Files
swift-mirror/stdlib/include/llvm/ADT/STLExtras.h
Kuba (Brecka) Mracek 7e33575c6b Re-import LLVMSupport from llvm-project and enforce header includes only being used from the Swift fork when building stdlib (#40173)
* Enforce using headers from Swift's LLVMSupport fork and not llvm-project when building stdlib

* [LLVMSupport] Re-import LLVMSupport .cpp and .h files from 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a from apple/llvm-project

Done via the following commands, while having llvm-project checked out at 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a, a
commit on the stable/20210726 branch of apple/llvm-project, <9ff3a9759b>:

for i in swift/stdlib/public/LLVMSupport/*.cpp ; do cp llvm-project/llvm/lib/Support/$(basename $i) $i ; done
for i in swift/stdlib/include/llvm/ADT/*.h; do cp llvm-project/llvm/include/llvm/ADT/$(basename $i) $i ; done
for i in swift/stdlib/include/llvm/Support/*.h; do cp llvm-project/llvm/include/llvm/Support/$(basename $i) $i ; done
cp llvm-project/llvm/include/llvm/ADT/ScopeExit.h swift/stdlib/include/llvm/ADT/ScopeExit.h
cp llvm-project/llvm/include/llvm/ADT/Twine.h swift/stdlib/include/llvm/ADT/Twine.h
cp llvm-project/llvm/include/llvm/Support/raw_ostream.h swift/stdlib/include/llvm/Support/raw_ostream.h

* [LLVMSupport] Re-namespace the LLVMSupport fork after re-forking by re-applying b72788c27a

More precisely:

1) git cherry-pick b72788c27a
2) manually resolve the conflict in AlignOf.h by keeping the HEAD's version of the chunk and discarding the cherry-pick's change
3) git add AlignOf.h
4) git status | grep "deleted by us" | awk '{print($4)}' | xargs git rm
5) git cherry-pick --continue

Original namespacing commit message:

> This adds the `__swift::__runtime` inline namespace to the LLVMSupport
> interfaces.  This avoids an ODR violation when LLVM and Swift are in the
> same address space.  It also will aid in the process of pruning the
> LLVMSupport library by ensuring that accidental leakage of the llvm
> namespace does not allow us to remove symbols which we rely on.

* [LLVMSupport] Re-apply "pruning" on re-forked LLVMSupport from bb102707ed

This re-applies the "pruning" commit from bb102707ed, which did the following:
- Remove many whole files,
- Remove "epoch tracking" and "reverse iteration" support from ADT containers
- Remove "ABI break checking" support from STLExtras
- Remove float parsing functions from StringExtras.h
- Remove APInt/APSInt dependencies from StringRef.h + StringRef.cpp (edit distance, int parsing)
- Remove some variants of error handling and dependency of dbgs() from ErrorHandling.h and ErrorHandling.cpp

We don't need to do the whole-file-removal step, because that's already done, but the rest is re-applied by doing:

1) git cherry-pick bb102707ed
2) manually resolving conflict in ADT/DenseMap.h by keeping HEAD's version of the chunk and removing epoch tracking from it
3) manually resolving conflict in ADT/STLExtras.h by keeping HEAD's version of the chunk and removing ABI check checking from it
4) manually resolving conflict in ADT/StringExtras.h by deleting the whole chunk (removing APInt/APSInt dependent functions)
5) manually resolving conflict in ErrorHandling.cpp by force-applying the cherry-pick's version (removing write() calls and OOM callback)
6) manually resolving the three conflicts in CMakeLists.txt files by keeping HEAD's version completely
7) git add stdlib/include/llvm/{ADT/StringSwitch.h,ADT/Twine.h,Support/raw_ostream.h}

Original commit description:

> Reduce LLVMSupport to the subset required for the runtime.  This reduces
> the TCB and the overheads of the runtime.  The inline namespace's
> preservation ensures that ODR violations do not occur.

* [LLVMSupport] Re-apply all post-import modifications on LLVMSupport that the Swift's fork has

Since the previous commits re-imported "vanilla" versions of LLVMSupport, we need to re-apply all modifications that the Swift's fork has made since the last import. More precisely:

1) git diff 7b70120440cd39d67a595a7d0ea4e828ecc6ee44..origin/main -- stdlib/include/llvm stdlib/public/LLVMSupport | git apply -3 --exclude "stdlib/include/llvm/Support/DataTypes.h" --exclude "stdlib/include/llvm/Config/llvm-config.h.cmake"
2) manually resolve conflict in STLExtras.h by applying the "__swift::__runtime" prefix to HEAD's version
3) manually resolve conflicts in StringSwitch.h by keeping HEAD's version (removing the Unicode BOM marker at the beginning of the file, keeping LLVM's version of the string functions)
4) manually resolve conflict in SwapByteOrder.h by adding the `defined(__wasi__)` part into the #if

* [LLVMSupport] Drop remaining dependencies on APSInt.h, Error.h, DataTypes.h and STLForwardCompat.h

Most cases can drop the #includes without any changes, in some cases there are
straighforward replacements (climits, cstdint). For STLForwardCompat.h, we need
to bring in parts of STLForwardCompat.h from llvm-project.

