstant(IGF.IGM);
IGF.Builder.CreateStore(zeroTag, projectExtraTagBits(IGF, dest));
}
return;
}
// Ask the runtime to store the tag.
llvm::Value *opaqueAddr = IGF.Builder.CreateBitCast(dest.getAddress(),
IGF.IGM.OpaquePtrTy);
llvm::Value *metadata = emitPayloadMetadata(IGF);
IGF.Builder.CreateCall4(IGF.IGM.getStoreEnumTagSinglePayloadFn(),
opaqueAddr, metadata,
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
llvm::ConstantInt::get(IGF.IGM.Int32Ty,
ElementsWithNoPayload.size()));
}
/// Emit an reassignment sequence from an enum at one address to another.
void emitIndirectAssign(IRGenFunction &IGF,
Address dest, Address src,
IsTake_t isTake)
const {
auto &C = IGF.IGM.getLLVMContext();
switch (CopyDestroyKind) {
case POD:
return emitPrimitiveCopy(IGF, dest, src);
case Normal: {
llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);
Address destData = projectPayloadData(IGF, dest);
Address srcData = projectPayloadData(IGF, src);
// See whether the current value at the destination has a payload.
llvm::BasicBlock *noDestPayloadBB
= testEnumContainsPayload(IGF, dest);
// Here, the destination has a payload. Now see if the source also has
// one.
llvm::BasicBlock *destNoSrcPayloadBB
= testEnumContainsPayload(IGF, src);
// Here, both source and destination have payloads. Do the reassignment
// of the payload in-place.
if (isTake)
getPayloadTypeInfo().assignWithTake(IGF, destData, srcData);
else
getPayloadTypeInfo().assignWithCopy(IGF, destData, srcData);
IGF.Builder.CreateBr(endBB);
// If the destination has a payload but the source doesn't, we can destroy
// the payload and primitive-store the new no-payload value.
IGF.Builder.emitBlock(destNoSrcPayloadBB);
getPayloadTypeInfo().destroy(IGF, destData);
emitPrimitiveCopy(IGF, dest, src);
IGF.Builder.CreateBr(endBB);
// Now, if the destination has no payload, check if the source has one.
IGF.Builder.emitBlock(noDestPayloadBB);
llvm::BasicBlock *noDestNoSrcPayloadBB
= testEnumContainsPayload(IGF, src);
// Here, the source has a payload but the destination doesn't. We can
// copy-initialize the source over the destination, then primitive-store
// the zero extra tag (if any).
if (isTake)
getPayloadTypeInfo().initializeWithTake(IGF, destData, srcData);
else
getPayloadTypeInfo().initializeWithCopy(IGF, destData, srcData);
emitInitializeExtraTagBitsForPayload(IGF, dest);
IGF.Builder.CreateBr(endBB);
// If neither destination nor source have payloads, we can just primitive-
// store the new empty-case value.
IGF.Builder.emitBlock(noDestNoSrcPayloadBB);
emitPrimitiveCopy(IGF, dest, src);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
return;
}
case NullableSwiftRefcounted: {
// Do the assignment as for a refcounted pointer.
Address destAddr = IGF.Builder.CreateBitCast(dest,
IGF.IGM.RefCountedPtrTy->getPointerTo());
Address srcAddr = IGF.Builder.CreateBitCast(src,
IGF.IGM.RefCountedPtrTy->getPointerTo());
// Load the old pointer at the destination.
llvm::Value *oldPtr = IGF.Builder.CreateLoad(destAddr);
// Store the new pointer.
llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
if (!isTake)
IGF.emitRetainCall(srcPtr);
IGF.Builder.CreateStore(srcPtr, destAddr);
// Release the old value.
IGF.emitRelease(oldPtr);
return;
}
}
}
/// Emit an initialization sequence, initializing an enum at one address
/// with another at a different address.
void emitIndirectInitialize(IRGenFunction &IGF,
Address dest, Address src, IsTake_t isTake)
const {
auto &C = IGF.IGM.getLLVMContext();
switch (CopyDestroyKind) {
case POD:
return emitPrimitiveCopy(IGF, dest, src);
case Normal: {
llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);
Address destData = projectPayloadData(IGF, dest);
Address srcData = projectPayloadData(IGF, src);
// See whether the source value has a payload.
llvm::BasicBlock *noSrcPayloadBB
= testEnumContainsPayload(IGF, src);
// Here, the source value has a payload. Initialize the destination with
// it, and set the extra tag if any to zero.
if (isTake)
getPayloadTypeInfo().initializeWithTake(IGF, destData, srcData);
else
getPayloadTypeInfo().initializeWithCopy(IGF, destData, srcData);
emitInitializeExtraTagBitsForPayload(IGF, dest);
IGF.Builder.CreateBr(endBB);
// If the source value has no payload, we can primitive-store the
// empty-case value.
IGF.Builder.emitBlock(noSrcPayloadBB);
emitPrimitiveCopy(IGF, dest, src);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
return;
}
case NullableSwiftRefcounted: {
// Do the initialization as for a refcounted pointer.
Address destAddr = IGF.Builder.CreateBitCast(dest,
IGF.IGM.RefCountedPtrTy->getPointerTo());
Address srcAddr = IGF.Builder.CreateBitCast(src,
IGF.IGM.RefCountedPtrTy->getPointerTo());
llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
if (!isTake)
IGF.emitRetainCall(srcPtr);
IGF.Builder.CreateStore(srcPtr, destAddr);
return;
}
}
}
public:
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectAssign(IGF, dest, src, IsNotTake);
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectAssign(IGF, dest, src, IsTake);
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectInitialize(IGF, dest, src, IsNotTake);
}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectInitialize(IGF, dest, src, IsTake);
}
void storeTag(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
if (TIK < Fixed) {
// If the enum isn't fixed-layout, get the runtime to do this for us.
llvm::Value *payload = emitPayloadMetadata(IGF);
llvm::Value *caseIndex;
if (elt == getPayloadElement()) {
caseIndex = llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1);
} else {
auto found = std::find_if(ElementsWithNoPayload.begin(),
ElementsWithNoPayload.end(),
[&](Element a) { return a.decl == elt; });
assert(found != ElementsWithNoPayload.end() &&
"case not in enum?!");
unsigned caseIndexVal = found - ElementsWithNoPayload.begin();
caseIndex = llvm::ConstantInt::get(IGF.IGM.Int32Ty, caseIndexVal);
}
llvm::Value *numEmptyCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
ElementsWithNoPayload.size());
llvm::Value *opaqueAddr
= IGF.Builder.CreateBitCast(enumAddr.getAddress(),
IGF.IGM.OpaquePtrTy);
IGF.Builder.CreateCall4(IGF.IGM.getStoreEnumTagSinglePayloadFn(),
opaqueAddr, payload, caseIndex, numEmptyCases);
return;
}
if (elt == getPayloadElement()) {
// The data occupies the entire payload. If we have extra tag bits,
// zero them out.
if (ExtraTagBitCount > 0)
IGF.Builder.CreateStore(getZeroExtraTagConstant(IGF.IGM),
projectExtraTagBits(IGF, enumAddr));
return;
}
// Store the discriminator for the no-payload case.
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getNoPayloadCaseValue(IGF, elt);
if (payloadTy)
IGF.Builder.CreateStore(payload, projectPayload(IGF, enumAddr));
if (ExtraTagBitCount > 0)
IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, enumAddr));
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const override
{
// Fixed-size enums don't need dynamic witness table initialization.
if (TIK >= Fixed) return;
// Ask the runtime to do our layout using the payload metadata and number
// of empty cases.
auto payloadMetadata = emitPayloadMetadata(IGF);
auto emptyCasesVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
ElementsWithNoPayload.size());
IGF.Builder.CreateCall3(
IGF.IGM.getInitEnumValueWitnessTableSinglePayloadFn(),
vwtable, payloadMetadata, emptyCasesVal);
}
/// \group Extra inhabitants
// Extra inhabitants from the payload that we didn't use for our empty cases
// are available to outer enums.
