mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
669 lines
23 KiB
C++
669 lines
23 KiB
C++
//===--- CSStep.cpp - Constraint Solver Steps -----------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the \c SolverStep class and its related types,
|
|
// which is used by constraint solver to do iterative solving.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CSStep.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
ComponentStep::Scope::Scope(ComponentStep &component)
|
|
: CS(component.CS), Component(component) {
|
|
TypeVars = std::move(CS.TypeVariables);
|
|
|
|
for (auto *typeVar : component.TypeVars)
|
|
CS.addTypeVariable(typeVar);
|
|
|
|
auto &workList = CS.InactiveConstraints;
|
|
workList.splice(workList.end(), *component.Constraints);
|
|
|
|
SolverScope = new ConstraintSystem::SolverScope(CS);
|
|
PrevPartialScope = CS.solverState->PartialSolutionScope;
|
|
CS.solverState->PartialSolutionScope = SolverScope;
|
|
}
|
|
|
|
StepResult SplitterStep::take(bool prevFailed) {
|
|
// "split" is considered a failure if previous step failed,
|
|
// or there is a failure recorded by constraint system, or
|
|
// system can't be simplified.
|
|
if (prevFailed || CS.failedConstraint || CS.simplify())
|
|
return done(/*isSuccess=*/false);
|
|
|
|
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
|
|
// Try to run "connected components" algorithm and split
|
|
// type variables and their constraints into independent
|
|
// sub-systems to solve.
|
|
computeFollowupSteps(followup);
|
|
|
|
// If there is only one step, there is no reason to
|
|
// try to merge solutions, "split" step should be considered
|
|
// done and replaced by a single component step.
|
|
if (followup.size() < 2)
|
|
return replaceWith(std::move(followup.front()));
|
|
|
|
/// Wait until all of the steps are done.
|
|
return suspend(followup);
|
|
}
|
|
|
|
StepResult SplitterStep::resume(bool prevFailed) {
|
|
// Restore the state of the constraint system to before split.
|
|
CS.CG.setOrphanedConstraints(std::move(OrphanedConstraints));
|
|
auto &workList = CS.InactiveConstraints;
|
|
for (auto &component : Components)
|
|
workList.splice(workList.end(), component);
|
|
|
|
// If we came back to this step and previous (one of the components)
|
|
// failed, it means that we can't solve this step either.
|
|
if (prevFailed)
|
|
return done(/*isSuccess=*/false);
|
|
|
|
// Otherwise let's try to merge partial solutions together
|
|
// and form a complete solution(s) for this split.
|
|
return done(mergePartialSolutions());
|
|
}
|
|
|
|
void SplitterStep::computeFollowupSteps(
|
|
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps) {
|
|
// Compute next steps based on that connected components
|
|
// algorithm tells us is splittable.
|
|
|
|
auto &CG = CS.getConstraintGraph();
|
|
// Contract the edges of the constraint graph.
|
|
CG.optimize();
|
|
|
|
// Compute the connected components of the constraint graph.
|
|
auto components = CG.computeConnectedComponents(CS.getTypeVariables());
|
|
unsigned numComponents = components.size();
|
|
if (numComponents < 2) {
|
|
steps.push_back(std::make_unique<ComponentStep>(
|
|
CS, 0, &CS.InactiveConstraints, Solutions));
|
|
return;
|
|
}
|
|
|
|
if (isDebugMode()) {
|
|
auto &log = getDebugLogger();
|
|
// Verify that the constraint graph is valid.
|
|
CG.verify();
|
|
|
|
log << "---Constraint graph---\n";
|
|
CG.print(CS.getTypeVariables(), log);
|
|
|
|
log << "---Connected components---\n";
|
|
CG.printConnectedComponents(CS.getTypeVariables(), log);
|
|
}
|
|
|
|
// Take the orphaned constraints, because they'll go into a component now.
|
|
OrphanedConstraints = CG.takeOrphanedConstraints();
|
|
|
|
IncludeInMergedResults.resize(numComponents, true);
|
|
Components.resize(numComponents);
|
|
PartialSolutions = std::unique_ptr<SmallVector<Solution, 4>[]>(
|
|
new SmallVector<Solution, 4>[numComponents]);
|
|
|
|
// Add components.
|
|
for (unsigned i : indices(components)) {
|
|
unsigned solutionIndex = components[i].solutionIndex;
|
|
|
|
// If there are no dependencies, build a normal component step.