* [LLVMSupport] Remove raw_ostream.h and drop dependencies to it from the runtime

* [LLVMSupport] Simplify error reporting in SmallVector and avoid using std::string when producing fatal errors messages

Co-authored-by: Saleem Abdulrasool <compnerd@compnerd.org>
2021-12-02 17:21:51 -08:00

2083 lines
74 KiB
C++

//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif
inline namespace __swift { inline namespace __runtime {
namespace llvm {
template <typename...>
struct conjunction // NOLINT(readability-identifier-naming)
: std::true_type {};
template <typename B1> struct conjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct conjunction<B1, Bn...>
: std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
template <typename...>
struct disjunction // NOLINT(readability-identifier-naming)
: std::false_type {};
template <typename B1> struct disjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct disjunction<B1, Bn...>
: std::conditional<bool(B1::value), B1, disjunction<Bn...>>::type {};
template <typename T>
struct remove_cvref // NOLINT(readability-identifier-naming)
{
using type = std::remove_cv_t<std::remove_reference_t<T>>;
};
template <typename T>
using remove_cvref_t // NOLINT(readability-identifier-naming)
= typename llvm::remove_cvref<T>::type;
// Only used by compiler if both template types are the same. Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;
namespace detail {
template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
template <typename RangeT>
using ValueOfRange = typename std::remove_reference<decltype(
*std::begin(std::declval<RangeT &>()))>::type;
} // end namespace detail
//===----------------------------------------------------------------------===//
// Extra additions to <type_traits>
//===----------------------------------------------------------------------===//
template <typename T> struct make_const_ptr {
using type =
typename std::add_pointer<typename std::add_const<T>::type>::type;
};
template <typename T> struct make_const_ref {
using type = typename std::add_lvalue_reference<
typename std::add_const<T>::type>::type;
};
namespace detail {
template <typename...> using void_t = void;
template <class, template <class...> class Op, class... Args> struct detector {
using value_t = std::false_type;
};
template <template <class...> class Op, class... Args>
struct detector<void_t<Op<Args...>>, Op, Args...> {
using value_t = std::true_type;
};
} // end namespace detail
/// Detects if a given trait holds for some set of arguments 'Args'.
/// For example, the given trait could be used to detect if a given type
/// has a copy assignment operator:
/// template<class T>
/// using has_copy_assign_t = decltype(std::declval<T&>()
/// = std::declval<const T&>());
/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
template <template <class...> class Op, class... Args>
using is_detected = typename detail::detector<void, Op, Args...>::value_t;
namespace detail {
template <typename Callable, typename... Args>
using is_invocable =
decltype(std::declval<Callable &>()(std::declval<Args>()...));
} // namespace detail
/// Check if a Callable type can be invoked with the given set of arg types.
template <typename Callable, typename... Args>
using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
/// This class provides various trait information about a callable object.
/// * To access the number of arguments: Traits::num_args
/// * To access the type of an argument: Traits::arg_t<Index>
/// * To access the type of the result: Traits::result_t
template <typename T, bool isClass = std::is_class<T>::value>
struct function_traits : public function_traits<decltype(&T::operator())> {};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t Index>
using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...), false>
: function_traits<ReturnType (ClassType::*)(Args...) const> {};
/// Overload for non-class function types.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (*)(Args...), false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t i>
using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
};
/// Overload for non-class function type references.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (&)(Args...), false>
: public function_traits<ReturnType (*)(Args...)> {};
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template <class Ty> struct identity {
using argument_type = Ty;
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
function_ref() = default;
function_ref(std::nullptr_t) {}
template <typename Callable>
function_ref(
Callable &&callable,
// This is not the copy-constructor.
std::enable_if_t<!std::is_same<remove_cvref_t<Callable>,
function_ref>::value> * = nullptr,
// Functor must be callable and return a suitable type.
std::enable_if_t<std::is_void<Ret>::value ||
std::is_convertible<decltype(std::declval<Callable>()(
std::declval<Params>()...)),
Ret>::value> * = nullptr)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
explicit operator bool() const { return callback; }
};
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
namespace adl_detail {
using std::begin;
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return begin(std::forward<ContainerTy>(container));
}
using std::end;
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return end(std::forward<ContainerTy>(container));
}
using std::swap;
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
std::declval<T>()))) {
swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
} // end namespace adl_detail
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return adl_detail::adl_end(std::forward<ContainerTy>(container));
}
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(
noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
template <typename T>
constexpr bool empty(const T &RangeOrContainer) {
return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
}
/// Returns true if the given container only contains a single element.
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
auto B = std::begin(C), E = std::end(C);