// FIXME: If we spilled extra tag bits, we could offer spare bits from the
// tag.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
if (TIK >= Fixed)
return getFixedExtraInhabitantCount(IGM) > 0;
return getPayloadTypeInfo().mayHaveExtraInhabitants(IGM);
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
unsigned payloadXI
= getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGM);
unsigned numEmptyCases = ElementsWithNoPayload.size();
if (payloadXI <= numEmptyCases)
return 0;
return payloadXI - numEmptyCases;
}
llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getFixedPayloadTypeInfo()
.getFixedExtraInhabitantValue(IGM, bits,
index + ElementsWithNoPayload.size());
}
llvm::Value *
getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
auto payload = projectPayloadData(IGF, src);
llvm::Value *index
= getPayloadTypeInfo().getExtraInhabitantIndex(IGF, payload);
// Offset the payload extra inhabitant index by the number of inhabitants
// we used. If less than zero, it's a valid value of the enum type.
index = IGF.Builder.CreateSub(index,
llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
auto valid = IGF.Builder.CreateICmpSLT(index,
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0));
index = IGF.Builder.CreateSelect(valid,
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
index);
return index;
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
// Offset the index to skip the extra inhabitants we used.
index = IGF.Builder.CreateAdd(index,
llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
auto payload = projectPayloadData(IGF, dest);
getPayloadTypeInfo().storeExtraInhabitant(IGF, index, payload);
}
};
class MultiPayloadEnumImplStrategy final
: public PayloadEnumImplStrategyBase
{
// The spare bits shared by all payloads, if any.
// Invariant: The size of the bit vector is the size of the payload in bits,
// rounded up to a byte boundary.
llvm::BitVector CommonSpareBits;
// The number of tag values used for no-payload cases.
unsigned NumEmptyElementTags = ~0u;
public:
MultiPayloadEnumImplStrategy(IRGenModule &IGM,
TypeInfoKind tik, unsigned NumElements,
std::vector<Element> &&WithPayload,
std::vector<Element> &&WithRecursivePayload,
std::vector<Element> &&WithNoPayload)
: PayloadEnumImplStrategyBase(IGM, tik, NumElements,
std::move(WithPayload),
std::move(WithRecursivePayload),
std::move(WithNoPayload))
{
assert(ElementsWithPayload.size() > 1);
}
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) override;
private:
/// The number of empty cases representable by each tag value.
/// Equal to the size of the payload minus the spare bits used for tags.
unsigned getNumCaseBits() const {
return CommonSpareBits.size() - CommonSpareBits.count();
}
unsigned getNumCasesPerTag() const {
unsigned numCaseBits = getNumCaseBits();
return numCaseBits >= 32
? 0x80000000 : 1 << numCaseBits;
}
/// Extract the payload-discriminating tag from a payload and optional
/// extra tag value.
llvm::Value *extractPayloadTag(IRGenFunction &IGF,
llvm::Value *payload,
llvm::Value *extraTagBits) const {
unsigned numSpareBits = CommonSpareBits.count();
llvm::Value *tag = nullptr;
unsigned numTagBits = numSpareBits + ExtraTagBitCount;
// Get the tag bits from spare bits, if any.
if (numSpareBits > 0) {
tag = emitGatherSpareBits(IGF, CommonSpareBits, payload, 0, numTagBits);
}
// Get the extra tag bits, if any.
if (ExtraTagBitCount > 0) {
assert(extraTagBits);
if (!tag) {
return extraTagBits;
} else {
extraTagBits = IGF.Builder.CreateZExt(extraTagBits, tag->getType());
extraTagBits = IGF.Builder.CreateShl(extraTagBits,
numTagBits - ExtraTagBitCount);
return IGF.Builder.CreateOr(tag, extraTagBits);
}
}
assert(!extraTagBits);
return tag;
}
public:
void emitValueSwitch(IRGenFunction &IGF,
Explosion &value,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
auto &C = IGF.IGM.getLLVMContext();
// Create a map of the destination blocks for quicker lookup.
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
dests.end());
// Create an unreachable branch for unreachable switch defaults.
auto *unreachableBB = llvm::BasicBlock::Create(C);
// If there was no default branch in SIL, use the unreachable branch as
// the default.
if (!defaultDest)
defaultDest = unreachableBB;
auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
auto found = destMap.find(theCase);
if (found == destMap.end())
return defaultDest;
else
return found->second;
};
llvm::Value *payload = value.claimNext();
llvm::Value *extraTagBits = nullptr;
if (ExtraTagBitCount > 0)
extraTagBits = value.claimNext();
// Extract and switch on the tag bits.
llvm::Value *tag = extractPayloadTag(IGF, payload, extraTagBits);
unsigned numTagBits
= cast<llvm::IntegerType>(tag->getType())->getBitWidth();
auto *tagSwitch = IGF.Builder.CreateSwitch(tag, unreachableBB,
ElementsWithPayload.size() + NumEmptyElementTags);
// Switch over the tag bits for payload cases.
unsigned tagIndex = 0;
for (auto &payloadCasePair : ElementsWithPayload) {
EnumElementDecl *payloadCase = payloadCasePair.decl;
tagSwitch->addCase(llvm::ConstantInt::get(C,APInt(numTagBits,tagIndex)),
blockForCase(payloadCase));
++tagIndex;
}
// Switch over the no-payload cases.
unsigned casesPerTag = getNumCasesPerTag();
auto elti = ElementsWithNoPayload.begin(),
eltEnd = ElementsWithNoPayload.end();
for (unsigned i = 0; i < NumEmptyElementTags; ++i) {
assert(elti != eltEnd &&
"ran out of cases before running out of extra tags?");
auto *tagBB = llvm::BasicBlock::Create(C);
tagSwitch->addCase(llvm::ConstantInt::get(C,APInt(numTagBits,tagIndex)),
tagBB);
// Switch over the cases for this tag.
IGF.Builder.emitBlock(tagBB);
auto *caseSwitch = IGF.Builder.CreateSwitch(payload, unreachableBB);
for (unsigned idx = 0; idx < casesPerTag && elti != eltEnd; ++idx) {
auto v = interleaveSpareBits(IGF.IGM, CommonSpareBits,
CommonSpareBits.size(),
tagIndex, idx);
caseSwitch->addCase(v, blockForCase(elti->decl));
++elti;
}
++tagIndex;
}
// Delete the unreachable default block if we didn't use it, or emit it
// if we did.
if (unreachableBB->use_empty()) {
delete unreachableBB;
} else {
IGF.Builder.emitBlock(unreachableBB);
IGF.Builder.CreateUnreachable();
}
}
void emitIndirectSwitch(IRGenFunction &IGF,
Address addr,
ArrayRef<std::pair<EnumElementDecl*,
llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) const override {
if (TIK >= Fixed) {
// Load the fixed-size representation and switch directly.
Explosion value(ExplosionKind::Minimal);
loadForSwitch(IGF, addr, value);
return emitValueSwitch(IGF, value, dests, defaultDest);
}
// Use the runtime to dynamically switch.
llvm_unreachable("dynamic switch for multi-payload enum not implemented");
}
private:
void projectPayloadValue(IRGenFunction &IGF,
llvm::Value *payload,
unsigned payloadTag,
const LoadableTypeInfo &payloadTI,
Explosion &out) const {
// If we have spare bits, we have to mask out any set tag bits packed
// there.
if (CommonSpareBits.any()) {
unsigned spareBitCount = CommonSpareBits.count();
if (spareBitCount < 32)
payloadTag &= (1U << spareBitCount) - 1U;
if (payloadTag != 0) {
APInt mask = ~getAPIntFromBitVector(CommonSpareBits);
auto maskVal = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
mask);
payload = IGF.Builder.CreateAnd(payload, maskVal);
}
}
// Unpack the payload.
payloadTI.unpackEnumPayload(IGF, payload, out, 0);
}
public:
void emitValueProject(IRGenFunction &IGF,
Explosion &inValue,
EnumElementDecl *theCase,
Explosion &out) const override {
auto foundPayload = std::find_if(ElementsWithPayload.begin(),
ElementsWithPayload.end(),
[&](const Element &e) { return e.decl == theCase; });
// Non-payload cases project to an empty explosion.
if (foundPayload == ElementsWithPayload.end()) {
inValue.claim(getExplosionSize(inValue.getKind()));
return;
}
llvm::Value *payload = inValue.claimNext();
// We don't need the tag bits.
if (ExtraTagBitCount > 0)
inValue.claimNext();
// Unpack the payload.
projectPayloadValue(IGF, payload,
foundPayload - ElementsWithPayload.begin(),
cast<LoadableTypeInfo>(*foundPayload->ti), out);
}
llvm::Value *packEnumPayload(IRGenFunction &IGF, Explosion &src,
unsigned bitWidth,
unsigned offset) const override {
PackEnumPayload pack(IGF, bitWidth);
// Pack the payload.
