mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
I can not update all of the tests until I fix SILCombine and we move the ownership lowering to right before the existential specializer (the sil tests depend on the former and the swift tests depend on both). But this at least begins updating the tests and ensures that the updates do not break the pass when we run it on non-ossa code.
354 lines
13 KiB
C++
354 lines
13 KiB
C++
//===--- ExistentialSpecializer.cpp - Specialization of functions -----===//
|
|
//===--- with existential arguments -----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specialize functions with existential parameters to generic ones.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-existential-specializer"
|
|
#include "ExistentialTransform.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/ProtocolConformanceAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Existential.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
using namespace swift;
|
|
|
|
static llvm::cl::opt<bool>
|
|
EnableExistentialSpecializer("enable-existential-specializer",
|
|
llvm::cl::Hidden,
|
|
llvm::cl::init(true));
|
|
|
|
STATISTIC(NumFunctionsWithExistentialArgsSpecialized,
|
|
"Number of functions with existential args specialized");
|
|
|
|
namespace {
|
|
|
|
/// ExistentialSpecializer class.
|
|
class ExistentialSpecializer : public SILFunctionTransform {
|
|
|
|
/// Determine if the current function is a target for existential
|
|
/// specialization of args.
|
|
bool canSpecializeExistentialArgsInFunction(
|
|
FullApplySite &Apply,
|
|
llvm::SmallDenseMap<int, ExistentialTransformArgumentDescriptor>
|
|
&ExistentialArgDescriptor);
|
|
|
|
/// Can Callee be specialized?
|
|
bool canSpecializeCalleeFunction(FullApplySite &Apply);
|
|
|
|
/// Specialize existential args in function F.
|
|
void specializeExistentialArgsInAppliesWithinFunction(SILFunction &F);
|
|
|
|
/// Find concrete type using protocolconformance analysis.
|
|
bool findConcreteTypeFromSoleConformingType(
|
|
SILFunctionArgument *Arg, CanType &ConcreteType);
|
|
|
|
/// CallerAnalysis information.
|
|
CallerAnalysis *CA;
|
|
|
|
// Determine the set of types a protocol conforms to in whole-module
|
|
// compilation mode.
|
|
ProtocolConformanceAnalysis *PCA;
|
|
|
|
ClassHierarchyAnalysis *CHA;
|
|
public:
|
|
void run() override {
|
|
auto *F = getFunction();
|
|
|
|
/// Don't optimize functions that should not be optimized.
|
|
if (!F->shouldOptimize() || !EnableExistentialSpecializer) {
|
|
return;
|
|
}
|
|
|
|
/// Get CallerAnalysis information handy.
|
|
CA = PM->getAnalysis<CallerAnalysis>();
|
|
|
|
/// Get ProtocolConformanceAnalysis.
|
|
PCA = PM->getAnalysis<ProtocolConformanceAnalysis>();
|
|
|
|
/// Get ClassHierarchyAnalysis.
|
|
CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
|
|
/// Perform specialization.
|
|
specializeExistentialArgsInAppliesWithinFunction(*F);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Find concrete type from Sole Conforming Type.
|
|
bool ExistentialSpecializer::findConcreteTypeFromSoleConformingType(
|
|
SILFunctionArgument *Arg, CanType &ConcreteType) {
|
|
auto ArgType = Arg->getType();
|
|
auto SwiftArgType = ArgType.getASTType();
|
|
|
|
/// Do not handle composition types yet.
|
|
if (isa<ProtocolCompositionType>(SwiftArgType))
|
|
return false;
|
|
assert(ArgType.isExistentialType());
|
|
/// Find the protocol decl.
|
|
auto *PD = dyn_cast<ProtocolDecl>(SwiftArgType->getAnyNominal());
|
|
if (!PD)
|
|
return false;
|
|
|
|
// Get SoleConformingType in ConcreteType using ProtocolConformanceAnalysis
|
|
// and ClassHierarchyAnalysis.
|
|
if (!PCA->getSoleConformingType(PD, CHA, ConcreteType))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Helper function to ensure that the argument is not InOut or InOut_Aliasable
|
|
static bool isNonInoutIndirectArgument(SILValue Arg,
|
|
SILArgumentConvention ArgConvention) {
|
|
return !Arg->getType().isObject() && ArgConvention.isIndirectConvention() &&
|
|
ArgConvention != SILArgumentConvention::Indirect_Inout &&
|
|
ArgConvention != SILArgumentConvention::Indirect_InoutAliasable;
|
|
}
|
|
|
|
/// Check if any apply argument meets the criteria for existential
|
|
/// specialization.
|
|
bool ExistentialSpecializer::canSpecializeExistentialArgsInFunction(
|
|
FullApplySite &Apply,
|
|
llvm::SmallDenseMap<int, ExistentialTransformArgumentDescriptor>
|
|
&ExistentialArgDescriptor) {
|
|
auto *F = Apply.getReferencedFunctionOrNull();
|
|
auto CalleeArgs = F->begin()->getSILFunctionArguments();
|
|
bool returnFlag = false;
|
|
|
|
/// Analyze the argument for protocol conformance. Iterator over the callee's
|
|
/// function arguments. The same SIL argument index is used for both caller
|
|
/// and callee side arguments.
