Files
swift-mirror/lib/SILOptimizer/Utils/LexicalDestroyFolding.cpp
Nate Chandler 9ca6b9ac1f [Test] Print to stdout.
In the C++ sources it is slightly more convenient to dump to stderr than
to print to stdout, but it is rather more unsightly to print to stderr
from the Swift sources.  Switch to stdout.  Also allows the dump
functions to be marked debug only.
2023-10-10 08:19:44 -07:00

820 lines
28 KiB
C++

//===- LexicalDestroyFolding.cpp - Fold destroys into final owned applies -===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// After ShrinkBorrowScope and CanonicalizeOSSALifetime both run, when a final
/// use of the extended simple lifetime of a begin_borrow [lexical] is as an
/// owned argument, we will have the following pattern:
///
/// %result = apply %fn(..., %copy, ...) : $... (..., @owned Ty, ...)
/// end_borrow %lifetime : $Ty
/// destroy_value %dvi
///
/// where %lifetime is the result of our begin_borrow [lexical]:
///
/// %lifetime = begin_borrow [lexical] %borrowee : $Ty
///
/// and %copy is a (transitive) copy of it
///
/// %copy = copy_value (copy_value (... %lifetime))
///
/// At that point, we want to fold the destroy_value, apply, and borrow into
///
/// end_borrow %lifetime : $Ty
/// apply %fn(..., %move, ...) : $... (..., @owned Ty, ...)
///
/// where %move is a the result of a new instruction added above our scope:
///
/// %move = move_value [lexical] %borrowee : $Ty
/// %lifetime = begin_borrow %move : $Ty
///
/// We only want to do this when it would mean allowing the callee to end a
/// lifetime of a value that the caller owned--if we can transfer ownership from
/// the caller to the callee. In order to transfer ownership, the caller must
/// first own the value, so we are only interested in borrows of owned values:
///
/// %borrowee : @owned $Ty
/// %lifetime = begin_borrow [lexical] %borrowee
///
/// At the other end, we can only transfer ownership if there are no more
/// interesting uses of the owned value after the apply. Specifically, we
/// require that the instruction after the end_borrow be a destroy_value of the
/// borrowee.
///
/// The simplest example:
///
/// %copy = copy_value %lifetime : $Ty
/// %result = apply %fn(..., %copy, ...) : $... (..., @owned Ty, ...)
/// end_borrow %lifetime : $Ty
/// destroy_value %borrowee : $Ty
///
/// Taken together, we get the simplest example of this transformation:
///
/// INPUT:
///
/// %borrowee : @owned
/// %lifetime = begin_borrow [lexical] %owned
/// %copy = copy_value %lifetime
/// apply %fn(%copy) : $... (@owned)
/// end_borrow %lifetime
/// destroy_value %borrowee
///
/// OUTPUT:
///
/// %borrowee : @owned
/// %move = move_value [lexical] %borrowee
/// %lifetime = begin_borrow [lexical] %move
/// end_borrow %lifetime
/// apply %fn(%move) : $... (@owned)
///
/// TODO: Handle partial_apply, try_apply, and begin_apply.
//===----------------------------------------------------------------------===//
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILNode.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Analysis/Reachability.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CanonicalizeBorrowScope.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/ADT/SmallVector.h"
#define DEBUG_TYPE "copy-propagation"
using namespace swift;
//===----------------------------------------------------------------------===//
// MARK: LexicalDestroyFolding
//===----------------------------------------------------------------------===//
namespace LexicalDestroyFolding {
/// The environment within which to fold.
struct Context final {
/// The instruction that begins the borrow scope.
BeginBorrowInst *const introducer;
/// The function containing the introducer.
///
/// introducer->getFunction()
SILFunction *const function;
/// BorrowedValue(introducer)
BorrowedValue const borrowedValue;
/// The value whose lifetime is guaranteed by the lexical borrow scope.
///
/// introducer->getOperand()
SILValue const borrowee;
DominanceInfo &dominanceTree;
InstructionDeleter &deleter;
public:
Context(BeginBorrowInst *introducer, DominanceInfo &dominanceTree,
InstructionDeleter &deleter)
: introducer(introducer), function(introducer->getFunction()),
borrowedValue(BorrowedValue(introducer)),
borrowee(introducer->getOperand()), dominanceTree(dominanceTree),
deleter(deleter) {
assert(introducer->isLexical());
assert(introducer->getOperand()->getOwnershipKind() ==
OwnershipKind::Owned);
assert(borrowedValue.isLocalScope());
}
};
/// Fold within the specified context.