return B != E && std::next(B) == E;
}
/// Return a range covering \p RangeOrContainer with the first N elements
/// excluded.
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
return make_range(std::next(adl_begin(RangeOrContainer), N),
adl_end(RangeOrContainer));
}
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.
template <typename ItTy, typename FuncTy,
typename FuncReturnTy =
decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
: public iterator_adaptor_base<
mapped_iterator<ItTy, FuncTy>, ItTy,
typename std::iterator_traits<ItTy>::iterator_category,
typename std::remove_reference<FuncReturnTy>::type> {
public:
mapped_iterator(ItTy U, FuncTy F)
: mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
ItTy getCurrent() { return this->I; }
FuncReturnTy operator*() const { return F(*this->I); }
private:
FuncTy F;
};
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}
template <class ContainerTy, class FuncTy>
auto map_range(ContainerTy &&C, FuncTy F) {
return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
}
/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
using yes = char[1];
using no = char[2];
template <typename Inner>
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
template <typename>
static no& test(...);
public:
static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};
/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(C.rbegin(), C.rend());
}
// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
return std::reverse_iterator<IteratorTy>(It);
}
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
/// int A[] = { 1, 2, 3, 4 };
/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
/// // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
: public iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type> {
using BaseT = iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type>;
protected:
WrappedIteratorT End;
PredicateT Pred;
void findNextValid() {
while (this->I != End && !Pred(*this->I))
BaseT::operator++();
}
// Construct the iterator. The begin iterator needs to know where the end
// is, so that it can properly stop when it gets there. The end iterator only
// needs the predicate to support bidirectional iteration.
filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin), End(End), Pred(Pred) {
findNextValid();
}
public:
using BaseT::operator++;
filter_iterator_base &operator++() {
BaseT::operator++();
findNextValid();
return *this;
}
};
/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
: public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
public:
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
};
/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>
: public filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>;
void findPrevValid() {
while (!this->Pred(*this->I))
BaseT::operator--();
}
public:
using BaseT::operator--;
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
filter_iterator_impl &operator--() {
BaseT::operator--();
findPrevValid();
return *this;
}
};
namespace detail {
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
using type = std::forward_iterator_tag;
};
template <> struct fwd_or_bidi_tag_impl<true> {
using type = std::bidirectional_iterator_tag;
};
/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
std::bidirectional_iterator_tag,
typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};
} // namespace detail
/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
WrappedIteratorT, PredicateT,
typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
using FilterIteratorT =
filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
return make_range(
FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred),
FilterIteratorT(std::end(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred));
}
/// A pseudo-iterator adaptor that is designed to implement "early increment"
/// style loops.
///
/// This is *not a normal iterator* and should almost never be used directly. It
/// is intended primarily to be used with range based for loops and some range
/// algorithms.
///
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
/// somewhere between them. The constraints of these iterators are:
///
/// - On construction or after being incremented, it is comparable and
/// dereferencable. It is *not* incrementable.
/// - After being dereferenced, it is neither comparable nor dereferencable, it
/// is only incrementable.
///
/// This means you can only dereference the iterator once, and you can only
/// increment it once between dereferences.
template <typename WrappedIteratorT>
class early_inc_iterator_impl
: public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
WrappedIteratorT, std::input_iterator_tag> {
using BaseT =
iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
WrappedIteratorT, std::input_iterator_tag>;
using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
public:
early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
using BaseT::operator*;
decltype(*std::declval<WrappedIteratorT>()) operator*() {
return *(this->I)++;
}
using BaseT::operator++;
early_inc_iterator_impl &operator++() {
return *this;
}
friend bool operator==(const early_inc_iterator_impl &LHS,
const early_inc_iterator_impl &RHS) {
return (const BaseT &)LHS == (const BaseT &)RHS;
}
};
/// Make a range that does early increment to allow mutation of the underlying
/// range without disrupting iteration.
///
/// The underlying iterator will be incremented immediately after it is
/// dereferenced, allowing deletion of the current node or insertion of nodes to
/// not disrupt iteration provided they do not invalidate the *next* iterator --
/// the current iterator can be invalidated.
///
/// This requires a very exact pattern of use that is only really suitable to
/// range based for loops and other range algorithms that explicitly guarantee
/// to dereference exactly once each element, and to increment exactly once each
/// element.
template <typename RangeT>
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
make_early_inc_range(RangeT &&Range) {
