mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Remove else after return, reduce indentation, etc. Noticed while reviewing code that uses various SILValue::strip*Casts() functions. Swift SVN r27574
1760 lines
61 KiB
C++
1760 lines
61 KiB
C++
//===--- Local.cpp - Functions that perform local SIL transformations. ---===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "swift/SILAnalysis/Analysis.h"
|
|
#include "swift/SILAnalysis/ARCAnalysis.h"
|
|
#include "swift/SILAnalysis/DominanceAnalysis.h"
|
|
#include "swift/SIL/DynamicCasts.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "swift/Strings.h"
|
|
#include <deque>
|
|
|
|
using namespace swift;
|
|
|
|
llvm::cl::opt<bool>
|
|
DebugValuesPropagateLiveness("debug-values-propagate-liveness",
|
|
llvm::cl::init(false));
|
|
|
|
bool swift::debugValuesPropagateLiveness() {
|
|
return DebugValuesPropagateLiveness;
|
|
}
|
|
|
|
/// \brief Perform a fast local check to see if the instruction is dead.
|
|
///
|
|
/// This routine only examines the state of the instruction at hand.
|
|
bool
|
|
swift::isInstructionTriviallyDead(SILInstruction *I) {
|
|
if (!I->use_empty() || isa<TermInst>(I))
|
|
return false;
|
|
|
|
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
|
|
return !BI->mayHaveSideEffects();
|
|
}
|
|
|
|
// condfail instructions that obviously can't fail are dead.
|
|
if (auto *CFI = dyn_cast<CondFailInst>(I))
|
|
if (auto *ILI = dyn_cast<IntegerLiteralInst>(CFI->getOperand()))
|
|
if (!ILI->getValue())
|
|
return true;
|
|
|
|
// mark_uninitialized is never dead.
|
|
if (isa<MarkUninitializedInst>(I))
|
|
return false;
|
|
|
|
if (debugValuesPropagateLiveness() &&
|
|
(isa<DebugValueInst>(I) || isa<DebugValueAddrInst>(I)))
|
|
return false;
|
|
|
|
// These invalidate enums so "write" memory, but that is not an essential
|
|
// operation so we can remove these if they are trivially dead.
|
|
if (isa<UncheckedTakeEnumDataAddrInst>(I))
|
|
return true;
|
|
|
|
if (!I->mayHaveSideEffects())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
using CallbackTy = std::function<void(SILInstruction *)>;
|
|
} // end anonymous namespace
|
|
|
|
bool swift::
|
|
recursivelyDeleteTriviallyDeadInstructions(ArrayRef<SILInstruction *> IA,
|
|
bool Force, CallbackTy Callback) {
|
|
// Delete these instruction and others that become dead after it's deleted.
|
|
llvm::SmallPtrSet<SILInstruction *, 8> DeadInsts;
|
|
for (auto I : IA) {
|
|
// If the instruction is not dead and force is false, do nothing.
|
|
if (Force || isInstructionTriviallyDead(I))
|
|
DeadInsts.insert(I);
|
|
}
|
|
llvm::SmallPtrSet<SILInstruction *, 8> NextInsts;
|
|
while (!DeadInsts.empty()) {
|
|
for (auto I : DeadInsts) {
|
|
// Call the callback before we mutate the to be deleted instruction in any
|
|
// way.
|
|
Callback(I);
|
|
|
|
// Check if any of the operands will become dead as well.
|
|
MutableArrayRef<Operand> Ops = I->getAllOperands();
|
|
for (Operand &Op : Ops) {
|
|
SILValue OpVal = Op.get();
|
|
if (!OpVal)
|
|
continue;
|
|
|
|
// Remove the reference from the instruction being deleted to this
|
|
// operand.
|
|
Op.drop();
|
|
|
|
// If the operand is an instruction that is only used by the instruction
|
|
// being deleted, delete it.
|
|
if (SILInstruction *OpValInst = dyn_cast<SILInstruction>(OpVal))
|
|
if (!DeadInsts.count(OpValInst) &&
|
|
isInstructionTriviallyDead(OpValInst))
|
|
NextInsts.insert(OpValInst);
|
|
}
|
|
|
|
// If we have a function ref inst, we need to especially drop its function
|
|
// argument so that it gets a proper ref decement.
|
|
auto *FRI = dyn_cast<FunctionRefInst>(I);
|
|
if (FRI && FRI->getReferencedFunction())
|
|
FRI->dropReferencedFunction();
|
|
}
|
|
|
|
for (auto I : DeadInsts) {
|
|
// This will remove this instruction and all its uses.
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
NextInsts.swap(DeadInsts);
|
|
NextInsts.clear();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief If the given instruction is dead, delete it along with its dead
|
|
/// operands.
|
|
///
|
|
/// \param I The instruction to be deleted.
|
|
/// \param Force If Force is set, don't check if the top level instruction is
|
|
/// considered dead - delete it regardless.
|
|
/// \return Returns true if any instructions were deleted.
|
|
bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I,
|
|
bool Force,
|
|
CallbackTy Callback) {
|
|
|
|
ArrayRef<SILInstruction *> AI = ArrayRef<SILInstruction *>(I);
|
|
return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback);
|
|
}
|
|
|
|
void swift::eraseUsesOfInstruction(SILInstruction *Inst) {
|
|
for (auto UI : Inst->getUses()) {
|
|
auto *User = UI->getUser();
|
|
|
|
// If the instruction itself has any uses, recursively zap them so that
|
|
// nothing uses this instruction.
|
|
eraseUsesOfInstruction(User);
|
|
|
|
// Walk through the operand list and delete any random instructions that
|
|
// will become trivially dead when this instruction is removed.
|
|
|
|
for (auto &Op : User->getAllOperands()) {
|
|
if (auto *OpI = dyn_cast<SILInstruction>(Op.get())) {
|
|
// Don't recursively delete the pointer we're getting in.
|
|
if (OpI != Inst) {
|
|
Op.drop();
|
|
recursivelyDeleteTriviallyDeadInstructions(OpI);
|
|
}
|
|
}
|
|
}
|
|
|
|
User->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Devirtualization of functions with covariant return types produces
|
|
// a result that is not an apply, but takes an apply as an
|
|
// argument. Attempt to dig the apply out from this result.
|
|
ApplyInst *swift::findApplyFromDevirtualizedResult(SILInstruction *I) {
|
|
if (auto *Apply = dyn_cast<ApplyInst>(I))
|
|
return Apply;
|
|
|
|
if (!I->getNumOperands())
|
|
return nullptr;
|
|
|
|
return dyn_cast<ApplyInst>(I->getOperand(0));
|
|
}
|
|
|
|
// Replace a dead apply with a new instruction that computes the same
|
|
// value, and delete the old apply.
|
|
void swift::replaceDeadApply(FullApplySite Old, SILInstruction *New) {
|
|
auto *OldApply = Old.getInstruction();
|
|
OldApply->replaceAllUsesWith(New);
|
|
recursivelyDeleteTriviallyDeadInstructions(OldApply, true);
|
|
}
|
|
|
|
bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) {
|
|
// Check whether any of the substitutions are dependent.
|
|
for (auto &entry : SubsMap)
|
|
if (entry.second->getCanonicalType()->hasArchetype())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool swift::hasUnboundGenericTypes(ArrayRef<Substitution> Subs) {
|
|
// Check whether any of the substitutions are dependent.
|
|
for (auto &sub : Subs)
|
|
if (sub.getReplacement()->getCanonicalType()->hasArchetype())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
|
|
/// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts.
|
|
void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) {
|
|
FunctionRefInst *FuncRef = cast<FunctionRefInst>(AI->getCallee());
|
|
SILBasicBlock *DomBB =
|
|
DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent());
|
|
if (DomBB == AI->getParent() && DomBB != FuncRef->getParent())
|
|
// Prefer to place the FuncRef immediately before the call. Since we're
|
|
// moving FuncRef up, this must be the only call to it in the block.
|
|
FuncRef->moveBefore(AI);
|
|
else
|
|
// Otherwise, conservatively stick it at the beginning of the block.
|
|
FuncRef->moveBefore(DomBB->begin());
|
|
}
|
|
|
|
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
|
|
/// block \p Dest. Return a new instruction and do not erase the old
|
|
/// instruction.