pack.addAtOffset(src.claimNext(), offset);
// Pack the extra bits, if any.
if (ExtraTagBitCount > 0) {
pack.addAtOffset(src.claimNext(), CommonSpareBits.size() + offset);
}
return pack.get();
}
void unpackEnumPayload(IRGenFunction &IGF, llvm::Value *outerPayload,
Explosion &dest, unsigned offset) const override {
UnpackEnumPayload unpack(IGF, outerPayload);
// Unpack the payload.
dest.add(unpack.claimAtOffset(payloadTy, offset));
// Unpack the extra bits, if any.
if (ExtraTagBitCount > 0) {
dest.add(unpack.claimAtOffset(extraTagTy,
CommonSpareBits.size() + offset));
}
}
private:
void emitPayloadInjection(IRGenFunction &IGF,
const FixedTypeInfo &payloadTI,
Explosion &params, Explosion &out,
unsigned tag) const {
// Pack the payload.
auto &loadablePayloadTI = cast<LoadableTypeInfo>(payloadTI); // FIXME
llvm::Value *payload = loadablePayloadTI.packEnumPayload(IGF, params,
CommonSpareBits.size(), 0);
// If we have spare bits, pack tag bits into them.
unsigned numSpareBits = CommonSpareBits.count();
if (numSpareBits > 0) {
llvm::ConstantInt *tagMask
= interleaveSpareBits(IGF.IGM, CommonSpareBits,CommonSpareBits.size(),
tag, 0);
payload = IGF.Builder.CreateOr(payload, tagMask);
}
out.add(payload);
// If we have extra tag bits, pack the remaining tag bits into them.
if (ExtraTagBitCount > 0) {
tag >>= numSpareBits;
auto extra = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(ExtraTagBitCount, tag));
out.add(extra);
}
}
std::pair<llvm::Value*, llvm::Value*>
getNoPayloadCaseValue(IRGenFunction &IGF, unsigned index) const {
// Figure out the tag and payload for the empty case.
unsigned numCaseBits = getNumCaseBits();
unsigned tag, tagIndex;
if (numCaseBits >= 32) {
tag = ElementsWithPayload.size();
tagIndex = index;
} else {
tag = (index >> numCaseBits) + ElementsWithPayload.size();
tagIndex = index & ((1 << numCaseBits) - 1);
}
llvm::Value *payload;
llvm::Value *extraTag = nullptr;
unsigned numSpareBits = CommonSpareBits.count();
if (numSpareBits > 0) {
// If we have spare bits, pack tag bits into them.
payload = interleaveSpareBits(IGF.IGM,
CommonSpareBits, CommonSpareBits.size(),
tag, tagIndex);
} else {
// Otherwise the payload is just the index.
payload = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(CommonSpareBits.size(), tagIndex));
}
// If we have extra tag bits, pack the remaining tag bits into them.
if (ExtraTagBitCount > 0) {
tag >>= numSpareBits;
extraTag = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(ExtraTagBitCount, tag));
}
return {payload, extraTag};
}
void emitNoPayloadInjection(IRGenFunction &IGF, Explosion &out,
unsigned index) const {
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getNoPayloadCaseValue(IGF, index);
out.add(payload);
if (ExtraTagBitCount > 0) {
assert(extraTag);
out.add(extraTag);
}
}
void forNontrivialPayloads(IRGenFunction &IGF,
llvm::Value *payload, llvm::Value *extraTagBits,
std::function<void (unsigned, const TypeInfo &)> f) const
{
auto *endBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
llvm::Value *tag = extractPayloadTag(IGF, payload, extraTagBits);
auto *swi = IGF.Builder.CreateSwitch(tag, endBB);
auto *tagTy = cast<llvm::IntegerType>(tag->getType());
// Handle nontrivial tags.
unsigned tagIndex = 0;
for (auto &payloadCasePair : ElementsWithPayload) {
auto &payloadTI = *payloadCasePair.ti;
// Trivial payloads don't need any work.
if (payloadTI.isPOD(ResilienceScope::Local)) {
++tagIndex;
continue;
}
// Unpack and handle nontrivial payloads.
auto *caseBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);
IGF.Builder.emitBlock(caseBB);
f(tagIndex, payloadTI);
IGF.Builder.CreateBr(endBB);
++tagIndex;
}
IGF.Builder.emitBlock(endBB);
}
public:
void emitValueInjection(IRGenFunction &IGF,
EnumElementDecl *elt,
Explosion &params,
Explosion &out) const {
// See whether this is a payload or empty case we're emitting.
auto payloadI = std::find_if(ElementsWithPayload.begin(),
ElementsWithPayload.end(),
[&](const Element &e) { return e.decl == elt; });
if (payloadI != ElementsWithPayload.end())
return emitPayloadInjection(IGF, cast<FixedTypeInfo>(*payloadI->ti),
params, out,
payloadI - ElementsWithPayload.begin());
auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
ElementsWithNoPayload.end(),
[&](const Element &e) { return e.decl == elt; });
assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
emitNoPayloadInjection(IGF, out, emptyI - ElementsWithNoPayload.begin());
}
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
const override {
if (isPOD(ResilienceScope::Local)) {
reexplode(IGF, src, dest);
return;
}
llvm::Value *payload = src.claimNext();
llvm::Value *extraTagBits = ExtraTagBitCount > 0
? src.claimNext() : nullptr;
forNontrivialPayloads(IGF, payload, extraTagBits,
[&](unsigned tagIndex, const TypeInfo &ti) {
auto &lti = cast<LoadableTypeInfo>(ti);
Explosion value(ExplosionKind::Minimal);
projectPayloadValue(IGF, payload, tagIndex, lti, value);
Explosion tmp(value.getKind());
lti.copy(IGF, value, tmp);
tmp.claimAll(); // FIXME: repack if not bit-identical
});
dest.add(payload);
if (extraTagBits)
dest.add(extraTagBits);
}
void consume(IRGenFunction &IGF, Explosion &src) const override {
if (isPOD(ResilienceScope::Local)) {
src.claim(getExplosionSize(src.getKind()));
return;
}
llvm::Value *payload = src.claimNext();
llvm::Value *extraTagBits = ExtraTagBitCount > 0
? src.claimNext() : nullptr;
forNontrivialPayloads(IGF, payload, extraTagBits,
[&](unsigned tagIndex, const TypeInfo &ti) {
auto &lti = cast<LoadableTypeInfo>(ti);
Explosion value(ExplosionKind::Minimal);
projectPayloadValue(IGF, payload, tagIndex, lti, value);
lti.consume(IGF, value);
});
}
private:
/// Emit an reassignment sequence from an enum at one address to another.
void emitIndirectAssign(IRGenFunction &IGF,
Address dest, Address src, IsTake_t isTake) const {
auto &C = IGF.IGM.getLLVMContext();
if (isPOD(ResilienceScope::Local))
return emitPrimitiveCopy(IGF, dest, src);
// If the enum is loadable, it's better to do this directly using values,
// so we don't need to RMW tag bits in place.
if (TI->isLoadable()) {
Explosion tmpSrc(ExplosionKind::Minimal),
tmpOld(ExplosionKind::Minimal);
if (isTake)
loadAsTake(IGF, src, tmpSrc);
else
loadAsCopy(IGF, src, tmpSrc);
loadAsTake(IGF, dest, tmpOld);
initialize(IGF, tmpSrc, dest);
consume(IGF, tmpOld);
return;
}
auto *endBB = llvm::BasicBlock::Create(C);
// Sanity-check whether the source and destination alias.
llvm::Value *alias = IGF.Builder.CreateICmpEQ(dest.getAddress(),
src.getAddress());
auto *noAliasBB = llvm::BasicBlock::Create(C);
IGF.Builder.CreateCondBr(alias, endBB, noAliasBB);
IGF.Builder.emitBlock(noAliasBB);
// Destroy the old value.
destroy(IGF, dest);
// Reinitialize with the new value.
emitIndirectInitialize(IGF, dest, src, isTake);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
}
void emitIndirectInitialize(IRGenFunction &IGF,
Address dest, Address src, IsTake_t isTake) const{
auto &C = IGF.IGM.getLLVMContext();
if (isPOD(ResilienceScope::Local))
return emitPrimitiveCopy(IGF, dest, src);
// If the enum is loadable, it's better to do this directly using values,
// so we don't need to RMW tag bits in place.