|
|
if (components[i].dependsOn.empty()) {
|
|
steps.push_back(std::make_unique<ComponentStep>(
|
|
CS, solutionIndex, &Components[i], std::move(components[i]),
|
|
PartialSolutions[solutionIndex]));
|
|
continue;
|
|
}
|
|
|
|
// Note that the partial results from any dependencies of this component
|
|
// need not be included in the final merged results, because they'll
|
|
// already be part of the partial results for this component.
|
|
for (auto dependsOn : components[i].dependsOn) {
|
|
IncludeInMergedResults[dependsOn] = false;
|
|
}
|
|
|
|
// Otherwise, build a dependent component "splitter" step, which
|
|
// handles all combinations of incoming partial solutions.
|
|
steps.push_back(std::make_unique<DependentComponentSplitterStep>(
|
|
CS, &Components[i], solutionIndex, std::move(components[i]),
|
|
llvm::makeMutableArrayRef(PartialSolutions.get(), numComponents)));
|
|
}
|
|
|
|
assert(CS.InactiveConstraints.empty() && "Missed a constraint");
|
|
}
|
|
|
|
namespace {
|
|
/// Retrieve the size of a container.
|
|
template<typename Container>
|
|
unsigned getSize(const Container &container) {
|
|
return container.size();
|
|
}
|
|
|
|
/// Retrieve the size of a container referenced by a pointer.
|
|
template<typename Container>
|
|
unsigned getSize(const Container *container) {
|
|
return container->size();
|
|
}
|
|
|
|
/// Identity getSize() for cases where we are working with a count.
|
|
unsigned getSize(unsigned size) {
|
|
return size;
|
|
}
|
|
|
|
/// Compute the next combination of indices into the given array of
|
|
/// containers.
|
|
/// \param containers Containers (each of which must have a `size()`) in
|
|
/// which the indices will be generated.
|
|
/// \param indices The current indices into the containers, which will
|
|
/// be updated to represent the next combination.
|
|
/// \returns true to indicate that \c indices contains the next combination,
|
|
/// or \c false to indicate that there are no combinations left.
|
|
template<typename Container>
|
|
bool nextCombination(ArrayRef<Container> containers,
|
|
MutableArrayRef<unsigned> indices) {
|
|
assert(containers.size() == indices.size() &&
|
|
"Indices should have been initialized to the same size with 0s");
|
|
unsigned numIndices = containers.size();
|
|
for (unsigned n = numIndices; n > 0; --n) {
|
|
++indices[n - 1];
|
|
|
|
// If we haven't run out of solutions yet, we're done.
|
|
if (indices[n - 1] < getSize(containers[n - 1]))
|
|
break;
|
|
|
|
// If we ran out of solutions at the first position, we're done.
|
|
if (n == 1) {
|
|
return false;
|
|
}
|
|
|
|
// Zero out the indices from here to the end.
|
|
for (unsigned i = n - 1; i != numIndices; ++i)
|
|
indices[i] = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool SplitterStep::mergePartialSolutions() const {
|
|
assert(Components.size() >= 2);
|
|
|
|
// Compute the # of partial solutions that will be merged for each
|
|
// component. Components that shouldn't be included will get a count of 1,
|
|
// an we'll skip them later.
|
|
auto numComponents = Components.size();
|
|
SmallVector<unsigned, 2> countsVec;
|
|
countsVec.reserve(numComponents);
|
|
for (unsigned idx : range(numComponents)) {
|
|
countsVec.push_back(
|
|
IncludeInMergedResults[idx] ? PartialSolutions[idx].size() : 1);
|
|
}
|
|
|
|
// Produce all combinations of partial solutions.
|
|
ArrayRef<unsigned> counts = countsVec;
|
|
SmallVector<unsigned, 2> indices(numComponents, 0);
|
|
bool anySolutions = false;
|
|
do {
|
|
// Create a new solver scope in which we apply all of the relevant partial
|
|
// solutions.
|
|
ConstraintSystem::SolverScope scope(CS);
|
|
for (unsigned i : range(numComponents)) {
|
|
if (!IncludeInMergedResults[i])
|
|
continue;
|
|
|
|
CS.applySolution(PartialSolutions[i][indices[i]]);
|
|
}
|
|
|
|
// This solution might be worse than the best solution found so far.
|
|
// If so, skip it.
|
|
if (!CS.worseThanBestSolution()) {
|
|
// Finalize this solution.