|
|
TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
|
|
TermInst *Branch) {
|
|
SILBuilderWithScope<2> Builder(Branch);
|
|
|
|
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
|
|
SmallVector<SILValue, 8> TrueArgs;
|
|
SmallVector<SILValue, 8> FalseArgs;
|
|
|
|
for (auto A : CBI->getTrueArgs())
|
|
TrueArgs.push_back(A);
|
|
|
|
for (auto A : CBI->getFalseArgs())
|
|
FalseArgs.push_back(A);
|
|
|
|
if (Dest == CBI->getTrueBB()) {
|
|
TrueArgs.push_back(Val);
|
|
assert(TrueArgs.size() == Dest->getNumBBArg());
|
|
} else {
|
|
FalseArgs.push_back(Val);
|
|
assert(FalseArgs.size() == Dest->getNumBBArg());
|
|
}
|
|
|
|
return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
|
|
CBI->getTrueBB(), TrueArgs,
|
|
CBI->getFalseBB(), FalseArgs);
|
|
}
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
|
|
SmallVector<SILValue, 8> Args;
|
|
|
|
for (auto A : BI->getArgs())
|
|
Args.push_back(A);
|
|
|
|
Args.push_back(Val);
|
|
assert(Args.size() == Dest->getNumBBArg());
|
|
return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
|
|
}
|
|
|
|
llvm_unreachable("unsupported terminator");
|
|
}
|
|
|
|
SILLinkage swift::getSpecializedLinkage(SILLinkage L) {
|
|
switch (L) {
|
|
case SILLinkage::Public:
|
|
case SILLinkage::PublicExternal:
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::SharedExternal:
|
|
case SILLinkage::Hidden:
|
|
case SILLinkage::HiddenExternal:
|
|
// Specializations of public or hidden symbols can be shared by all TUs
|
|
// that specialize the definition.
|
|
return SILLinkage::Shared;
|
|
|
|
case SILLinkage::Private:
|
|
case SILLinkage::PrivateExternal:
|
|
// Specializations of private symbols should remain so.
|
|
// TODO: maybe PrivateExternals should get SharedExternal (these are private
|
|
// functions from the stdlib which are specialized in another module).
|
|
return SILLinkage::Private;
|
|
}
|
|
}
|
|
|
|
/// Remove all instructions in the body of \p BB in safe manner by using
|
|
/// undef.
|
|
void swift::clearBlockBody(SILBasicBlock *BB) {
|
|
// Instructions in the dead block may be used by other dead blocks. Replace
|
|
// any uses of them with undef values.
|
|
while (!BB->empty()) {
|
|
// Grab the last instruction in the BB.
|
|
auto *Inst = &BB->getInstList().back();
|
|
|
|
// Replace any still-remaining uses with undef values and erase.
|
|
Inst->replaceAllUsesWithUndef();
|
|
Inst->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Handle the mechanical aspects of removing an unreachable block.
|
|
void swift::removeDeadBlock(SILBasicBlock *BB) {
|
|
// Clear the body of BB.
|
|
clearBlockBody(BB);
|
|
|
|
// Now that the BB is empty, eliminate it.
|
|
BB->eraseFromParent();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String Concatenation Optimizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This is a helper class that performs optimization of string literals
|
|
/// concatenation.
|
|
class StringConcatenationOptimizer {
|
|
/// Apply instruction being optimized.
|
|
ApplyInst *AI;
|
|
/// Builder to be used for creation of new instructions.
|
|
SILBuilder &Builder;
|
|
/// Left string literal operand of a string concatenation.
|
|
StringLiteralInst *SLILeft = nullptr;
|
|
/// Right string literal operand of a string concatenation.
|
|
StringLiteralInst *SLIRight = nullptr;
|
|
/// Function used to construct the left string literal.
|
|
FunctionRefInst *FRILeft = nullptr;
|
|
/// Function used to construct the right string literal.
|
|
FunctionRefInst *FRIRight = nullptr;
|
|
/// Apply instructions used to construct left string literal.
|
|
ApplyInst *AILeft = nullptr;
|
|
/// Apply instructions used to construct right string literal.
|
|
ApplyInst *AIRight = nullptr;
|
|
/// String literal conversion function to be used.
|
|
FunctionRefInst *FRIConvertFromBuiltin = nullptr;
|
|
/// Result type of a function producing the concatenated string literal.
|
|
SILValue FuncResultType;
|
|
|
|
/// Internal helper methods
|
|
bool extractStringConcatOperands();
|
|
void adjustEncodings();
|
|
APInt getConcatenatedLength();
|
|
bool isAscii() const;
|
|
|
|
public:
|
|
StringConcatenationOptimizer(ApplyInst *AI, SILBuilder &Builder)
|
|
: AI(AI), Builder(Builder) {}
|
|
|
|
/// Tries to optimize a given apply instruction if it is a
|
|
/// concatenation of string literals.
|
|
///
|
|
/// Returns a new instruction if optimization was possible.
|
|
SILInstruction *optimize();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Checks operands of a string concatenation operation to see if
|
|
/// optimization is applicable.
|
|
///
|
|
/// Returns false if optimization is not possible.
|
|
/// Returns true and initializes internal fields if optimization is possible.
|
|
bool StringConcatenationOptimizer::extractStringConcatOperands() {
|
|
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
|
|
if (!FRI)
|
|
return false;
|
|
|
|
auto *FRIFun = FRI->getReferencedFunction();
|
|
|
|
if (AI->getNumOperands() != 3 ||
|
|
!FRIFun->hasSemanticsString("string.concat"))
|
|
return false;
|
|
|
|
// Left and right operands of a string concatenation operation.
|
|
AILeft = dyn_cast<ApplyInst>(AI->getOperand(1));
|
|
AIRight = dyn_cast<ApplyInst>(AI->getOperand(2));
|
|
|
|
if (!AILeft || !AIRight)
|
|
return false;
|
|
|
|
FRILeft = dyn_cast<FunctionRefInst>(AILeft->getCallee());
|
|
FRIRight = dyn_cast<FunctionRefInst>(AIRight->getCallee());
|
|
|
|
if (!FRILeft || !FRIRight)
|
|
return false;
|
|
|
|
auto *FRILeftFun = FRILeft->getReferencedFunction();
|
|
auto *FRIRightFun = FRIRight->getReferencedFunction();
|
|
|
|
if (FRILeftFun->getEffectsKind() >= EffectsKind::ReadWrite ||
|
|
FRIRightFun->getEffectsKind() >= EffectsKind::ReadWrite)
|
|
return false;
|
|
|
|
if (!FRILeftFun->hasDefinedSemantics() ||
|
|
!FRIRightFun->hasDefinedSemantics())
|
|
return false;
|
|
|
|
auto SemanticsLeft = FRILeftFun->getSemanticsString();
|
|
auto SemanticsRight = FRIRightFun->getSemanticsString();
|
|
auto AILeftOperandsNum = AILeft->getNumOperands();
|
|
auto AIRightOperandsNum = AIRight->getNumOperands();
|
|
|
|
// makeUTF16 should have following parameters:
|
|
// (start: RawPointer, numberOfCodeUnits: Word)
|
|
// makeUTF8 should have following parameters:
|
|
// (start: RawPointer, byteSize: Word, isASCII: Int1)
|
|
if (!((SemanticsLeft == "string.makeUTF16" && AILeftOperandsNum == 4) ||
|
|
(SemanticsLeft == "string.makeUTF8" && AILeftOperandsNum == 5) ||
|
|
(SemanticsRight == "string.makeUTF16" && AIRightOperandsNum == 4) ||
|
|
(SemanticsRight == "string.makeUTF8" && AIRightOperandsNum == 5)))
|
|
return false;
|
|
|
|
SLILeft = dyn_cast<StringLiteralInst>(AILeft->getOperand(1));
|
|
SLIRight = dyn_cast<StringLiteralInst>(AIRight->getOperand(1));
|
|
|
|
if (!SLILeft || !SLIRight)
|
|
return false;
|
|
|
|
// Only UTF-8 and UTF-16 encoded string literals are supported by this
|
|
// optimization.
|
|
if (SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
|
|
SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF16)
|
|
return false;
|
|
|
|
if (SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
|
|
SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF16)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Ensures that both string literals to be concatenated use the same
|
|
/// UTF encoding. Converts UTF-8 into UTF-16 if required.
|
|
void StringConcatenationOptimizer::adjustEncodings() {
|
|
if (SLILeft->getEncoding() == SLIRight->getEncoding()) {
|
|
FRIConvertFromBuiltin = FRILeft;
|
|
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8) {
|
|
FuncResultType = AILeft->getOperand(4);
|
|
} else {
|
|
FuncResultType = AILeft->getOperand(3);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If one of the string literals is UTF8 and another one is UTF16,
|
|
// convert the UTF8-encoded string literal into UTF16-encoding first.
|
|
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
|
|
SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF16) {
|
|
FuncResultType = AIRight->getOperand(3);
|
|
FRIConvertFromBuiltin = FRIRight;
|
|
// Convert UTF8 representation into UTF16.
|
|
SLILeft = Builder.createStringLiteral(AI->getLoc(), SLILeft->getValue(),
|
|
StringLiteralInst::Encoding::UTF16);
|
|
SLILeft->setDebugScope(AI->getDebugScope());
|
|
}
|
|
|
|
if (SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
|
|
SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF16) {
|
|
FuncResultType = AILeft->getOperand(3);
|
|
FRIConvertFromBuiltin = FRILeft;
|
|
// Convert UTF8 representation into UTF16.