if (TI->isLoadable()) {
Explosion tmpSrc(ExplosionKind::Minimal);
if (isTake)
loadAsTake(IGF, src, tmpSrc);
else
loadAsCopy(IGF, src, tmpSrc);
initialize(IGF, tmpSrc, dest);
return;
}
llvm::Value *payload, *extraTagBits;
std::tie(payload, extraTagBits)
= emitPrimitiveLoadPayloadAndExtraTag(IGF, src);
auto *endBB = llvm::BasicBlock::Create(C);
/// Switch out nontrivial payloads.
auto *trivialBB = llvm::BasicBlock::Create(C);
llvm::Value *tag = extractPayloadTag(IGF, payload, extraTagBits);
auto *swi = IGF.Builder.CreateSwitch(tag, trivialBB);
auto *tagTy = cast<llvm::IntegerType>(tag->getType());
unsigned tagIndex = 0;
for (auto &payloadCasePair : ElementsWithPayload) {
auto &payloadTI = *payloadCasePair.ti;
// Trivial payloads can all share the default path.
if (payloadTI.isPOD(ResilienceScope::Local)) {
++tagIndex;
continue;
}
// For nontrivial payloads, we need to copy/take the payload using its
// value semantics.
auto *caseBB = llvm::BasicBlock::Create(C);
swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);
IGF.Builder.emitBlock(caseBB);
// Temporarily clear the tag bits from the source so we can use the
// data.
preparePayloadForLoad(IGF, src, tagIndex);
// Do the take/copy of the payload.
Address srcData = IGF.Builder.CreateBitCast(src,
payloadTI.getStorageType()->getPointerTo());
Address destData = IGF.Builder.CreateBitCast(dest,
payloadTI.getStorageType()->getPointerTo());
if (isTake) {
payloadTI.initializeWithTake(IGF, destData, srcData);
// We don't need to preserve the old value.
} else {
payloadTI.initializeWithCopy(IGF, destData, srcData);
// Replant the tag bits, if any, in the source.
storePayloadTag(IGF, src, tagIndex);
}
// Plant spare bit tag bits, if any, into the new value.
storePayloadTag(IGF, dest, tagIndex);
IGF.Builder.CreateBr(endBB);
++tagIndex;
}
// For trivial payloads (including no-payload cases), we can just
// primitive-store to the destination.
IGF.Builder.emitBlock(trivialBB);
emitPrimitiveStorePayloadAndExtraTag(IGF, dest, payload, extraTagBits);
IGF.Builder.CreateBr(endBB);
IGF.Builder.emitBlock(endBB);
}
public:
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectAssign(IGF, dest, src, IsNotTake);
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectAssign(IGF, dest, src, IsTake);
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectInitialize(IGF, dest, src, IsNotTake);
}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src)
const override {
emitIndirectInitialize(IGF, dest, src, IsTake);
}
private:
/// Clear any tag bits stored in the payload area of the given address.
void preparePayloadForLoad(IRGenFunction &IGF, Address enumAddr,
unsigned tagIndex) const {
// If the case has non-zero tag bits stored in spare bits, we need to
// mask them out before the data can be read.
unsigned numSpareBits = CommonSpareBits.count();
if (numSpareBits > 0) {
unsigned spareTagBits = numSpareBits >= 32
? tagIndex : tagIndex & ((1U << numSpareBits) - 1U);
if (spareTagBits != 0) {
assert(payloadTy && "spare bits with empty payload?!");
Address payloadAddr = projectPayload(IGF, enumAddr);
llvm::Value *payloadBits = IGF.Builder.CreateLoad(payloadAddr);
auto *spareBitMask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
~getAPIntFromBitVector(CommonSpareBits));
payloadBits = IGF.Builder.CreateAnd(payloadBits, spareBitMask);
IGF.Builder.CreateStore(payloadBits, payloadAddr);
}
}
}
void destroy(IRGenFunction &IGF, Address addr) const override {
if (isPOD(ResilienceScope::Local))
return;
// If loadable, it's better to do this directly to the value than
// in place, so we don't need to RMW out the tag bits in memory.
if (TI->isLoadable()) {
Explosion tmp(ExplosionKind::Minimal);
loadAsTake(IGF, addr, tmp);
consume(IGF, tmp);
return;
}
llvm::Value *payload, *extraTagBits;
std::tie(payload, extraTagBits)
= emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
forNontrivialPayloads(IGF, payload, extraTagBits,
[&](unsigned tagIndex, const TypeInfo &ti) {
// Clear tag bits out of the payload area, if any.
preparePayloadForLoad(IGF, addr, tagIndex);
// Destroy the data.
Address dataAddr = IGF.Builder.CreateBitCast(addr,
ti.getStorageType()->getPointerTo());
ti.destroy(IGF, dataAddr);
});
}
Address projectDataForStore(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
auto payloadI = std::find_if(ElementsWithPayload.begin(),
ElementsWithPayload.end(),
[&](const Element &e) { return e.decl == elt; });
assert(payloadI != ElementsWithPayload.end() &&
"cannot project a no-payload case");
// Payloads are all placed at the beginning of the value.
return IGF.Builder.CreateBitCast(enumAddr,
payloadI->ti->getStorageType()->getPointerTo());
}
private:
void storePayloadTag(IRGenFunction &IGF,
Address enumAddr, unsigned index) const {
// If the tag has spare bits, we need to mask them into the
// payload area.
unsigned numSpareBits = CommonSpareBits.count();
if (numSpareBits > 0) {
unsigned spareTagBits = numSpareBits >= 32
? index : index & ((1U << numSpareBits) - 1U);
// Mask the spare bits into the payload area.
assert(payloadTy && "spare bits with empty payload?!");
Address payloadAddr = projectPayload(IGF, enumAddr);
llvm::Value *payloadBits = IGF.Builder.CreateLoad(payloadAddr);
auto *spareBitMask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
~getAPIntFromBitVector(CommonSpareBits));
llvm::Value *tagBitMask
= interleaveSpareBits(IGF.IGM, CommonSpareBits, CommonSpareBits.size(),
spareTagBits, 0);
payloadBits = IGF.Builder.CreateAnd(payloadBits, spareBitMask);
if (spareTagBits != 0)
payloadBits = IGF.Builder.CreateOr(payloadBits, tagBitMask);
IGF.Builder.CreateStore(payloadBits, payloadAddr);
}
// Initialize the extra tag bits, if we have them.
if (ExtraTagBitCount > 0) {
unsigned extraTagBits = index >> numSpareBits;
auto *extraTagValue = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
APInt(ExtraTagBitCount, extraTagBits));
IGF.Builder.CreateStore(extraTagValue,
projectExtraTagBits(IGF, enumAddr));
}
}
void storeNoPayloadTag(IRGenFunction &IGF, Address enumAddr,
unsigned index) const {
// We can just primitive-store the representation for the empty case.
llvm::Value *payload, *extraTag;
std::tie(payload, extraTag) = getNoPayloadCaseValue(IGF, index);
if (payloadTy)
IGF.Builder.CreateStore(payload, projectPayload(IGF, enumAddr));
if (ExtraTagBitCount > 0) {
assert(extraTag);
IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, enumAddr));
}
}
public:
void storeTag(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
// See whether this is a payload or empty case we're emitting.
auto payloadI = std::find_if(ElementsWithPayload.begin(),
ElementsWithPayload.end(),
[&](const Element &e) { return e.decl == elt; });
if (payloadI != ElementsWithPayload.end())
return storePayloadTag(IGF,
enumAddr,
payloadI - ElementsWithPayload.begin());
auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
ElementsWithNoPayload.end(),
[&](const Element &e) { return e.decl == elt; });
assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
storeNoPayloadTag(IGF, enumAddr, emptyI - ElementsWithNoPayload.begin());
}
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
EnumElementDecl *elt,
Address enumAddr) const override {
auto payloadI = std::find_if(ElementsWithPayload.begin(),
ElementsWithPayload.end(),
[&](const Element &e) { return e.decl == elt; });
assert(payloadI != ElementsWithPayload.end() &&
"cannot project a no-payload case");
unsigned index = payloadI - ElementsWithPayload.begin();
preparePayloadForLoad(IGF, enumAddr, index);
// Payloads are all placed at the beginning of the value.
return IGF.Builder.CreateBitCast(enumAddr,
payloadI->ti->getStorageType()->getPointerTo());
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const override {
// FIXME
}
/// \group Extra inhabitants
// TODO
bool mayHaveExtraInhabitants(IRGenModule &) const override { return false; }
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return 0;
}
llvm::ConstantInt *
getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
}
};
} // end anonymous namespace
EnumImplStrategy *EnumImplStrategy::get(TypeConverter &TC,
CanType type,
EnumDecl *theEnum)
{
unsigned numElements = 0;
TypeInfoKind tik = Loadable;
std::vector<Element> elementsWithPayload;
std::vector<Element> elementsWithRecursivePayload;
std::vector<Element> elementsWithNoPayload;
for (auto elt : theEnum->getAllElements()) {
numElements++;
// Compute whether this gives us an apparent payload or dynamic layout.