|
|
auto solution = CS.finalize();
|
|
if (isDebugMode())
|
|
getDebugLogger() << "(composed solution " << CS.CurrentScore << ")\n";
|
|
|
|
// Save this solution.
|
|
Solutions.push_back(std::move(solution));
|
|
anySolutions = true;
|
|
}
|
|
} while (nextCombination(counts, indices));
|
|
|
|
return anySolutions;
|
|
}
|
|
|
|
StepResult DependentComponentSplitterStep::take(bool prevFailed) {
|
|
// "split" is considered a failure if previous step failed,
|
|
// or there is a failure recorded by constraint system, or
|
|
// system can't be simplified.
|
|
if (prevFailed || CS.failedConstraint || CS.simplify())
|
|
return done(/*isSuccess=*/false);
|
|
|
|
// Figure out the sets of partial solutions that this component depends on.
|
|
SmallVector<const SmallVector<Solution, 4> *, 2> dependsOnSets;
|
|
for (auto index : Component.dependsOn) {
|
|
dependsOnSets.push_back(&AllPartialSolutions[index]);
|
|
}
|
|
|
|
// Produce all combinations of partial solutions for the inputs.
|
|
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
|
|
SmallVector<unsigned, 2> indices(Component.dependsOn.size(), 0);
|
|
auto dependsOnSetsRef = llvm::makeArrayRef(dependsOnSets);
|
|
do {
|
|
// Form the set of input partial solutions.
|
|
SmallVector<const Solution *, 2> dependsOnSolutions;
|
|
for (auto index : swift::indices(indices)) {
|
|
dependsOnSolutions.push_back(&(*dependsOnSets[index])[indices[index]]);
|
|
}
|
|
|
|
followup.push_back(
|
|
std::make_unique<ComponentStep>(CS, Index, Constraints, Component,
|
|
std::move(dependsOnSolutions),
|
|
Solutions));
|
|
} while (nextCombination(dependsOnSetsRef, indices));
|
|
|
|
/// Wait until all of the component steps are done.
|
|
return suspend(followup);
|
|
}
|
|
|
|
StepResult DependentComponentSplitterStep::resume(bool prevFailed) {
|
|
return done(/*isSuccess=*/!Solutions.empty());
|
|
}
|
|
|
|
void DependentComponentSplitterStep::print(llvm::raw_ostream &Out) {
|
|
Out << "DependentComponentSplitterStep for dependencies on [";
|
|
interleave(Component.dependsOn, [&](unsigned index) { Out << index; },
|
|
[&] { Out << ", "; });
|
|
Out << "]\n";
|
|
}
|
|
|
|
StepResult ComponentStep::take(bool prevFailed) {
|
|
// One of the previous components created by "split"
|
|
// failed, it means that we can't solve this component.
|
|
if ((prevFailed && DependsOnPartialSolutions.empty()) ||
|
|
CS.getExpressionTooComplex(Solutions))
|
|
return done(/*isSuccess=*/false);
|
|
|
|
// Setup active scope, only if previous component didn't fail.
|
|
setupScope();
|
|
|
|
// If there are any dependent partial solutions to compose, do so now.
|
|
if (!DependsOnPartialSolutions.empty()) {
|
|
for (auto partial : DependsOnPartialSolutions) {
|
|
CS.applySolution(*partial);
|
|
}
|
|
|
|
// Activate all of the one-way constraints.
|
|
SmallVector<Constraint *, 4> oneWayConstraints;
|
|
for (auto &constraint : CS.InactiveConstraints) {
|
|
if (constraint.isOneWayConstraint())
|
|
oneWayConstraints.push_back(&constraint);
|
|
}
|
|
for (auto constraint : oneWayConstraints) {
|
|
CS.activateConstraint(constraint);
|
|
}
|
|
|
|
// Simplify again.
|
|
if (CS.failedConstraint || CS.simplify())
|
|
return done(/*isSuccess=*/false);
|
|
}
|
|
|
|
/// Try to figure out what this step is going to be,
|
|
/// after the scope has been established.
|
|
auto *disjunction = CS.selectDisjunction();
|
|
auto bestBindings = CS.determineBestBindings();
|
|
|
|
if (bestBindings && (!disjunction || (!bestBindings->IsHole &&
|
|
!bestBindings->InvolvesTypeVariables &&
|
|
!bestBindings->FullyBound))) {
|
|
// Produce a type variable step.