|
|
SLIRight = Builder.createStringLiteral(AI->getLoc(), SLIRight->getValue(),
|
|
StringLiteralInst::Encoding::UTF16);
|
|
SLIRight->setDebugScope(AI->getDebugScope());
|
|
}
|
|
|
|
// It should be impossible to have two operands with different
|
|
// encodings at this point.
|
|
assert(SLILeft->getEncoding() == SLIRight->getEncoding() &&
|
|
"Both operands of string concatenation should have the same encoding");
|
|
}
|
|
|
|
/// Computes the length of a concatenated string literal.
|
|
APInt StringConcatenationOptimizer::getConcatenatedLength() {
|
|
// Real length of string literals computed based on its contents.
|
|
// Length is in code units.
|
|
auto SLILenLeft = SLILeft->getCodeUnitCount();
|
|
(void) SLILenLeft;
|
|
auto SLILenRight = SLIRight->getCodeUnitCount();
|
|
(void) SLILenRight;
|
|
|
|
// Length of string literals as reported by string.make functions.
|
|
auto *LenLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(2));
|
|
auto *LenRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(2));
|
|
|
|
// Real and reported length should be the same.
|
|
assert(SLILenLeft == LenLeft->getValue() &&
|
|
"Size of string literal in @_semantics(string.make) is wrong");
|
|
|
|
assert(SLILenRight == LenRight->getValue() &&
|
|
"Size of string literal in @_semantics(string.make) is wrong");
|
|
|
|
|
|
// Compute length of the concatenated literal.
|
|
return LenLeft->getValue() + LenRight->getValue();
|
|
}
|
|
|
|
/// Computes the isAscii flag of a concatenated UTF8-encoded string literal.
|
|
bool StringConcatenationOptimizer::isAscii() const{
|
|
// Add the isASCII argument in case of UTF8.
|
|
// IsASCII is true only if IsASCII of both literals is true.
|
|
auto *AsciiLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(3));
|
|
auto *AsciiRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(3));
|
|
auto IsAsciiLeft = AsciiLeft->getValue() == 1;
|
|
auto IsAsciiRight = AsciiRight->getValue() == 1;
|
|
return IsAsciiLeft && IsAsciiRight;
|
|
}
|
|
|
|
SILInstruction *StringConcatenationOptimizer::optimize() {
|
|
// Bail out if string literals concatenation optimization is
|
|
// not possible.
|
|
if (!extractStringConcatOperands())
|
|
return nullptr;
|
|
|
|
// Perform string literal encodings adjustments if needed.
|
|
adjustEncodings();
|
|
|
|
// Arguments of the new StringLiteralInst to be created.
|
|
SmallVector<SILValue, 4> Arguments;
|
|
|
|
// Encoding to be used for the concatenated string literal.
|
|
auto Encoding = SLILeft->getEncoding();
|
|
|
|
// Create a concatenated string literal.
|
|
auto LV = SLILeft->getValue();
|
|
auto RV = SLIRight->getValue();
|
|
auto *NewSLI =
|
|
Builder.createStringLiteral(AI->getLoc(), LV + Twine(RV), Encoding);
|
|
NewSLI->setDebugScope(AI->getDebugScope());
|
|
Arguments.push_back(NewSLI);
|
|
|
|
// Length of the concatenated literal according to its encoding.
|
|
auto *Len = Builder.createIntegerLiteral(
|
|
AI->getLoc(), AILeft->getOperand(2).getType(), getConcatenatedLength());
|
|
Len->setDebugScope(AI->getDebugScope());
|
|
Arguments.push_back(Len);
|
|
|
|
// isAscii flag for UTF8-encoded string literals.
|
|
if (Encoding == StringLiteralInst::Encoding::UTF8) {
|
|
bool IsAscii = isAscii();
|
|
auto ILType = AILeft->getOperand(3).getType();
|
|
auto *Ascii =
|
|
Builder.createIntegerLiteral(AI->getLoc(), ILType, intmax_t(IsAscii));
|
|
Ascii->setDebugScope(AI->getDebugScope());
|
|
Arguments.push_back(Ascii);
|
|
}
|
|
|
|
// Type.
|
|
Arguments.push_back(FuncResultType);
|
|
|
|
auto FnTy = FRIConvertFromBuiltin->getType();
|
|
auto STResultType = FnTy.castTo<SILFunctionType>()->getResult().getSILType();
|
|
return ApplyInst::create(AI->getLoc(),
|
|
FRIConvertFromBuiltin,
|
|
FnTy,
|
|
STResultType,
|
|
ArrayRef<Substitution>(),
|
|
Arguments,
|
|
*FRIConvertFromBuiltin->getReferencedFunction());
|
|
}
|
|
|
|
/// Top level entry point
|
|
SILInstruction *swift::tryToConcatenateStrings(ApplyInst *AI, SILBuilder &B) {
|
|
return StringConcatenationOptimizer(AI, B).optimize();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Closure Deletion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isARCOperationRemovableIfObjectIsDead(const SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case ValueKind::StrongRetainInst:
|
|
case ValueKind::StrongReleaseInst:
|
|
case ValueKind::RetainValueInst:
|
|
case ValueKind::ReleaseValueInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// TODO: Generalize this to general objects.
|
|
bool swift::tryDeleteDeadClosure(SILInstruction *Closure) {
|
|
// We currently only handle locally identified values that do not escape. We
|
|
// also assume that the partial apply does not capture any addresses.
|
|
if (!isa<PartialApplyInst>(Closure) && !isa<ThinToThickFunctionInst>(Closure))
|
|
return false;
|
|
|
|
// We only accept a user if it is an ARC object that can be removed if the
|
|
// object is dead. This should be expanded in the future. This also ensures
|
|
// that we are locally identified and non-escaping since we only allow for
|
|
// specific ARC users.
|
|
ReleaseTracker Tracker([](const SILInstruction *I) -> bool {
|
|
return isARCOperationRemovableIfObjectIsDead(I);
|
|
});
|
|
|
|
// Find the ARC Users and the final retain, release.
|
|
if (!getFinalReleasesForValue(SILValue(Closure), Tracker))
|
|
return false;
|
|
|
|
// If we have a partial_apply, release each captured argument at each one of
|
|
// the final release locations of the partial apply.
|
|
SILBuilder Builder(Closure);
|
|
SILModule &M = Closure->getModule();
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
|
|
for (auto *FinalRelease : Tracker.getFinalReleases()) {
|
|
Builder.setInsertionPoint(FinalRelease);
|
|
for (SILValue Arg : PAI->getArguments()) {
|
|
if (Arg.getType().isTrivial(M))
|
|
continue;
|
|
Builder.createReleaseValue(FinalRelease->getLoc(), Arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Then delete all user instructions.
|
|
for (auto *User : Tracker.getTrackedUsers()) {
|
|
assert(User->getNumTypes() == 0 && "We expect only ARC operations without "
|
|
"results. This is true b/c of "
|
|
"isARCOperationRemovableIfObjectIsDead");
|
|
User->eraseFromParent();
|
|
}
|
|
|
|
// Finally delete the closure.
|
|
Closure->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Is any successor of BB in the LiveIn set?
|
|
static bool successorHasLiveIn(SILBasicBlock *BB,
|
|
const llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn) {
|
|
for (auto &Succ : BB->getSuccessors())
|
|
if (LiveIn.count(Succ))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Walk backwards in BB looking for last use of value V and adding the
|
|
// instruction using the value to LastUsers.
|
|
static void addLastUser(SILValue V, SILBasicBlock *BB,
|
|
llvm::SmallPtrSetImpl<SILInstruction *> &LastUsers) {
|
|
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
|
|
assert(V.getDef() != &*I && "Found def before finding use!");
|
|
|
|
for (auto &O : I->getAllOperands()) {
|
|
if (O.get() != V)
|
|
continue;
|
|
|
|
LastUsers.insert(&*I);
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Expected to find use of value in block!");
|
|
}
|
|
|
|
// Propagate liveness backwards from an initial set of blocks in our
|
|
// LiveIn set.
|
|
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock*> &LiveIn,
|
|
SILBasicBlock *DefBB) {
|
|
|
|
// First populate a worklist of predecessors.
|
|
llvm::SmallVector<SILBasicBlock *, 64> Worklist;
|
|
for (auto *BB : LiveIn)
|
|
for (auto Pred : BB->getPreds())
|
|
Worklist.push_back(Pred);
|
|
|
|
// Now propagate liveness backwards until we hit the block that
|
|
// defines the value.
|
|
while (!Worklist.empty()) {
|
|
auto *BB = Worklist.pop_back_val();
|
|
|
|
// If it's already in the set, then we've already queued and/or
|
|
// processed the predecessors.