MoveValueInst *run(Context &);
/// The consuming use pattern we are trying to match and transform.
struct Match final {
ApplyInst *ai = nullptr;
EndBorrowInst *ebi = nullptr;
DestroyValueInst *dvi = nullptr;
/// Whether the match is a candidate for folding.
///
/// A partial match--which has both the end_borrow and the destroy value
/// but no apply--cannot itself be folded but is not an obstruction to
/// folding other candidates.
bool isFullMatch() {
assert(ebi != nullptr);
assert(dvi != nullptr);
return ai != nullptr;
}
};
/// A sequence of instructions under consideration for folding
struct Candidate final {
/// The instruction sequence itself.
Match match;
/// Whether the candidate could indeed be folded as determined by
/// isViableMatch.
bool viable;
/// The indices of the arguments of the apply to rewrite as determined by
/// rewritableArgumentIndicesForApply.
SmallVector<int, 2> argumentIndices;
};
/// The degree to which a match is a candidate for folding.
enum class MatchViability {
/// This match can be folded, supposing any can.
Viable,
/// This match cannot be folded, even if others can.
Nonviable,
/// Neither this match nor any other can be folded.
Illegal
};
struct Candidates final {
/// The sequences of scope ending instructions that are under consideration
/// for folding.
llvm::SmallVector<Candidate, 4> vector;
};
/// Quickly filter scope ends of %lifetime that MIGHT BE foldable.
class FindCandidates final {
Context const &context;
public:
FindCandidates(Context const &context) : context(context) {}
/// Find among the scope ending instructions of %lifetime any that match the
/// expected instruction sequence pattern.
///
/// Uses definesMatchingInstructionSequence to determine whether an
/// instruction is a candidate for folding.
///
/// Includes both full matches which could potentially be folded and partial
/// matches which need to be verified later aren't illegal in isViableMatch.
///
/// returns true if any full matches are found
/// false otherwise
bool run(Candidates &);
private:
/// Fast check for whether the given instruction is a candidate for folding.
///
/// Tries to find patterns like
///
/// apply
/// end_borrow
/// ... // instructions which CanonicalizeOSSALifetime will not
/// // hoist destroys over
/// destroy_value %borrowee
///
/// If None is returned, we can't do the transformation at any end_borrow.
/// If a Match WITHOUT an apply is returned, we can't do the transformation
/// on the provided instruction but we still might be able to do it on the
/// other scope ending instructions.
/// If a Match WITH an apply is returned, we might be able to transform this
/// instruction, so more expensive checks are in order.
llvm::Optional<Match>
definesMatchingInstructionSequence(SILInstruction *) const;
/// Whether the specified instruction is or might be the beginning of a
/// sequence of "inconsequential" instructions the last of which destroys
/// %borrowee.
///
/// CanonicalizeOSSALifetime will put destroy_value instructions after every
/// final non-consuming use of %borrowee. So it will put a
/// destroy_value after an
/// end_borrow %lifetime
/// if there are no subsequent uses of %borrowee. However, if there
/// is already one or more other instructions whose opcodes satisfy
/// CanonicalizeOSSALifetime::ignoredByDestroyHoisting just after
/// end_borrow %lifetime,
/// it won't hoist the
/// destroy_value %borrowee
/// over them.
///
/// Consequently, it's not good enough just to look at the instruction
/// immediately following
/// end_borrow %lifetime
/// Instead, we need to look over the sequence of them.
///
/// To be certain that the sequence is valid, we need to check that none of
/// the instructions between the end_borrow and the destroy_value are users of
/// %borrowee. That requires having a set of uses to check for membership
/// in, though, so that is postponed until isViableMatch.
///
/// returns the destroy_value instruction in the sequence that destroys
/// %borrowee or nullptr if there isn't one
DestroyValueInst *findNextBorroweeDestroy(SILInstruction *) const;
};
/// How %lifetime is used.
struct IntroducerUsage final {
/// The operands that are uses of introducer.
SmallPtrSet<Operand *, 16> uses;
/// The instructions that are users of the simple extended borrow scope.
SmallPtrSet<SILInstruction *, 16> users;
};
/// Identifies all the simple extended users of %lifetime.
