Files
swift-mirror/lib/Parse/ParseStmt.cpp
Alex Hoppen 4a386d40a6 [Parse] Disallow multiline string literals for filename in #sourceLocation and similar locations
This should allow us to eventually simplify parsing of simple string literals in the new parse by not having to handle indentation of multiline string literals.
2024-01-31 16:03:20 -08:00

2799 lines
98 KiB
C++

//===--- ParseStmt.cpp - Swift Language Parser for Statements -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Statement Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/FileUnit.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Version.h"
#include "swift/Parse/IDEInspectionCallbacks.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
/// isStartOfStmt - Return true if the current token starts a statement.
///
bool Parser::isStartOfStmt(bool preferExpr) {
// This needs to be kept in sync with `Parser::parseStmt()`. If a new token
// kind is accepted here as start of statement, it should also be handled in
// `Parser::parseStmt()`.
switch (Tok.getKind()) {
default: return false;
case tok::kw_return:
case tok::kw_throw:
case tok::kw_defer:
case tok::kw_if:
case tok::kw_guard:
case tok::kw_while:
case tok::kw_do:
case tok::kw_for:
case tok::kw_break:
case tok::kw_continue:
case tok::kw_fallthrough:
case tok::kw_switch:
case tok::kw_case:
case tok::kw_default:
case tok::kw_yield:
case tok::kw_discard:
case tok::pound_assert:
case tok::pound_if:
case tok::pound_warning:
case tok::pound_error:
case tok::pound_sourceLocation:
return true;
case tok::kw_repeat:
// 'repeat' followed by anything other than a brace stmt
// is a pack expansion expression.
// FIXME: 'repeat' followed by '{' could be a pack expansion
// with a closure pattern.
return peekToken().is(tok::l_brace);
case tok::pound_line:
// #line at the start of a line is a directive, when within, it is an expr.
return Tok.isAtStartOfLine();
case tok::kw_try: {
// "try" cannot actually start any statements, but we parse it there for
// better recovery in cases like 'try return'.
// For 'if', 'switch', and 'do' we can parse as an expression.
if (peekToken().isAny(tok::kw_if, tok::kw_switch) ||
(peekToken().is(tok::kw_do) &&
Context.LangOpts.hasFeature(Feature::DoExpressions))) {
return false;
}
Parser::BacktrackingScope backtrack(*this);
consumeToken(tok::kw_try);
return isStartOfStmt(preferExpr);
}
case tok::identifier: {
// "identifier ':' for/while/do/switch" is a label on a loop/switch.
if (!peekToken().is(tok::colon)) {
// "yield", "discard", and "then" in the right context begins a statement.
if (isContextualYieldKeyword() || isContextualDiscardKeyword() ||
isContextualThenKeyword(preferExpr)) {
return true;
}
return false;
}
// To disambiguate other cases of "identifier :", which might be part of a
// question colon expression or something else, we look ahead to the second
// token.
Parser::BacktrackingScope backtrack(*this);
consumeToken(tok::identifier);
consumeToken(tok::colon);
// We treating IDENTIFIER: { as start of statement to provide missed 'do'
// diagnostics. This case will be handled in parseStmt().
if (Tok.is(tok::l_brace)) {
return true;
}
// For better recovery, we just accept a label on any statement. We reject
// putting a label on something inappropriate in parseStmt().
return isStartOfStmt(preferExpr);
}
case tok::at_sign: {
// Might be a statement or case attribute. The only one of these we have
// right now is `@unknown default`, so hardcode a check for an attribute
// without any parens.
if (!peekToken().is(tok::identifier))
return false;
Parser::BacktrackingScope backtrack(*this);
consumeToken(tok::at_sign);
consumeToken(tok::identifier);
return isStartOfStmt(preferExpr);
}
}
}
ParserStatus Parser::parseExprOrStmt(ASTNode &Result) {
if (Tok.is(tok::semi)) {
diagnose(Tok, diag::illegal_semi_stmt)
.fixItRemove(SourceRange(Tok.getLoc()));
consumeToken();
return makeParserError();
}
if (Tok.is(tok::pound) && Tok.isAtStartOfLine() &&
peekToken().is(tok::code_complete)) {
consumeToken();
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeAfterPoundDirective();
}
consumeToken(tok::code_complete);
return makeParserCodeCompletionStatus();
}
if (isStartOfStmt(/*preferExpr*/ false)) {
ParserResult<Stmt> Res = parseStmt();
if (Res.isNonNull()) {
auto *S = Res.get();
// Special case: An 'if' or 'switch' statement followed by an 'as' must
// be an if/switch expression in a coercion.
// We could also achieve this by more eagerly attempting to parse an 'if'
// or 'switch' as an expression when in statement position, but that
// could result in less useful recovery behavior.
if ((isa<IfStmt>(S) || isa<SwitchStmt>(S) ||
((isa<DoStmt>(S) || isa<DoCatchStmt>(S)) &&
Context.LangOpts.hasFeature(Feature::DoExpressions))) &&
Tok.is(tok::kw_as)) {
auto *SVE = SingleValueStmtExpr::createWithWrappedBranches(
Context, S, CurDeclContext, /*mustBeExpr*/ true);
auto As = parseExprAs();
if (As.isParseErrorOrHasCompletion())
return As;
Result = SequenceExpr::create(Context, {SVE, As.get(), As.get()});
} else {
Result = S;
}
}
return Res;
}
// Note that we're parsing a statement.
StructureMarkerRAII ParsingStmt(*this, Tok.getLoc(),
StructureMarkerKind::Statement);
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->setExprBeginning(getParserPosition());
}
if (Tok.is(tok::code_complete)) {
auto *CCE = new (Context) CodeCompletionExpr(Tok.getLoc());
Result = CCE;
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeStmtOrExpr(CCE);
}
consumeToken(tok::code_complete);
return makeParserCodeCompletionStatus();
}
ParserResult<Expr> ResultExpr = parseExpr(diag::expected_expr);
if (ResultExpr.isNonNull()) {
Result = ResultExpr.get();
} else if (!ResultExpr.hasCodeCompletion()) {
// If we've consumed any tokens at all, build an error expression
// covering the consumed range.
SourceLoc startLoc = StructureMarkers.back().Loc;
if (startLoc != Tok.getLoc()) {
Result = new (Context) ErrorExpr(SourceRange(startLoc, PreviousLoc));
}
}
return ResultExpr;
}
/// Returns whether the parser's current position is the start of a switch case,
/// given that we're in the middle of a switch already.
static bool isAtStartOfSwitchCase(Parser &parser,
bool needsToBacktrack = true) {
llvm::Optional<Parser::BacktrackingScope> backtrack;
// Check for and consume attributes. The only valid attribute is `@unknown`
// but that's a semantic restriction.
while (parser.Tok.is(tok::at_sign)) {
if (!parser.peekToken().is(tok::identifier))
return false;
if (needsToBacktrack && !backtrack)
backtrack.emplace(parser);
parser.consumeToken(tok::at_sign);
parser.consumeToken(tok::identifier);
if (parser.Tok.is(tok::l_paren))
parser.skipSingle();
}
return parser.Tok.isAny(tok::kw_case, tok::kw_default);
}
bool Parser::isTerminatorForBraceItemListKind(BraceItemListKind Kind,
ArrayRef<ASTNode> ParsedDecls) {
switch (Kind) {
case BraceItemListKind::Brace:
case BraceItemListKind::TopLevelCode:
case BraceItemListKind::TopLevelLibrary:
case BraceItemListKind::MacroExpansion:
return false;
case BraceItemListKind::Case: {
if (Tok.is(tok::pound_if)) {
// Backtracking scopes are expensive, so avoid setting one up if possible.
Parser::BacktrackingScope Backtrack(*this);
// '#if' here could be to guard 'case:' or statements in cases.
// If the next non-directive line starts with 'case' or 'default', it is
// for 'case's.
do {
consumeToken();
// just find the end of the line
skipUntilTokenOrEndOfLine(tok::NUM_TOKENS);
} while (Tok.isAny(tok::pound_if, tok::pound_elseif, tok::pound_else));
return isAtStartOfSwitchCase(*this, /*needsToBacktrack*/false);
}
return isAtStartOfSwitchCase(*this);
}
case BraceItemListKind::ActiveConditionalBlock:
case BraceItemListKind::InactiveConditionalBlock:
return Tok.isNot(tok::pound_else) && Tok.isNot(tok::pound_endif) &&
Tok.isNot(tok::pound_elseif);
}
llvm_unreachable("Unhandled BraceItemListKind in switch.");
}
void Parser::consumeTopLevelDecl(ParserPosition BeginParserPosition,
TopLevelCodeDecl *TLCD) {
SourceLoc EndLoc = PreviousLoc;
backtrackToPosition(BeginParserPosition);
SourceLoc BeginLoc = Tok.getLoc();
State->setIDEInspectionDelayedDeclState(
SourceMgr, L->getBufferID(),
IDEInspectionDelayedDeclKind::TopLevelCodeDecl, TLCD, {BeginLoc, EndLoc},
BeginParserPosition.PreviousLoc);
// Skip the rest of the file to prevent the parser from constructing the AST
// for it. Forward references are not allowed at the top level.
while (!Tok.is(tok::eof))
consumeToken();
}
/// brace-item:
/// decl
/// expr
/// stmt
/// stmt:
/// ';'
/// stmt-assign
/// stmt-if
/// stmt-guard
/// stmt-for-c-style
/// stmt-for-each
/// stmt-switch
/// stmt-control-transfer
/// stmt-control-transfer:
/// stmt-return
/// stmt-break
/// stmt-continue
/// stmt-fallthrough
/// stmt-assign:
/// expr '=' expr
ParserStatus Parser::parseBraceItems(SmallVectorImpl<ASTNode> &Entries,
BraceItemListKind Kind,
BraceItemListKind ConditionalBlockKind,
bool &IsFollowingGuard) {
bool IsTopLevel = (Kind == BraceItemListKind::TopLevelCode) ||
(Kind == BraceItemListKind::TopLevelLibrary ||
(Kind == BraceItemListKind::MacroExpansion &&
isa<FileUnit>(CurDeclContext)));
bool isActiveConditionalBlock =
ConditionalBlockKind == BraceItemListKind::ActiveConditionalBlock;
bool isConditionalBlock = isActiveConditionalBlock ||
ConditionalBlockKind == BraceItemListKind::InactiveConditionalBlock;
ParserStatus BraceItemsStatus;
bool PreviousHadSemi = true;
while ((IsTopLevel || Tok.isNot(tok::r_brace)) &&
Tok.isNot(tok::pound_endif) &&
Tok.isNot(tok::pound_elseif) &&
Tok.isNot(tok::pound_else) &&
Tok.isNot(tok::eof) &&
!isStartOfSILDecl() &&
(isConditionalBlock ||
!isTerminatorForBraceItemListKind(Kind, Entries))) {
if (Tok.is(tok::r_brace)) {
assert(IsTopLevel);
diagnose(Tok, diag::extra_rbrace)
.fixItRemove(Tok.getLoc());
consumeToken();
continue;
}
// Eat invalid tokens instead of allowing them to produce downstream errors.
if (Tok.is(tok::unknown)) {
if (startsWithMultilineStringDelimiter(Tok)) {
// This was due to unterminated multi-line string.
IsInputIncomplete = true;
}
consumeToken();
continue;
}
bool NeedParseErrorRecovery = false;
ASTNode Result;
// If the previous statement didn't have a semicolon and this new
// statement doesn't start a line, complain.
const bool IsAtStartOfLineOrPreviousHadSemi =
PreviousHadSemi || Tok.isAtStartOfLine();
if (!IsAtStartOfLineOrPreviousHadSemi) {
SourceLoc EndOfPreviousLoc = getEndOfPreviousLoc();
diagnose(EndOfPreviousLoc, diag::statement_same_line_without_semi)
.fixItInsert(EndOfPreviousLoc, ";");
// FIXME: Add semicolon to the AST?
}
ParserPosition BeginParserPosition;
if (isIDEInspectionFirstPass())
BeginParserPosition = getParserPosition();
// Parse the decl, stmt, or expression.