using EarlyIncIteratorT =
early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
}
// forward declarations required by zip_shortest/zip_first/zip_longest
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);
template <typename R, typename UnaryPredicate>
bool any_of(R &&range, UnaryPredicate P);
namespace detail {
using std::declval;
// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
using type = std::tuple<decltype(*declval<Iters>())...>;
};
template <typename ZipType, typename... Iters>
using zip_traits = iterator_facade_base<
ZipType, typename std::common_type<std::bidirectional_iterator_tag,
typename std::iterator_traits<
Iters>::iterator_category...>::type,
// ^ TODO: Implement random access methods.
typename ZipTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
// ^ FIXME: This follows boost::make_zip_iterator's assumption that all
// inner iterators have the same difference_type. It would fail if, for
// instance, the second field's difference_type were non-numeric while the
// first is.
typename ZipTupleType<Iters...>::type *,
typename ZipTupleType<Iters...>::type>;
template <typename ZipType, typename... Iters>
struct zip_common : public zip_traits<ZipType, Iters...> {
using Base = zip_traits<ZipType, Iters...>;
using value_type = typename Base::value_type;
std::tuple<Iters...> iterators;
protected:
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(*std::get<Ns>(iterators)...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
}
public:
zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
const value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
ZipType &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
ZipType &operator--() {
static_assert(Base::IsBidirectional,
"All inner iterators must be at least bidirectional.");
iterators = tup_dec(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
};
template <typename... Iters>
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
using Base = zip_common<zip_first<Iters...>, Iters...>;
bool operator==(const zip_first<Iters...> &other) const {
return std::get<0>(this->iterators) == std::get<0>(other.iterators);
}
zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
};
template <typename... Iters>
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
template <size_t... Ns>
bool test(const zip_shortest<Iters...> &other,
std::index_sequence<Ns...>) const {
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
public:
using Base = zip_common<zip_shortest<Iters...>, Iters...>;
zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
bool operator==(const zip_shortest<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <template <typename...> class ItType, typename... Args> class zippy {
public:
using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::begin(std::get<Ns>(ts))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::end(std::get<Ns>(ts))...);
}
public:
zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // end namespace detail
/// zip iterator for two or more iteratable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_shortest, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_first, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
namespace detail {
template <typename Iter>
Iter next_or_end(const Iter &I, const Iter &End) {
if (I == End)
return End;
return std::next(I);
}
template <typename Iter>
auto deref_or_none(const Iter &I, const Iter &End)
-> __swift::__runtime::llvm::Optional<
std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
if (I == End)
return None;
return *I;
}
template <typename Iter> struct ZipLongestItemType {
using type =
llvm::Optional<typename std::remove_const<typename std::remove_reference<
decltype(*std::declval<Iter>())>::type>::type>;
};
template <typename... Iters> struct ZipLongestTupleType {
using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
};
template <typename... Iters>
class zip_longest_iterator
: public iterator_facade_base<
zip_longest_iterator<Iters...>,
typename std::common_type<
std::forward_iterator_tag,
typename std::iterator_traits<Iters>::iterator_category...>::type,
typename ZipLongestTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
typename ZipLongestTupleType<Iters...>::type *,
typename ZipLongestTupleType<Iters...>::type> {
public:
using value_type = typename ZipLongestTupleType<Iters...>::type;
private:
std::tuple<Iters...> iterators;
std::tuple<Iters...> end_iterators;
template <size_t... Ns>
bool test(const zip_longest_iterator<Iters...> &other,
std::index_sequence<Ns...>) const {
return llvm::any_of(
std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(
deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(
next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
public:
zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
: iterators(std::forward<Iters>(ts.first)...),
end_iterators(std::forward<Iters>(ts.second)...) {}
value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
zip_longest_iterator<Iters...> &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *this;
}
bool operator==(const zip_longest_iterator<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <typename... Args> class zip_longest_range {
public:
using iterator =
zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
public:
zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // namespace detail
/// Iterate over two or more iterators at the same time. Iteration continues
/// until all iterators reach the end. The llvm::Optional only contains a value
/// if the iterator has not reached the end.
template <typename T, typename U, typename... Args>
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
Args &&... args) {
return detail::zip_longest_range<T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
: public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
std::forward_iterator_tag, ValueT> {
using BaseT = typename concat_iterator::iterator_facade_base;
/// We store both the current and end iterators for each concatenated
/// sequence in a tuple of pairs.
///