///
/// returns true if none of the uses of %lifetime escaped
/// false otherwise
bool findIntroducerUsage(Context const &, IntroducerUsage &);
/// How %borrowee is used.
struct BorroweeUsage final {
/// The operands that are uses of the borrowee.
SmallVector<Operand *, 16> uses;
/// The instructions that are users of the borrowee.
///
/// A set of the users of uses for fast membership checking.
SmallPtrSet<SILInstruction *, 16> users;
};
/// Find all uses of %borrowee that are dominated by introducer.
///
/// We are only interested in those dominated by introducer because those are
/// the uses all of which must be "outside" the liveness boundary of
/// %lifetime. In detail, PrunedLiveness::isWithinBoundary relies on
/// clients to know that instructions are after the start of liveness. We
/// determine this via the dominance tree.
bool findBorroweeUsage(Context const &, BorroweeUsage &);
/// Sift scope ends of %lifetime for those that CAN be folded.
class FilterCandidates final {
Context const &context;
IntroducerUsage const &introducerUsage;
BorroweeUsage const &borroweeUsage;
public:
FilterCandidates(Context const &context,
IntroducerUsage const &introducerUsage,
BorroweeUsage const &borroweeUsage)
: context(context), introducerUsage(introducerUsage),
borroweeUsage(borroweeUsage){};
/// Determines whether each candidate is viable for folding.
///
/// returns true if any candidates were viable
/// false otherwise
bool run(Candidates &candidates);
private:
/// Slow check, dependent on finding users, that a Match found by
/// definesMatchingInstructionSequence can be folded.
MatchViability isViableMatch(Match &, SmallVectorImpl<int> &) const;
/// Find the arguments in the specified apply that could be rewritten.
bool rewritableArgumentIndicesForApply(ApplySite,
SmallVectorImpl<int> &indices) const;
/// Whether the specified value is %lifetime or its iterated copy_value.
///
/// In other words, it has to be a simple extended def of %lifetime.
bool isSimpleExtendedIntroducerDef(SILValue value) const;
};
/// Whether there are any uses of the borrowee within the borrow scope.
///
/// If there are, we can't fold the apply. Specifically, we can't introduce
/// a move_value [lexical] %borrowee because that value still needs to be used
/// in those locations.
///
/// For example, given the following SIL
/// %borrowee : @owned
/// %lifetime = begin_borrow [lexical] %borrowee
/// apply %take_guaranteed(%borrowee)
/// %copy = copy_value %lifetime
/// apply %take_owned(%copy)
/// end_borrow %lifetime
/// destroy_value %borrowee
/// we can't rewrite like
/// %borrowee : @owned
/// %move = move_value [lexical] %borrowee
/// %lifetime = begin_borrow [lexical] %move
/// apply %take_guaranteed(??????)
/// apply %take_owned(%move)
/// because there is no appropriate value to pass to %take_guaranteed.
/// Specifically, it's not legal to use %move there because that would make
/// the instruction a user of the lexical scope which it was not before.
bool borroweeHasUsesWithinBorrowScope(Context const &, BorroweeUsage const &);
/// Rewrite the appropriate scope ends of %lifetime.
class Rewriter final {
Context &context;
Candidates const &candidates;
// The move_value [lexical] instruction that was added during the run.
//
// Defined during createMove.
MoveValueInst *mvi = nullptr;
public:
Rewriter(Context &context, Candidates const &candidates)
: context(context), candidates(candidates){};
/// Make all changes required to fold the viable candidates.
///
/// Specifically:
/// - create a single move_value [lexical]
/// %move = move_value [lexical] %borrowee
/// %lifetime = begin_borrow [lexical] %move
/// - transform all the candidates from
/// apply %fn(..., %copy, ...)
/// end_borrow %lifetime
/// ...
/// destroy_value %borrowee
/// to
/// end_borrow %lifetime
/// apply %fn(..., %move, ...)
/// ...
/// - update SSA now that a second def has been introduced for
/// %borrowee
MoveValueInst *run();
private:
/// Add the new move_value [lexical] above the begin_borrow [lexical].
///
/// At most one will be created per run of LexicalDestroyFolding.