// Note that we do *not* apply substitutions from a bound generic instance
// yet. We want all instances of a generic enum to share an implementation
// strategy.
Type argType = elt->getArgumentType();
if (argType.isNull()) {
elementsWithNoPayload.push_back({elt, nullptr});
continue;
}
auto *argTI = TC.tryGetCompleteTypeInfo(argType->getCanonicalType());
if (!argTI) {
elementsWithRecursivePayload.push_back({elt, nullptr});
continue;
}
auto loadableArgTI = dyn_cast<LoadableTypeInfo>(argTI);
if (loadableArgTI
&& loadableArgTI->getExplosionSize(ExplosionKind::Minimal) == 0) {
elementsWithNoPayload.push_back({elt, nullptr});
} else {
// *Now* apply the substitutions and get the type info for the instance's
// payload type, since we know this case carries an apparent payload in
// the generic case.
auto *substArgTI = argTI;
if (type->is<BoundGenericType>()) {
Type substArgTy = type->getTypeOfMember(theEnum->getModuleContext(),
elt, nullptr,
elt->getArgumentType());
substArgTI = &TC.getCompleteTypeInfo(substArgTy->getCanonicalType());
}
elementsWithPayload.push_back({elt, substArgTI});
if (!substArgTI->isFixedSize())
tik = Opaque;
else if (!substArgTI->isLoadable() && tik > Fixed)
tik = Fixed;
}
}
// FIXME recursive enums
if (!elementsWithRecursivePayload.empty()) {
TC.IGM.unimplemented(theEnum->getLoc(), "recursive enum layout");
exit(1);
}
assert(numElements == elementsWithPayload.size()
+ elementsWithRecursivePayload.size()
+ elementsWithNoPayload.size()
&& "not all elements accounted for");
// Enums from Clang use C-compatible layout.
if (theEnum->hasClangNode()) {
assert(elementsWithPayload.size() == 0 && "C enum with payload?!");
return new CCompatibleEnumImplStrategy(TC.IGM, tik, numElements,
std::move(elementsWithPayload),
std::move(elementsWithRecursivePayload),
std::move(elementsWithNoPayload));
}
if (numElements <= 1)
return new SingletonEnumImplStrategy(TC.IGM, tik, numElements,
std::move(elementsWithPayload),
std::move(elementsWithRecursivePayload),
std::move(elementsWithNoPayload));
if (elementsWithPayload.size() > 1)
return new MultiPayloadEnumImplStrategy(TC.IGM, tik, numElements,
std::move(elementsWithPayload),
std::move(elementsWithRecursivePayload),
std::move(elementsWithNoPayload));
if (elementsWithPayload.size() == 1)
return new SinglePayloadEnumImplStrategy(TC.IGM, tik, numElements,
std::move(elementsWithPayload),
std::move(elementsWithRecursivePayload),
std::move(elementsWithNoPayload));
return new NoPayloadEnumImplStrategy(TC.IGM, tik, numElements,
std::move(elementsWithPayload),
std::move(elementsWithRecursivePayload),
std::move(elementsWithNoPayload));
}
namespace {
/// Common base template for enum type infos.
template<typename BaseTypeInfo>
class EnumTypeInfoBase : public BaseTypeInfo {
public:
EnumImplStrategy &Strategy;
template<typename...AA>
EnumTypeInfoBase(EnumImplStrategy &strategy, AA &&...args)
: BaseTypeInfo(std::forward<AA>(args)...), Strategy(strategy) {}
llvm::StructType *getStorageType() const {
return cast<llvm::StructType>(TypeInfo::getStorageType());
}
/// \group Methods delegated to the EnumImplStrategy
void getSchema(ExplosionSchema &s) const override {
return Strategy.getSchema(s);
}
void destroy(IRGenFunction &IGF, Address addr) const override {
return Strategy.destroy(IGF, addr);
}
bool isIndirectArgument(ExplosionKind kind) const override {
return Strategy.isIndirectArgument(kind);
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address dest) const override {
return Strategy.initializeFromParams(IGF, params, dest);
}
void initializeWithCopy(IRGenFunction &IGF, Address dest,
Address src) const override {
return Strategy.initializeWithCopy(IGF, dest, src);
}
void initializeWithTake(IRGenFunction &IGF, Address dest,
Address src) const override {
return Strategy.initializeWithTake(IGF, dest, src);
}
void assignWithCopy(IRGenFunction &IGF, Address dest,
Address src) const override {
return Strategy.assignWithCopy(IGF, dest, src);
}
void assignWithTake(IRGenFunction &IGF, Address dest,
Address src) const override {
return Strategy.assignWithTake(IGF, dest, src);
}
virtual void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable) const override {
return Strategy.initializeMetadata(IGF, metadata, vwtable);
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return Strategy.mayHaveExtraInhabitants(IGM);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src) const override {
return Strategy.getExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest) const override {
return Strategy.storeExtraInhabitant(IGF, index, dest);
}
};
/// TypeInfo for fixed-layout, address-only enum types.
class FixedEnumTypeInfo : public EnumTypeInfoBase<FixedTypeInfo> {
public:
FixedEnumTypeInfo(EnumImplStrategy &strategy,
llvm::StructType *T, Size S, llvm::BitVector SB,
Alignment A, IsPOD_t isPOD)
: EnumTypeInfoBase(strategy, T, S, std::move(SB), A, isPOD) {}
/// \group Methods delegated to the EnumImplStrategy
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return Strategy.getFixedExtraInhabitantCount(IGM);
}
llvm::ConstantInt *getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index)
const override {
return Strategy.getFixedExtraInhabitantValue(IGM, bits, index);
}
};
/// TypeInfo for loadable enum types.
class LoadableEnumTypeInfo : public EnumTypeInfoBase<LoadableTypeInfo> {
public:
// FIXME: Derive spare bits from element layout.
LoadableEnumTypeInfo(EnumImplStrategy &strategy,
llvm::StructType *T, Size S, llvm::BitVector SB,
Alignment A, IsPOD_t isPOD)
: EnumTypeInfoBase(strategy, T, S, std::move(SB), A, isPOD) {}
unsigned getExplosionSize(ExplosionKind kind) const override {
return Strategy.getExplosionSize(kind);
}
void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &e) const override {
return Strategy.loadAsCopy(IGF, addr, e);
}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &e) const override {
return Strategy.loadAsTake(IGF, addr, e);
}
void assign(IRGenFunction &IGF, Explosion &e,
Address addr) const override {
return Strategy.assign(IGF, e, addr);
}
void initialize(IRGenFunction &IGF, Explosion &e,
Address addr) const override {
return Strategy.initialize(IGF, e, addr);
}
void reexplode(IRGenFunction &IGF, Explosion &src,
Explosion &dest) const override {
return Strategy.reexplode(IGF, src, dest);
}
void copy(IRGenFunction &IGF, Explosion &src,
Explosion &dest) const override {
return Strategy.copy(IGF, src, dest);
}
void consume(IRGenFunction &IGF, Explosion &src) const override {
return Strategy.consume(IGF, src);
}
llvm::Value *packEnumPayload(IRGenFunction &IGF,
Explosion &in,
unsigned bitWidth,
unsigned offset) const override {
return Strategy.packEnumPayload(IGF, in, bitWidth, offset);
}
void unpackEnumPayload(IRGenFunction &IGF,
llvm::Value *payload,
Explosion &dest,
unsigned offset) const override {
return Strategy.unpackEnumPayload(IGF, payload, dest, offset);
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return Strategy.getFixedExtraInhabitantCount(IGM);
}
llvm::ConstantInt *getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index)
const override {
return Strategy.getFixedExtraInhabitantValue(IGM, bits, index);
}
};
/// TypeInfo for dynamically-sized enum types.