|
|
if (BB == DefBB || !LiveIn.insert(BB).second)
|
|
continue;
|
|
|
|
for (auto Pred : BB->getPreds())
|
|
Worklist.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
void LifetimeTracker::computeLifetime() {
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveIn;
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> UseBlocks;
|
|
|
|
auto *DefInst = cast<SILInstruction>(TheValue.getDef());
|
|
auto *DefBB = DefInst->getParent();
|
|
|
|
if (TheValue->hasOneUse()) {
|
|
Endpoints.insert(TheValue->use_begin().getUser());
|
|
return;
|
|
}
|
|
|
|
for (auto UI : TheValue.getUses()) {
|
|
auto *BB = UI->getUser()->getParent();
|
|
|
|
UseBlocks.insert(BB);
|
|
if (BB != DefBB)
|
|
LiveIn.insert(BB);
|
|
}
|
|
|
|
propagateLiveness(LiveIn, DefBB);
|
|
|
|
for (auto *BB : UseBlocks)
|
|
if (!successorHasLiveIn(BB, LiveIn))
|
|
addLastUser(TheValue, BB, Endpoints);
|
|
|
|
LifetimeComputed = true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Casts Optimization and Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Get a substitution corresponding to the type witness.
|
|
/// Inspired by ProtocolConformance::getTypeWitnessByName.
|
|
static const Substitution *
|
|
getTypeWitnessByName(ProtocolConformance *conformance, Identifier name) {
|
|
// Find the named requirement.
|
|
AssociatedTypeDecl *assocType = nullptr;
|
|
assert(conformance && "Missing conformance information");
|
|
auto members = conformance->getProtocol()->lookupDirect(name);
|
|
for (auto member : members) {
|
|
assocType = dyn_cast<AssociatedTypeDecl>(member);
|
|
if (assocType)
|
|
break;
|
|
}
|
|
|
|
if (!assocType)
|
|
return nullptr;
|
|
|
|
if (!conformance->hasTypeWitness(assocType, nullptr)) {
|
|
return nullptr;
|
|
}
|
|
return &conformance->getTypeWitness(assocType, nullptr);
|
|
}
|
|
|
|
/// Check if is a bridging cast, i.e. one of the sides is
|
|
/// a bridged type.
|
|
static bool isBridgingCast(CanType SourceType, CanType TargetType) {
|
|
// Bridging casts cannot be further simplified.
|
|
auto TargetIsBridgeable = TargetType->isBridgeableObjectType();
|
|
auto SourceIsBridgeable = SourceType->isBridgeableObjectType();
|
|
|
|
if (TargetIsBridgeable != SourceIsBridgeable)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// If target is a Swift type bridging to an ObjC type,
|
|
/// return the ObjC type it bridges to.
|
|
/// If target is an ObjC type, return this type.
|
|
static Type getCastFromObjC(SILModule &M, CanType source, CanType target) {
|
|
Optional<Type> BridgedTy = M.getASTContext().getBridgedToObjC(
|
|
M.getSwiftModule(),
|
|
/*inExpression*/ false, target, nullptr);
|
|
if (!BridgedTy.hasValue() || !BridgedTy.getValue())
|
|
return Type();
|
|
return BridgedTy.getValue();
|
|
}
|
|
|
|
/// Create a call of _forceBridgeFromObjectiveC_bridgeable or
|
|
/// _conditionallyBridgeFromObjectiveC_bridgeable which converts an an ObjC
|
|
/// instance into a corresponding Swift type, conforming to
|
|
/// _ObjectiveCBridgeable.
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeBridgedObjCToSwiftCast(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType Source,
|
|
CanType Target,
|
|
Type BridgedSourceTy,
|
|
Type BridgedTargetTy,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB) {
|
|
auto &M = Inst->getModule();
|
|
auto Loc = Inst->getLoc();
|
|
|
|
CanType CanBridgedTy(BridgedTargetTy);
|
|
SILType SILBridgedTy = SILType::getPrimitiveObjectType(CanBridgedTy);
|
|
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
SILValue SrcOp;
|
|
SILInstruction *NewI = nullptr;
|
|
|
|
assert(Src.getType().isAddress() && "Source should have an address type");
|
|
assert(Dest.getType().isAddress() && "Source should have an address type");
|
|
|
|
if (SILBridgedTy != Src.getType()) {
|
|
// Check if we can simplify a cast into:
|
|
// - ObjCTy to _ObjectiveCBridgeable._ObjectiveCType.
|
|
// - then convert _ObjectiveCBridgeable._ObjectiveCType to
|
|
// a Swift type using _forceBridgeFromObjectiveC.
|
|
|
|
// Generate a load for the source argument.
|
|
auto *Load = Builder.createLoad(Loc, Src);
|
|
// Try to convert the source into the expected ObjC type first.
|
|
|
|
|
|
if (Load->getType() == SILBridgedTy) {
|
|
// If type of the source and the expected ObjC type are
|
|
// equal, there is no need to generate the conversion
|
|
// from ObjCTy to _ObjectiveCBridgeable._ObjectiveCType.
|
|
if (isConditional) {
|
|
SILBasicBlock *CastSuccessBB = Inst->getFunction()->createBasicBlock();
|
|
CastSuccessBB->createBBArg(SILBridgedTy);
|
|
Builder.createBranch(Loc, CastSuccessBB, SILValue(Load,0));
|
|
Builder.setInsertionPoint(CastSuccessBB);
|
|
SrcOp = SILValue(CastSuccessBB->getBBArg(0), 0);
|
|
} else {
|
|
SrcOp = Load;
|
|
}
|
|
} else if (isConditional) {
|
|
SILBasicBlock *CastSuccessBB = Inst->getFunction()->createBasicBlock();
|
|
CastSuccessBB->createBBArg(SILBridgedTy);
|
|
NewI = Builder.createCheckedCastBranch(Loc, false, SILValue(Load, 0),
|
|
SILBridgedTy, CastSuccessBB,
|
|
FailureBB);
|
|
Builder.setInsertionPoint(CastSuccessBB);
|
|
SrcOp = SILValue(CastSuccessBB->getBBArg(0), 0);
|
|
} else {
|
|
NewI = Builder.createUnconditionalCheckedCast(Loc, SILValue(Load, 0),
|
|
SILBridgedTy);
|
|
SrcOp = SILValue(NewI, 0);
|
|
}
|
|
} else {
|
|
SrcOp = Src;
|
|
}
|
|
|
|
// Now emit the a cast from the casted ObjC object into a target type.
|
|
// This is done by means of calling _forceBridgeFromObjectiveC or
|
|
// _conditionallyBridgeFromObjectiveC_birdgeable from the Target type.
|
|
// Lookup the required function in the Target type.
|
|
|
|
// Lookup the _ObjectiveCBridgeable protocol.
|
|
auto BridgedProto =
|
|
M.getASTContext().getProtocol(KnownProtocolKind::_ObjectiveCBridgeable);
|
|
auto Conf =
|
|
M.getSwiftModule()->lookupConformance(Target, BridgedProto, nullptr);
|
|
assert(Conf.getInt() == ConformanceKind::Conforms &&
|
|
"_ObjectiveCBridgeable conformance should exist");
|
|
|
|
auto *Conformance = Conf.getPointer();
|
|
|
|
// The conformance to _BridgedToObjectiveC is statically known.
|
|
// Retrieve the bridging operation to be used if a static conformance
|
|
// to _BridgedToObjectiveC can be proven.
|
|
FuncDecl *BridgeFuncDecl =
|
|
isConditional
|
|
? M.getASTContext().getConditionallyBridgeFromObjectiveCBridgeable(nullptr)
|
|
: M.getASTContext().getForceBridgeFromObjectiveCBridgeable(nullptr);
|
|
|
|
assert(BridgeFuncDecl && "_forceBridgeFromObjectiveC should exist");
|
|
|
|
SILDeclRef FuncDeclRef(BridgeFuncDecl, SILDeclRef::Kind::Func);
|
|
|
|
// Lookup a function from the stdlib.