|
|
return suspend(
|
|
std::make_unique<TypeVariableStep>(CS, *bestBindings, Solutions));
|
|
} else if (disjunction) {
|
|
// Produce a disjunction step.
|
|
return suspend(
|
|
std::make_unique<DisjunctionStep>(CS, disjunction, Solutions));
|
|
} else if (!CS.solverState->allowsFreeTypeVariables() &&
|
|
CS.hasFreeTypeVariables()) {
|
|
// If there are no disjunctions or type variables to bind
|
|
// we can't solve this system unless we have free type variables
|
|
// allowed in the solution.
|
|
return finalize(/*isSuccess=*/false);
|
|
}
|
|
|
|
// If this solution is worse than the best solution we've seen so far,
|
|
// skip it.
|
|
if (CS.worseThanBestSolution())
|
|
return finalize(/*isSuccess=*/false);
|
|
|
|
// If we only have relational or member constraints and are allowing
|
|
// free type variables, save the solution.
|
|
for (auto &constraint : CS.InactiveConstraints) {
|
|
switch (constraint.getClassification()) {
|
|
case ConstraintClassification::Relational:
|
|
case ConstraintClassification::Member:
|
|
continue;
|
|
default:
|
|
return finalize(/*isSuccess=*/false);
|
|
}
|
|
}
|
|
|
|
auto solution = CS.finalize();
|
|
if (isDebugMode())
|
|
getDebugLogger() << "(found solution " << getCurrentScore() << ")\n";
|
|
|
|
Solutions.push_back(std::move(solution));
|
|
return finalize(/*isSuccess=*/true);
|
|
}
|
|
|
|
StepResult ComponentStep::finalize(bool isSuccess) {
|
|
// If this was a single component, there is nothing to be done,
|
|
// because it represents the whole constraint system at some
|
|
// point of the solver path.
|
|
if (IsSingle)
|
|
return done(isSuccess);
|
|
|
|
// Rewind all modifications done to constraint system.
|
|
ComponentScope.reset();
|
|
|
|
if (isDebugMode()) {
|
|
auto &log = getDebugLogger();
|
|
log << (isSuccess ? "finished" : "failed") << " component #" << Index
|
|
<< ")\n";
|
|
}
|
|
|
|
// If we came either back to this step and previous
|
|
// (either disjunction or type var) failed, it means
|
|
// that component as a whole has failed.
|
|
if (!isSuccess)
|
|
return done(/*isSuccess=*/false);
|
|
|
|
assert(!Solutions.empty() && "No Solutions?");
|
|
|
|
// For each of the partial solutions, subtract off the current score.
|
|
// It doesn't contribute.
|
|
for (auto &solution : Solutions)
|
|
solution.getFixedScore() -= OriginalScore;
|
|
|
|
// Restore the original best score.
|
|
CS.solverState->BestScore = OriginalBestScore;
|
|
|
|
// When there are multiple partial solutions for a given connected component,
|
|
// rank those solutions to pick the best ones. This limits the number of
|
|
// combinations we need to produce; in the common case, down to a single
|
|
// combination.
|
|
filterSolutions(Solutions, /*minimize=*/true);
|
|
return done(/*isSuccess=*/true);
|
|
}
|
|
|
|
void TypeVariableStep::setup() {
|
|
++CS.solverState->NumTypeVariablesBound;
|
|
if (isDebugMode()) {
|
|
PrintOptions PO;
|
|
PO.PrintTypesForDebugging = true;
|
|
auto &log = getDebugLogger();
|
|
|
|
log << "Initial bindings: ";
|
|
interleave(InitialBindings.begin(), InitialBindings.end(),
|
|
[&](const Binding &binding) {
|
|
log << TypeVar->getString(PO)
|
|
<< " := " << binding.BindingType->getString(PO);
|
|
},
|
|
[&log] { log << ", "; });
|
|
|
|
log << '\n';
|
|
}
|
|
}
|
|
|
|
bool TypeVariableStep::attempt(const TypeVariableBinding &choice) {
|
|
++CS.solverState->NumTypeVariableBindings;
|
|
|
|
if (choice.hasDefaultedProtocol())
|
|
SawFirstLiteralConstraint = true;
|
|
|
|
// Try to solve the system with typeVar := type
|
|
return choice.attempt(CS);
|
|
}
|
|
|
|
StepResult TypeVariableStep::resume(bool prevFailed) {
|
|
assert(ActiveChoice);
|
|
|
|
// If there was no failure in the sub-path it means
|
|
// that active binding has a solution.