/// Note that something like iterator_range seems nice at first here, but the
/// range properties are of little benefit and end up getting in the way
/// because we need to do mutation on the current iterators.
std::tuple<IterTs...> Begins;
std::tuple<IterTs...> Ends;
/// Attempts to increment a specific iterator.
///
/// Returns true if it was able to increment the iterator. Returns false if
/// the iterator is already at the end iterator.
template <size_t Index> bool incrementHelper() {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return false;
++Begin;
return true;
}
/// Increments the first non-end iterator.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
// Build a sequence of functions to increment each iterator if possible.
bool (concat_iterator::*IncrementHelperFns[])() = {
&concat_iterator::incrementHelper<Ns>...};
// Loop over them, and stop as soon as we succeed at incrementing one.
for (auto &IncrementHelperFn : IncrementHelperFns)
if ((this->*IncrementHelperFn)())
return;
llvm_unreachable("Attempted to increment an end concat iterator!");
}
/// Returns null if the specified iterator is at the end. Otherwise,
/// dereferences the iterator and returns the address of the resulting
/// reference.
template <size_t Index> ValueT *getHelper() const {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return nullptr;
return &*Begin;
}
/// Finds the first non-end iterator, dereferences, and returns the resulting
/// reference.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
// Build a sequence of functions to get from iterator if possible.
ValueT *(concat_iterator::*GetHelperFns[])() const = {
&concat_iterator::getHelper<Ns>...};
// Loop over them, and return the first result we find.
for (auto &GetHelperFn : GetHelperFns)
if (ValueT *P = (this->*GetHelperFn)())
return *P;
llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
}
public:
/// Constructs an iterator from a sequence of ranges.
///
/// We need the full range to know how to switch between each of the
/// iterators.
template <typename... RangeTs>
explicit concat_iterator(RangeTs &&... Ranges)
: Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
using BaseT::operator++;
concat_iterator &operator++() {
increment(std::index_sequence_for<IterTs...>());
return *this;
}
ValueT &operator*() const {
return get(std::index_sequence_for<IterTs...>());
}
bool operator==(const concat_iterator &RHS) const {
return Begins == RHS.Begins && Ends == RHS.Ends;
}
};
namespace detail {
/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
using iterator =
concat_iterator<ValueT,
decltype(std::begin(std::declval<RangeTs &>()))...>;
private:
std::tuple<RangeTs...> Ranges;
template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
return iterator(std::get<Ns>(Ranges)...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
return iterator(make_range(std::end(std::get<Ns>(Ranges)),
std::end(std::get<Ns>(Ranges)))...);
}
public:
concat_range(RangeTs &&... Ranges)
: Ranges(std::forward<RangeTs>(Ranges)...) {}
iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
};
} // end namespace detail
/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
static_assert(sizeof...(RangeTs) > 1,
"Need more than one range to concatenate!");
return detail::concat_range<ValueT, RangeTs...>(
std::forward<RangeTs>(Ranges)...);
}
/// A utility class used to implement an iterator that contains some base object
/// and an index. The iterator moves the index but keeps the base constant.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_iterator
: public llvm::iterator_facade_base<DerivedT,
std::random_access_iterator_tag, T,
std::ptrdiff_t, PointerT, ReferenceT> {
public:
ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index - rhs.index;
}
bool operator==(const indexed_accessor_iterator &rhs) const {
return base == rhs.base && index == rhs.index;
}
bool operator<(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index < rhs.index;
}
DerivedT &operator+=(ptrdiff_t offset) {
this->index += offset;
return static_cast<DerivedT &>(*this);
}
DerivedT &operator-=(ptrdiff_t offset) {
this->index -= offset;
return static_cast<DerivedT &>(*this);
}
/// Returns the current index of the iterator.
ptrdiff_t getIndex() const { return index; }
/// Returns the current base of the iterator.
const BaseT &getBase() const { return base; }
protected:
indexed_accessor_iterator(BaseT base, ptrdiff_t index)
: base(base), index(index) {}
BaseT base;
ptrdiff_t index;
};
namespace detail {
/// The class represents the base of a range of indexed_accessor_iterators. It
/// provides support for many different range functionalities, e.g.
/// drop_front/slice/etc.. Derived range classes must implement the following
/// static methods:
/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to the base object at the given
/// index.
/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
/// - Return a new base that is offset from the provide base by 'index'
/// elements.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range_base {
public:
using RangeBaseT =
indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>;
/// An iterator element of this range.
class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
PointerT, ReferenceT> {
public:
// Index into this iterator, invoking a static method on the derived type.
ReferenceT operator*() const {
return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
}
private:
iterator(BaseT owner, ptrdiff_t curIndex)
: indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>(
owner, curIndex) {}
/// Allow access to the constructor.
friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
ReferenceT>;
};
indexed_accessor_range_base(iterator begin, iterator end)
: base(offset_base(begin.getBase(), begin.getIndex())),
count(end.getIndex() - begin.getIndex()) {}
indexed_accessor_range_base(const iterator_range<iterator> &range)
: indexed_accessor_range_base(range.begin(), range.end()) {}
indexed_accessor_range_base(BaseT base, ptrdiff_t count)
: base(base), count(count) {}