PreviousHadSemi = false;
if (Tok.is(tok::pound_if) && !isStartOfSwiftDecl()) {
auto IfConfigResult = parseIfConfig(
[&](SmallVectorImpl<ASTNode> &Elements, bool IsActive) {
parseBraceItems(Elements, Kind, IsActive
? BraceItemListKind::ActiveConditionalBlock
: BraceItemListKind::InactiveConditionalBlock,
IsFollowingGuard);
});
if (IfConfigResult.hasCodeCompletion() && isIDEInspectionFirstPass()) {
consumeDecl(BeginParserPosition, IsTopLevel);
return IfConfigResult;
}
BraceItemsStatus |= IfConfigResult;
if (auto ICD = IfConfigResult.getPtrOrNull()) {
Result = ICD;
// Add the #if block itself
Entries.push_back(ICD);
for (auto &Entry : ICD->getActiveClauseElements()) {
if (Entry.is<Decl *>() && isa<IfConfigDecl>(Entry.get<Decl *>()))
// Don't hoist nested '#if'.
continue;
Entries.push_back(Entry);
if (Entry.is<Decl *>())
Entry.get<Decl *>()->setEscapedFromIfConfig(true);
}
} else {
NeedParseErrorRecovery = true;
continue;
}
} else if (Tok.is(tok::pound_line)) {
ParserStatus Status = parseLineDirective(true);
BraceItemsStatus |= Status;
NeedParseErrorRecovery = Status.isErrorOrHasCompletion();
} else if (Tok.is(tok::pound_sourceLocation)) {
ParserStatus Status = parseLineDirective(false);
BraceItemsStatus |= Status;
NeedParseErrorRecovery = Status.isErrorOrHasCompletion();
} else if (isStartOfSwiftDecl()) {
SmallVector<Decl*, 8> TmpDecls;
ParserResult<Decl> DeclResult =
parseDecl(IsAtStartOfLineOrPreviousHadSemi,
/*IfConfigsAreDeclAttrs=*/true, [&](Decl *D) {
TmpDecls.push_back(D);
// Any function after a 'guard' statement is marked as
// possibly having local captures. This allows SILGen
// to correctly determine its capture list, since
// otherwise it would be skipped because it is not
// defined inside a local context.
if (IsFollowingGuard)
if (auto *FD = dyn_cast<FuncDecl>(D))
FD->setHasTopLevelLocalContextCaptures();
});
BraceItemsStatus |= DeclResult;
if (DeclResult.isParseErrorOrHasCompletion()) {
NeedParseErrorRecovery = true;
if (DeclResult.hasCodeCompletion() && IsTopLevel &&
isIDEInspectionFirstPass()) {
consumeDecl(BeginParserPosition, IsTopLevel);
return DeclResult;
}
}
Result = DeclResult.getPtrOrNull();
Entries.append(TmpDecls.begin(), TmpDecls.end());
} else if (IsTopLevel) {
// If this is a statement or expression at the top level of the module,
// Parse it as a child of a TopLevelCodeDecl.
auto *TLCD = new (Context) TopLevelCodeDecl(CurDeclContext);
ContextChange CC(*this, TLCD);
SourceLoc StartLoc = Tok.getLoc();
// Expressions can't begin with a closure literal at statement position.
// This prevents potential ambiguities with trailing closure syntax.
if (Tok.is(tok::l_brace)) {
diagnose(Tok, diag::statement_begins_with_closure);
}
ParserStatus Status = parseExprOrStmt(Result);
BraceItemsStatus |= Status;
if (Status.hasCodeCompletion() && isIDEInspectionFirstPass()) {
consumeTopLevelDecl(BeginParserPosition, TLCD);
auto Brace = BraceStmt::create(Context, StartLoc, {}, PreviousLoc);
TLCD->setBody(Brace);
Entries.push_back(TLCD);
return Status;
}
if (Status.isErrorOrHasCompletion())
NeedParseErrorRecovery = true;
else if (!allowTopLevelCode()) {
diagnose(StartLoc,
Result.is<Stmt*>() ? diag::illegal_top_level_stmt
: diag::illegal_top_level_expr);
}
if (!Result.isNull()) {
// NOTE: this is a 'virtual' brace statement which does not have
// explicit '{' or '}', so the start and end locations should be
// the same as those of the result node, plus any junk consumed
// afterwards
auto Brace = BraceStmt::create(Context, Result.getStartLoc(),
Result, PreviousLoc, /*Implicit=*/true);
TLCD->setBody(Brace);
Entries.push_back(TLCD);
// A top-level 'guard' statement can introduce local bindings, so we
// must mark all functions following one. This makes them behave
// as if they were in local context for the purposes of capture
// emission in SILGen.
if (auto *stmt = Result.dyn_cast<Stmt *>())
if (isa<GuardStmt>(stmt))
IsFollowingGuard = true;
}
} else {
ParserStatus ExprOrStmtStatus = parseExprOrStmt(Result);
BraceItemsStatus |= ExprOrStmtStatus;
if (ExprOrStmtStatus.isError())
NeedParseErrorRecovery = true;
if (!Result.isNull())
Entries.push_back(Result);
}
if (!NeedParseErrorRecovery && Tok.is(tok::semi)) {
PreviousHadSemi = true;
if (auto *E = Result.dyn_cast<Expr*>())
E->TrailingSemiLoc = consumeToken(tok::semi);
else if (auto *S = Result.dyn_cast<Stmt*>())
S->TrailingSemiLoc = consumeToken(tok::semi);
else if (auto *D = Result.dyn_cast<Decl*>())
D->TrailingSemiLoc = consumeToken(tok::semi);
else
assert(!Result && "Unsupported AST node");
}
if (NeedParseErrorRecovery) {
// If we had a parse error, skip to the start of the next stmt or decl.
//
// It would be ideal to stop at the start of the next expression (e.g.
// "X = 4"), but distinguishing the start of an expression from the middle
// of one is "hard".
skipUntilDeclStmtRBrace();
// If we have to recover, pretend that we had a semicolon; it's less
// noisy that way.
PreviousHadSemi = true;
}
}
return BraceItemsStatus;
}
/// Recover from a 'case' or 'default' outside of a 'switch' by consuming up to
/// the next ':' or '}'.
static ParserResult<Stmt> recoverFromInvalidCase(Parser &P) {
assert(P.Tok.is(tok::kw_case) || P.Tok.is(tok::kw_default)
&& "not case or default?!");
P.diagnose(P.Tok, diag::case_outside_of_switch, P.Tok.getText());
P.skipUntil(tok::colon, tok::r_brace);
// FIXME: Return an ErrorStmt?
return nullptr;
}
/// parseStmt
///
/// \param fromASTGen If true , this function in called from ASTGen as the
/// fallback, so do not attempt a callback to ASTGen.
ParserResult<Stmt> Parser::parseStmt(bool fromASTGen) {
AssertParserMadeProgressBeforeLeavingScopeRAII apmp(*this);
#if SWIFT_BUILD_SWIFT_SYNTAX
if (IsForASTGen && !fromASTGen)
return parseStmtFromSyntaxTree();
#endif
// If this is a label on a loop/switch statement, consume it and pass it into
// parsing logic below.
LabeledStmtInfo LabelInfo;
if (Tok.is(tok::identifier) && peekToken().is(tok::colon)) {
LabelInfo.Loc = consumeIdentifier(LabelInfo.Name,
/*diagnoseDollarPrefix=*/true);
consumeToken(tok::colon);
}
// Note that we're parsing a statement.
StructureMarkerRAII ParsingStmt(*this, Tok.getLoc(),
StructureMarkerKind::Statement);
SourceLoc tryLoc;
(void)consumeIf(tok::kw_try, tryLoc);
// Claim contextual statement keywords now that we've committed
// to parsing a statement.
if (isContextualYieldKeyword()) {
Tok.setKind(tok::kw_yield);
} else if (isContextualDiscardKeyword()) {
Tok.setKind(tok::kw_discard);
}
if (isContextualThenKeyword(/*preferExpr*/ false))
Tok.setKind(tok::kw_then);
// This needs to handle everything that `Parser::isStartOfStmt()` accepts as
// start of statement.
switch (Tok.getKind()) {
case tok::pound_line:
case tok::pound_sourceLocation:
case tok::pound_if:
case tok::pound_error:
case tok::pound_warning:
assert((LabelInfo || tryLoc.isValid()) &&
"unlabeled directives should be handled earlier");
// Bailout, and let parseBraceItems() parse them.
LLVM_FALLTHROUGH;
default:
diagnose(Tok, tryLoc.isValid() ? diag::expected_expr : diag::expected_stmt);
if (Tok.is(tok::at_sign)) {
// Recover from erroneously placed attribute.
consumeToken(tok::at_sign);
consumeIf(tok::identifier);
}
return nullptr;
case tok::kw_return:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
return parseStmtReturn(tryLoc);
case tok::kw_yield:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
return parseStmtYield(tryLoc);
case tok::kw_then:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
return parseStmtThen(tryLoc);
case tok::kw_throw:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
return parseStmtThrow(tryLoc);
case tok::kw_defer:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtDefer();
case tok::kw_if:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtIf(LabelInfo);
case tok::kw_guard:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtGuard();
case tok::kw_while:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtWhile(LabelInfo);
case tok::kw_repeat:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtRepeat(LabelInfo);
case tok::kw_do:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtDo(LabelInfo);
case tok::kw_for:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtForEach(LabelInfo);
case tok::kw_discard:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtDiscard();
case tok::kw_switch:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtSwitch(LabelInfo);
/// 'case' and 'default' are only valid at the top level of a switch.
case tok::kw_case:
case tok::kw_default:
return recoverFromInvalidCase(*this);
case tok::kw_break:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtBreak();
case tok::kw_continue:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtContinue();
case tok::kw_fallthrough: {
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return makeParserResult(
new (Context) FallthroughStmt(consumeToken(tok::kw_fallthrough)));
}
case tok::pound_assert:
if (LabelInfo) diagnose(LabelInfo.Loc, diag::invalid_label_on_stmt);
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
return parseStmtPoundAssert();
case tok::l_brace:
if (tryLoc.isValid()) diagnose(tryLoc, diag::try_on_stmt, Tok.getText());
SourceLoc colonLoc = Tok.getLoc();
diagnose(colonLoc, diag::labeled_block_needs_do)
.fixItInsert(colonLoc, "do ");
return parseStmtDo(LabelInfo, /*shouldSkipDoTokenConsume*/ true);
}
}
/// parseBraceItemList - A brace enclosed expression/statement/decl list. For
/// example { 1; 4+5; } or { 1; 2 }. Always occurs as part of some other stmt
/// or decl.
///
/// brace-item-list:
/// '{' brace-item* '}'
///
ParserResult<BraceStmt> Parser::parseBraceItemList(Diag<> ID) {
if (Tok.isNot(tok::l_brace)) {
diagnose(Tok, ID);
// Attempt to recover by looking for a left brace on the same line
if (!skipUntilTokenOrEndOfLine(tok::l_brace, tok::r_brace) ||
!Tok.is(tok::l_brace))
return nullptr;
}
SourceLoc LBLoc = consumeToken(tok::l_brace);
SmallVector<ASTNode, 16> Entries;
SourceLoc RBLoc;
ParserStatus Status = parseBraceItems(Entries, BraceItemListKind::Brace,
BraceItemListKind::Brace);
if (!parseMatchingToken(tok::r_brace, RBLoc,
diag::expected_rbrace_in_brace_stmt, LBLoc)) {
// We recovered do don't propagate any error status (but still preserve
// HasCodeCompletion).
Status.clearIsError();
}
return makeParserResult(Status,
BraceStmt::create(Context, LBLoc, Entries, RBLoc));
}
static ParserStatus parseOptionalControlTransferTarget(Parser &P,
Identifier &Target,
SourceLoc &TargetLoc,
StmtKind Kind) {
// If we have an identifier after 'break' or 'continue', which is not the
// start of another stmt or decl, we assume it is the label to break to,
// unless there is a line break. There is ambiguity with expressions (e.g.
// "break x+y") but since the expression after the them is dead, we don't feel
// bad eagerly parsing this.
if (!P.Tok.isAtStartOfLine()) {
if (P.Tok.is(tok::identifier) && !P.isStartOfStmt(/*preferExpr*/ true) &&
!P.isStartOfSwiftDecl()) {
TargetLoc = P.consumeIdentifier(Target, /*diagnoseDollarPrefix=*/false);
return makeParserSuccess();
} else if (P.Tok.is(tok::code_complete)) {
if (P.CodeCompletionCallbacks)
P.CodeCompletionCallbacks->completeStmtLabel(Kind);
TargetLoc = P.consumeToken(tok::code_complete);
return makeParserCodeCompletionStatus();
}
}
return makeParserSuccess();
}
/// parseStmtBreak
///
/// stmt-break:
/// 'break' identifier?