///
/// returns false if the move_value [lexical] instruction was added already
/// true if the move_value [lexical] instruction was added just now
bool createMove();
/// Combine the matched instruction sequence
///
/// apply %fn(%copy)
/// end_borrow %lifetime
/// destroy_value %instance
///
/// into
///
/// end_borrow %lifetime
/// apply %fn(%move)
///
/// This is done in three steps:
/// (1) rewrite the apply (and delete the copy_value that is fed to it if
/// possible)
/// (2) hoist the end_borrow
/// (3) delete the destroy_value
void fold(Match, ArrayRef<int> rewritableArgumentIndices);
};
//===----------------------------------------------------------------------===//
// MARK: Driver
//===----------------------------------------------------------------------===//
/// Perform any possible folding.
///
/// Returns whether any change was made.
MoveValueInst *run(Context &context) {
Candidates candidates;
// Do a cheap search for scope ending instructions that could potentially be
// candidates for folding.
if (!FindCandidates(context).run(candidates))
return nullptr;
// At least one full match was found and more expensive checks on the matches
// are in order.
BorroweeUsage borroweeUsage;
if (!findBorroweeUsage(context, borroweeUsage))
return nullptr;
IntroducerUsage introducerUsage;
if (!findIntroducerUsage(context, introducerUsage))
return nullptr;
// Now, filter the candidates using those values.
if (!FilterCandidates(context, introducerUsage, borroweeUsage)
.run(candidates))
return nullptr;
// Finally, check that %borrowee has no uses within %lifetime's
// borrow scope.
if (borroweeHasUsesWithinBorrowScope(context, borroweeUsage))
return nullptr;
// It is safe to rewrite the viable candidates. Do so.
return Rewriter(context, candidates).run();
}
//===----------------------------------------------------------------------===//
// MARK: Rewriting
//===----------------------------------------------------------------------===//
MoveValueInst *Rewriter::run() {
bool foldedAny = false;
(void)foldedAny;
auto size = candidates.vector.size();
for (unsigned index = 0; index < size; ++index) {
auto candidate = candidates.vector[index];
createMove();
if (!candidate.viable) {
// Nonviable candidates still end with the pattern
//
// end_borrow %lifetime
// ...
// destroy_value %borrowee
//
// Now that the new move_value [lexical] dominates all candidates, the
// every candidate's destroy_value %borrowee is dominated by it, so every
// one is dominated by another consuming use which is illegal. Rewrite
// each such destroy_value to be a destroy_value of the move.
candidate.match.dvi->setOperand(mvi);
continue;
}
fold(candidate.match, candidate.argumentIndices);
#ifndef NDEBUG
foldedAny = true;
#endif
}
assert(foldedAny && "rewriting without anything to rewrite!?");
return mvi;
}
bool Rewriter::createMove() {
// We only will create a single MoveValueInst.
if (mvi)
return false;
auto introducerBuilder = SILBuilderWithScope(context.introducer);
mvi = introducerBuilder.createMoveValue(
RegularLocation::getAutoGeneratedLocation(context.introducer->getLoc()),
context.borrowee,
/*isLexical=*/true);
context.introducer->setOperand(mvi);
return true;
}
void Rewriter::fold(Match candidate, ArrayRef<int> rewritableArgumentIndices) {
// First, rewrite the apply in terms of the move_value.
unsigned argumentNumber = 0;
for (auto index : rewritableArgumentIndices) {
auto argument = candidate.ai->getArgument(index);
auto *cvi = cast<CopyValueInst>(argument);
if (argumentNumber == 0) {
candidate.ai->setArgument(index, mvi);
if (!context.deleter.deleteIfDead(cvi)) {
// We can't delete the copy_value because it has other users. Instead,
// add a compensating destroy just before the apply.
auto applyBuilder = SILBuilderWithScope(candidate.ai);
applyBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(candidate.ai->getLoc()),
cvi);
}
} else {
cvi->setOperand(mvi);
}
++argumentNumber;
}
// At this point, we have something along the lines of
//
// %move = move_value [lexical] %borrowee
// %lifetime = begin_borrow [lexical] %move
// ...
// apply %fn(%move)
// end_borrow %lifetime
//
// This isn't valid, though, because the apply consumes the %move but
// the borrow scope guarantees it until the subsequent end_borrow.