iterator begin() const { return iterator(base, 0); }
iterator end() const { return iterator(base, count); }
ReferenceT operator[](size_t Index) const {
assert(Index < size() && "invalid index for value range");
return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
}
ReferenceT front() const {
assert(!empty() && "expected non-empty range");
return (*this)[0];
}
ReferenceT back() const {
assert(!empty() && "expected non-empty range");
return (*this)[size() - 1];
}
/// Compare this range with another.
template <typename OtherT> bool operator==(const OtherT &other) const {
return size() ==
static_cast<size_t>(std::distance(other.begin(), other.end())) &&
std::equal(begin(), end(), other.begin());
}
template <typename OtherT> bool operator!=(const OtherT &other) const {
return !(*this == other);
}
/// Return the size of this range.
size_t size() const { return count; }
/// Return if the range is empty.
bool empty() const { return size() == 0; }
/// Drop the first N elements, and keep M elements.
DerivedT slice(size_t n, size_t m) const {
assert(n + m <= size() && "invalid size specifiers");
return DerivedT(offset_base(base, n), m);
}
/// Drop the first n elements.
DerivedT drop_front(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return slice(n, size() - n);
}
/// Drop the last n elements.
DerivedT drop_back(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return DerivedT(base, size() - n);
}
/// Take the first n elements.
DerivedT take_front(size_t n = 1) const {
return n < size() ? drop_back(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Take the last n elements.
DerivedT take_back(size_t n = 1) const {
return n < size() ? drop_front(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Allow conversion to any type accepting an iterator_range.
template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
RangeT, iterator_range<iterator>>::value>>
operator RangeT() const {
return RangeT(iterator_range<iterator>(*this));
}
/// Returns the base of this range.
const BaseT &getBase() const { return base; }
private:
/// Offset the given base by the given amount.
static BaseT offset_base(const BaseT &base, size_t n) {
return n == 0 ? base : DerivedT::offset_base(base, n);
}
protected:
indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
indexed_accessor_range_base &
operator=(const indexed_accessor_range_base &) = default;
/// The base that owns the provided range of values.
BaseT base;
/// The size from the owning range.
ptrdiff_t count;
};
} // end namespace detail
/// This class provides an implementation of a range of
/// indexed_accessor_iterators where the base is not indexable. Ranges with
/// bases that are offsetable should derive from indexed_accessor_range_base
/// instead. Derived range classes are expected to implement the following
/// static method:
/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to a parent base at the given index.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range
: public detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
public:
indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
: detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
std::make_pair(base, startIndex), count) {}
using detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
ReferenceT>::indexed_accessor_range_base;
/// Returns the current base of the range.
const BaseT &getBase() const { return this->base.first; }
/// Returns the current start index of the range.
ptrdiff_t getStartIndex() const { return this->base.second; }
/// See `detail::indexed_accessor_range_base` for details.
static std::pair<BaseT, ptrdiff_t>
offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
// We encode the internal base as a pair of the derived base and a start
// index into the derived base.
return std::make_pair(base.first, base.second + index);
}
/// See `detail::indexed_accessor_range_base` for details.
static ReferenceT
dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
ptrdiff_t index) {
return DerivedT::dereference(base.first, base.second + index);
}
};
/// Given a container of pairs, return a range over the first elements.
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
return llvm::map_range(
std::forward<ContainerTy>(c),
[](decltype((*std::begin(c))) elt) -> decltype((elt.first)) {
return elt.first;
});
}
/// Given a container of pairs, return a range over the second elements.
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
return llvm::map_range(
std::forward<ContainerTy>(c),
[](decltype((*std::begin(c))) elt) -> decltype((elt.second)) {
return elt.second;
});
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
/// \brief Function object to apply a binary function to the first component of
/// a std::pair.
template<typename FuncTy>
struct on_first {
FuncTy func;
template <typename T>
decltype(auto) operator()(const T &lhs, const T &rhs) const {
return func(lhs.first, rhs.first);
}
};
/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};
/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts>
using is_one_of = disjunction<std::is_same<T, Ts>...>;
/// traits class for checking whether type T is a base class for all
/// the given types in the variadic list.
template <typename T, typename... Ts>
using are_base_of = conjunction<std::is_base_of<T, Ts>...>;
namespace detail {
template <typename... Ts> struct Visitor;
template <typename HeadT, typename... TailTs>
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
using remove_cvref_t<HeadT>::operator();
using Visitor<TailTs...>::operator();
};
template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
explicit constexpr Visitor(HeadT &&Head)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
using remove_cvref_t<HeadT>::operator();
};
} // namespace detail
/// Returns an opaquely-typed Callable object whose operator() overload set is
/// the sum of the operator() overload sets of each CallableT in CallableTs.
///
/// The type of the returned object derives from each CallableT in CallableTs.
/// The returned object is constructed by invoking the appropriate copy or move