|
|
SILFunction *BridgedFunc = M.getOrCreateFunction(
|
|
Loc, FuncDeclRef, ForDefinition_t::NotForDefinition);
|
|
|
|
assert(BridgedFunc && "Bridging function was not found");
|
|
|
|
auto ParamTypes = BridgedFunc->getLoweredFunctionType()
|
|
->getParametersWithoutIndirectResult();
|
|
|
|
auto *FuncRef = Builder.createFunctionRef(Loc, BridgedFunc);
|
|
|
|
auto MetaTy = MetatypeType::get(Target, MetatypeRepresentation::Thick);
|
|
auto SILMetaTy = M.Types.getTypeLowering(MetaTy, 0).getLoweredType();
|
|
auto *MetaTyVal = Builder.createMetatype(Loc, SILMetaTy);
|
|
SmallVector<SILValue, 1> Args;
|
|
|
|
auto PolyFuncTy = BridgeFuncDecl->getType()->getAs<PolymorphicFunctionType>();
|
|
ArrayRef<ArchetypeType *> Archetypes =
|
|
PolyFuncTy->getGenericParams().getAllArchetypes();
|
|
|
|
// Add substitutions
|
|
SmallVector<Substitution, 2> Subs;
|
|
auto Conformances = M.getASTContext().Allocate<ProtocolConformance *>(1);
|
|
Conformances[0] = Conformance;
|
|
Subs.push_back(Substitution(Archetypes[0], Target, Conformances));
|
|
const Substitution *DepTypeSubst = getTypeWitnessByName(
|
|
Conformance, M.getASTContext().getIdentifier("_ObjectiveCType"));
|
|
Subs.push_back(Substitution(Archetypes[1], DepTypeSubst->getReplacement(),
|
|
DepTypeSubst->getConformances()));
|
|
auto SILFnTy = FuncRef->getType();
|
|
SILType SubstFnTy = SILFnTy.substGenericArgs(M, Subs);
|
|
SILType ResultTy = SubstFnTy.castTo<SILFunctionType>()->getSILResult();
|
|
|
|
// Temporary to hold the intermediate result.
|
|
AllocStackInst *Tmp = nullptr;
|
|
CanType OptionalTy;
|
|
OptionalTypeKind OTK;
|
|
SILValue InOutOptionalParam;
|
|
if (isConditional) {
|
|
// Create a temporary
|
|
OptionalTy = OptionalType::get(Dest.getType().getSwiftRValueType())
|
|
->getImplementationType()
|
|
.getCanonicalTypeOrNull();
|
|
OptionalTy.getAnyOptionalObjectType(OTK);
|
|
Tmp = Builder.createAllocStack(Loc,
|
|
SILType::getPrimitiveObjectType(OptionalTy));
|
|
InOutOptionalParam = SILValue(Tmp, 1);
|
|
} else {
|
|
InOutOptionalParam = Dest;
|
|
}
|
|
|
|
assert(ParamTypes[0].getConvention() == ParameterConvention::Direct_Owned &&
|
|
"Parameter should be @owned");
|
|
|
|
// Emit a retain.
|
|
Builder.createRetainValue(Loc, SrcOp);
|
|
|
|
Args.push_back(InOutOptionalParam);
|
|
Args.push_back(SrcOp);
|
|
Args.push_back(SILValue(MetaTyVal, 0));
|
|
|
|
auto *AI = Builder.createApply(Loc, FuncRef, SubstFnTy, ResultTy, Subs, Args);
|
|
|
|
// If the source of a cast should be destroyed, emit a release.
|
|
if (auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(Inst)) {
|
|
assert(UCCAI->getConsumptionKind() == CastConsumptionKind::TakeAlways);
|
|
if (UCCAI->getConsumptionKind() == CastConsumptionKind::TakeAlways) {
|
|
Builder.createReleaseValue(Loc, SrcOp);
|
|
}
|
|
}
|
|
|
|
if (auto *CCABI = dyn_cast<CheckedCastAddrBranchInst>(Inst)) {
|
|
if (CCABI->getConsumptionKind() == CastConsumptionKind::TakeAlways) {
|
|
Builder.createReleaseValue(Loc, SrcOp);
|
|
} else if (CCABI->getConsumptionKind() ==
|
|
CastConsumptionKind::TakeOnSuccess) {
|
|
// Insert a release in the success BB.
|
|
Builder.setInsertionPoint(SuccessBB->begin());
|
|
Builder.createReleaseValue(Loc, SrcOp);
|
|
}
|
|
}
|
|
|
|
// Results should be checked in case we process a conditional
|
|
// case. E.g. casts from NSArray into [SwiftType] may fail, i.e. return .None.
|
|
if (isConditional) {
|
|
// Copy the temporary into Dest.
|
|
// Load from the optional.
|
|
auto *SomeDecl = Builder.getASTContext().getOptionalSomeDecl(OTK);
|
|
|
|
SILBasicBlock *ConvSuccessBB = Inst->getFunction()->createBasicBlock();
|
|
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock*>, 1> CaseBBs;
|
|
CaseBBs.push_back(std::make_pair(M.getASTContext().getOptionalNoneDecl(), FailureBB));
|
|
Builder.createSwitchEnumAddr(Loc, InOutOptionalParam, ConvSuccessBB, CaseBBs);
|
|
|
|
Builder.setInsertionPoint(FailureBB->begin());
|
|
Builder.createDeallocStack(Loc, SILValue(Tmp, 0));
|
|
|
|
Builder.setInsertionPoint(ConvSuccessBB);
|
|
auto Addr = Builder.createUncheckedTakeEnumDataAddr(Loc, InOutOptionalParam,
|
|
SomeDecl);
|
|
auto LoadFromOptional = Builder.createLoad(Loc, SILValue(Addr, 0));
|
|
|
|
// Store into Dest
|
|
Builder.createStore(Loc, LoadFromOptional, Dest);
|
|
|
|
Builder.createDeallocStack(Loc, SILValue(Tmp, 0));
|
|
SmallVector<SILValue, 1> SuccessBBArgs;
|
|
Builder.createBranch(Loc, SuccessBB, SuccessBBArgs);
|
|
}
|
|
|
|
EraseInstAction(Inst);
|
|
return (NewI) ? NewI : AI;
|
|
}
|
|
|
|
/// Create a call of _bridgeToObjectiveC which converts an _ObjectiveCBridgeable
|
|
/// instance into a bridged ObjC type.
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeBridgedSwiftToObjCCast(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType Source,
|
|
CanType Target,
|
|
Type BridgedSourceTy,
|
|
Type BridgedTargetTy,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB) {
|
|
|
|
auto &M = Inst->getModule();
|
|
auto Loc = Inst->getLoc();
|
|
|
|
// Find the _BridgedToObjectiveC protocol.
|
|
auto BridgedProto =
|
|
M.getASTContext().getProtocol(KnownProtocolKind::_ObjectiveCBridgeable);
|
|
|
|
auto Conf =
|
|
M.getSwiftModule()->lookupConformance(Source, BridgedProto, nullptr);
|
|
|
|
assert(Conf.getInt() == ConformanceKind::Conforms &&
|
|
"_ObjectiveCBridgeable conformance should exist");
|
|
|
|
// Generate code to invoke _bridgeToObjectiveC
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
|
|
auto Members = Source.getNominalOrBoundGenericNominal()->lookupDirect(
|
|
M.getASTContext().Id_bridgeToObjectiveC);
|
|
assert(Members.size() == 1 &&
|
|
"There should be exactly one implementation of _bridgeToObjectiveC");
|
|
auto BridgeFuncDecl = Members.front();
|
|
auto BridgeFuncDeclRef = SILDeclRef(BridgeFuncDecl);
|
|
Module *Mod = M.getASTContext().getLoadedModule(
|
|
M.getASTContext().getIdentifier(FOUNDATION_MODULE_NAME));
|
|
assert(Mod && "Foundation module should be present");
|
|
SmallVector<ValueDecl *, 2> Results;
|
|
Mod->lookupMember(Results, Source.getNominalOrBoundGenericNominal(),
|
|
M.getASTContext().Id_bridgeToObjectiveC, Identifier());
|
|
ArrayRef<ValueDecl *> ResultsRef(Results);
|
|
assert(ResultsRef.size() == 1 && "There should be only one declaration of _bridgeToObjectiveC");
|
|
|
|
auto MemberDeclRef = SILDeclRef(Results.front());
|
|
auto *BridgedFunc = M.getOrCreateFunction(Loc, MemberDeclRef,
|
|
ForDefinition_t::NotForDefinition);
|
|
assert(BridgedFunc &&
|
|
"Implementation of _bridgeToObjectiveC could not be found");
|
|
|
|
auto ParamTypes = BridgedFunc->getLoweredFunctionType()
|
|
->getParametersWithoutIndirectResult();
|
|
|
|
auto SILFnTy = SILType::getPrimitiveObjectType(
|
|
M.Types.getConstantFunctionType(BridgeFuncDeclRef));
|
|
ArrayRef<Substitution> Subs;
|
|
if (Source.getNominalOrBoundGenericNominal()->getGenericSignature()) {
|
|
// Get substitutions, if source is a bound generic type.
|
|
Subs = Source->castTo<BoundGenericType>()->getSubstitutions(
|
|
M.getSwiftModule(), nullptr);
|
|
}
|
|
|
|
SILType SubstFnTy = SILFnTy.substGenericArgs(M, Subs);
|
|
SILType ResultTy = SubstFnTy.castTo<SILFunctionType>()->getSILResult();
|
|
|
|
auto FnRef = Builder.createFunctionRef(Loc, BridgedFunc);
|
|
if (Src.getType().isAddress()) {
|
|
// Create load
|
|
Src = SILValue(Builder.createLoad(Loc, Src), 0);
|
|
}
|
|
|
|
if(ParamTypes[0].getConvention() == ParameterConvention::Direct_Guaranteed)
|
|
Builder.createRetainValue(Loc, Src);
|
|
|
|
// Generate a code to invoke the bridging function.