|
|
AnySolved |= !prevFailed;
|
|
|
|
bool shouldStop = shouldStopAfter(ActiveChoice->second);
|
|
// Rewind back all of the changes made to constraint system.
|
|
ActiveChoice.reset();
|
|
|
|
if (isDebugMode())
|
|
getDebugLogger() << ")\n";
|
|
|
|
// Let's check if we should stop right before
|
|
// attempting any new bindings.
|
|
if (shouldStop)
|
|
return done(/*isSuccess=*/AnySolved);
|
|
|
|
// Attempt next type variable binding.
|
|
return take(prevFailed);
|
|
}
|
|
|
|
StepResult DisjunctionStep::resume(bool prevFailed) {
|
|
// If disjunction step is re-taken and there should be
|
|
// active choice, let's see if it has be solved or not.
|
|
assert(ActiveChoice);
|
|
|
|
// If choice (sub-path) has failed, it's okay, other
|
|
// choices have to be attempted regardless, since final
|
|
// decision could be made only after attempting all
|
|
// of the choices, so let's just ignore failed ones.
|
|
if (!prevFailed) {
|
|
auto &choice = ActiveChoice->second;
|
|
auto score = getBestScore(Solutions);
|
|
|
|
if (!choice.isGenericOperator() && choice.isSymmetricOperator()) {
|
|
if (!BestNonGenericScore || score < BestNonGenericScore)
|
|
BestNonGenericScore = score;
|
|
}
|
|
|
|
AnySolved = true;
|
|
// Remember the last successfully solved choice,
|
|
// it would be useful when disjunction is exhausted.
|
|
LastSolvedChoice = {choice, *score};
|
|
}
|
|
|
|
// Rewind back the constraint system information.
|
|
ActiveChoice.reset();
|
|
|
|
if (isDebugMode())
|
|
getDebugLogger() << ")\n";
|
|
|
|
// Attempt next disjunction choice (if any left).
|
|
return take(prevFailed);
|
|
}
|
|
|
|
bool DisjunctionStep::shouldSkip(const DisjunctionChoice &choice) const {
|
|
auto &ctx = CS.getASTContext();
|
|
|
|
bool attemptFixes = CS.shouldAttemptFixes();
|
|
// Enable all disabled choices in "diagnostic" mode.
|
|
if (!attemptFixes && choice.isDisabled()) {
|
|
if (isDebugMode()) {
|
|
auto &log = getDebugLogger();
|
|
log << "(skipping ";
|
|
choice.print(log, &ctx.SourceMgr);
|
|
log << '\n';
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Skip unavailable overloads unless solver is in the "diagnostic" mode.
|
|
if (!attemptFixes && choice.isUnavailable())
|
|
return true;
|
|
|
|
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
|
|
return false;
|
|
|
|
// Don't attempt to solve for generic operators if we already have
|
|
// a non-generic solution.
|
|
|
|
// FIXME: Less-horrible but still horrible hack to attempt to
|
|
// speed things up. Skip the generic operators if we
|
|
// already have a solution involving non-generic operators,
|
|
// but continue looking for a better non-generic operator
|
|
// solution.
|
|
if (BestNonGenericScore && choice.isGenericOperator()) {
|
|
auto &score = BestNonGenericScore->Data;
|
|
// Let's skip generic overload choices only in case if
|
|
// non-generic score indicates that there were no forced
|
|
// unwrappings of optional(s), no unavailable overload
|
|
// choices present in the solution, no fixes required,
|
|
// and there are no non-trivial function conversions.
|
|
if (score[SK_ForceUnchecked] == 0 && score[SK_Unavailable] == 0 &&
|
|
score[SK_Fix] == 0 && score[SK_FunctionConversion] == 0)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool DisjunctionStep::shouldStopAt(const DisjunctionChoice &choice) const {
|
|
if (!LastSolvedChoice)
|
|
return false;
|
|
|
|
auto *lastChoice = LastSolvedChoice->first;
|
|
auto delta = LastSolvedChoice->second - getCurrentScore();
|
|
bool hasUnavailableOverloads = delta.Data[SK_Unavailable] > 0;
|
|
bool hasFixes = delta.Data[SK_Fix] > 0;
|
|
auto isBeginningOfPartition = choice.isBeginningOfPartition();
|
|
|
|
// Attempt to short-circuit evaluation of this disjunction only
|
|
// if the disjunction choice we are comparing to did not involve
|
|
// selecting unavailable overloads or result in fixes being
|
|
// applied to reach a solution.