class NonFixedEnumTypeInfo
: public EnumTypeInfoBase<WitnessSizedTypeInfo<NonFixedEnumTypeInfo>>
{
CanType EnumType;
public:
NonFixedEnumTypeInfo(EnumImplStrategy &strategy,
llvm::Type *irTy, CanType enumTy,
Alignment align, IsPOD_t pod)
: EnumTypeInfoBase(strategy, irTy, align, pod), EnumType(enumTy) {}
llvm::Value *getMetadataRef(IRGenFunction &IGF) const {
return IGF.emitTypeMetadataRef(EnumType);
}
llvm::Value *getValueWitnessTable(IRGenFunction &IGF) const {
auto metadata = getMetadataRef(IGF);
return IGF.emitValueWitnessTableRefForMetadata(metadata);
}
};
static const EnumImplStrategy &getEnumImplStrategy(IRGenModule &IGM,
SILType ty) {
assert(ty.getEnumOrBoundGenericEnum() && "not an enum");
auto *ti = &IGM.getTypeInfo(ty);
if (auto *loadableTI = dyn_cast<LoadableTypeInfo>(ti))
return loadableTI->as<LoadableEnumTypeInfo>().Strategy;
if (auto *fti = dyn_cast<FixedTypeInfo>(ti))
return fti->as<FixedEnumTypeInfo>().Strategy;
return ti->as<NonFixedEnumTypeInfo>().Strategy;
}
} // end anonymous namespace
TypeInfo *
EnumImplStrategy::getFixedEnumTypeInfo(llvm::StructType *T, Size S,
llvm::BitVector SB,
Alignment A, IsPOD_t isPOD) {
TypeInfo *mutableTI;
switch (TIK) {
case Opaque:
llvm_unreachable("not valid");
case Fixed:
mutableTI = new FixedEnumTypeInfo(*this, T, S, SB, A, isPOD);
break;
case Loadable:
mutableTI = new LoadableEnumTypeInfo(*this, T, S, SB, A, isPOD);
break;
}
TI = mutableTI;
return mutableTI;
}
namespace {
TypeInfo *
SingletonEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
if (ElementsWithPayload.empty()) {
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
Size(0), {},
Alignment(1),
IsPOD));
} else {
const TypeInfo &eltTI = *getSingleton();
// Use the singleton element's storage type if fixed-size.
if (eltTI.isFixedSize()) {
llvm::Type *body[] = { eltTI.StorageType };
enumTy->setBody(body, /*isPacked*/ true);
} else {
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
}
if (TIK <= Opaque) {
return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
type,
eltTI.getBestKnownAlignment(),
eltTI.isPOD(ResilienceScope::Local)));
} else {
auto &fixedEltTI = cast<FixedTypeInfo>(eltTI);
return getFixedEnumTypeInfo(enumTy,
fixedEltTI.getFixedSize(),
fixedEltTI.getSpareBits(),
fixedEltTI.getFixedAlignment(),
fixedEltTI.isPOD(ResilienceScope::Local));
}
}
}
TypeInfo *
NoPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
// Since there are no payloads, we need just enough bits to hold a
// discriminator.
unsigned tagBits = llvm::Log2_32(ElementsWithNoPayload.size() - 1) + 1;
auto tagTy = llvm::IntegerType::get(TC.IGM.getLLVMContext(), tagBits);
// Round the physical size up to the next power of two.
unsigned tagBytes = (tagBits + 7U)/8U;
if (!llvm::isPowerOf2_32(tagBytes))
tagBytes = llvm::NextPowerOf2(tagBytes);
Size tagSize(tagBytes);
llvm::Type *body[] = { tagTy };
enumTy->setBody(body, /*isPacked*/true);
// Unused tag bits in the physical size can be used as spare bits.
// TODO: We can use all values greater than the largest discriminator as
// extra inhabitants, not just those made available by spare bits.
llvm::BitVector spareBits(tagBits, false);
spareBits.resize(tagSize.getValueInBits(), true);
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this,
enumTy, tagSize, std::move(spareBits),
Alignment(tagBytes), IsPOD));
}
TypeInfo *
CCompatibleEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy){
// The type should have come from Clang and should have a raw type.
assert(theEnum->hasClangNode()
&& "c-compatible enum didn't come from clang!");
assert(theEnum->hasRawType()
&& "c-compatible enum doesn't have raw type!");
assert(!theEnum->getDeclaredTypeInContext()->is<BoundGenericType>()
&& "c-compatible enum is generic!");
// The raw type should be a C integer type, which should have a single
// scalar representation as a Swift struct. We'll use that same
// representation type for the enum so that it's ABI-compatible.
auto &rawTI = TC.getCompleteTypeInfo(
theEnum->getRawType()->getCanonicalType());
auto &rawFixedTI = cast<FixedTypeInfo>(rawTI);
assert(rawFixedTI.isPOD(ResilienceScope::Component)
&& "c-compatible raw type isn't POD?!");
ExplosionSchema rawSchema = rawTI.getSchema(ExplosionKind::Minimal);
assert(rawSchema.size() == 1
&& "c-compatible raw type has non-single-scalar representation?!");
assert(rawSchema.begin()[0].isScalar()
&& "c-compatible raw type has non-single-scalar representation?!");
llvm::Type *tagTy = rawSchema.begin()[0].getScalarType();
llvm::Type *body[] = { tagTy };
enumTy->setBody(body, /*isPacked*/ false);
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
rawFixedTI.getFixedSize(),
rawFixedTI.getSpareBits(),
rawFixedTI.getFixedAlignment(),
IsPOD));
}
TypeInfo *SinglePayloadEnumImplStrategy::completeFixedLayout(
TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
// See whether the payload case's type has extra inhabitants.
unsigned fixedExtraInhabitants = 0;
unsigned numTags = ElementsWithNoPayload.size();
auto &payloadTI = getFixedPayloadTypeInfo(); // FIXME non-fixed payload
fixedExtraInhabitants = payloadTI.getFixedExtraInhabitantCount(TC.IGM);
// Determine how many tag bits we need. Given N extra inhabitants, we
// represent the first N tags using those inhabitants. For additional tags,
// we use discriminator bit(s) to inhabit the full bit size of the payload.
unsigned tagsWithoutInhabitants = numTags <= fixedExtraInhabitants
? 0 : numTags - fixedExtraInhabitants;
if (tagsWithoutInhabitants == 0) {
ExtraTagBitCount = 0;
NumExtraTagValues = 0;
// If the payload size is greater than 32 bits, the calculation would
// overflow, but one tag bit should suffice. if you have more than 2^32
// enum discriminators you have other problems.
} else if (payloadTI.getFixedSize().getValue() >= 4) {
ExtraTagBitCount = 1;
NumExtraTagValues = 2;
} else {
unsigned tagsPerTagBitValue =
1 << payloadTI.getFixedSize().getValueInBits();
NumExtraTagValues
= (tagsWithoutInhabitants+(tagsPerTagBitValue-1))/tagsPerTagBitValue+1;
ExtraTagBitCount = llvm::Log2_32(NumExtraTagValues-1) + 1;
}
// Create the body type.
setTaggedEnumBody(TC.IGM, enumTy,
payloadTI.getFixedSize().getValueInBits(),
ExtraTagBitCount);
// The enum has the alignment of the payload. The size includes the added
// tag bits.
auto sizeWithTag = payloadTI.getFixedSize().getValue();
sizeWithTag += (ExtraTagBitCount+7U)/8U;
/// FIXME: Spare bits.
return getFixedEnumTypeInfo(enumTy, Size(sizeWithTag), {},
payloadTI.getFixedAlignment(),
payloadTI.isPOD(ResilienceScope::Component));
}
TypeInfo *SinglePayloadEnumImplStrategy::completeDynamicLayout(
TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
// The body is runtime-dependent, so we can't put anything useful here
// statically.
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/true);
// Layout has to be done when the value witness table is instantiated,
// during initializeMetadata.
return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy, type,
getPayloadTypeInfo().getBestKnownAlignment(),
getPayloadTypeInfo().isPOD(ResilienceScope::Component)));
}
TypeInfo *
SinglePayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
PayloadTy = type->getTypeOfMember(theEnum->getModuleContext(),
getPayloadElement(),
nullptr,
getPayloadElement()->getArgumentType())
->getCanonicalType();
if (TIK >= Fixed)
return completeFixedLayout(TC, type, theEnum, enumTy);
return completeDynamicLayout(TC, type, theEnum, enumTy);
}
TypeInfo *
MultiPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
CanType type,
EnumDecl *theEnum,
llvm::StructType *enumTy) {
// TODO Dynamic layout for multi-payload enums.
if (!TC.IGM.Opts.EnableDynamicValueTypeLayout && TIK < Fixed) {
TC.IGM.unimplemented(theEnum->getLoc(),
"non-fixed multi-payload enum layout");
exit(1);
}
// We need tags for each of the payload types, which we may be able to form
// using spare bits, plus a minimal number of tags with which we can
// represent the empty cases.
unsigned numPayloadTags = ElementsWithPayload.size();
unsigned numEmptyElements = ElementsWithNoPayload.size();
// See if the payload types have any spare bits in common.