|
|
auto origCalleeConv = Apply.getOrigCalleeConv();
|
|
assert(Apply.getCalleeArgIndexOfFirstAppliedArg() == 0);
|
|
for (unsigned Idx = 0, Num = CalleeArgs.size(); Idx < Num; ++Idx) {
|
|
auto CalleeArg = CalleeArgs[Idx];
|
|
auto ArgType = CalleeArg->getType();
|
|
auto SwiftArgType = ArgType.getASTType();
|
|
|
|
/// Checking for AnyObject and Any is added to ensure that we do not blow up
|
|
/// the code size by specializing to every type that conforms to Any or
|
|
/// AnyObject. In future, we may want to lift these two restrictions in a
|
|
/// controlled way.
|
|
if (!ArgType.isExistentialType() || ArgType.isAnyObject() ||
|
|
SwiftArgType->isAny())
|
|
continue;
|
|
|
|
auto ExistentialRepr =
|
|
CalleeArg->getType().getPreferredExistentialRepresentation();
|
|
if (ExistentialRepr != ExistentialRepresentation::Opaque &&
|
|
ExistentialRepr != ExistentialRepresentation::Class)
|
|
continue;
|
|
|
|
/// Find the concrete type.
|
|
Operand &ArgOper = Apply.getArgumentRef(Idx);
|
|
CanType ConcreteType =
|
|
ConcreteExistentialInfo(ArgOper.get(), ArgOper.getUser()).ConcreteType;
|
|
auto ArgConvention = F->getConventions().getSILArgumentConvention(Idx);
|
|
/// Find the concrete type, either via sole type or via
|
|
/// findInitExistential..
|
|
CanType SoleConcreteType;
|
|
if (!((F->getModule().isWholeModule() &&
|
|
isNonInoutIndirectArgument(CalleeArg, ArgConvention) &&
|
|
findConcreteTypeFromSoleConformingType(CalleeArg, SoleConcreteType)) ||
|
|
ConcreteType)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "ExistentialSpecializer Pass: Bail! cannot find ConcreteType "
|
|
"for call argument to:"
|
|
<< F->getName() << " in caller:"
|
|
<< Apply.getInstruction()->getParent()->getParent()->getName()
|
|
<< "\n";);
|
|
continue;
|
|
}
|
|
|
|
/// Determine attributes of the existential addr argument.
|
|
ExistentialTransformArgumentDescriptor ETAD;
|
|
auto paramInfo = origCalleeConv.getParamInfoForSILArg(Idx);
|
|
// The ExistentialSpecializerCloner copies the incoming generic argument
|
|
// into an existential. This won't work if the original argument is
|
|
// mutated. Furthermore, SILCombine would not be able to replace a mutated
|
|
// existential with a concrete value, so the specialization thunk could not
|
|
// be optimized away.
|
|
if (paramInfo.isIndirectMutating())
|
|
continue;
|
|
|
|
ETAD.AccessType = paramInfo.isConsumed()
|
|
? OpenedExistentialAccess::Mutable
|
|
: OpenedExistentialAccess::Immutable;
|
|
ETAD.isConsumed = paramInfo.isConsumed();
|
|
|
|
/// Save the attributes
|
|
ExistentialArgDescriptor[Idx] = ETAD;
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "ExistentialSpecializer Pass:Function: " << F->getName()
|
|
<< " Arg:" << Idx << " has a concrete type.\n");
|
|
returnFlag |= true;
|
|
}
|
|
return returnFlag;
|
|
}
|
|
|
|
/// Determine if this callee function can be specialized or not.
|
|
bool ExistentialSpecializer::canSpecializeCalleeFunction(FullApplySite &Apply) {
|
|
/// Determine the caller of the apply.
|
|
auto *Callee = Apply.getReferencedFunctionOrNull();
|
|
if (!Callee)
|
|
return false;
|
|
|
|
/// Callee should be optimizable.
|
|
if (!Callee->shouldOptimize())
|
|
return false;
|
|
|
|
/// External function definitions.
|
|
if (!Callee->isDefinition())
|
|
return false;
|
|
|
|
// Ignore generic functions. Generic functions should be fully specialized
|
|
// before attempting to introduce new generic parameters for existential
|
|
// arguments. Otherwise, there's no guarantee that the generic specializer
|
|
// will be able to specialize the new generic parameter created by this pass.
|
|
//
|
|
// Enabling this would require additional implementation work to correctly
|
|
// substitute the original archetypes into the new generic signature.
|
|
if (Callee->getLoweredFunctionType()->getSubstGenericSignature())
|
|
return false;
|
|
|
|
/// Ignore functions with indirect results.