/// constructor of each CallableT, as selected by overload resolution on the
/// corresponding argument to makeVisitor.
///
/// Example:
///
/// \code
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
/// [](int i) { return "int"; },
/// [](std::string s) { return "str"; });
/// auto a = visitor(42); // `a` is now "int".
/// auto b = visitor("foo"); // `b` is now "str".
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
/// \endcode
///
/// Example of making a visitor with a lambda which captures a move-only type:
///
/// \code
/// std::unique_ptr<FooHandler> FH = /* ... */;
/// auto visitor = makeVisitor(
/// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
/// [](int i) { return i; },
/// [](std::string s) { return atoi(s); });
/// \endcode
template <typename... CallableTs>
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
}
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
// We have a copy here so that LLVM behaves the same when using different
// standard libraries.
template <class Iterator, class RNG>
void shuffle(Iterator first, Iterator last, RNG &&g) {
// It would be better to use a std::uniform_int_distribution,
// but that would be stdlib dependent.
typedef
typename std::iterator_traits<Iterator>::difference_type difference_type;
for (auto size = last - first; size > 1; ++first, (void)--size) {
difference_type offset = g() % size;
// Avoid self-assignment due to incorrect assertions in libstdc++
// containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
if (offset != difference_type(0))
std::iter_swap(first, first + offset);
}
}
/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
#ifdef EXPENSIVE_CHECKS
namespace detail {
inline unsigned presortShuffleEntropy() {
static unsigned Result(std::random_device{}());
return Result;
}
template <class IteratorTy>
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
std::mt19937 Generator(presortShuffleEntropy());
llvm::shuffle(Start, End, Generator);
}
} // end namespace detail
#endif
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
namespace detail {
template <typename T>
// We can use qsort if the iterator type is a pointer and the underlying value
// is trivially copyable.
using sort_trivially_copyable = conjunction<
std::is_pointer<T>,
std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
} // namespace detail
// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy,
std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End);
}
// Forward trivially copyable types to array_pod_sort. This avoids a large
// amount of code bloat for a minor performance hit.
template <typename IteratorTy,
std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
array_pod_sort(Start, End);
}
template <typename Container> inline void sort(Container &&C) {
llvm::sort(adl_begin(C), adl_end(C));
}
template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End, Comp);
}
template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
llvm::sort(adl_begin(C), adl_end(C), Comp);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range,
std::enable_if_t<
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<decltype(
Range.begin())>::iterator_category>::value,
void> * = nullptr) {
return std::distance(Range.begin(), Range.end());
}
/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryFunction>
UnaryFunction for_each(R &&Range, UnaryFunction F) {
return std::for_each(adl_begin(Range), adl_end(Range), F);
}
/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
return std::all_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
return std::any_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
return std::none_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T> auto find(R &&Range, const T &Val) {
return std::find(adl_begin(Range), adl_end(Range), Val);
}
/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) {
return std::find_if(adl_begin(Range), adl_end(Range), P);
}
template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) {
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) {
return std::remove_if(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}
template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
return std::copy(adl_begin(Range), adl_end(Range), Out);
}
/// Provide wrappers to std::move which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt>
OutputIt move(R &&Range, OutputIt Out) {
return std::move(adl_begin(Range), adl_end(Range), Out);
}
/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted with respect to a comparator \p C.
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
return std::is_sorted(adl_begin(Range), adl_end(Range), C);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted in non-descending order.
template <typename R> bool is_sorted(R &&Range) {
return std::is_sorted(adl_begin(Range), adl_end(Range));
}
/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E> auto count(R &&Range, const E &Element) {
return std::count(adl_begin(Range), adl_end(Range), Element);
}
/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) {
return std::count_if(adl_begin(Range), adl_end(Range), P);
}
/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryFunction>
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
}
/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) {
return std::partition(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto lower_bound(R &&Range, T &&Value, Compare C) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto upper_bound(R &&Range, T &&Value, Compare C) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
template <typename R>
void stable_sort(R &&Range) {
std::stable_sort(adl_begin(Range), adl_end(Range));
}
template <typename R, typename Compare>
void stable_sort(R &&Range, Compare C) {
std::stable_sort(adl_begin(Range), adl_end(Range), C);
}
/// Binary search for the first iterator in a range where a predicate is false.
/// Requires that C is always true below some limit, and always false above it.
template <typename R, typename Predicate,