//
// Fix this by hoisting the end_borrow above the apply.
auto applyBuilder = SILBuilderWithScope(candidate.ai);
applyBuilder.createEndBorrow(
RegularLocation::getAutoGeneratedLocation(candidate.ai->getLoc()),
context.introducer);
context.deleter.forceDelete(candidate.ebi);
// We have introduced a consuming use of %borrowee--the move_value-- and we
// just rewrote the apply to consume it. Delete the old destroy_value.
context.deleter.forceDelete(candidate.dvi);
}
//===----------------------------------------------------------------------===//
// MARK: Lookups
//===----------------------------------------------------------------------===//
bool FindCandidates::run(Candidates &candidates) {
llvm::SmallVector<SILInstruction *, 16> scopeEndingInsts;
context.borrowedValue.getLocalScopeEndingInstructions(scopeEndingInsts);
bool foundAnyFull = false;
for (auto *instruction : scopeEndingInsts) {
if (auto match = definesMatchingInstructionSequence(instruction)) {
assert(match->ebi->getOperand() == context.introducer);
assert(match->dvi->getOperand() == context.borrowee);
candidates.vector.push_back({*match, false, {}});
foundAnyFull = foundAnyFull || match->isFullMatch();
} else {
// The instruction doesn't define even a partial match. Either the scope
// ending instruction isn't an end_borrow or the subsequent instruction
// isn't a destroy_value. We can't fold any applies.
return false;
}
}
return foundAnyFull;
}
bool findIntroducerUsage(Context const &context, IntroducerUsage &usage) {
SmallVector<Operand *, 16> useVector;
if (!findExtendedUsesOfSimpleBorrowedValue(context.borrowedValue,
&useVector)) {
// If the value produced by begin_borrow escapes, don't shrink the borrow
// scope over the apply.
return false;
}
for (auto *use : useVector) {
usage.uses.insert(use);
usage.users.insert(use->getUser());
}
return true;
}
bool FilterCandidates::run(Candidates &candidates) {
bool anyViable = false;
// We have some end_borrows that might be candidates for folding.
for (unsigned index = 0, count = candidates.vector.size(); index < count;
++index) {
auto &candidate = candidates.vector[index];
SmallVector<int, 2> rewritableArgumentIndices;
auto viability = isViableMatch(candidate.match, candidate.argumentIndices);
switch (viability) {
case MatchViability::Viable:
candidate.viable = true;
anyViable = true;
break;
case MatchViability::Nonviable:
break;
case MatchViability::Illegal:
return false;
break;
}
}
return anyViable;
}
bool findBorroweeUsage(Context const &context, BorroweeUsage &usage) {
auto recordUse = [&](Operand *use) {
// Ignore uses that aren't dominated by the introducer. PrunedLiveness
// relies on us doing this check.
if (!context.dominanceTree.dominates(context.introducer, use->getUser()))
return;
usage.uses.push_back(use);
usage.users.insert(use->getUser());
};
for (auto *use : context.borrowee->getUses()) {
auto *user = use->getUser();
if (user == context.introducer)
continue;
switch (use->getOperandOwnership()) {
case OperandOwnership::PointerEscape:
return false;
case OperandOwnership::Borrow:
if (!BorrowingOperand(use).visitScopeEndingUses([&](Operand *end) {
if (end->getOperandOwnership() == OperandOwnership::Reborrow) {
return false;
}
recordUse(end);
return true;
})) {
return false;
}
break;
default:
break;
}
recordUse(use);
}
return true;
}
bool borroweeHasUsesWithinBorrowScope(Context const &context,
BorroweeUsage const &usage) {
MultiDefPrunedLiveness liveness(context.function);
context.borrowedValue.computeTransitiveLiveness(liveness);
DeadEndBlocks deadEndBlocks(context.function);
return !liveness.areUsesOutsideBoundary(usage.uses, &deadEndBlocks);
}
//===----------------------------------------------------------------------===//
// MARK: Predicates
//===----------------------------------------------------------------------===//
llvm::Optional<Match>
FindCandidates::definesMatchingInstructionSequence(SILInstruction *inst) const {
// Look specifically for
//
// apply
// end_borrow // inst
// ...
// destroy_value %borrowee
auto *ebi = dyn_cast<EndBorrowInst>(inst);
if (!ebi)
return llvm::None;
auto *dvi = findNextBorroweeDestroy(ebi->getNextInstruction());
if (!dvi)
return llvm::None;
auto *ai = dyn_cast_or_null<ApplyInst>(ebi->getPreviousInstruction());
if (!ai)
return {{nullptr, ebi, dvi}};
return {{ai, ebi, dvi}};
}
DestroyValueInst *
FindCandidates::findNextBorroweeDestroy(SILInstruction *from) const {
for (auto *inst = from; inst; inst = inst->getNextInstruction()) {
if (!CanonicalizeOSSALifetime::ignoredByDestroyHoisting(inst->getKind())) {
// This is not an instruction that CanonicalizeOSSALifetime would not
// hoist a destroy above. In other words, CanonicalizeOSSALifetime would
// have hoisted
// destroy_value %borrowee
// over this instruction if it could have. Stop looking.