///
ParserResult<Stmt> Parser::parseStmtBreak() {
SourceLoc Loc = consumeToken(tok::kw_break);
SourceLoc TargetLoc;
Identifier Target;
ParserStatus Status;
Status |= parseOptionalControlTransferTarget(*this, Target, TargetLoc,
StmtKind::Break);
auto *BS = new (Context) BreakStmt(Loc, Target, TargetLoc, CurDeclContext);
return makeParserResult(Status, BS);
}
/// parseStmtContinue
///
/// stmt-continue:
/// 'continue' identifier?
///
ParserResult<Stmt> Parser::parseStmtContinue() {
SourceLoc Loc = consumeToken(tok::kw_continue);
SourceLoc TargetLoc;
Identifier Target;
ParserStatus Status;
Status |= parseOptionalControlTransferTarget(*this, Target, TargetLoc,
StmtKind::Continue);
auto *CS = new (Context) ContinueStmt(Loc, Target, TargetLoc, CurDeclContext);
return makeParserResult(Status, CS);
}
/// parseStmtReturn
///
/// stmt-return:
/// 'return' expr?
///
ParserResult<Stmt> Parser::parseStmtReturn(SourceLoc tryLoc) {
SourceLoc ReturnLoc = consumeToken(tok::kw_return);
if (Tok.is(tok::code_complete)) {
auto CCE = new (Context) CodeCompletionExpr(Tok.getLoc());
auto Result =
makeParserResult(ReturnStmt::createParsed(Context, ReturnLoc, CCE));
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeReturnStmt(CCE);
}
Result.setHasCodeCompletionAndIsError();
consumeToken();
return Result;
}
auto isStartOfReturnExpr = [&]() {
if (Tok.isAny(tok::r_brace, tok::semi, tok::eof, tok::pound_if,
tok::pound_error, tok::pound_warning, tok::pound_endif,
tok::pound_else, tok::pound_elseif)) {
return false;
}
// Allowed for if/switch/do expressions.
if (Tok.isAny(tok::kw_if, tok::kw_switch) ||
(Tok.is(tok::kw_do) &&
Context.LangOpts.hasFeature(Feature::DoExpressions))) {
return true;
}
if (isStartOfStmt(/*preferExpr*/ true) || isStartOfSwiftDecl())
return false;
return true;
};
// Handle the ambiguity between consuming the expression and allowing the
// enclosing stmt-brace to get it by eagerly eating it unless the return is
// followed by a '}', ';', statement or decl start keyword sequence.
if (isStartOfReturnExpr()) {
SourceLoc ExprLoc = Tok.getLoc();
// Issue a warning when the returned expression is on a different line than
// the return keyword, but both have the same indentation.
if (SourceMgr.getLineAndColumnInBuffer(ReturnLoc).second ==
SourceMgr.getLineAndColumnInBuffer(ExprLoc).second) {
diagnose(ExprLoc, diag::unindented_code_after_return);
diagnose(ExprLoc, diag::indent_expression_to_silence);
}
ParserResult<Expr> Result = parseExpr(diag::expected_expr_return);
if (Result.isNull()) {
// Create an ErrorExpr to tell the type checker that this return
// statement had an expression argument in the source. This suppresses
// the error about missing return value in a non-void function.
Result = makeParserErrorResult(new (Context) ErrorExpr(ExprLoc));
}
if (tryLoc.isValid()) {
diagnose(tryLoc, diag::try_must_come_after_stmt, /*return=*/0)
.fixItInsert(ExprLoc, "try ")
.fixItRemoveChars(tryLoc, ReturnLoc);
// Note: We can't use tryLoc here because that's outside the ReturnStmt's
// source range.
if (Result.isNonNull() && !isa<ErrorExpr>(Result.get()))
Result = makeParserResult(new (Context) TryExpr(ExprLoc, Result.get()));
}
return makeParserResult(
Result,
ReturnStmt::createParsed(Context, ReturnLoc, Result.getPtrOrNull()));
}
if (tryLoc.isValid())
diagnose(tryLoc, diag::try_on_stmt, "return");
return makeParserResult(
ReturnStmt::createParsed(Context, ReturnLoc, nullptr));
}
/// parseStmtYield
///
/// stmt-yield:
/// 'yield' expr
/// 'yield' '(' expr-list ')'
///
/// Note that a parenthesis always starts the second (list) grammar.
ParserResult<Stmt> Parser::parseStmtYield(SourceLoc tryLoc) {
SourceLoc yieldLoc = consumeToken(tok::kw_yield);
if (Tok.is(tok::code_complete)) {
auto cce = new (Context) CodeCompletionExpr(Tok.getLoc());
auto result = makeParserResult(
YieldStmt::create(Context, yieldLoc, SourceLoc(), cce, SourceLoc()));
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeYieldStmt(cce, /*index=*/llvm::None);
}
result.setHasCodeCompletionAndIsError();
consumeToken();
return result;
}
ParserStatus status;
SourceLoc lpLoc, rpLoc;
SmallVector<Expr*, 4> yields;
if (Tok.is(tok::l_paren)) {
// If there was a 'try' on the yield, and there are multiple
// yielded values, suggest just removing the try instead of
// suggesting adding it to every yielded value.
if (tryLoc.isValid()) {
diagnose(tryLoc, diag::try_must_come_after_stmt, /*yield=*/2)
.fixItRemoveChars(tryLoc, yieldLoc);
}
SmallVector<ExprListElt, 4> yieldElts;
status = parseExprList(tok::l_paren, tok::r_paren, /*isArgumentList*/ false,
lpLoc, yieldElts, rpLoc);
for (auto &elt : yieldElts) {
// We don't accept labels in a list of yields.
if (elt.LabelLoc.isValid()) {
diagnose(elt.LabelLoc, diag::unexpected_label_yield)
.fixItRemoveChars(elt.LabelLoc, elt.E->getStartLoc());
}
yields.push_back(elt.E);
}
} else {
SourceLoc beginLoc = Tok.getLoc();
// There's a single yielded value, so suggest moving 'try' before it.
if (tryLoc.isValid()) {
diagnose(tryLoc, diag::try_must_come_after_stmt, /*yield=*/2)
.fixItInsert(beginLoc, "try ")
.fixItRemoveChars(tryLoc, yieldLoc);
}
auto expr = parseExpr(diag::expected_expr_yield);
if (expr.hasCodeCompletion() && expr.isNonNull()) {
status |= expr;
yields.push_back(expr.get());
} else if (expr.isParseErrorOrHasCompletion()) {
auto endLoc = (Tok.getLoc() == beginLoc ? beginLoc : PreviousLoc);
yields.push_back(
new (Context) ErrorExpr(SourceRange(beginLoc, endLoc)));
} else {
yields.push_back(expr.get());
}
}
return makeParserResult(
status, YieldStmt::create(Context, yieldLoc, lpLoc, yields, rpLoc));
}
bool Parser::isContextualThenKeyword(bool preferExpr) {
if (!Context.LangOpts.hasFeature(Feature::ThenStatements))
return false;
if (!Tok.isContextualKeyword("then"))
return false;
// If we want to prefer an expr, and aren't at the start of a newline, then
// don't parse a ThenStmt.
if (preferExpr && !Tok.isAtStartOfLine())
return false;
// 'then' immediately followed by '('/'[' is a function/subscript call. If
// immediately followed by '.', it's a member access.
if (peekToken().isAny(tok::l_paren, tok::l_square, tok::period)) {
auto tokEndLoc = Lexer::getLocForEndOfToken(SourceMgr, Tok.getLoc());
return peekToken().getLoc() != tokEndLoc;
}
// 'then' followed by '{' is a trailing closure on a function call.
if (peekToken().is(tok::l_brace))
return false;
// If we have 'then' followed by an infix or postfix operator, we know this
// must be an expression.
if (peekToken().isBinaryOperatorLike() || peekToken().isPostfixOperatorLike())
return false;
// These act like binary operators.
if (peekToken().isAny(tok::kw_is, tok::kw_as))
return false;
return true;
}
/// parseStmtThen
///
/// stmt-then:
/// 'then' expr
///
ParserResult<Stmt> Parser::parseStmtThen(SourceLoc tryLoc) {
SourceLoc thenLoc = consumeToken(tok::kw_then);
if (Tok.is(tok::code_complete)) {
auto ccLoc = consumeToken();
auto *CCE = new (Context) CodeCompletionExpr(ccLoc);
if (CodeCompletionCallbacks)
CodeCompletionCallbacks->completeThenStmt(CCE);
return makeParserCodeCompletionResult(
ThenStmt::createParsed(Context, thenLoc, CCE));
}
auto exprLoc = Tok.getLoc();
// Issue a warning when the expression is on a different line than
// the 'then' keyword, but both have the same indentation.
if (SourceMgr.getLineAndColumnInBuffer(thenLoc).second ==
SourceMgr.getLineAndColumnInBuffer(exprLoc).second) {
diagnose(exprLoc, diag::unindented_code_after_then);
diagnose(exprLoc, diag::indent_expression_to_silence);
}
ParserResult<Expr> result = parseExpr(diag::expected_expr_after_then);
bool hasCodeCompletion = result.hasCodeCompletion();
// If we couldn't parse an expr, fill it the gap with an ErrorExpr, as
// ThenStmt expects an expression node.
if (result.isNull())
result = makeParserErrorResult(new (Context) ErrorExpr(exprLoc));
if (tryLoc.isValid()) {
diagnose(tryLoc, diag::try_must_come_after_stmt, /*then=*/3)
.fixItInsert(exprLoc, "try ")
.fixItRemoveChars(tryLoc, thenLoc);
// Note: We can't use tryLoc here because that's outside the ThenStmt's
// source range.
if (!isa<ErrorExpr>(result.get()))
result = makeParserResult(new (Context) TryExpr(exprLoc, result.get()));
}
if (hasCodeCompletion)
result.setHasCodeCompletionAndIsError();
return makeParserResult(
result, ThenStmt::createParsed(Context, thenLoc, result.get()));
}
/// parseStmtThrow
///
/// stmt-throw
/// 'throw' expr
///
ParserResult<Stmt> Parser::parseStmtThrow(SourceLoc tryLoc) {
SourceLoc throwLoc = consumeToken(tok::kw_throw);
SourceLoc exprLoc;
if (Tok.isNot(tok::eof))
exprLoc = Tok.getLoc();
ParserResult<Expr> Result = parseExpr(diag::expected_expr_throw);
bool hasCodeCompletion = Result.hasCodeCompletion();
if (Result.isNull())
Result = makeParserErrorResult(new (Context) ErrorExpr(throwLoc));
if (tryLoc.isValid() && exprLoc.isValid()) {
diagnose(tryLoc, diag::try_must_come_after_stmt, /*throw=*/1)
.fixItInsert(exprLoc, "try ")
.fixItRemoveChars(tryLoc, throwLoc);
// Note: We can't use tryLoc here because that's outside the ThrowStmt's
// source range.
if (Result.isNonNull() && !isa<ErrorExpr>(Result.get()))
Result = makeParserResult(new (Context) TryExpr(exprLoc, Result.get()));
}
if (hasCodeCompletion)
Result.setHasCodeCompletionAndIsError();
return makeParserResult(Result,
new (Context) ThrowStmt(throwLoc, Result.get()));
}
/// parseStmtDiscard
///
/// stmt-discard
/// 'discard' 'self'
///
ParserResult<Stmt> Parser::parseStmtDiscard() {
SourceLoc discardLoc = consumeToken(tok::kw_discard);
SourceLoc exprLoc;
if (Tok.isNot(tok::eof))
exprLoc = Tok.getLoc();
// We parse the whole expression, because we might have something like:
// discard self.x.y
// and we want to emit good diagnostics for this later on.
ParserResult<Expr> Result = parseExpr(diag::expected_expr_discard);
bool hasCodeCompletion = Result.hasCodeCompletion();
if (Result.isNull())
Result = makeParserErrorResult(new (Context) ErrorExpr(discardLoc));
if (hasCodeCompletion)
Result.setHasCodeCompletionAndIsError();
return makeParserResult(Result,
new (Context) DiscardStmt(discardLoc, Result.get()));
}
/// parseStmtDefer
///
/// stmt-defer:
/// 'defer' brace-stmt
///
ParserResult<Stmt> Parser::parseStmtDefer() {
SourceLoc DeferLoc = consumeToken(tok::kw_defer);
// Expand out the defer into a closure and call, which we can typecheck
// and emit where needed.
