Files
swift-mirror/lib/SILAnalysis/GlobalARCSequenceDataflow.cpp
Michael Gottesman 5f98995c6c [g-arc-opts] Invert dependency in between RefCountState and its subclasses in clear() and call the subclass clear instead of the superclass clear.
Otherwise, we do not clear subclass specific state when we clear which can
potentially cause inconsistencies.

Swift SVN r20779
2014-07-30 21:47:31 +00:00

749 lines
26 KiB
C++

//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-global-arc-opts"
#include "GlobalARCSequenceDataflow.h"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILSuccessor.h"
#include "swift/SIL/CFG.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::arc;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
static bool isAutoreleasePoolCall(SILInstruction &I) {
ApplyInst *AI = dyn_cast<ApplyInst>(&I);
if (!AI)
return false;
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
return llvm::StringSwitch<bool>(FRI->getReferencedFunction()->getName())
.Case("objc_autoreleasePoolPush", true)
.Case("objc_autoreleasePoolPop", true)
.Default(false);
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS,
BottomUpRefCountState::LatticeState S) {
using LatticeState = BottomUpRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Decremented:
return OS << "Decremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
TopDownRefCountState::LatticeState S) {
using LatticeState = TopDownRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Incremented:
return OS << "Incremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
} // end namespace llvm
/// Wrapper around SILValue::stripCasts to handle the UncheckedRefBitCastInst.
static SILValue stripCasts(SILValue V) {
while (true) {
V = V.stripCasts();
auto *BCI = dyn_cast<UncheckedRefBitCastInst>(V);
if (!BCI)
return V;
V = BCI->getOperand();
}
}
//===----------------------------------------------------------------------===//
// Lattice State Merging
//===----------------------------------------------------------------------===//
static inline BottomUpRefCountState::LatticeState
MergeBottomUpLatticeStates(BottomUpRefCountState::LatticeState L1,
BottomUpRefCountState::LatticeState L2) {
using LatticeState = BottomUpRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Decremented || L1 == LatticeState::MightBeUsed) ||
(L2 == LatticeState::MightBeUsed ||
L2 == LatticeState::MightBeDecremented))
return L2;
// Otherwise, we don't know what happened, be conservative and return none.
return LatticeState::None;
}
static inline TopDownRefCountState::LatticeState
MergeTopDownLatticeStates(TopDownRefCountState::LatticeState L1,
TopDownRefCountState::LatticeState L2) {
using LatticeState = TopDownRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Incremented ||
L1 == LatticeState::MightBeDecremented) ||
(L2 == LatticeState::MightBeDecremented ||
L2 == LatticeState::MightBeUsed))
return L2;
// Otherwise, we don't know what happened, return none.
return LatticeState::None;
}
//===----------------------------------------------------------------------===//
// ARCBBState Implementation
//===----------------------------------------------------------------------===//
/// Merge in the state of the successor basic block. This is currently a stub.
void ARCBBState::mergeSuccBottomUp(ARCBBState &SuccBB) {
// For each entry in the other set, if our set has an entry with the same key,
// merge the entires. Otherwise, copy the entry and merge it with an empty
// entry.
for (auto MI : SuccBB.getBottomupStates()) {
auto Pair = PtrToBottomUpState.insert(MI);
// If we fail to merge, bail.
if (!Pair.first->second.merge(Pair.second ? BottomUpRefCountState()
: MI.second)) {
clear();
return;
}
}
for (auto Pair : getBottomupStates()) {
if (SuccBB.PtrToBottomUpState.find(Pair.first) ==
SuccBB.PtrToBottomUpState.end())
// If we fail to merge, bail.
if (!Pair.second.merge(BottomUpRefCountState())) {
clear();
return;
}
}
}
/// Initialize this BB with the state of the successor basic block. This is
/// called on a basic block's state and then any other successors states are
/// merged in. This is currently a stub.