|
|
auto *NewAI = Builder.createApply(Loc, FnRef, SubstFnTy, ResultTy, Subs, Src);
|
|
|
|
if(ParamTypes[0].getConvention() == ParameterConvention::Direct_Guaranteed)
|
|
Builder.createReleaseValue(Loc, Src);
|
|
|
|
SILInstruction *NewI = NewAI;
|
|
|
|
if (Dest) {
|
|
// If it is addr cast then store the result.
|
|
NewI = Builder.createStore(Loc, SILValue(NewAI, 0), Dest);
|
|
}
|
|
|
|
if (Dest) {
|
|
EraseInstAction(Inst);
|
|
}
|
|
|
|
return NewI;
|
|
}
|
|
|
|
/// Make use of the fact that some of these casts cannot fail.
|
|
/// For example, if the ObjC type is exactly the expected
|
|
/// _ObjectiveCType type, then it would always succeed for
|
|
/// NSString, NSNumber, etc.
|
|
/// Casts from NSArray, NSDictionary and NSSet may fail.
|
|
///
|
|
/// If ObjC class is not exactly _ObjectiveCType, then
|
|
/// its conversion to a required _ObjectiveCType may fail.
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeBridgedCasts(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType source,
|
|
CanType target,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB) {
|
|
|
|
auto &M = Inst->getModule();
|
|
|
|
// To apply the bridged optimizations, we should
|
|
// ensure that types are not existential,
|
|
// and that one of the types is a class and another
|
|
// one is a struct.
|
|
if (source.isAnyExistentialType() ||
|
|
target.isAnyExistentialType() ||
|
|
(source.getClassOrBoundGenericClass() &&
|
|
!target.getStructOrBoundGenericStruct()) ||
|
|
(target.getClassOrBoundGenericClass() &&
|
|
!source.getStructOrBoundGenericStruct()))
|
|
return nullptr;
|
|
|
|
auto BridgedTargetTy = getCastFromObjC(M, source, target);
|
|
if (!BridgedTargetTy)
|
|
return nullptr;
|
|
|
|
auto BridgedSourceTy = getCastFromObjC(M, target, source);
|
|
|
|
CanType CanBridgedTargetTy(BridgedTargetTy);
|
|
CanType CanBridgedSourceTy(BridgedSourceTy);
|
|
|
|
if (CanBridgedSourceTy == source && CanBridgedTargetTy == target) {
|
|
assert("Both source and target type are ObjC types");
|
|
}
|
|
|
|
if (CanBridgedSourceTy != source && CanBridgedTargetTy != target) {
|
|
assert("Both source and target type are Swift types");
|
|
}
|
|
|
|
if (CanBridgedSourceTy || CanBridgedTargetTy) {
|
|
// Check what kind of conversion it is? ObjC->Swift or Swift-ObjC?
|
|
if (CanBridgedTargetTy != target) {
|
|
// This is an ObjC to Swift cast.
|
|
return optimizeBridgedObjCToSwiftCast(Inst, isConditional, Src, Dest, source,
|
|
target, BridgedSourceTy, BridgedTargetTy, SuccessBB, FailureBB);
|
|
} else {
|
|
// This is a Swift to ObjC cast
|
|
return optimizeBridgedSwiftToObjCCast(Inst, isConditional, Src, Dest, source,
|
|
target, BridgedSourceTy, BridgedTargetTy, SuccessBB, FailureBB);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unknown kind of bridging");
|
|
}
|
|
|
|
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
simplifyCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
|
|
if (auto *I = optimizeCheckedCastAddrBranchInst(Inst))
|
|
Inst = dyn_cast<CheckedCastAddrBranchInst>(I);
|
|
|
|
if (!Inst)
|
|
return nullptr;
|
|
|
|
auto Loc = Inst->getLoc();
|
|
auto Src = Inst->getSrc();
|
|
auto Dest = Inst->getDest();
|
|
auto SourceType = Inst->getSourceType();
|
|
auto TargetType = Inst->getTargetType();
|
|
auto *SuccessBB = Inst->getSuccessBB();
|
|
auto *FailureBB = Inst->getFailureBB();
|
|
auto &Mod = Inst->getModule();
|
|
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
|
|
// Try to determine the outcome of the cast from a known type
|
|
// to a protocol type at compile-time.
|
|
bool isSourceTypeExact = isa<MetatypeInst>(Inst->getSrc());
|
|
|
|
// Check if we can statically predict the outcome of the cast.
|
|
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
|
|
Src.getType().getSwiftRValueType(),
|
|
Dest.getType().getSwiftRValueType(),
|
|
isSourceTypeExact,
|
|
Mod.isWholeModule());
|
|
|
|
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillFail) {
|
|
if (shouldDestroyOnFailure(Inst->getConsumptionKind())) {
|
|
auto &srcTL = Builder.getModule().getTypeLowering(Src.getType());
|
|
srcTL.emitDestroyAddress(Builder, Loc, Src);
|
|
}
|
|
auto NewI = Builder.createBranch(Loc, FailureBB);
|
|
EraseInstAction(Inst);
|
|
WillFailAction();
|
|
return NewI;
|
|
}
|
|
|
|
// Cast will succeed
|
|
|
|
// Replace by unconditional_addr_cast, followed by a branch.
|
|
// The unconditional_addr_cast can be skipped, if the result of a cast
|
|
// is not used afterwards.
|
|
bool ResultNotUsed = isa<AllocStackInst>(Dest.getDef());
|
|
for (auto Use : Dest.getUses()) {
|
|
auto *User = Use->getUser();
|
|
if (isa<DeallocStackInst>(User) || User == Inst)
|
|
continue;
|
|
ResultNotUsed = false;
|
|
break;
|
|
}
|
|
|
|
auto *BB = Inst->getParent();
|
|
|
|
if (!ResultNotUsed) {
|
|
SILInstruction *BridgedI = nullptr;
|
|
|
|
// To apply the bridged optimizations, we should
|
|
// ensure that types are not existential,
|
|
// and that not both types are classes.
|
|
BridgedI = optimizeBridgedCasts(Inst, true, Src, Dest, SourceType,
|
|
TargetType, SuccessBB, FailureBB);
|
|
|
|
if (!BridgedI) {
|
|
// Since it is an addr cast, only address types are handled here.
|
|
if (!Src.getType().isAddress() || !Dest.getType().isAddress()) {
|
|
return nullptr;
|
|
} else if (!emitSuccessfulIndirectUnconditionalCast(
|
|
Builder, Mod.getSwiftModule(), Loc,
|
|
Inst->getConsumptionKind(), Src, SourceType, Dest,
|
|
TargetType, Inst)) {
|
|
// No optimization was possible.
|
|
return nullptr;
|
|
}
|
|
EraseInstAction(Inst);
|
|
}
|
|
SILInstruction *NewI = &BB->getInstList().back();
|
|
if (!isa<TermInst>(NewI)) {
|
|
//Builder.setInsertionPoint(BB->getInstList().end());
|
|
NewI = BranchInst::create(Loc, SuccessBB, *BB->getParent());
|
|
BB->getInstList().insert(BB->end(), NewI);
|
|
}
|
|
WillSucceedAction();
|
|
return NewI;
|
|
} else {
|
|
// Result is not used.
|
|
EraseInstAction(Inst);
|
|
auto *NewI = BranchInst::create(Loc, SuccessBB, *BB->getParent());
|
|
BB->getInstList().insert(BB->end(), NewI);
|
|
WillSucceedAction();
|
|
return NewI;
|
|
}
|
|
}
|
|
|
|
SILInstruction *
|
|
CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
|
|
if (Inst->isExact()) {
|
|
auto *ARI = dyn_cast<AllocRefInst>(Inst->getOperand().stripUpCasts());
|
|
if (!ARI)
|
|
return nullptr;
|
|
|
|
// We know the dynamic type of the operand.