//
// The AST representation for a defer statement is a bit weird. We retain the
// brace statement that the user wrote, but actually model this as if they
// wrote:
//
// func tmpClosure() { body }
// tmpClosure() // This is emitted on each path that needs to run this.
//
// As such, the body of the 'defer' is actually type checked within the
// closure's DeclContext.
auto *DS = DeferStmt::create(CurDeclContext, DeferLoc);
ParserStatus Status;
{
auto *tempDecl = DS->getTempDecl();
// Change the DeclContext for any variables declared in the defer to be within
// the defer closure.
ParseFunctionBody cc(*this, tempDecl);
llvm::SaveAndRestore<llvm::Optional<StableHasher>> T(
CurrentTokenHash, StableHasher::defaultHasher());
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::expected_lbrace_after_defer);
if (Body.isNull())
return nullptr;
Status |= Body;
// Clone the current hasher and extract a Fingerprint.
StableHasher currentHash{*CurrentTokenHash};
Fingerprint fp(std::move(currentHash));
tempDecl->setBodyParsed(Body.get(), fp);
}
return makeParserResult(Status, DS);
}
namespace {
struct GuardedPattern {
Pattern *ThePattern = nullptr;
SourceLoc WhereLoc;
Expr *Guard = nullptr;
};
/// Contexts in which a guarded pattern can appear.
enum class GuardedPatternContext {
Case,
Catch,
};
} // unnamed namespace
static void parseWhereGuard(Parser &P, GuardedPattern &result,
ParserStatus &status,
GuardedPatternContext parsingContext,
bool isExprBasic) {
if (P.Tok.is(tok::kw_where)) {
result.WhereLoc = P.consumeToken(tok::kw_where);
SourceLoc startOfGuard = P.Tok.getLoc();
auto diagKind = [=]() -> Diag<> {
switch (parsingContext) {
case GuardedPatternContext::Case:
return diag::expected_case_where_expr;
case GuardedPatternContext::Catch:
return diag::expected_catch_where_expr;
}
llvm_unreachable("bad context");
}();
ParserResult<Expr> guardResult = P.parseExprImpl(diagKind, isExprBasic);
status |= guardResult;
// Use the parsed guard expression if possible.
if (guardResult.isNonNull()) {
result.Guard = guardResult.get();
// Otherwise, fake up an ErrorExpr.
} else {
// If we didn't consume any tokens failing to parse the
// expression, don't put in the source range of the ErrorExpr.
SourceRange errorRange;
if (startOfGuard == P.Tok.getLoc()) {
errorRange = result.WhereLoc;
} else {
errorRange = SourceRange(startOfGuard, P.PreviousLoc);
}
result.Guard = new (P.Context) ErrorExpr(errorRange);
}
}
}
/// Parse a pattern-matching clause for a case or catch statement,
/// including the guard expression:
///
/// pattern 'where' expr
static void parseGuardedPattern(Parser &P, GuardedPattern &result,
ParserStatus &status,
SmallVectorImpl<VarDecl *> &boundDecls,
GuardedPatternContext parsingContext,
bool isFirstPattern) {
ParserResult<Pattern> patternResult;
bool isExprBasic = [&]() -> bool {
switch (parsingContext) {
// 'case' is terminated with a colon and so allows a trailing closure.
case GuardedPatternContext::Case:
return false;
// 'catch' is terminated with a brace and so cannot.
case GuardedPatternContext::Catch:
return true;
}
llvm_unreachable("bad pattern context");
}();
// Do some special-case code completion for the start of the pattern.
if (P.Tok.is(tok::code_complete)) {
auto CCE = new (P.Context) CodeCompletionExpr(P.Tok.getLoc());
result.ThePattern =
ExprPattern::createParsed(P.Context, CCE, P.CurDeclContext);
if (P.CodeCompletionCallbacks) {
switch (parsingContext) {
case GuardedPatternContext::Case:
P.CodeCompletionCallbacks->completeCaseStmtBeginning(CCE);
break;
case GuardedPatternContext::Catch:
P.CodeCompletionCallbacks->completePostfixExprBeginning(CCE);
break;
}
}
P.consumeToken(tok::code_complete);
status.setHasCodeCompletionAndIsError();
return;
}
// If this is a 'catch' clause and we have "catch {" or "catch where...",
// then we get an implicit "let error" pattern.
if (parsingContext == GuardedPatternContext::Catch &&
P.Tok.isAny(tok::l_brace, tok::kw_where)) {
patternResult = makeParserResult(
BindingPattern::createImplicitCatch(P.CurDeclContext, P.Tok.getLoc()));
}
// Okay, if the special code-completion didn't kick in, parse a
// matching pattern.
if (patternResult.isNull()) {
llvm::SaveAndRestore<decltype(P.InBindingPattern)> T(
P.InBindingPattern, PatternBindingState::InMatchingPattern);
patternResult = P.parseMatchingPattern(isExprBasic);
}
// If that didn't work, use a bogus pattern so that we can fill out
// the AST.
if (patternResult.isNull()) {
auto *AP = new (P.Context) AnyPattern(P.PreviousLoc);
if (P.PreviousLoc.isInvalid())
AP->setImplicit();
patternResult = makeParserErrorResult(AP);
}
// Fill in the pattern.
status |= patternResult;
result.ThePattern = patternResult.get();
if (isFirstPattern) {
// Add variable bindings from the pattern to the case scope. We have
// to do this with a full AST walk, because the freshly parsed pattern
// represents tuples and var patterns as tupleexprs and
// unresolved_pattern_expr nodes, instead of as proper pattern nodes.
patternResult.get()->forEachVariable([&](VarDecl *VD) {
boundDecls.push_back(VD);
});
// Parse the optional 'where' guard.
parseWhereGuard(P, result, status, parsingContext, isExprBasic);
} else {
// If boundDecls already contains variables, then we must match the
// same number and same names in this pattern as were declared in a
// previous pattern (and later we will make sure they have the same
// types).
SmallVector<VarDecl*, 4> repeatedDecls;
patternResult.get()->forEachVariable([&](VarDecl *VD) {
if (!VD->hasName())
return;
bool found = false;
for (auto previous : boundDecls) {
if (previous->hasName() && previous->getName() == VD->getName()) {
found = true;
break;
}
}
if (!found) {
// Diagnose a declaration that doesn't match a previous pattern.
P.diagnose(VD->getLoc(), diag::extra_var_in_multiple_pattern_list, VD->getName());
status.setIsParseError();
}
repeatedDecls.push_back(VD);
});
for (auto previous : boundDecls) {
bool found = false;
for (auto repeat : repeatedDecls) {
if (previous->hasName() && previous->getName() == repeat->getName()) {
found = true;
break;
}
}
if (!found) {
// Diagnose a previous declaration that is missing in this pattern.
P.diagnose(previous->getLoc(), diag::extra_var_in_multiple_pattern_list, previous->getName());
status.setIsParseError();
}
}
// Parse the optional 'where' guard, with this particular pattern's bound
// vars in scope.
parseWhereGuard(P, result, status, parsingContext, isExprBasic);
}
}
/// Validate availability spec list, emitting diagnostics if necessary and
/// removing specs for unrecognized platforms.
static void
validateAvailabilitySpecList(Parser &P,
SmallVectorImpl<AvailabilitySpec *> &Specs,
Parser::AvailabilitySpecSource Source) {
llvm::SmallSet<PlatformKind, 4> Platforms;
llvm::Optional<SourceLoc> OtherPlatformSpecLoc = llvm::None;
if (Specs.size() == 1 &&
isa<PlatformAgnosticVersionConstraintAvailabilitySpec>(Specs[0])) {
// @available(swift N) and @available(_PackageDescription N) are allowed
// only in isolation; they cannot be combined with other availability specs
// in a single list.
return;
}
SmallVector<AvailabilitySpec *, 5> RecognizedSpecs;
for (auto *Spec : Specs) {
RecognizedSpecs.push_back(Spec);
if (auto *OtherPlatSpec = dyn_cast<OtherPlatformAvailabilitySpec>(Spec)) {
OtherPlatformSpecLoc = OtherPlatSpec->getStarLoc();
continue;
}
if (auto *PlatformAgnosticSpec =
dyn_cast<PlatformAgnosticVersionConstraintAvailabilitySpec>(Spec)) {
P.diagnose(PlatformAgnosticSpec->getPlatformAgnosticNameLoc(),
diag::availability_must_occur_alone,
PlatformAgnosticSpec->isLanguageVersionSpecific()
? "swift"
: "_PackageDescription");
continue;
}
auto *VersionSpec = cast<PlatformVersionConstraintAvailabilitySpec>(Spec);
// We keep specs for unrecognized platforms around for error recovery
// during parsing but remove them once parsing is completed.
if (VersionSpec->isUnrecognizedPlatform()) {
RecognizedSpecs.pop_back();
continue;
}
bool Inserted = Platforms.insert(VersionSpec->getPlatform()).second;
if (!Inserted) {
// Rule out multiple version specs referring to the same platform.
// For example, we emit an error for
/// #available(OSX 10.10, OSX 10.11, *)
PlatformKind Platform = VersionSpec->getPlatform();
P.diagnose(VersionSpec->getPlatformLoc(),
diag::availability_query_repeated_platform,
platformString(Platform));
}
}
switch (Source) {
case Parser::AvailabilitySpecSource::Available: {
if (OtherPlatformSpecLoc == llvm::None) {
SourceLoc InsertWildcardLoc = P.PreviousLoc;
P.diagnose(InsertWildcardLoc, diag::availability_query_wildcard_required)
.fixItInsertAfter(InsertWildcardLoc, ", *");
}
break;
}
case Parser::AvailabilitySpecSource::Unavailable: {
if (OtherPlatformSpecLoc != llvm::None) {
SourceLoc Loc = OtherPlatformSpecLoc.value();
P.diagnose(Loc, diag::unavailability_query_wildcard_not_required)
.fixItRemove(Loc);
}
break;
}
case Parser::AvailabilitySpecSource::Macro: {
if (OtherPlatformSpecLoc != llvm::None) {
SourceLoc Loc = OtherPlatformSpecLoc.value();
P.diagnose(Loc, diag::attr_availability_wildcard_in_macro);
}
break;
}
}
Specs = RecognizedSpecs;
}
// #available(...)
// #unavailable(...)
ParserResult<PoundAvailableInfo> Parser::parseStmtConditionPoundAvailable() {
tok MainToken;
AvailabilitySpecSource Source;
bool isUnavailability;
if (Tok.is(tok::pound_available)) {
MainToken = tok::pound_available;
Source = AvailabilitySpecSource::Available;
isUnavailability = false;
} else {
MainToken = tok::pound_unavailable;
Source = AvailabilitySpecSource::Unavailable;
isUnavailability = true;
}
SourceLoc PoundLoc;
PoundLoc = consumeToken(MainToken);
if (!Tok.isFollowingLParen()) {
diagnose(Tok, diag::avail_query_expected_condition);
return makeParserError();
}
StructureMarkerRAII ParsingAvailabilitySpecList(*this, Tok);
SourceLoc LParenLoc = consumeToken(tok::l_paren);
SmallVector<AvailabilitySpec *, 5> Specs;
ParserStatus Status = parseAvailabilitySpecList(Specs, Source);
for (auto *Spec : Specs) {
if (auto *PlatformAgnostic =
dyn_cast<PlatformAgnosticVersionConstraintAvailabilitySpec>(Spec)) {
diagnose(PlatformAgnostic->getPlatformAgnosticNameLoc(),
PlatformAgnostic->isLanguageVersionSpecific()
? diag::pound_available_swift_not_allowed
: diag::pound_available_package_description_not_allowed,
getTokenText(MainToken));
Status.setIsParseError();
}
}
SourceLoc RParenLoc;
if (parseMatchingToken(tok::r_paren, RParenLoc,
diag::avail_query_expected_rparen, LParenLoc))
Status.setIsParseError();
// Diagnose #available == false as being a wrong spelling of #unavailable.
if (!isUnavailability && Tok.isAnyOperator() && Tok.getText() == "==" &&
peekToken().is(tok::kw_false)) {
diagnose(Tok, diag::false_available_is_called_unavailable)
.highlight(SourceRange(PoundLoc, peekToken().getLoc()))
.fixItReplace(PoundLoc, getTokenText(tok::pound_unavailable))
.fixItRemove(SourceRange(Tok.getLoc(), peekToken().getLoc()));
consumeToken();
consumeToken();
Status.setIsParseError();
}
auto *result = PoundAvailableInfo::create(Context, PoundLoc, LParenLoc, Specs,
RParenLoc, isUnavailability);
return makeParserResult(Status, result);
}
ParserStatus
Parser::parseAvailabilityMacroDefinition(AvailabilityMacroDefinition &Result) {
// Prime the lexer.