void ARCBBState::initSuccBottomUp(ARCBBState &SuccBB) {
PtrToBottomUpState = SuccBB.PtrToBottomUpState;
}
/// Merge in the state of the predecessor basic block. This is currently a stub.
void ARCBBState::mergePredTopDown(ARCBBState &PredBB) {
// For each entry in the other set, if our set has an entry with the same key,
// merge the entires. Otherwise, copy the entry and merge it with an empty
// entry.
for (auto MI : PredBB.getTopDownStates()) {
auto Pair = PtrToTopDownState.insert(MI);
// If we fail to merge, bail.
if (!Pair.first->second.merge(Pair.second ? TopDownRefCountState()
: MI.second)) {
clear();
return;
}
}
for (auto Pair : getTopDownStates()) {
if (PredBB.PtrToTopDownState.find(Pair.first) ==
PredBB.PtrToTopDownState.end())
// If we fail to merge, bail.
if (!Pair.second.merge(TopDownRefCountState())) {
clear();
return;
}
}
}
/// Initialize the state for this BB with the state of its predecessor
/// BB. Used to create an initial state before we merge in other
/// predecessors. This is currently a stub.
void ARCBBState::initPredTopDown(ARCBBState &PredBB) {
PtrToTopDownState = PredBB.PtrToTopDownState;
}
//===----------------------------------------------------------------------===//
// Reference Count State Implementation
//===----------------------------------------------------------------------===//
bool TopDownRefCountState::merge(const TopDownRefCountState &Other) {
auto NewState = MergeTopDownLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing TopDown Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
DEBUG(llvm::dbgs() << " V: ";
if (getValue())
getValue()->dump();
else
llvm::dbgs() << "\n";
llvm::dbgs() << " OtherV: ";
if (Other.getValue())
Other.getValue()->dump();
else
llvm::dbgs() << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR
// elimination. If the branch predicates for the two merge differ, mixing
// them is unsafe since they are not control dependent.
if (LatState == TopDownRefCountState::LatticeState::None) {
clear();
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
return false;
}
// We should never have an argument path merge with a non-argument path.
if (Argument.isNull() != Other.Argument.isNull()) {
clear();
DEBUG(llvm::dbgs() << " Can not merge Argument with "
"Non-Argument path... Bailing!\n");
return false;
}
Increments.insert(Other.Increments.begin(), Other.Increments.end());
Partial |= InsertPts.size() != Other.InsertPts.size();
for (auto *SI : Other.InsertPts)
Partial |= InsertPts.insert(SI);
return true;
}
bool BottomUpRefCountState::merge(const BottomUpRefCountState &Other) {
auto NewState = MergeBottomUpLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing BottomUp Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
DEBUG(llvm::dbgs() << " V: ";
if (getValue())
getValue()->dump();
else
llvm::dbgs() << "\n";
llvm::dbgs() << " OtherV: ";
if (Other.getValue())
Other.getValue()->dump();
else
llvm::dbgs() << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR
// elimination. If the branch predicates for the two merge differ, mixing
// them is unsafe since they are not control dependent.
if (LatState == BottomUpRefCountState::LatticeState::None) {
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
clear();
return false;
}
Decrements.insert(Other.Decrements.begin(), Other.Decrements.end());
Partial |= InsertPts.size() != Other.InsertPts.size();
for (auto *SI : Other.InsertPts)
Partial |= InsertPts.insert(SI);
return true;
}
//===----------------------------------------------------------------------===//
// Top Down Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool processBBTopDown(
ARCBBState &BBState,
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// If the current BB is the entry BB, initialize a state corresponding to each
// of its owned parameters.