|
|
return !hasUnavailableOverloads && !hasFixes &&
|
|
(isBeginningOfPartition ||
|
|
shortCircuitDisjunctionAt(choice, lastChoice));
|
|
}
|
|
|
|
bool swift::isSIMDOperator(ValueDecl *value) {
|
|
if (!value)
|
|
return false;
|
|
|
|
auto func = dyn_cast<FuncDecl>(value);
|
|
if (!func)
|
|
return false;
|
|
|
|
if (!func->isOperator())
|
|
return false;
|
|
|
|
auto nominal = func->getDeclContext()->getSelfNominalTypeDecl();
|
|
if (!nominal)
|
|
return false;
|
|
|
|
if (nominal->getName().empty())
|
|
return false;
|
|
|
|
return nominal->getName().str().startswith_lower("simd");
|
|
}
|
|
|
|
bool DisjunctionStep::shortCircuitDisjunctionAt(
|
|
Constraint *currentChoice, Constraint *lastSuccessfulChoice) const {
|
|
auto &ctx = CS.getASTContext();
|
|
|
|
// If the successfully applied constraint is favored, we'll consider that to
|
|
// be the "best".
|
|
if (lastSuccessfulChoice->isFavored() && !currentChoice->isFavored()) {
|
|
#if !defined(NDEBUG)
|
|
if (lastSuccessfulChoice->getKind() == ConstraintKind::BindOverload) {
|
|
auto overloadChoice = lastSuccessfulChoice->getOverloadChoice();
|
|
assert((!overloadChoice.isDecl() ||
|
|
!overloadChoice.getDecl()->getAttrs().isUnavailable(ctx)) &&
|
|
"Unavailable decl should not be favored!");
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// Anything without a fix is better than anything with a fix.
|
|
if (currentChoice->getFix() && !lastSuccessfulChoice->getFix())
|
|
return true;
|
|
|
|
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
|
|
return false;
|
|
|
|
if (auto restriction = currentChoice->getRestriction()) {
|
|
// Non-optional conversions are better than optional-to-optional
|
|
// conversions.
|
|
if (*restriction == ConversionRestrictionKind::OptionalToOptional)
|
|
return true;
|
|
|
|
// Array-to-pointer conversions are better than inout-to-pointer
|
|
// conversions.
|
|
if (auto successfulRestriction = lastSuccessfulChoice->getRestriction()) {
|
|
if (*successfulRestriction == ConversionRestrictionKind::ArrayToPointer &&
|
|
*restriction == ConversionRestrictionKind::InoutToPointer)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Implicit conversions are better than checked casts.
|
|
if (currentChoice->getKind() == ConstraintKind::CheckedCast)
|
|
return true;
|
|
|
|
// If we have a SIMD operator, and the prior choice was not a SIMD
|
|
// Operator, we're done.
|
|
if (currentChoice->getKind() == ConstraintKind::BindOverload &&
|
|
isSIMDOperator(currentChoice->getOverloadChoice().getDecl()) &&
|
|
lastSuccessfulChoice->getKind() == ConstraintKind::BindOverload &&
|
|
!isSIMDOperator(lastSuccessfulChoice->getOverloadChoice().getDecl()) &&
|
|
!ctx.TypeCheckerOpts.SolverEnableOperatorDesignatedTypes) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool DisjunctionStep::attempt(const DisjunctionChoice &choice) {
|
|
++CS.solverState->NumDisjunctionTerms;
|
|
|
|
// If the disjunction requested us to, remember which choice we
|
|
// took for it.
|
|
if (auto *disjunctionLocator = getLocator()) {
|
|
auto index = choice.getIndex();
|
|
recordDisjunctionChoice(disjunctionLocator, index);
|
|
|
|
// Implicit unwraps of optionals are worse solutions than those
|
|
// not involving implicit unwraps.
|
|
if (!disjunctionLocator->getPath().empty()) {
|
|
auto kind = disjunctionLocator->getPath().back().getKind();
|
|
if (kind == ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice ||
|
|
kind == ConstraintLocator::DynamicLookupResult) {
|
|
assert(index == 0 || index == 1);
|
|
if (index == 1)
|
|
CS.increaseScore(SK_ForceUnchecked);
|
|
}
|
|
}
|
|
}
|
|
|
|
return choice.attempt(CS);
|
|
}
|