return nullptr;
}
if (auto *dvi = dyn_cast<DestroyValueInst>(inst)) {
if (dvi->getOperand() == context.borrowee) {
return dvi;
}
}
}
return nullptr;
}
MatchViability FilterCandidates::isViableMatch(
Match &candidate, SmallVectorImpl<int> &rewritableArgumentIndices) const {
for (SILInstruction *inst = candidate.ebi; inst != candidate.dvi;
inst = inst->getNextInstruction()) {
if (borroweeUsage.users.contains(inst)) {
// In the sequence of instructions
// end_borrow %lifetime
// ...
// destroy_value %borrowee
// we have found a user of %borrowee. That existing means not
// only that this candidate is not viable but that NONE of the candidates
// are viable and we need to bail out completely.
return MatchViability::Illegal;
}
}
// Now that we've checked that this partial match isn't illegal, go ahead and
// discard it.
if (!candidate.isFullMatch())
return MatchViability::Nonviable;
// If the apply isn't a user of the extended simple value, then this
// transformation can't be done: the callee can't end the lexical lifetime
// of a value it doesn't see. Presumably, this apply is a deinit barrier.
if (!introducerUsage.users.contains(candidate.ai))
return MatchViability::Nonviable;
// We aren't able to rewrite every simple extended use of %lifetime
// in the apply.
if (!rewritableArgumentIndicesForApply(candidate.ai,
rewritableArgumentIndices))
return MatchViability::Nonviable;
return MatchViability::Viable;
}
bool FilterCandidates::isSimpleExtendedIntroducerDef(SILValue value) const {
while (true) {
auto *instruction = value.getDefiningInstruction();
if (!instruction)
return false;
if (instruction == context.introducer)
return true;
if (auto *cvi = dyn_cast<CopyValueInst>(instruction)) {
value = cvi->getOperand();
continue;
}
return false;
}
}
bool FilterCandidates::rewritableArgumentIndicesForApply(
ApplySite apply, SmallVectorImpl<int> &indices) const {
for (auto &operand : apply->getAllOperands()) {
if (introducerUsage.uses.contains(&operand)) {
if (apply.isArgumentOperand(operand)) {
auto convention = apply.getArgumentConvention(operand);
if (isSimpleExtendedIntroducerDef(operand.get()) &&
convention.isOwnedConvention()) {
indices.push_back(apply.getCalleeArgIndex(operand));
} else {
// This argument is a use of %lifetime but not an owned use that we
// can rewrite.
return false;
}
} else {
// If %lifetime is used in some non-argument position, e.g. as the
// callee, we can't fold.
return false;
}
}
}
return true;
}
} // namespace LexicalDestroyFolding
//===----------------------------------------------------------------------===//
// MARK: Entry Point
//===----------------------------------------------------------------------===//
/// The entry point.
MoveValueInst *
swift::foldDestroysOfCopiedLexicalBorrow(BeginBorrowInst *bbi,
DominanceInfo &dominanceTree,
InstructionDeleter &deleter) {
if (!bbi->isLexical())
return nullptr;
if (bbi->getOperand()->getOwnershipKind() != OwnershipKind::Owned)
return nullptr;
if (!dominanceTree.isReachableFromEntry(bbi->getParentBlock()))
return nullptr;
auto context = LexicalDestroyFolding::Context(bbi, dominanceTree, deleter);
return LexicalDestroyFolding::run(context);
}
namespace swift::test {
// Arguments:
// - the lexical borrow to fold
// Dumps:
// - the function
static FunctionTest LexicalDestroyFoldingTest(
"lexical-destroy-folding", [](auto &function, auto &arguments, auto &test) {
auto *dominanceAnalysis = test.template getAnalysis<DominanceAnalysis>();
DominanceInfo *domTree = dominanceAnalysis->get(&function);
auto value = arguments.takeValue();
auto *bbi = cast<BeginBorrowInst>(value);
InstructionDeleter deleter;
foldDestroysOfCopiedLexicalBorrow(bbi, *domTree, deleter);
function.print(llvm::outs());
});
} // end namespace swift::test