//
// TODO: Handle gauranteed parameters.
if (&BB == &*BB.getParent()->begin()) {
auto Args = BB.getBBArgs();
auto SignatureParams =
BB.getParent()->getLoweredFunctionType()->getParameters();
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
SILArgument *A = Args[i];
ParameterConvention P = SignatureParams[i].getConvention();
DEBUG(llvm::dbgs() << "VISITING ARGUMENT: " << *A);
if (P != ParameterConvention::Direct_Owned)
continue;
TopDownRefCountState &State = BBState.getTopDownRefCountState(Args[i]);
State.initWithArg(A);
}
}
// For each instruction I in BB...
for (auto &I : BB) {
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count increment instruction...
if (isRefCountIncrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = stripCasts(I.getOperand(0));
TopDownRefCountState &State = BBState.getTopDownRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT! Known Safe: "
<< (State.isKnownSafe() ? "yes" : "no") << "\n");
// Continue processing in case this increment could be a CanUse for a
// different pointer.
}
// If we have a reference count decrement...
if (isRefCountDecrement(I)) {
// Look up the state associated with its operand...
Op = stripCasts(I.getOperand(0));
TopDownRefCountState &RefCountState = BBState.getTopDownRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
DecToIncStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING INCREMENT:\n"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs() << " FAILED MATCH INCREMENT:\n"
<< RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH. NO INCREMENT.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the decrement can affect any other pointers that we are
// tracking.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getTopDownStates()) {
// If the state we are visiting is for the pointer we just visited, bail.
if (Op && OtherState.first == Op)
continue;
// If the other state is not tracking anything, bail.
if (!OtherState.second.isTrackingRefCount())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::mergePredecessors(ARCBBState &BBState,
SILBasicBlock *BB) {
bool HasAtLeastOnePred = false;
// For each successor of BB...
for (auto Pred : BB->getPreds()) {
auto *PredBB = Pred;
// If the precessor is the head of a backedge in our traversal, clear any
// state we are tracking now and clear the state of the basic block. There
// is some sort of control flow here that we do not understand.
if (BackedgeMap[PredBB].count(BB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the predecessor and merge
// the predecessor in.
auto I = TopDownBBStates.find(PredBB);
// If we can not lookup the BBState then the BB was not in the post order
// implying that it is unreachable. LLVM will ensure that the BB is removed
// if we do not reach it at the SIL level. Since it is unreachable, ignore
// it.
if (I == TopDownBBStates.end())
continue;
// If we found the state but the state is for a trap BB, skip it. Trap BBs
// leak all reference counts and do not reference reference semantic objects
// in any manner.
if (I->second.isTrapBB())
continue;
if (!HasAtLeastOnePred) {
BBState.initPredTopDown(I->second);
} else {
BBState.mergePredTopDown(I->second);
}
HasAtLeastOnePred = true;
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processTopDown() {
bool NestingDetected = false;
DEBUG(llvm::dbgs() << "<<<< Processing Top Down! >>>>\n");
// For each BB in our reverse post order...
for (auto *BB : POTA->getReversePostOrder(&F)) {
DEBUG(llvm::dbgs() << "Processing BB#: " << BBToBBID[BB] << "\n");
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = TopDownBBStates.find(BB)->second;
BBState.init(BB);
DEBUG(llvm::dbgs() << "Merging Predecessors!\n");
mergePredecessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBTopDown(BBState, DecToIncStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Bottom Up Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool processBBBottomUp(
ARCBBState &BBState,
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// For each non terminator instruction I in BB visited in reverse...
for (auto II = std::next(BB.rbegin()), IE = BB.rend(); II != IE;) {
SILInstruction &I = *II;
++II;
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count decrement instruction...
if (isRefCountDecrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = stripCasts(I.getOperand(0));
BottomUpRefCountState &State = BBState.getBottomUpRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT! Known Safe: "
<< (State.isKnownSafe() ? "yes" : "no") << "\n");
// Continue on to see if our reference decrement could potentially affect
// any other pointers via a use or a decrement.
}
// If we have a reference count decrement...
if (isRefCountIncrement(I)) {
// Look up the state associated with its operand...