// At the end of the loop CommonSpareBits.size() will be the size (in bits)
// of the largest payload.
CommonSpareBits = {};
Alignment worstAlignment(1);
IsPOD_t isPOD = IsPOD;
for (auto &elt : ElementsWithPayload) {
auto &fixedPayloadTI = cast<FixedTypeInfo>(*elt.ti); // FIXME
fixedPayloadTI.applyFixedSpareBitsMask(CommonSpareBits);
if (fixedPayloadTI.getFixedAlignment() > worstAlignment)
worstAlignment = fixedPayloadTI.getFixedAlignment();
if (!fixedPayloadTI.isPOD(ResilienceScope::Component))
isPOD = IsNotPOD;
}
unsigned commonSpareBitCount = CommonSpareBits.count();
unsigned usedBitCount = CommonSpareBits.size() - commonSpareBitCount;
// Determine how many tags we need to accommodate the empty cases, if any.
if (ElementsWithNoPayload.empty()) {
NumEmptyElementTags = 0;
} else {
// We can store tags for the empty elements using the inhabited bits with
// their own tag(s).
if (usedBitCount >= 32) {
NumEmptyElementTags = 1;
} else {
unsigned emptyElementsPerTag = 1 << usedBitCount;
NumEmptyElementTags
= (numEmptyElements + (emptyElementsPerTag-1))/emptyElementsPerTag;
}
}
unsigned numTags = numPayloadTags + NumEmptyElementTags;
unsigned numTagBits = llvm::Log2_32(numTags-1) + 1;
ExtraTagBitCount = numTagBits <= commonSpareBitCount
? 0 : numTagBits - commonSpareBitCount;
NumExtraTagValues = numTags >> commonSpareBitCount;
// Create the type. We need enough bits to store the largest payload plus
// extra tag bits we need.
setTaggedEnumBody(TC.IGM, enumTy,
CommonSpareBits.size(),
ExtraTagBitCount);
// The enum has the worst alignment of its payloads. The size includes the
// added tag bits.
auto sizeWithTag = Size((CommonSpareBits.size() + 7U)/8U)
.roundUpToAlignment(worstAlignment)
.getValue();
sizeWithTag += (ExtraTagBitCount+7U)/8U;
return getFixedEnumTypeInfo(enumTy, Size(sizeWithTag), {},
worstAlignment, isPOD);
}
}
const TypeInfo *TypeConverter::convertEnumType(TypeBase *key, CanType type,
EnumDecl *theEnum) {
llvm::StructType *convertedStruct = IGM.createNominalType(theEnum);
// Create a forward declaration for that type.
addForwardDecl(key, convertedStruct);
// Determine the implementation strategy.
EnumImplStrategy *strategy = EnumImplStrategy::get(*this, type, theEnum);
// Create the TI.
return strategy->completeEnumTypeLayout(*this, type,
theEnum, convertedStruct);
}
/// emitEnumDecl - Emit all the declarations associated with this enum type.
void IRGenModule::emitEnumDecl(EnumDecl *theEnum) {
emitEnumMetadata(*this, theEnum);
// FIXME: This is mostly copy-paste from emitExtension;
// figure out how to refactor!
for (Decl *member : theEnum->getMembers()) {
switch (member->getKind()) {
case DeclKind::Import:
case DeclKind::TopLevelCode:
case DeclKind::Protocol:
case DeclKind::Extension:
case DeclKind::Destructor:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
llvm_unreachable("decl not allowed in enum!");
// We can't have meaningful initializers for variables; these just show
// up as part of parsing properties.
case DeclKind::PatternBinding:
continue;
case DeclKind::Subscript:
// Getter/setter will be handled separately.
continue;
case DeclKind::TypeAlias:
case DeclKind::AssociatedType:
case DeclKind::GenericTypeParam:
continue;
case DeclKind::Enum:
emitEnumDecl(cast<EnumDecl>(member));
continue;
case DeclKind::Struct:
emitStructDecl(cast<StructDecl>(member));
continue;
case DeclKind::Class:
emitClassDecl(cast<ClassDecl>(member));
continue;
case DeclKind::Var:
if (cast<VarDecl>(member)->isComputed())
// Getter/setter will be handled separately.
continue;
continue;
case DeclKind::Func:
emitLocalDecls(cast<FuncDecl>(member));
continue;
case DeclKind::Constructor:
emitLocalDecls(cast<ConstructorDecl>(member));
continue;
case DeclKind::EnumCase:
case DeclKind::EnumElement:
// Lowered in SIL.
continue;
}
llvm_unreachable("bad extension member kind");
}
}
// FIXME: PackEnumPayload and UnpackEnumPayload need to be endian-aware.
PackEnumPayload::PackEnumPayload(IRGenFunction &IGF, unsigned bitSize)
: IGF(IGF), bitSize(bitSize)
{}
void PackEnumPayload::add(llvm::Value *v) {
// First, bitcast to an integer type.
if (isa<llvm::PointerType>(v->getType())) {
v = IGF.Builder.CreatePtrToInt(v, IGF.IGM.SizeTy);
} else if (!isa<llvm::IntegerType>(v->getType())) {
unsigned bitSize = IGF.IGM.DataLayout.getTypeSizeInBits(v->getType());
auto intTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(), bitSize);
v = IGF.Builder.CreateBitCast(v, intTy);
}
auto fromTy = cast<llvm::IntegerType>(v->getType());
// If this was the first added value, use it to start our packed value.
if (!packedValue) {
// Zero-extend the integer value out to the value size.
// FIXME: On big-endian, shift out to the value size.
if (fromTy->getBitWidth() < bitSize) {
auto toTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(), bitSize);
v = IGF.Builder.CreateZExt(v, toTy);
}
if (packedBits != 0)
v = IGF.Builder.CreateShl(v, packedBits);
packedBits += fromTy->getBitWidth();
packedValue = v;
return;
}
// Otherwise, shift and bitor the value into the existing value.
v = IGF.Builder.CreateZExt(v, packedValue->getType());
v = IGF.Builder.CreateShl(v, packedBits);
packedBits += fromTy->getBitWidth();
packedValue = IGF.Builder.CreateOr(packedValue, v);
}
void PackEnumPayload::addAtOffset(llvm::Value *v, unsigned bitOffset) {
packedBits = bitOffset;
add(v);
}
void PackEnumPayload::combine(llvm::Value *v) {
if (!packedValue)
packedValue = v;
else
packedValue = IGF.Builder.CreateOr(packedValue, v);
}
llvm::Value *PackEnumPayload::get() {
if (!packedValue)
packedValue = getEmpty(IGF.IGM, bitSize);
return packedValue;
}
llvm::Value *PackEnumPayload::getEmpty(IRGenModule &IGM, unsigned bitSize) {
return llvm::ConstantInt::get(IGM.getLLVMContext(), APInt(bitSize, 0));
}
UnpackEnumPayload::UnpackEnumPayload(IRGenFunction &IGF,
llvm::Value *packedValue)
: IGF(IGF), packedValue(packedValue)
{}
llvm::Value *UnpackEnumPayload::claim(llvm::Type *ty) {
// Mask out the bits for the value.
unsigned bitSize = IGF.IGM.DataLayout.getTypeSizeInBits(ty);
auto bitTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(), bitSize);
llvm::Value *unpacked = unpackedBits == 0
? packedValue
: IGF.Builder.CreateLShr(packedValue, unpackedBits);
if (bitSize < cast<llvm::IntegerType>(packedValue->getType())->getBitWidth())
unpacked = IGF.Builder.CreateTrunc(unpacked, bitTy);
unpackedBits += bitSize;
// Bitcast to the destination type.