|
|
if (Callee->getConventions().hasIndirectSILResults())
|
|
return false;
|
|
|
|
/// Ignore error returning functions.
|
|
if (Callee->getLoweredFunctionType()->hasErrorResult())
|
|
return false;
|
|
|
|
/// Do not optimize always_inlinable functions.
|
|
if (Callee->getInlineStrategy() == Inline_t::AlwaysInline)
|
|
return false;
|
|
|
|
/// Ignore externally linked functions with public_external or higher
|
|
/// linkage.
|
|
if (isAvailableExternally(Callee->getLinkage())) {
|
|
return false;
|
|
}
|
|
|
|
/// Only choose a select few function representations for specialization.
|
|
switch (Callee->getRepresentation()) {
|
|
case SILFunctionTypeRepresentation::ObjCMethod:
|
|
case SILFunctionTypeRepresentation::Block:
|
|
return false;
|
|
default: break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Specialize existential args passed as arguments to callees. Iterate over all
|
|
/// call sites of the caller F and check for legality to apply existential
|
|
/// specialization.
|
|
void ExistentialSpecializer::specializeExistentialArgsInAppliesWithinFunction(
|
|
SILFunction &F) {
|
|
bool Changed = false;
|
|
for (auto &BB : F) {
|
|
for (auto It = BB.begin(), End = BB.end(); It != End; ++It) {
|
|
auto *I = &*It;
|
|
|
|
/// Is it an apply site?
|
|
FullApplySite Apply = FullApplySite::isa(I);
|
|
if (!Apply)
|
|
continue;
|
|
|
|
/// Can the callee be specialized?
|
|
if (!canSpecializeCalleeFunction(Apply)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "ExistentialSpecializer Pass: Bail! Due to "
|
|
"canSpecializeCalleeFunction.\n";
|
|
I->dump(););
|
|
continue;
|
|
}
|
|
|
|
auto *Callee = Apply.getReferencedFunctionOrNull();
|
|
|
|
/// Handle recursion! Do not modify F right now.
|
|
if (Callee == &F) {
|
|
LLVM_DEBUG(llvm::dbgs() << "ExistentialSpecializer Pass: Bail! Due to "
|
|
"recursion.\n";
|
|
I->dump(););
|
|
continue;
|
|
}
|
|
|
|
/// Determine the arguments that can be specialized.
|
|
llvm::SmallDenseMap<int, ExistentialTransformArgumentDescriptor>
|
|
ExistentialArgDescriptor;
|
|
if (!canSpecializeExistentialArgsInFunction(Apply,
|
|
ExistentialArgDescriptor)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "ExistentialSpecializer Pass: Bail! Due to "
|
|
"canSpecializeExistentialArgsInFunction in function: "
|
|
<< Callee->getName() << " -> abort\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "ExistentialSpecializer Pass: Function::"
|
|
<< Callee->getName()
|
|
<< " has an existential argument and can be optimized "
|
|
"via ExistentialSpecializer\n");
|
|
|
|
/// Name Mangler for naming the protocol constrained generic method.
|
|
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
|
|
Mangle::FunctionSignatureSpecializationMangler Mangler(
|
|
P, Callee->isSerialized(), Callee);
|
|
|
|
/// Save the arguments in a descriptor.
|
|
llvm::SpecificBumpPtrAllocator<ProjectionTreeNode> Allocator;
|
|
llvm::SmallVector<ArgumentDescriptor, 4> ArgumentDescList;
|
|
auto Args = Callee->begin()->getSILFunctionArguments();
|
|
for (unsigned i : indices(Args)) {
|
|
ArgumentDescList.emplace_back(Args[i], Allocator);
|
|
}
|
|
|
|
/// This is the function to optimize for existential specilizer.
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** Running ExistentialSpecializer Pass on function: "
|
|
<< Callee->getName() << " ***\n");
|
|
|
|
/// Instantiate the ExistentialSpecializerTransform pass.
|
|
SILOptFunctionBuilder FuncBuilder(*this);
|
|
ExistentialTransform ET(FuncBuilder, Callee, Mangler, ArgumentDescList,
|
|
ExistentialArgDescriptor);
|
|
|
|
/// Run the existential specializer pass.
|
|
Changed = ET.run();
|
|
|
|
if (Changed) {
|
|
/// Update statistics on the number of functions specialized.
|
|
++NumFunctionsWithExistentialArgsSpecialized;
|
|
|
|
/// Make sure the PM knows about the new specialized inner function.
|
|
addFunctionToPassManagerWorklist(ET.getExistentialSpecializedFunction(),
|
|
Callee);
|
|
|
|
/// Invalidate analysis results of Callee.
|
|
PM->invalidateAnalysis(Callee,
|
|
SILAnalysis::InvalidationKind::Everything);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
SILTransform *swift::createExistentialSpecializer() {
|
|
return new ExistentialSpecializer();
|
|
}
|