Op = stripCasts(I.getOperand(0));
BottomUpRefCountState &RefCountState =
BBState.getBottomUpRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
IncToDecStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING DECREMENT:"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs()
<< " FAILED MATCH DECREMENT:" << RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH DECREMENT. Not tracking a "
"decrement.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the increment can act as a use for other values.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getBottomupStates()) {
// If this is the state associated with the instruction that we are
// currently visiting, bail.
if (Op && OtherState.first == Op)
continue;
// If this state is not tracking anything, skip it.
if (!OtherState.second.isTrackingRefCount())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::mergeSuccessors(ARCBBState &BBState,
SILBasicBlock *BB) {
// Grab the backedge set for our BB.
auto &BackEdgeSet = BackedgeMap[BB];
// For each successor of BB...
ArrayRef<SILSuccessor> Succs = BB->getSuccs();
bool HasAtLeastOneSucc = false;
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
// If it does not have a basic block associated with it...
auto *SuccBB = Succs[i].getBB();
// Skip it.
if (!SuccBB)
continue;
// If the BB is the head of a backedge in our traversal, clear any state
// we are tracking now and clear the state of the basic block. There is
// some sort of control flow here that we do not understand.
if (BackEdgeSet.count(SuccBB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the successor and merge
// the successor in.
auto I = BottomUpBBStates.find(SuccBB);
assert(I != BottomUpBBStates.end());
if (I->second.isTrapBB())
continue;
if (!HasAtLeastOneSucc) {
BBState.initSuccBottomUp(I->second);
} else {
BBState.mergeSuccBottomUp(I->second);
}
HasAtLeastOneSucc = true;
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processBottomUp() {
bool NestingDetected = false;
DEBUG(llvm::dbgs() << "<<<< Processing Bottom Up! >>>>\n");
// For each BB in our post order...
for (auto *BB : POTA->getPostOrder(&F)) {
DEBUG(llvm::dbgs() << "Processing BB#: " << BBToBBID[BB] << "\n");
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = BottomUpBBStates.find(BB)->second;
BBState.init(BB);
DEBUG(llvm::dbgs() << "Merging Successors!\n");
mergeSuccessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBBottomUp(BBState, IncToDecStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Top Level ARC Sequence Dataflow Evaluator
//===----------------------------------------------------------------------===//
void swift::arc::ARCSequenceDataflowEvaluator::init() {
// Initialize the post order data structure.
#ifndef NDEBUG
unsigned Count = 0;
for (auto &BB : F) {
BBToBBID[&BB] = Count++;
}
#endif
// Then iterate through it in reverse to perform the post order, looking for
// backedges.
llvm::DenseSet<SILBasicBlock *> VisitedSet;
unsigned i = 0;
for (SILBasicBlock *BB : POTA->getReversePostOrder(&F)) {
VisitedSet.insert(BB);
BottomUpBBStates[i].first = BB;
BottomUpBBStates[i].second.init(BB);
TopDownBBStates[i].first = BB;
TopDownBBStates[i].second.init(BB);
++i;
for (auto &Succ : BB->getSuccs())
if (SILBasicBlock *SuccBB = Succ.getBB())
if (VisitedSet.count(SuccBB))
BackedgeMap[BB].insert(SuccBB);
}
BottomUpBBStates.sort();
TopDownBBStates.sort();
}
bool swift::arc::ARCSequenceDataflowEvaluator::run() {
bool NestingDetected = processBottomUp();
NestingDetected |= processTopDown();
return NestingDetected;
}
void swift::arc::ARCBBState::initializeTrapStatus() {
auto II = BB->begin();
auto *BFRI = dyn_cast<BuiltinFunctionRefInst>(&*II);
if (!BFRI || !BFRI->getName().str().equals("int_trap"))
return;
++II;
auto *AI = dyn_cast<ApplyInst>(&*II);
if (!AI || AI->getCallee() != SILValue(BFRI))
return;
++II;
IsTrapBB = isa<UnreachableInst>(&*II);
}