if (Tok.is(tok::NUM_TOKENS))
consumeTokenWithoutFeedingReceiver();
if (!Tok.isIdentifierOrUnderscore()) {
diagnose(Tok, diag::attr_availability_missing_macro_name);
return makeParserError();
}
Result.Name = Tok.getText();
consumeToken();
if (Tok.isAny(tok::integer_literal, tok::floating_literal)) {
SourceRange VersionRange;
if (parseVersionTuple(Result.Version, VersionRange,
diag::avail_query_expected_version_number)) {
return makeParserError();
}
}
if (!consumeIf(tok::colon)) {
diagnose(Tok, diag::attr_availability_expected_colon_macro, Result.Name);
return makeParserError();
}
return parseAvailabilitySpecList(Result.Specs, AvailabilitySpecSource::Macro);
}
ParserStatus
Parser::parseAvailabilitySpecList(SmallVectorImpl<AvailabilitySpec *> &Specs,
AvailabilitySpecSource Source) {
ParserStatus Status = makeParserSuccess();
// We don't use parseList() because we want to provide more specific
// diagnostics disallowing operators in version specs.
while (1) {
// First look for a macro as we need Specs for the expansion.
bool MatchedAMacro = false;
switch (Source) {
case AvailabilitySpecSource::Available:
case AvailabilitySpecSource::Unavailable:
if (Tok.is(tok::identifier)) {
SmallVector<AvailabilitySpec *, 4> MacroSpecs;
ParserStatus MacroStatus = parseAvailabilityMacro(MacroSpecs);
if (MacroStatus.isError()) {
// There's a parsing error if the platform name matches a macro
// but something goes wrong after.
Status.setIsParseError();
MatchedAMacro = true;
} else {
MatchedAMacro = !MacroSpecs.empty();
Specs.append(MacroSpecs.begin(), MacroSpecs.end());
}
}
break;
case AvailabilitySpecSource::Macro:
break;
}
if (!MatchedAMacro) {
auto SpecResult = parseAvailabilitySpec();
if (auto *Spec = SpecResult.getPtrOrNull()) {
Specs.push_back(Spec);
} else {
if (SpecResult.hasCodeCompletion()) {
return makeParserCodeCompletionStatus();
}
Status.setIsParseError();
}
}
// We don't allow binary operators to combine specs.
if (Tok.isBinaryOperator()) {
diagnose(Tok, diag::avail_query_disallowed_operator, Tok.getText());
consumeToken();
Status.setIsParseError();
} else if (consumeIf(tok::comma)) {
// There is more to parse in this list.
// Before continuing to parse the next specification, we check that it's
// also in the shorthand syntax and provide a more specific diagnostic if
// that's not the case.
if (Tok.isIdentifierOrUnderscore() &&
!peekToken().isAny(tok::integer_literal, tok::floating_literal) &&
!Specs.empty()) {
auto Text = Tok.getText();
if (Text == "deprecated" || Text == "renamed" || Text == "introduced" ||
Text == "message" || Text == "obsoleted" || Text == "unavailable") {
auto *Previous = Specs.back();
auto &SourceManager = Context.SourceMgr;
auto PreviousSpecText =
SourceManager.extractText(L->getCharSourceRangeFromSourceRange(
SourceManager, Previous->getSourceRange()));
diagnose(Tok,
diag::avail_query_argument_and_shorthand_mix_not_allowed,
Text, PreviousSpecText);
// If this was preceded by a single platform version constraint, we
// can guess that the intention was to treat it as 'introduced' and
// suggest a fix-it to combine them.
if (Specs.size() == 1 &&
PlatformVersionConstraintAvailabilitySpec::classof(Previous) &&
Text != "introduced") {
auto *PlatformSpec =
cast<PlatformVersionConstraintAvailabilitySpec>(Previous);
auto PlatformNameEndLoc =
Lexer::getLocForEndOfToken(SourceManager,
PlatformSpec->getPlatformLoc());
diagnose(PlatformSpec->getPlatformLoc(),
diag::avail_query_meant_introduced)
.fixItInsert(PlatformNameEndLoc, ", introduced:");
}
Status.setIsParseError();
break;
}
}
// Otherwise, keep going.
} else {
break;
}
}
if (Status.isSuccess() && !Status.hasCodeCompletion())
validateAvailabilitySpecList(*this, Specs, Source);
return Status;
}
// #_hasSymbol(...)
ParserResult<PoundHasSymbolInfo> Parser::parseStmtConditionPoundHasSymbol() {
SourceLoc PoundLoc = consumeToken(tok::pound__hasSymbol);
if (!Tok.isFollowingLParen()) {
diagnose(Tok, diag::has_symbol_expected_lparen);
return makeParserError();
}
SourceLoc LParenLoc = consumeToken(tok::l_paren);
ParserStatus status = makeParserSuccess();
auto ExprResult = parseExprBasic(diag::has_symbol_expected_expr);
status |= ExprResult;
SourceLoc RParenLoc;
if (parseMatchingToken(tok::r_paren, RParenLoc,
diag::has_symbol_expected_rparen, LParenLoc))
status.setIsParseError();
auto *result = PoundHasSymbolInfo::create(
Context, PoundLoc, LParenLoc, ExprResult.getPtrOrNull(), RParenLoc);
return makeParserResult(status, result);
}
ParserStatus
Parser::parseStmtConditionElement(SmallVectorImpl<StmtConditionElement> &result,
Diag<> DefaultID, StmtKind ParentKind,
StringRef &BindingKindStr) {
ParserStatus Status;
// Diagnose !#available as being a wrong spelling of #unavailable.
if (Tok.getText() == "!" && peekToken().is(tok::pound_available)) {
SourceRange Range = SourceRange(Tok.getLoc(), peekToken().getLoc());
diagnose(Tok, diag::false_available_is_called_unavailable)
.fixItReplace(Range, getTokenText(tok::pound_unavailable));
// For better error recovery, reject but allow parsing to continue.
consumeToken();
}
// Parse a leading #available/#unavailable condition if present.
if (Tok.isAny(tok::pound_available, tok::pound_unavailable)) {
auto res = parseStmtConditionPoundAvailable();
if (res.isNull() || res.hasCodeCompletion()) {
Status |= res;
return Status;
}
BindingKindStr = StringRef();
result.push_back({res.get()});
return Status;
}
// Parse a leading #_hasSymbol condition if present.
if (Tok.is(tok::pound__hasSymbol)) {
auto res = parseStmtConditionPoundHasSymbol();
if (res.isNull() || res.hasCodeCompletion()) {
Status |= res;
return Status;
}
BindingKindStr = StringRef();
result.push_back({res.get()});
return Status;
}
// Handle code completion after the #.
if (Tok.is(tok::pound) && peekToken().is(tok::code_complete) &&
Tok.getLoc().getAdvancedLoc(1) == peekToken().getLoc()) {
auto Expr = parseExprPoundCodeCompletion(ParentKind);
Status |= Expr;
result.push_back(Expr.get());
}
// Parse the basic expression case. If we have a leading let/var/case
// keyword or an assignment, then we know this is a binding.
if (Tok.isNot(tok::kw_let, tok::kw_var, tok::kw_case) &&
(!Context.LangOpts.hasFeature(Feature::ReferenceBindings) ||
Tok.isNot(tok::kw_inout))) {
// If we lack it, then this is theoretically a boolean condition.
// However, we also need to handle migrating from Swift 2 syntax, in
// which a comma followed by an expression could actually be a pattern
// clause followed by a binding. Determine what we have by checking for a
// syntactically valid pattern followed by an '=', which can never be a
// boolean condition.
//
// However, if this is the first clause, and we see "x = y", then this is
// almost certainly a typo for '==' and definitely not a continuation of
// another clause, so parse it as an expression. This also avoids
// lookahead + backtracking on simple if conditions that are obviously
// boolean conditions.
auto isBooleanExpr = [&]() -> bool {
Parser::BacktrackingScope Backtrack(*this);
return !canParseTypedPattern() || Tok.isNot(tok::equal);
};
if (BindingKindStr.empty() || isBooleanExpr()) {
auto diagID = result.empty() ? DefaultID :
diag::expected_expr_conditional;
auto BoolExpr = parseExprBasic(diagID);
Status |= BoolExpr;
if (BoolExpr.isNull())
return Status;
result.push_back(BoolExpr.get());
BindingKindStr = StringRef();
return Status;
}
}
SourceLoc IntroducerLoc;
if (Tok.isAny(tok::kw_let, tok::kw_var, tok::kw_case) ||
(Context.LangOpts.hasFeature(Feature::ReferenceBindings) &&
Tok.isAny(tok::kw_inout))) {
BindingKindStr = Tok.getText();
IntroducerLoc = consumeToken();
} else {
// If we lack the leading let/var/case keyword, then we're here because
// the user wrote something like "if let x = foo(), y = bar() {". Fix
// this by inserting a new 'let' keyword before y.
IntroducerLoc = Tok.getLoc();
assert(!BindingKindStr.empty() &&
"Shouldn't get here without a leading binding");
diagnose(Tok.getLoc(), diag::expected_binding_keyword, BindingKindStr)
.fixItInsert(Tok.getLoc(), BindingKindStr.str()+" ");
}
// We're parsing a conditional binding.
assert(CurDeclContext->isLocalContext() &&
"conditional binding in non-local context?!");
ParserResult<Pattern> ThePattern;
if (BindingKindStr == "case") {
// In our recursive parse, remember that we're in a matching pattern.
llvm::SaveAndRestore<decltype(InBindingPattern)> T(
InBindingPattern, PatternBindingState::InMatchingPattern);
// Reset async attribute in parser context.
llvm::SaveAndRestore<bool> AsyncAttr(InPatternWithAsyncAttribute, false);
ThePattern = parseMatchingPattern(/*isExprBasic*/ true);
} else if (Tok.is(tok::kw_case)) {
// If will probably be a common typo to write "if let case" instead of
// "if case let" so detect this and produce a nice fixit.
diagnose(IntroducerLoc, diag::wrong_condition_case_location,
BindingKindStr)
.fixItRemove(IntroducerLoc)
.fixItInsertAfter(Tok.getLoc(), " " + BindingKindStr.str());
consumeToken(tok::kw_case);
auto newPatternBindingState = PatternBindingState::get(BindingKindStr)
.value_or(PatternBindingState(PatternBindingState::InVar));
BindingKindStr = "case";
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InBindingPattern)> T(InBindingPattern,
newPatternBindingState);
// Reset async attribute in parser context.
llvm::SaveAndRestore<bool> AsyncAttr(InPatternWithAsyncAttribute, false);
ThePattern = parseMatchingPattern(/*isExprBasic*/ true);
if (ThePattern.isNonNull()) {
auto *P = new (Context)
BindingPattern(IntroducerLoc, *newPatternBindingState.getIntroducer(),
ThePattern.get());
ThePattern = makeParserResult(Status, P);
}
} else if (Tok.is(tok::code_complete)) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeOptionalBinding();
}
ThePattern = makeParserResult(new (Context) AnyPattern(Tok.getLoc()));
ThePattern.setHasCodeCompletionAndIsError();
consumeToken(tok::code_complete);
} else {
// Otherwise, this is an implicit optional binding "if let".