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
auto Loc = Inst->getLoc();
|
|
auto *SuccessBB = Inst->getSuccessBB();
|
|
auto *FailureBB = Inst->getFailureBB();
|
|
|
|
if (ARI->getType() == Inst->getCastType()) {
|
|
// This exact cast will succeed.
|
|
SmallVector<SILValue, 1> Args;
|
|
Args.push_back(ARI);
|
|
auto *NewI = Builder.createBranch(Loc, SuccessBB, Args);
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return NewI;
|
|
}
|
|
|
|
// This exact cast will fail.
|
|
auto *NewI = Builder.createBranch(Loc, FailureBB);
|
|
EraseInstAction(Inst);
|
|
WillFailAction();
|
|
return NewI;
|
|
}
|
|
|
|
if (auto *I = optimizeCheckedCastBranchInst(Inst))
|
|
Inst = dyn_cast<CheckedCastBranchInst>(I);
|
|
|
|
if (!Inst)
|
|
return nullptr;
|
|
|
|
auto LoweredSourceType = Inst->getOperand().getType();
|
|
auto LoweredTargetType = Inst->getCastType();
|
|
auto SourceType = LoweredSourceType.getSwiftRValueType();
|
|
auto TargetType = LoweredTargetType.getSwiftRValueType();
|
|
auto Loc = Inst->getLoc();
|
|
auto *SuccessBB = Inst->getSuccessBB();
|
|
auto *FailureBB = Inst->getFailureBB();
|
|
auto Op = Inst->getOperand();
|
|
auto &Mod = Inst->getModule();
|
|
bool isSourceTypeExact = isa<MetatypeInst>(Op);
|
|
|
|
|
|
// Check if we can statically predict the outcome of the cast.
|
|
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
|
|
SourceType,
|
|
TargetType,
|
|
isSourceTypeExact);
|
|
|
|
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
|
|
return nullptr;
|
|
}
|
|
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillFail) {
|
|
auto *NewI = Builder.createBranch(Loc, FailureBB);
|
|
EraseInstAction(Inst);
|
|
WillFailAction();
|
|
return NewI;
|
|
}
|
|
|
|
// Casting will succeed.
|
|
|
|
// Replace by unconditional_cast, followed by a branch.
|
|
// The unconditional_cast can be skipped, if the result of a cast
|
|
// is not used afterwards.
|
|
bool ResultNotUsed = SuccessBB->getBBArg(0)->use_empty();
|
|
SILValue CastedValue;
|
|
if (Op.getType() != LoweredTargetType) {
|
|
if (!ResultNotUsed) {
|
|
auto Src = Inst->getOperand();
|
|
auto Dest = SILValue();
|
|
// To apply the bridged casts optimizations.
|
|
auto BridgedI = optimizeBridgedCasts(Inst, false, Src, Dest, SourceType,
|
|
TargetType, nullptr, nullptr);
|
|
|
|
if (BridgedI) {
|
|
CastedValue = SILValue(BridgedI, 0);
|
|
} else {
|
|
CastedValue = emitSuccessfulScalarUnconditionalCast(
|
|
Builder, Mod.getSwiftModule(), Loc, Op, LoweredTargetType,
|
|
SourceType, TargetType, Inst);
|
|
}
|
|
|
|
if (!CastedValue)
|
|
CastedValue =
|
|
Builder.createUnconditionalCheckedCast(Loc, Op, LoweredTargetType);
|
|
} else {
|
|
CastedValue = SILUndef::get(LoweredTargetType, Mod);
|
|
}
|
|
} else {
|
|
// No need to cast.
|
|
CastedValue = Op;
|
|
}
|
|
|
|
auto *NewI = Builder.createBranch(Loc, SuccessBB, CastedValue);
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return NewI;
|
|
}
|
|
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
|
|
auto Loc = Inst->getLoc();
|
|
auto Src = Inst->getSrc();
|
|
auto Dest = Inst->getDest();
|
|
auto *SuccessBB = Inst->getSuccessBB();
|
|
auto *FailureBB = Inst->getFailureBB();
|
|
|
|
// If there is an unbound generic type involved in the cast, bail.
|
|
if (Src.getType().hasArchetype() || Dest.getType().hasArchetype())
|
|
return nullptr;
|
|
|
|
// %1 = metatype $A.Type
|
|
// [%2 = init_existential_metatype %1 ...]
|
|
// %3 = alloc_stack
|
|
// store %1 to %3 or store %2 to %3
|
|
// checked_cast_addr_br %3 to ...
|
|
// ->
|
|
// %1 = metatype $A.Type
|
|
// %c = checked_cast_br %1 to ...
|
|
// store %c to %3 (if successful)
|
|
if (auto *ASI = dyn_cast<AllocStackInst>(Src.getDef())) {
|
|
// Check if the value of this alloc_stack is set only once by a store
|
|
// instruction, used only by CCABI and then deallocated.
|
|
bool isLegal = true;
|
|
StoreInst *Store = nullptr;
|
|
for (auto Use : ASI->getUses()) {
|
|
auto *User = Use->getUser();
|
|
if (isa<DeallocStackInst>(User) || User == Inst)
|
|
continue;
|
|
if (auto *SI = dyn_cast<StoreInst>(User)) {
|
|
if (!Store) {
|
|
Store = SI;
|
|
continue;
|
|
}
|
|
}
|
|
isLegal = false;
|
|
break;
|
|
}
|
|
|
|
if (isLegal && Store) {
|
|
// Check what was the value stored in the allocated stack slot.
|
|
auto Src = Store->getSrc();
|
|
MetatypeInst *MI = nullptr;
|
|
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Src)) {
|
|
MI = dyn_cast<MetatypeInst>(IEMI->getOperand());
|
|
}
|
|
|
|
if (!MI)
|
|
MI = dyn_cast<MetatypeInst>(Src);
|
|
|
|
if (MI) {
|
|
if (SuccessBB->getSinglePredecessor()) {
|
|
SILBuilderWithScope<1> B(Inst);
|
|
auto NewI = B.createCheckedCastBranch(Loc,false /*isExact*/,
|
|
SILValue(MI, 0),
|
|
Dest.getType().getObjectType(),
|
|
SuccessBB,
|
|
FailureBB);
|
|
SuccessBB->createBBArg(Dest.getType().getObjectType(), nullptr);
|
|
B.setInsertionPoint(SuccessBB->begin());
|
|
// Store the result
|
|
B.createStore(Loc, SuccessBB->getBBArg(0), Dest);
|
|
EraseInstAction(Inst);
|
|
return NewI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
SILInstruction *
|
|
CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
|
|
if (Inst->isExact())
|
|
return nullptr;
|
|
|
|
auto LoweredTargetType = Inst->getCastType();
|
|
auto Loc = Inst->getLoc();
|
|
auto *SuccessBB = Inst->getSuccessBB();
|
|
auto *FailureBB = Inst->getFailureBB();
|
|
auto Op = Inst->getOperand();
|
|
|
|
// Try to simplify checked_cond_br instructions using existential
|
|
// metatypes by propagating a concrete type whenever it can be
|
|
// determined statically.
|
|
|
|
// %0 = metatype $A.Type
|
|
// %1 = init_existential_metatype ..., %0: $A
|
|
// checked_cond_br %1, ....
|
|
// ->
|
|
// %1 = metatype $A.Type
|
|
// checked_cond_br %1, ....
|
|
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Op)) {
|
|
if (auto *MI = dyn_cast<MetatypeInst>(IEMI->getOperand())) {
|
|
SILBuilderWithScope<1> B(Inst);
|
|
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
|
|
LoweredTargetType,
|
|
SuccessBB,
|
|
FailureBB);
|
|
EraseInstAction(Inst);
|
|
return NewI;
|
|
}
|
|
}
|
|
|
|
if (auto *EMI = dyn_cast<ExistentialMetatypeInst>(Op)) {
|
|
// Operand of the existential_metatype instruction.
|
|
auto Op = EMI->getOperand();
|
|
auto EmiTy = EMI->getType();
|
|
|
|
// %0 = alloc_stack ..
|
|
// %1 = init_existential_addr %0: $A
|
|
// %2 = existential_metatype %0, ...
|
|
// checked_cond_br %2, ....
|
|
// ->
|
|
// %1 = metatype $A.Type
|
|
// checked_cond_br %1, ....
|
|
|
|
if (auto *ASI = dyn_cast<AllocStackInst>(Op)) {
|
|
// Should be in the same BB.
|
|
if (ASI->getParent() != EMI->getParent())
|
|
return nullptr;
|
|
// Check if this alloc_stac is is only initialized once by means of
|
|
// single init_existential_addr.
|
|
bool isLegal = true;
|
|
// init_existental instruction used to initialize this alloc_stack.
|
|
InitExistentialAddrInst *FoundIEI = nullptr;
|
|
for (auto Use: ASI->getUses()) {
|
|
auto *User = Use->getUser();
|
|
if (isa<ExistentialMetatypeInst>(User) ||
|
|
isa<DestroyAddrInst>(User) ||
|
|
isa<DeallocStackInst>(User))
|
|
continue;
|
|
if (auto *IEI = dyn_cast<InitExistentialAddrInst>(User)) {
|
|
if (!FoundIEI) {
|
|
FoundIEI = IEI;
|
|
continue;
|
|
}
|
|
}
|
|
isLegal = false;
|
|
break;
|
|
}
|
|
|
|
if (isLegal && FoundIEI) {
|
|
// Should be in the same BB.