if (isa<llvm::PointerType>(ty))
return IGF.Builder.CreateIntToPtr(unpacked, ty);
return IGF.Builder.CreateBitCast(unpacked, ty);
}
llvm::Value *UnpackEnumPayload::claimAtOffset(llvm::Type *ty,
unsigned bitOffset) {
unpackedBits = bitOffset;
return claim(ty);
}
void irgen::emitSwitchLoadableEnumDispatch(IRGenFunction &IGF,
SILType enumTy,
Explosion &enumValue,
ArrayRef<std::pair<EnumElementDecl *,
llvm::BasicBlock *>> dests,
llvm::BasicBlock *defaultDest) {
getEnumImplStrategy(IGF.IGM, enumTy)
.emitValueSwitch(IGF, enumValue, dests, defaultDest);
}
void irgen::emitSwitchAddressOnlyEnumDispatch(IRGenFunction &IGF,
SILType enumTy,
Address enumAddr,
ArrayRef<std::pair<EnumElementDecl *,
llvm::BasicBlock *>> dests,
llvm::BasicBlock *defaultDest) {
auto &strategy = getEnumImplStrategy(IGF.IGM, enumTy);
strategy.emitIndirectSwitch(IGF, enumAddr, dests, defaultDest);
}
void irgen::emitInjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
EnumElementDecl *theCase,
Explosion &data,
Explosion &out) {
getEnumImplStrategy(IGF.IGM, enumTy)
.emitValueInjection(IGF, theCase, data, out);
}
void irgen::emitProjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
Explosion &inEnumValue,
EnumElementDecl *theCase,
Explosion &out) {
getEnumImplStrategy(IGF.IGM, enumTy)
.emitValueProject(IGF, inEnumValue, theCase, out);
}
Address irgen::emitProjectEnumAddressForStore(IRGenFunction &IGF,
SILType enumTy,
Address enumAddr,
EnumElementDecl *theCase) {
return getEnumImplStrategy(IGF.IGM, enumTy)
.projectDataForStore(IGF, theCase, enumAddr);
}
Address irgen::emitDestructiveProjectEnumAddressForLoad(IRGenFunction &IGF,
SILType enumTy,
Address enumAddr,
EnumElementDecl *theCase) {
return getEnumImplStrategy(IGF.IGM, enumTy)
.destructiveProjectDataForLoad(IGF, theCase, enumAddr);
}
void irgen::emitStoreEnumTagToAddress(IRGenFunction &IGF,
SILType enumTy,
Address enumAddr,
EnumElementDecl *theCase) {
getEnumImplStrategy(IGF.IGM, enumTy)
.storeTag(IGF, theCase, enumAddr);
}
APInt irgen::getAPIntFromBitVector(const llvm::BitVector &bits) {
SmallVector<llvm::integerPart, 2> parts;
for (unsigned i = 0; i < bits.size();) {
llvm::integerPart part = 0UL;
for (llvm::integerPart bit = 1; bit != 0 && i < bits.size();
++i, bit <<= 1) {
if (bits[i])
part |= bit;
}
parts.push_back(part);
}
return APInt(bits.size(), parts);
}
/// Gather spare bits into the low bits of a smaller integer value.
llvm::Value *irgen::emitGatherSpareBits(IRGenFunction &IGF,
const llvm::BitVector &spareBitMask,
llvm::Value *spareBits,
unsigned resultLowBit,
unsigned resultBitWidth) {
auto destTy
= llvm::IntegerType::get(IGF.IGM.getLLVMContext(), resultBitWidth);
unsigned usedBits = resultLowBit;
llvm::Value *result = nullptr;
for (int i = spareBitMask.find_first(); i != -1;
i = spareBitMask.find_next(i)) {
assert(i >= 0);
unsigned u = i;
assert(u >= (usedBits - resultLowBit) &&
"used more bits than we've processed?!");
// Shift the bits into place.
llvm::Value *newBits;
if (u > usedBits)
newBits = IGF.Builder.CreateLShr(spareBits, u - usedBits);
else if (u < usedBits)
newBits = IGF.Builder.CreateShl(spareBits, usedBits - u);
else
newBits = spareBits;
newBits = IGF.Builder.CreateZExtOrTrunc(newBits, destTy);
// See how many consecutive bits we have.
unsigned numBits = 1;
++u;
for (unsigned e = spareBitMask.size(); u < e && spareBitMask[u]; ++u)
++numBits;
// Mask out the selected bits.
auto val = APInt::getAllOnesValue(numBits);
if (numBits < resultBitWidth)
val = val.zext(resultBitWidth);
val = val.shl(usedBits);
auto *mask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), val);
newBits = IGF.Builder.CreateAnd(newBits, mask);
// Accumulate the result.
if (result)
result = IGF.Builder.CreateOr(result, newBits);
else
result = newBits;
usedBits += numBits;
i = u;
}
return result;
}
/// Scatter spare bits from the low bits of an integer value.
llvm::Value *irgen::emitScatterSpareBits(IRGenFunction &IGF,
const llvm::BitVector &spareBitMask,
llvm::Value *packedBits,
unsigned packedLowBit) {
auto destTy
= llvm::IntegerType::get(IGF.IGM.getLLVMContext(), spareBitMask.size());
llvm::Value *result = nullptr;
unsigned usedBits = packedLowBit;
// Expand the packed bits to the destination type.
packedBits = IGF.Builder.CreateZExtOrTrunc(packedBits, destTy);
for (int i = spareBitMask.find_first(); i != -1;
i = spareBitMask.find_next(i)) {
assert(i >= 0);
unsigned u = i, startBit = u;
assert(u >= usedBits - packedLowBit
&& "used more bits than we've processed?!");
// Shift the selected bits into place.
llvm::Value *newBits;
if (u > usedBits)
newBits = IGF.Builder.CreateShl(packedBits, u - usedBits);
else if (u < usedBits)
newBits = IGF.Builder.CreateLShr(packedBits, usedBits - u);
else
newBits = packedBits;
// See how many consecutive bits we have.
unsigned numBits = 1;
++u;
for (unsigned e = spareBitMask.size(); u < e && spareBitMask[u]; ++u)
++numBits;
// Mask out the selected bits.
auto val = APInt::getAllOnesValue(numBits);
if (numBits < spareBitMask.size())
val = val.zext(spareBitMask.size());
val = val.shl(startBit);
auto mask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), val);
newBits = IGF.Builder.CreateAnd(newBits, mask);
// Accumulate the result.
if (result)
result = IGF.Builder.CreateOr(result, newBits);
else
result = newBits;
usedBits += numBits;
i = u;
}
return result;
}
/// Interleave the occupiedValue and spareValue bits, taking a bit from one
/// or the other at each position based on the spareBits mask.
llvm::ConstantInt *
irgen::interleaveSpareBits(IRGenModule &IGM, const llvm::BitVector &spareBits,
unsigned bits,
unsigned spareValue, unsigned occupiedValue) {
// FIXME: endianness.
SmallVector<llvm::integerPart, 2> valueParts;
valueParts.push_back(0);
llvm::integerPart valueBit = 1;
auto advanceValueBit = [&]{
valueBit <<= 1;
if (valueBit == 0) {
valueParts.push_back(0);
valueBit = 1;
}
};
for (unsigned i = 0, e = spareBits.size();
(occupiedValue || spareValue) && i < e;
++i, advanceValueBit()) {
if (spareBits[i]) {
if (spareValue & 1)
valueParts.back() |= valueBit;
spareValue >>= 1;
} else {
if (occupiedValue & 1)
valueParts.back() |= valueBit;
occupiedValue >>= 1;
}
}
// Create the value.
llvm::APInt value(bits, valueParts);
return llvm::ConstantInt::get(IGM.getLLVMContext(), value);
}
static void setAlignmentBits(llvm::BitVector &v, Alignment align) {
switch (align.getValue()) {
case 16:
v[3] = true;
SWIFT_FALLTHROUGH;
case 8:
v[2] = true;
SWIFT_FALLTHROUGH;
case 4:
v[1] = true;
SWIFT_FALLTHROUGH;
case 2:
v[0] = true;
SWIFT_FALLTHROUGH;
case 1:
case 0:
break;
default:
llvm_unreachable("unexpected heap object alignment");
}
}
const llvm::BitVector &
IRGenModule::getHeapObjectSpareBits() const {
return HeapPointerSpareBits.cache([&]{
// Start with the spare bit mask for all pointers.
llvm::BitVector r = TargetInfo.PointerSpareBits;
// Low bits are made available by heap object alignment.
setAlignmentBits(r, TargetInfo.HeapObjectAlignment);
// Mask out bits reserved by the Objective-C runtime.
llvm::BitVector objcMask = TargetInfo.ObjCPointerReservedBits;
objcMask.flip();
r &= objcMask;
return r;
});
}