ThePattern = parseMatchingPatternAsBinding(
PatternBindingState::get(BindingKindStr)
.value_or(PatternBindingState(PatternBindingState::InVar)),
IntroducerLoc,
/*isExprBasic*/ true);
// The let/var pattern is part of the statement.
if (Pattern *P = ThePattern.getPtrOrNull())
P->setImplicit();
}
ThePattern = parseOptionalPatternTypeAnnotation(ThePattern);
if (ThePattern.hasCodeCompletion()) {
Status.setHasCodeCompletionAndIsError();
// Skip to '=' so that the completion can see the expected type of the
// pattern which is determined by the initializer.
skipUntilDeclStmtRBrace(tok::equal, tok::l_brace);
}
if (ThePattern.isNull()) {
// Recover by creating AnyPattern.
auto *AP = new (Context) AnyPattern(PreviousLoc);
if (PreviousLoc.isInvalid())
AP->setImplicit();
ThePattern = makeParserResult(AP);
}
// Conditional bindings can have the format:
// `let newBinding = <expr>`, or
// `let newBinding`, which is shorthand for `let newBinding = newBinding`
ParserResult<Expr> Init;
if (Tok.is(tok::equal)) {
consumeToken();
Init = parseExprBasic(diag::expected_expr_conditional_var);
} else if (!ThePattern.getPtrOrNull()->getBoundName().empty()) {
auto bindingName = DeclNameRef(ThePattern.getPtrOrNull()->getBoundName());
auto loc = DeclNameLoc(ThePattern.getPtrOrNull()->getEndLoc());
auto declRefExpr = new (Context) UnresolvedDeclRefExpr(bindingName,
DeclRefKind::Ordinary,
loc);
declRefExpr->setImplicit();
Init = makeParserResult(declRefExpr);
} else if (BindingKindStr != "case") {
// If the pattern is present but isn't an identifier, the user wrote
// something invalid like `let foo.bar`. Emit a special diagnostic for this,
// with a fix-it prepending "<#identifier#> = "
// - We don't emit this fix-it if the user wrote `case let` (etc),
// since the shorthand syntax isn't available for pattern matching
auto diagLoc = ThePattern.get()->getSemanticsProvidingPattern()->getStartLoc();
diagnose(diagLoc, diag::conditional_var_valid_identifiers_only)
.fixItInsert(diagLoc, "<#identifier#> = ");
// For better recovery, assume the expression pattern as the initializer,
// and synthesize an optional AnyPattern.
auto *semanticPattern = ThePattern.get()->getSemanticsProvidingPattern();
if (auto *EP = dyn_cast<ExprPattern>(semanticPattern)) {
Init = makeParserResult(EP->getSubExpr());
auto *AP = AnyPattern::createImplicit(Context);
ThePattern =
makeParserResult(OptionalSomePattern::createImplicit(Context, AP));
}
} else {
diagnose(Tok, diag::conditional_var_initializer_required);
}
if (Init.hasCodeCompletion())
Status.setHasCodeCompletionAndIsError();
if (Init.isNull()) {
// Recover by creating ErrorExpr.
Init = makeParserResult(new (Context)
ErrorExpr(ThePattern.get()->getEndLoc()));
}
result.push_back(ConditionalPatternBindingInfo::create(
Context, IntroducerLoc, ThePattern.get(), Init.get()));
return Status;
}
/// Parse the condition of an 'if' or 'while'.
///
/// condition:
/// condition-clause (',' condition-clause)*
/// condition-clause:
/// expr-basic
/// ('var' | 'let' | 'case') pattern '=' expr-basic
/// '#available' '(' availability-spec (',' availability-spec)* ')'
/// '#_hasSymbol' '(' expr ')'
///
/// The use of expr-basic here disallows trailing closures, which are
/// problematic given the curly braces around the if/while body.
///
ParserStatus Parser::parseStmtCondition(StmtCondition &Condition,
Diag<> DefaultID, StmtKind ParentKind) {
ParserStatus Status;
Condition = StmtCondition();
SmallVector<StmtConditionElement, 4> result;
// For error recovery purposes, keep track of the disposition of the last
// pattern binding we saw ('let', 'var', or 'case').
StringRef BindingKindStr;
// We have a simple comma separated list of clauses, but also need to handle
// a variety of common errors situations (including migrating from Swift 2
// syntax).
while (true) {
Status |= parseStmtConditionElement(result, DefaultID, ParentKind,
BindingKindStr);
if (Status.isErrorOrHasCompletion())
break;
// If a comma exists consume it and succeed.
if (consumeIf(tok::comma))
continue;
// If we have an "&&" token followed by a continuation of the statement
// condition, then fixit the "&&" to "," and keep going.
if (Tok.isAny(tok::oper_binary_spaced, tok::oper_binary_unspaced) &&
Tok.getText() == "&&") {
diagnose(Tok, diag::expected_comma_stmtcondition)
.fixItReplaceChars(getEndOfPreviousLoc(), Tok.getRange().getEnd(), ",");
consumeToken();
continue;
}
// Boolean conditions are separated by commas, not the 'where' keyword, as
// they were in Swift 2 and earlier.
if (Tok.is(tok::kw_where)) {
diagnose(Tok, diag::expected_comma_stmtcondition)
.fixItReplaceChars(getEndOfPreviousLoc(), Tok.getRange().getEnd(), ",");
consumeToken();
continue;
}
break;
};
Condition = Context.AllocateCopy(result);
return Status;
}
///
/// stmt-if:
/// 'if' condition stmt-brace stmt-if-else?
/// stmt-if-else:
/// 'else' stmt-brace
/// 'else' stmt-if
ParserResult<Stmt> Parser::parseStmtIf(LabeledStmtInfo LabelInfo,
bool IfWasImplicitlyInserted) {
SourceLoc IfLoc;
if (IfWasImplicitlyInserted) {
// The code was invalid due to a missing 'if' (e.g. 'else x < y {') and a
// fixit implicitly inserted it.
IfLoc = Tok.getLoc();
} else {
IfLoc = consumeToken(tok::kw_if);
}
ParserStatus Status;
StmtCondition Condition;
ParserResult<BraceStmt> NormalBody;
// A scope encloses the condition and true branch for any variables bound
// by a conditional binding. The else branch does *not* see these variables.
{
auto recoverWithCond = [&](ParserStatus Status,
StmtCondition Condition) -> ParserResult<Stmt> {
if (Condition.empty()) {
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(IfLoc));
Condition = Context.AllocateCopy(ConditionElems);
}
auto EndLoc = Condition.back().getEndLoc();
return makeParserResult(
Status,
new (Context) IfStmt(
LabelInfo, IfLoc, Condition,
BraceStmt::create(Context, EndLoc, {}, EndLoc, /*implicit=*/true),
SourceLoc(), nullptr));
};
if (Tok.is(tok::l_brace)) {
SourceLoc LBraceLoc = Tok.getLoc();
diagnose(IfLoc, diag::missing_condition_after_if)
.highlight(SourceRange(IfLoc, LBraceLoc));
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(LBraceLoc));
Condition = Context.AllocateCopy(ConditionElems);
} else {
Status |= parseStmtCondition(Condition, diag::expected_condition_if,
StmtKind::If);
if (Status.isErrorOrHasCompletion())
return recoverWithCond(Status, Condition);
}
if (Tok.is(tok::kw_else)) {
SourceLoc ElseLoc = Tok.getLoc();
diagnose(ElseLoc, diag::unexpected_else_after_if);
diagnose(ElseLoc, diag::suggest_removing_else)
.fixItRemove(ElseLoc);
consumeToken(tok::kw_else);
}
NormalBody = parseBraceItemList(diag::expected_lbrace_after_if);
Status |= NormalBody;
if (NormalBody.isNull())
return recoverWithCond(Status, Condition);
}
// The else branch, if any, is outside of the scope of the condition.
SourceLoc ElseLoc;
ParserResult<Stmt> ElseBody;
if (Tok.is(tok::kw_else)) {
ElseLoc = consumeToken(tok::kw_else);
bool implicitlyInsertIf = false;
if (Tok.isNot(tok::kw_if, tok::l_brace, tok::code_complete)) {
// The code looks like 'if ... { ... } else not_if_or_lbrace', so we've
// got a problem. If the last bit is 'else ... {' on one line, let's
// assume they've forgotten the 'if'.
BacktrackingScope backtrack(*this);
if (skipUntilTokenOrEndOfLine(tok::l_brace, tok::r_brace))
implicitlyInsertIf = Tok.is(tok::l_brace);
}
if (Tok.is(tok::kw_if) || implicitlyInsertIf) {
if (implicitlyInsertIf) {
diagnose(ElseLoc, diag::expected_lbrace_or_if_after_else_fixit)
.fixItInsertAfter(ElseLoc, " if");
}
ElseBody = parseStmtIf(LabeledStmtInfo(), implicitlyInsertIf);
} else if (Tok.is(tok::code_complete)) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeAfterIfStmtElse();
}
Status.setHasCodeCompletionAndIsError();
consumeToken(tok::code_complete);
} else {
ElseBody = parseBraceItemList(diag::expected_lbrace_or_if_after_else);
}
Status |= ElseBody;
}
return makeParserResult(
Status, new (Context) IfStmt(LabelInfo,
IfLoc, Condition, NormalBody.get(),
ElseLoc, ElseBody.getPtrOrNull()));
}
/// stmt-guard:
/// 'guard' condition 'else' stmt-brace
///
ParserResult<Stmt> Parser::parseStmtGuard() {
SourceLoc GuardLoc = consumeToken(tok::kw_guard);
ParserStatus Status;
StmtCondition Condition;
ParserResult<BraceStmt> Body;
auto recoverWithCond = [&](ParserStatus Status,
StmtCondition Condition) -> ParserResult<Stmt> {
if (Condition.empty()) {
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(GuardLoc));
Condition = Context.AllocateCopy(ConditionElems);
}
auto EndLoc = Condition.back().getEndLoc();
return makeParserResult(
Status,
new (Context) GuardStmt(
GuardLoc, Condition,
BraceStmt::create(Context, EndLoc, {}, EndLoc, /*implicit=*/true)));
};
if (Tok.isAny(tok::l_brace, tok::kw_else)) {
SourceLoc LBraceLoc = Tok.getLoc();
diagnose(GuardLoc, diag::missing_condition_after_guard)
.highlight(SourceRange(GuardLoc, LBraceLoc));
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(LBraceLoc));
Condition = Context.AllocateCopy(ConditionElems);
} else {
Status |= parseStmtCondition(Condition, diag::expected_condition_guard,
StmtKind::Guard);
if (Status.isErrorOrHasCompletion()) {
// FIXME: better recovery
return recoverWithCond(Status, Condition);
}
}
// Parse the 'else'. If it is missing, and if the following token isn't a {
// then the parser is hopelessly lost - just give up instead of spewing.
if (!consumeIf(tok::kw_else)) {
checkForInputIncomplete();
auto diag = diagnose(Tok, diag::expected_else_after_guard);
if (Tok.is(tok::l_brace))
diag.fixItInsert(Tok.getLoc(), "else ");
else
return recoverWithCond(Status, Condition);
}
Body = parseBraceItemList(diag::expected_lbrace_after_guard);
if (Body.isNull())
return recoverWithCond(Status, Condition);
Status |= Body;
return makeParserResult(Status,
new (Context) GuardStmt(GuardLoc, Condition, Body.get()));
}
///
/// stmt-while:
/// (identifier ':')? 'while' expr-basic stmt-brace
ParserResult<Stmt> Parser::parseStmtWhile(LabeledStmtInfo LabelInfo) {
SourceLoc WhileLoc = consumeToken(tok::kw_while);
ParserStatus Status;
StmtCondition Condition;
auto recoverWithCond = [&](ParserStatus Status,
StmtCondition Condition) -> ParserResult<Stmt> {
if (Condition.empty()) {
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(WhileLoc));
Condition = Context.AllocateCopy(ConditionElems);
}
auto EndLoc = Condition.back().getEndLoc();
return makeParserResult(
Status,
new (Context) WhileStmt(
LabelInfo, WhileLoc, Condition,
BraceStmt::create(Context, EndLoc, {}, EndLoc, /*implicit=*/true)));
};
if (Tok.is(tok::l_brace)) {
SourceLoc LBraceLoc = Tok.getLoc();
diagnose(WhileLoc, diag::missing_condition_after_while)
.highlight(SourceRange(WhileLoc, LBraceLoc));
SmallVector<StmtConditionElement, 1> ConditionElems;
ConditionElems.emplace_back(new (Context) ErrorExpr(LBraceLoc));
Condition = Context.AllocateCopy(ConditionElems);
} else {
Status |= parseStmtCondition(Condition, diag::expected_condition_while,
StmtKind::While);
if (Status.isErrorOrHasCompletion())
return recoverWithCond(Status, Condition);
}
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::expected_lbrace_after_while);
Status |= Body;
if (Body.isNull())
return recoverWithCond(Status, Condition);
return makeParserResult(
Status, new (Context) WhileStmt(LabelInfo, WhileLoc, Condition,
Body.get()));
}
///
/// stmt-repeat:
/// (identifier ':')? 'repeat' stmt-brace 'while' expr
ParserResult<Stmt> Parser::parseStmtRepeat(LabeledStmtInfo labelInfo) {
SourceLoc repeatLoc = consumeToken(tok::kw_repeat);
ParserStatus status;
ParserResult<BraceStmt> body =
parseBraceItemList(diag::expected_lbrace_after_repeat);
status |= body;
if (body.isNull())
body = makeParserResult(
body, BraceStmt::create(Context, repeatLoc, {}, PreviousLoc, true));
SourceLoc whileLoc;
if (!consumeIf(tok::kw_while, whileLoc)) {
diagnose(body.getPtrOrNull()->getEndLoc(),
diag::expected_while_after_repeat_body);
return body;
}
ParserResult<Expr> condition;
if (Tok.is(tok::l_brace)) {
diagnose(whileLoc, diag::missing_condition_after_while);
condition = makeParserErrorResult(new (Context) ErrorExpr(whileLoc));
} else {
condition = parseExpr(diag::expected_expr_repeat_while);
status |= condition;
if (condition.isNull()) {
condition = makeParserErrorResult(new (Context) ErrorExpr(whileLoc));
}
}
return makeParserResult(
status,
new (Context) RepeatWhileStmt(labelInfo, repeatLoc, condition.get(),
whileLoc, body.get()));
}
///
/// stmt-do:
/// (identifier ':')? 'do' throws-clause? stmt-brace
/// (identifier ':')? 'do' throws-clause? stmt-brace stmt-catch+
ParserResult<Stmt> Parser::parseStmtDo(LabeledStmtInfo labelInfo,
bool shouldSkipDoTokenConsume) {
SourceLoc doLoc;
if (shouldSkipDoTokenConsume) {
doLoc = Tok.getLoc();
} else {
doLoc = consumeToken(tok::kw_do);
}
ParserStatus status;
// Parse the optional 'throws' clause.