|
|
if (FoundIEI->getParent() != EMI->getParent())
|
|
return nullptr;
|
|
// Get the type used to initialize the existential.
|
|
auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType();
|
|
if (LoweredConcreteTy.isAnyExistentialType())
|
|
return nullptr;
|
|
// Get the metatype of this type.
|
|
auto EMT = dyn_cast<AnyMetatypeType>(EmiTy.getSwiftRValueType());
|
|
auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getSwiftRValueType(),
|
|
EMT->getRepresentation());
|
|
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
|
|
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
|
|
SILBuilderWithScope<1> B(Inst);
|
|
auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy);
|
|
|
|
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
|
|
LoweredTargetType,
|
|
SuccessBB,
|
|
FailureBB);
|
|
EraseInstAction(Inst);
|
|
return NewI;
|
|
}
|
|
}
|
|
|
|
// %0 = alloc_ref $A
|
|
// %1 = init_existential_ref %0: $A, $...
|
|
// %2 = existential_metatype ..., %1 : ...
|
|
// checked_cond_br %2, ....
|
|
// ->
|
|
// %1 = metatype $A.Type
|
|
// checked_cond_br %1, ....
|
|
if (auto *FoundIERI = dyn_cast<InitExistentialRefInst>(Op)) {
|
|
auto *ASRI = dyn_cast<AllocRefInst>(FoundIERI->getOperand());
|
|
if (!ASRI)
|
|
return nullptr;
|
|
// Should be in the same BB.
|
|
if (ASRI->getParent() != EMI->getParent())
|
|
return nullptr;
|
|
// Check if this alloc_stac is is only initialized once by means of
|
|
// a single initt_existential_ref.
|
|
bool isLegal = true;
|
|
for (auto Use: ASRI->getUses()) {
|
|
auto *User = Use->getUser();
|
|
if (isa<ExistentialMetatypeInst>(User) || isa<StrongReleaseInst>(User))
|
|
continue;
|
|
if (auto *IERI = dyn_cast<InitExistentialRefInst>(User)) {
|
|
if (IERI == FoundIERI) {
|
|
continue;
|
|
}
|
|
}
|
|
isLegal = false;
|
|
break;
|
|
}
|
|
|
|
if (isLegal && FoundIERI) {
|
|
// Should be in the same BB.
|
|
if (FoundIERI->getParent() != EMI->getParent())
|
|
return nullptr;
|
|
// Get the type used to initialize the existential.
|
|
auto ConcreteTy = FoundIERI->getFormalConcreteType();
|
|
if (ConcreteTy.isAnyExistentialType())
|
|
return nullptr;
|
|
// Get the SIL metatype of this type.
|
|
auto EMT = dyn_cast<AnyMetatypeType>(EMI->getType().getSwiftRValueType());
|
|
auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation());
|
|
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
|
|
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
|
|
SILBuilderWithScope<1> B(Inst);
|
|
auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy);
|
|
|
|
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
|
|
LoweredTargetType,
|
|
SuccessBB,
|
|
FailureBB);
|
|
EraseInstAction(Inst);
|
|
return NewI;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst) {
|
|
auto LoweredSourceType = Inst->getOperand().getType();
|
|
auto LoweredTargetType = Inst->getType();
|
|
auto Loc = Inst->getLoc();
|
|
auto Op = Inst->getOperand();
|
|
auto &Mod = Inst->getModule();
|
|
|
|
bool isSourceTypeExact = isa<MetatypeInst>(Op);
|
|
|
|
// Check if we can statically predict the outcome of the cast.
|
|
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
|
|
LoweredSourceType.getSwiftRValueType(),
|
|
LoweredTargetType.getSwiftRValueType(),
|
|
isSourceTypeExact);
|
|
|
|
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillFail) {
|
|
// Remove the cast and insert a trap, followed by an
|
|
// unreachable instruction.
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
auto *Trap = Builder.createBuiltinTrap(Loc);
|
|
Inst->replaceAllUsesWithUndef();
|
|
EraseInstAction(Inst);
|
|
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap)));
|
|
Builder.createUnreachable(ArtificialUnreachableLocation());
|
|
WillFailAction();
|
|
return Trap;
|
|
}
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
|
|
|
|
if (Inst->use_empty()) {
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return nullptr;
|
|
}
|
|
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
|
|
// Try to apply the bridged casts optimizations
|
|
auto SourceType = LoweredSourceType.getSwiftRValueType();
|
|
auto TargetType = LoweredTargetType.getSwiftRValueType();
|
|
auto Src = Inst->getOperand();
|
|
auto NewI = optimizeBridgedCasts(Inst, false, Src, SILValue(), SourceType,
|
|
TargetType, nullptr, nullptr);
|
|
if (NewI) {
|
|
ReplaceInstUsesAction(Inst, NewI);
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return NewI;
|
|
}
|
|
|
|
if (isBridgingCast(SourceType, TargetType))
|
|
return nullptr;
|
|
|
|
auto Result = emitSuccessfulScalarUnconditionalCast(Builder,
|
|
Mod.getSwiftModule(), Loc, Op,
|
|
LoweredTargetType,
|
|
LoweredSourceType.getSwiftRValueType(),
|
|
LoweredTargetType.getSwiftRValueType(),
|
|
Inst);
|
|
|
|
if (!Result) {
|
|
// No optimization was possible.
|
|
return nullptr;
|
|
}
|
|
|
|
ReplaceInstUsesAction(Inst, Result.getDef());
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return dyn_cast<SILInstruction>(Result.getDef());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
SILInstruction *
|
|
CastOptimizer::
|
|
optimizeUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *Inst) {
|
|
auto Loc = Inst->getLoc();
|
|
auto Src = Inst->getSrc();
|
|
auto Dest = Inst->getDest();
|
|
auto SourceType = Inst->getSourceType();
|
|
auto TargetType = Inst->getTargetType();
|
|
auto &Mod = Inst->getModule();
|
|
|
|
bool isSourceTypeExact = isa<MetatypeInst>(Src);
|
|
|
|
// Check if we can statically predict the outcome of the cast.
|
|
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), SourceType,
|
|
TargetType, isSourceTypeExact);
|
|
|
|
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
|
|
// Forced bridged casts can be still simplified here.
|
|
// If they fail, they fail inside the conversion function.
|
|
if (!isBridgingCast(SourceType, TargetType))
|
|
return nullptr;
|
|
}
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillFail) {
|
|
// Remove the cast and insert a trap, followed by an
|
|
// unreachable instruction.
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
SILInstruction *NewI = Builder.createBuiltinTrap(Loc);
|
|
// mem2reg's invariants get unhappy if we don't try to
|
|
// initialize a loadable result.
|
|
auto DestType = Dest.getType();
|
|
auto &resultTL = Mod.Types.getTypeLowering(DestType);
|
|
if (!resultTL.isAddressOnly()) {
|
|
auto undef = SILValue(SILUndef::get(DestType.getObjectType(),
|
|
Builder.getModule()));
|
|
NewI = Builder.createStore(Loc, undef, Dest);
|
|
}
|
|
Inst->replaceAllUsesWithUndef();
|
|
EraseInstAction(Inst);
|
|
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(NewI)));
|
|
Builder.createUnreachable(ArtificialUnreachableLocation());
|
|
WillFailAction();
|
|
}
|
|
|
|
if (Feasibility == DynamicCastFeasibility::WillSucceed ||
|
|
Feasibility == DynamicCastFeasibility::MaySucceed) {
|
|
|
|
bool ResultNotUsed = isa<AllocStackInst>(Dest.getDef());
|
|
for (auto Use : Dest.getUses()) {
|
|
auto *User = Use->getUser();
|
|
if (isa<DeallocStackInst>(User) || User == Inst)
|
|
continue;
|
|
ResultNotUsed = false;
|
|
break;
|
|
}
|
|
|
|
if (ResultNotUsed) {
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
return nullptr;
|
|
}
|
|
|
|
// Try to apply the bridged casts optimizations
|
|
auto NewI = optimizeBridgedCasts(Inst, false, Src, Dest, SourceType,
|
|
TargetType, nullptr, nullptr);
|
|
if (NewI) {
|
|
WillSucceedAction();
|
|
return nullptr;
|
|
}
|
|
|
|
if (isBridgingCast(SourceType, TargetType))
|
|
return nullptr;
|
|
|
|
SILBuilderWithScope<1> Builder(Inst);
|
|
if (!emitSuccessfulIndirectUnconditionalCast(Builder, Mod.getSwiftModule(),
|
|
Loc, Inst->getConsumptionKind(),
|
|
Src, SourceType,
|
|
Dest, TargetType, Inst)) {
|
|
// No optimization was possible.
|
|
return nullptr;
|
|
}
|
|
|
|
Inst->replaceAllUsesWithUndef();
|
|
EraseInstAction(Inst);
|
|
WillSucceedAction();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|