SourceLoc throwsLoc;
TypeRepr *thrownType = nullptr;
if (consumeIf(tok::kw_throws, throwsLoc)) {
// Parse the thrown error type.
SourceLoc lParenLoc;
if (consumeIf(tok::l_paren, lParenLoc)) {
ParserResult<TypeRepr> parsedThrownTy =
parseType(diag::expected_thrown_error_type);
thrownType = parsedThrownTy.getPtrOrNull();
status |= parsedThrownTy;
SourceLoc rParenLoc;
parseMatchingToken(
tok::r_paren, rParenLoc,
diag::expected_rparen_after_thrown_error_type, lParenLoc);
}
}
ParserResult<BraceStmt> body =
parseBraceItemList(diag::expected_lbrace_after_do);
status |= body;
if (body.isNull())
body = makeParserResult(
body, BraceStmt::create(Context, doLoc, {}, PreviousLoc, true));
// If the next token is 'catch', this is a 'do'/'catch' statement.
if (Tok.is(tok::kw_catch)) {
// Parse 'catch' clauses
SmallVector<CaseStmt *, 4> allClauses;
do {
ParserResult<CaseStmt> clause = parseStmtCatch();
status |= clause;
if (status.hasCodeCompletion() && clause.isNull())
return makeParserResult<Stmt>(status, nullptr);
// parseStmtCatch promises to return non-null unless we are
// completing inside the catch's pattern.
allClauses.push_back(clause.get());
} while (Tok.is(tok::kw_catch) && !status.hasCodeCompletion());
// Recover from all of the clauses failing to parse by returning a
// normal do-statement.
if (allClauses.empty()) {
assert(status.isErrorOrHasCompletion());
return makeParserResult(status,
new (Context) DoStmt(labelInfo, doLoc, body.get()));
}
return makeParserResult(status,
DoCatchStmt::create(CurDeclContext, labelInfo, doLoc, throwsLoc,
thrownType, body.get(), allClauses));
}
if (throwsLoc.isValid()) {
diagnose(throwsLoc, diag::do_throws_without_catch);
}
// If we dont see a 'while' or see a 'while' that starts
// from new line. This is just the bare `do` scoping statement.
if (Tok.getKind() != tok::kw_while || Tok.isAtStartOfLine()) {
return makeParserResult(status,
new (Context) DoStmt(labelInfo, doLoc, body.get()));
}
SourceLoc whileLoc = Tok.getLoc();
// But if we do, advise the programmer that it's 'repeat' now.
diagnose(doLoc, diag::do_while_now_repeat_while);
diagnose(doLoc, diag::do_while_expected_repeat_while)
.fixItReplace(doLoc, "repeat");
diagnose(doLoc, diag::do_while_expected_separate_stmt)
.fixItInsert(whileLoc, "\n");
consumeToken(tok::kw_while);
status.setIsParseError();
ParserResult<Expr> condition;
if (Tok.is(tok::l_brace)) {
SourceLoc lbraceLoc = Tok.getLoc();
diagnose(whileLoc, diag::missing_condition_after_while);
condition = makeParserErrorResult(new (Context) ErrorExpr(lbraceLoc));
} else {
condition = parseExpr(diag::expected_expr_repeat_while);
status |= condition;
if (condition.isNull() || condition.hasCodeCompletion())
return makeParserResult<Stmt>(status, nullptr); // FIXME: better recovery
}
return makeParserResult(
status,
new (Context) RepeatWhileStmt(labelInfo, doLoc, condition.get(), whileLoc,
body.get()));
}
/// stmt-catch:
/// 'catch' pattern ('where' expr)? stmt-brace
///
/// Note that this is not a "first class" statement; it can only
/// appear following a 'do' statement.
///
/// This routine promises to return a non-null result unless there was
/// a code-completion token in the pattern.
ParserResult<CaseStmt> Parser::parseStmtCatch() {
// A catch block has its own scope for variables bound out of the pattern.
SourceLoc catchLoc = consumeToken(tok::kw_catch);
SmallVector<VarDecl*, 4> boundDecls;
ParserStatus status;
SmallVector<CaseLabelItem, 1> caseLabelItems;
{
bool isFirst = true;
while (true) {
GuardedPattern PatternResult;
parseGuardedPattern(*this, PatternResult, status, boundDecls,
GuardedPatternContext::Catch, isFirst);
caseLabelItems.emplace_back(PatternResult.ThePattern,
PatternResult.WhereLoc, PatternResult.Guard);
isFirst = false;
if (!consumeIf(tok::comma))
break;
}
}
auto bodyResult = parseBraceItemList(diag::expected_lbrace_after_catch);
status |= bodyResult;
if (bodyResult.isNull()) {
bodyResult = makeParserErrorResult(BraceStmt::create(Context, PreviousLoc,
{}, PreviousLoc,
/*implicit=*/ true));
}
return makeParserResult(
status, CaseStmt::createParsedDoCatch(Context, catchLoc, caseLabelItems,
bodyResult.get()));
}
static bool isStmtForCStyle(Parser &P) {
// If we have a leading identifier followed by a ':' or 'in', or have a
// 'case', then this is obviously a for-each loop. "for in ..." is malformed
// but it's obviously not a C-style for.
if ((P.Tok.isIdentifierOrUnderscore() &&
P.peekToken().isAny(tok::colon, tok::kw_in)) ||
P.Tok.isAny(tok::kw_case, tok::kw_in))
return false;
// Otherwise, we have to look forward if we see ';' in control part.
Parser::BacktrackingScope Backtrack(P);
// The condition of a c-style-for loop can be parenthesized.
auto HasLParen = P.consumeIf(tok::l_paren);
// Skip until we see ';', or something that ends control part.
while (true) {
if (P.Tok.isAny(tok::eof, tok::kw_in, tok::l_brace, tok::r_brace,
tok::r_paren) ||
P.isStartOfStmt(/*preferExpr*/ false))
return false;
// If we saw newline before ';', consider it is a foreach statement.
if (!HasLParen && P.Tok.isAtStartOfLine())
return false;
if (P.Tok.is(tok::semi))
return true;
P.skipSingle();
}
}
///
/// stmt-for-each:
/// (identifier ':')? 'for' pattern 'in' expr-basic \
/// ('where' expr-basic)? stmt-brace
ParserResult<Stmt> Parser::parseStmtForEach(LabeledStmtInfo LabelInfo) {
SourceLoc ForLoc = consumeToken(tok::kw_for);
ParserStatus Status;
ParserResult<Pattern> pattern;
ParserResult<Expr> Container;
// The C-style for loop which was supported in Swift2 and foreach-style-for
// loop are conflated together into a single keyword, so we have to do some
// lookahead to resolve what is going on.
bool IsCStyleFor = isStmtForCStyle(*this);
auto StartOfControl = Tok.getLoc();
SourceLoc AwaitLoc;
SourceLoc TryLoc;
if (Tok.isContextualKeyword("await")) {
AwaitLoc = consumeToken();
} else if (Tok.is(tok::kw_try)) {
TryLoc = consumeToken();
if (Tok.isContextualKeyword("await")) {
AwaitLoc = consumeToken();
}
}
if (Tok.is(tok::code_complete)) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeForEachPatternBeginning(
TryLoc.isValid(), AwaitLoc.isValid());
}
consumeToken(tok::code_complete);
// Since 'completeForeachPatternBeginning' is a keyword only completion,
// we don't need to parse the rest of 'for' statement.
return makeParserCodeCompletionStatus();
}
// Parse the pattern. This is either 'case <refutable pattern>' or just a
// normal pattern.
if (consumeIf(tok::kw_case)) {
llvm::SaveAndRestore<decltype(InBindingPattern)> T(
InBindingPattern, PatternBindingState::InMatchingPattern);
// Reset async attribute in parser context.
llvm::SaveAndRestore<bool> AsyncAttr(InPatternWithAsyncAttribute, false);
pattern = parseMatchingPattern(/*isExprBasic*/true);
pattern = parseOptionalPatternTypeAnnotation(pattern);
} else if (!IsCStyleFor || Tok.is(tok::kw_var)) {
// Change the parser state to know that the pattern we're about to parse is
// implicitly mutable. Bound variables can be changed to mutable explicitly
// if desired by using a 'var' pattern.
assert(InBindingPattern == PatternBindingState::NotInBinding &&
"for-each loops cannot exist inside other patterns");
InBindingPattern = PatternBindingState::ImplicitlyImmutable;
pattern = parseTypedPattern();
assert(InBindingPattern == PatternBindingState::ImplicitlyImmutable);
InBindingPattern = PatternBindingState::NotInBinding;
}
SourceLoc InLoc;
if (pattern.isNull()) {
// Recover by creating a "_" pattern.
pattern = makeParserErrorResult(AnyPattern::createImplicit(Context));
consumeIf(tok::kw_in, InLoc);
} else if (!IsCStyleFor) {
parseToken(tok::kw_in, InLoc, diag::expected_foreach_in);
}
if (IsCStyleFor) {
// Skip until start of body part.
if (Tok.is(tok::l_paren)) {
skipSingle();
} else {
// If not parenthesized, don't run over the line.
while (Tok.isNot(tok::eof, tok::r_brace, tok::l_brace, tok::code_complete)
&& !Tok.isAtStartOfLine())
skipSingle();
}
if (Tok.is(tok::code_complete))
return makeParserCodeCompletionStatus();
assert(StartOfControl != Tok.getLoc());
SourceRange ControlRange(StartOfControl, PreviousLoc);
Container = makeParserErrorResult(new (Context) ErrorExpr(ControlRange));
diagnose(ForLoc, diag::c_style_for_stmt_removed)
.highlight(ControlRange);
Status = makeParserError();
} else if (Tok.is(tok::l_brace)) {
SourceLoc LBraceLoc = Tok.getLoc();
diagnose(LBraceLoc, diag::expected_foreach_container);
Container = makeParserErrorResult(new (Context) ErrorExpr(LBraceLoc));
} else if (Tok.is(tok::code_complete)) {
// If there is no "in" keyword, suggest it. Otherwise, complete the
// sequence.
if (InLoc.isInvalid()) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeForEachInKeyword();
}
consumeToken(tok::code_complete);
return makeParserCodeCompletionStatus();
} else {
Container =
makeParserResult(new (Context) CodeCompletionExpr(Tok.getLoc()));
Container.setHasCodeCompletionAndIsError();
Status |= Container;
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeForEachSequenceBeginning(
cast<CodeCompletionExpr>(Container.get()));
}
consumeToken(tok::code_complete);
}
} else {
Container = parseExprBasic(diag::expected_foreach_container);
Status |= Container;
if (Container.isNull())
Container = makeParserErrorResult(new (Context) ErrorExpr(Tok.getLoc()));
if (Container.isParseErrorOrHasCompletion())
// Recover.
skipUntilDeclStmtRBrace(tok::l_brace, tok::kw_where);
}
// Parse the 'where' expression if present.
ParserResult<Expr> Where;
SourceLoc WhereLoc;
if (Tok.is(tok::kw_where)) {
WhereLoc = consumeToken();
Where = parseExprBasic(diag::expected_foreach_where_expr);
if (Where.isNull())
Where = makeParserErrorResult(new (Context) ErrorExpr(Tok.getLoc()));
Status |= Where;
}
// stmt-brace
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::expected_foreach_lbrace);
Status |= Body;
if (Body.isNull())
Body = makeParserResult(
Body, BraceStmt::create(Context, ForLoc, {}, PreviousLoc, true));
return makeParserResult(
Status,
new (Context) ForEachStmt(LabelInfo, ForLoc, TryLoc, AwaitLoc, pattern.get(), InLoc,
Container.get(), WhereLoc, Where.getPtrOrNull(),
Body.get()));
}
///
/// stmt-switch:
/// (identifier ':')? 'switch' expr-basic '{' stmt-case+ '}'
ParserResult<Stmt> Parser::parseStmtSwitch(LabeledStmtInfo LabelInfo) {
SourceLoc SwitchLoc = consumeToken(tok::kw_switch);
ParserStatus Status;
ParserResult<Expr> SubjectExpr;
SourceLoc SubjectLoc = Tok.getLoc();
if (Tok.is(tok::l_brace)) {
diagnose(SubjectLoc, diag::expected_switch_expr);
SubjectExpr = makeParserErrorResult(new (Context) ErrorExpr(SubjectLoc));
} else {
SubjectExpr = parseExprBasic(diag::expected_switch_expr);
if (SubjectExpr.isNull()) {
SubjectExpr = makeParserErrorResult(new (Context) ErrorExpr(SubjectLoc));
}
Status |= SubjectExpr;
}
SourceLoc lBraceLoc;
SourceLoc rBraceLoc;
SmallVector<ASTNode, 8> cases;
if (Status.isErrorOrHasCompletion()) {
return makeParserResult(
Status, SwitchStmt::create(LabelInfo, SwitchLoc, SubjectExpr.get(),
lBraceLoc, cases, rBraceLoc,
/*EndLoc=*/PreviousLoc, Context));
}
if (!consumeIf(tok::l_brace, lBraceLoc)) {
diagnose(Tok, diag::expected_lbrace_after_switch);
return makeParserResult(
Status, SwitchStmt::create(LabelInfo, SwitchLoc, SubjectExpr.get(),
lBraceLoc, cases, rBraceLoc,
/*EndLoc=*/PreviousLoc, Context));
}
Status |= parseStmtCases(cases, /*IsActive=*/true);
// We cannot have additional cases after a default clause. Complain on
// the first offender.
bool hasDefault = false;
for (auto Element : cases) {
if (!Element.is<Stmt*>()) continue;
auto *CS = cast<CaseStmt>(Element.get<Stmt*>());
if (hasDefault) {
diagnose(CS->getLoc(), diag::case_after_default);
break;
}
hasDefault |= CS->isDefault();
}
if (parseMatchingToken(tok::r_brace, rBraceLoc,
diag::expected_rbrace_switch, lBraceLoc)) {
Status.setIsParseError();
}
return makeParserResult(
Status, SwitchStmt::create(LabelInfo, SwitchLoc, SubjectExpr.get(),
lBraceLoc, cases, rBraceLoc,
/*EndLoc=*/rBraceLoc, Context));
}
ParserStatus
Parser::parseStmtCases(SmallVectorImpl<ASTNode> &cases, bool IsActive) {
ParserStatus Status;
while (Tok.isNot(tok::r_brace, tok::eof,
tok::pound_endif, tok::pound_elseif, tok::pound_else)) {
if (isAtStartOfSwitchCase(*this)) {
ParserResult<CaseStmt> Case = parseStmtCase(IsActive);
Status |= Case;
if (Case.isNonNull())
cases.emplace_back(Case.get());
} else if (Tok.is(tok::pound_if)) {
// '#if' in 'case' position can enclose one or more 'case' or 'default'
// clauses.
auto IfConfigResult = parseIfConfig(
[&](SmallVectorImpl<ASTNode> &Elements, bool IsActive) {
parseStmtCases(Elements, IsActive);
});
Status |= IfConfigResult;
if (auto ICD = IfConfigResult.getPtrOrNull()) {
cases.emplace_back(ICD);
for (auto &Entry : ICD->getActiveClauseElements()) {
if (Entry.is<Decl*>() &&
(isa<IfConfigDecl>(Entry.get<Decl*>())))
// Don't hoist nested '#if'.
continue;
assert((Entry.is<Stmt*>() && isa<CaseStmt>(Entry.get<Stmt*>())) ||
(Entry.is<Decl*>() &&
isa<PoundDiagnosticDecl>(Entry.get<Decl*>())));
cases.push_back(Entry);
}
}
} else if (Tok.is(tok::pound_warning) || Tok.is(tok::pound_error)) {
auto PoundDiagnosticResult = parseDeclPoundDiagnostic();
Status |= PoundDiagnosticResult;
if (auto PDD = PoundDiagnosticResult.getPtrOrNull()) {
cases.emplace_back(PDD);
}
} else if (Tok.is(tok::code_complete)) {
if (CodeCompletionCallbacks) {
CodeCompletionCallbacks->completeCaseStmtKeyword();
}
consumeToken(tok::code_complete);
return makeParserCodeCompletionStatus();
} else {
// If there are non-case-label statements at the start of the switch body,
// raise an error and recover by discarding them.
diagnose(Tok, diag::stmt_in_switch_not_covered_by_case);
while (Tok.isNot(tok::r_brace, tok::eof, tok::pound_elseif,
tok::pound_else, tok::pound_endif) &&
!isTerminatorForBraceItemListKind(BraceItemListKind::Case, {})) {
skipSingle();
}
}
}
return Status;
}
static ParserStatus parseStmtCase(Parser &P, SourceLoc &CaseLoc,
SmallVectorImpl<CaseLabelItem> &LabelItems,
SmallVectorImpl<VarDecl *> &BoundDecls,
SourceLoc &ColonLoc) {
ParserStatus Status;
CaseLoc = P.consumeToken(tok::kw_case);
{
bool isFirst = true;
while (true) {
GuardedPattern PatternResult;
parseGuardedPattern(P, PatternResult, Status, BoundDecls,
GuardedPatternContext::Case, isFirst);
LabelItems.emplace_back(PatternResult.ThePattern, PatternResult.WhereLoc,
PatternResult.Guard);
isFirst = false;
if (!P.consumeIf(tok::comma))
break;
}
}
ColonLoc = P.Tok.getLoc();
if (!P.Tok.is(tok::colon)) {
P.diagnose(P.Tok, diag::expected_case_colon, "case");
Status.setIsParseError();
} else
P.consumeToken(tok::colon);
return Status;
}
static ParserStatus
parseStmtCaseDefault(Parser &P, SourceLoc &CaseLoc,
SmallVectorImpl<CaseLabelItem> &LabelItems,
SourceLoc &ColonLoc) {
ParserStatus Status;
CaseLoc = P.consumeToken(tok::kw_default);
// We don't allow 'where' guards on a 'default' block. For recovery
// parse one if present.
SourceLoc WhereLoc;
ParserResult<Expr> Guard;
if (P.Tok.is(tok::kw_where)) {
P.diagnose(P.Tok, diag::default_with_where);
WhereLoc = P.consumeToken(tok::kw_where);
Guard = P.parseExpr(diag::expected_case_where_expr);
Status |= Guard;
}
ColonLoc = P.Tok.getLoc();
if (!P.Tok.is(tok::colon)) {
P.diagnose(P.Tok, diag::expected_case_colon, "default");
Status.setIsParseError();
} else
P.consumeToken(tok::colon);
// Create an implicit AnyPattern to represent the default match.
auto Any = new (P.Context) AnyPattern(CaseLoc);
if (CaseLoc.isInvalid())
Any->setImplicit();
LabelItems.push_back(
CaseLabelItem::getDefault(Any, WhereLoc, Guard.getPtrOrNull()));
return Status;
}
ParserResult<CaseStmt> Parser::parseStmtCase(bool IsActive) {
ParserStatus Status;
SmallVector<CaseLabelItem, 2> CaseLabelItems;
SmallVector<VarDecl *, 4> BoundDecls;
SourceLoc UnknownAttrLoc;
while (Tok.is(tok::at_sign)) {
if (peekToken().isContextualKeyword("unknown")) {
if (!UnknownAttrLoc.isValid()) {
UnknownAttrLoc = consumeToken(tok::at_sign);
} else {
diagnose(Tok, diag::duplicate_attribute, false);
diagnose(UnknownAttrLoc, diag::previous_attribute, false);
consumeToken(tok::at_sign);
}
consumeToken(tok::identifier);
if (Tok.is(tok::l_paren)) {
diagnose(Tok, diag::unexpected_lparen_in_attribute, "unknown");
skipSingle();
}
} else {
assert(peekToken().is(tok::identifier) && "isAtStartOfSwitchCase() lied");
consumeToken(tok::at_sign);
diagnose(Tok, diag::unknown_attribute, Tok.getText());
consumeToken(tok::identifier);
if (Tok.is(tok::l_paren))
skipSingle();
}
}
SourceLoc CaseLoc;
SourceLoc ColonLoc;
if (Tok.is(tok::kw_case)) {
Status |=
::parseStmtCase(*this, CaseLoc, CaseLabelItems, BoundDecls, ColonLoc);
} else if (Tok.is(tok::kw_default)) {
Status |= parseStmtCaseDefault(*this, CaseLoc, CaseLabelItems, ColonLoc);
} else {
llvm_unreachable("isAtStartOfSwitchCase() lied.");
}
assert(!CaseLabelItems.empty() && "did not parse any labels?!");
SmallVector<ASTNode, 8> BodyItems;
SourceLoc StartOfBody = Tok.getLoc();
if (Tok.isNot(tok::r_brace) && !isAtStartOfSwitchCase(*this)) {
Status |= parseBraceItems(BodyItems, BraceItemListKind::Case);
} else if (Status.isSuccess() && !Status.hasCodeCompletion()) {
diagnose(CaseLoc, diag::case_stmt_without_body,
CaseLabelItems.back().isDefault())
.highlight(SourceRange(CaseLoc, ColonLoc))
.fixItInsertAfter(ColonLoc, " break");
}
BraceStmt *Body;
if (BodyItems.empty()) {
Body = BraceStmt::create(Context, PreviousLoc, ArrayRef<ASTNode>(),
PreviousLoc, /*implicit=*/true);
} else {
Body = BraceStmt::create(Context, StartOfBody, BodyItems,
PreviousLoc, /*implicit=*/true);
}
return makeParserResult(
Status, CaseStmt::createParsedSwitchCase(Context, CaseLoc, CaseLabelItems,
UnknownAttrLoc, ColonLoc, Body));
}
/// stmt-pound-assert:
/// '#assert' '(' expr (',' string_literal)? ')'
ParserResult<Stmt> Parser::parseStmtPoundAssert() {
SourceLoc startLoc = consumeToken(tok::pound_assert);
SourceLoc endLoc;
if (Tok.isNot(tok::l_paren)) {
diagnose(Tok, diag::pound_assert_expected_lparen);
return makeParserError();
}
SourceLoc LBLoc = consumeToken(tok::l_paren);
auto conditionExprResult = parseExpr(diag::pound_assert_expected_expression);
if (conditionExprResult.isParseErrorOrHasCompletion())
return ParserStatus(conditionExprResult);
StringRef message;
if (consumeIf(tok::comma)) {
if (Tok.isNot(tok::string_literal)) {
diagnose(Tok.getLoc(), diag::pound_assert_expected_string_literal);
return makeParserError();
}
auto messageOpt =
getStringLiteralIfNotInterpolated(Tok.getLoc(), "'#assert' message",
/*AllowMultiline=*/true);
consumeToken();
if (!messageOpt)
return makeParserError();
message = *messageOpt;
}
if (parseMatchingToken(tok::r_paren, endLoc,
diag::pound_assert_expected_rparen, LBLoc)) {
return makeParserError();
}
if (!Context.LangOpts.hasFeature(Feature::StaticAssert)) {
diagnose(startLoc, diag::pound_assert_disabled);
return makeParserError();
}
return makeParserResult<Stmt>(new (Context) PoundAssertStmt(
SourceRange(startLoc, endLoc), conditionExprResult.get(), message));
}