typename Val = decltype(*adl_begin(std::declval<R>()))>
auto partition_point(R &&Range, Predicate P) {
return std::partition_point(adl_begin(Range), adl_end(Range), P);
}
template<typename Range, typename Predicate>
auto unique(Range &&R, Predicate P) {
return std::unique(adl_begin(R), adl_end(R), P);
}
/// Wrapper function around std::equal to detect if all elements
/// in a container are same.
template <typename R>
bool is_splat(R &&Range) {
size_t range_size = size(Range);
return range_size != 0 && (range_size == 1 ||
std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
}
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
/// C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
C.erase(remove_if(C, P), C.end());
}
/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
template <typename Container, typename ValueType>
void erase_value(Container &C, ValueType V) {
C.erase(std::remove(C.begin(), C.end(), V), C.end());
}
/// Wrapper function to append a range to a container.
///
/// C.insert(C.end(), R.begin(), R.end());
template <typename Container, typename Range>
inline void append_range(Container &C, Range &&R) {
C.insert(C.end(), R.begin(), R.end());
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range [ValIt, ValEnd) (which is not from the same container).
template<typename Container, typename RandomAccessIterator>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, RandomAccessIterator ValIt,
RandomAccessIterator ValEnd) {
while (true) {
if (ValIt == ValEnd) {
Cont.erase(ContIt, ContEnd);
return;
} else if (ContIt == ContEnd) {
Cont.insert(ContIt, ValIt, ValEnd);
return;
}
*ContIt++ = *ValIt++;
}
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range R.
template<typename Container, typename Range = std::initializer_list<
typename Container::value_type>>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, Range R) {
replace(Cont, ContIt, ContEnd, R.begin(), R.end());
}
/// An STL-style algorithm similar to std::for_each that applies a second
/// functor between every pair of elements.
///
/// This provides the control flow logic to, for example, print a
/// comma-separated list:
/// \code
/// interleave(names.begin(), names.end(),
/// [&](StringRef name) { os << name; },
/// [&] { os << ", "; });
/// \endcode
template <typename ForwardIterator, typename UnaryFunctor,
typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(ForwardIterator begin, ForwardIterator end,
UnaryFunctor each_fn, NullaryFunctor between_fn) {
if (begin == end)
return;
each_fn(*begin);
++begin;
for (; begin != end; ++begin) {
between_fn();
each_fn(*begin);
}
}
template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(const Container &c, UnaryFunctor each_fn,
NullaryFunctor between_fn) {
interleave(c.begin(), c.end(), each_fn, between_fn);
}
/// Overload of interleave for the common case of string separator.
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
const StringRef &separator) {
interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os,
const StringRef &separator) {
interleave(
c, os, [&](const T &a) { os << a; }, separator);
}
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os,
UnaryFunctor each_fn) {
interleave(c, os, each_fn, ", ");
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os) {
interleaveComma(c, os, [&](const T &a) { os << a; });
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
struct FreeDeleter {
void operator()(void* v) {
::free(v);
}
};
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
T func;
// Could be further improved to cope with non-derivable functors and
// non-binary functors (should be a variadic template member function
// operator()).
template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
assert(lhs);
assert(rhs);
return func(*lhs, *rhs);
}
};
namespace detail {
template <typename R> class enumerator_iter;
template <typename R> struct result_pair {
using value_reference =
typename std::iterator_traits<IterOfRange<R>>::reference;
friend class enumerator_iter<R>;
result_pair() = default;
result_pair(std::size_t Index, IterOfRange<R> Iter)
: Index(Index), Iter(Iter) {}
result_pair(const result_pair<R> &Other)
: Index(Other.Index), Iter(Other.Iter) {}
result_pair &operator=(const result_pair &Other) {
Index = Other.Index;
Iter = Other.Iter;
return *this;
}
std::size_t index() const { return Index; }
const value_reference value() const { return *Iter; }
value_reference value() { return *Iter; }
private:
std::size_t Index = std::numeric_limits<std::size_t>::max();
IterOfRange<R> Iter;
};
template <typename R>
class enumerator_iter
: public iterator_facade_base<
enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
typename std::iterator_traits<IterOfRange<R>>::difference_type,
typename std::iterator_traits<IterOfRange<R>>::pointer,
typename std::iterator_traits<IterOfRange<R>>::reference> {
using result_type = result_pair<R>;
public:
explicit enumerator_iter(IterOfRange<R> EndIter)
: Result(std::numeric_limits<size_t>::max(), EndIter) {}
enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
: Result(Index, Iter) {}
result_type &operator*() { return Result; }
const result_type &operator*() const { return Result; }
enumerator_iter &operator++() {
assert(Result.Index != std::numeric_limits<size_t>::max());
++Result.Iter;
++Result.Index;
return *this;
}
bool operator==(const enumerator_iter &RHS) const {
// Don't compare indices here, only iterators. It's possible for an end
// iterator to have different indices depending on whether it was created
// by calling std::end() versus incrementing a valid iterator.
return Result.Iter == RHS.Result.Iter;
}
enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
enumerator_iter &operator=(const enumerator_iter &Other) {
Result = Other.Result;
return *this;
}
private:
result_type Result;
};
template <typename R> class enumerator {
public:
explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
enumerator_iter<R> begin() {
return enumerator_iter<R>(0, std::begin(TheRange));
}
enumerator_iter<R> end() {
return enumerator_iter<R>(std::end(TheRange));
}
private:
R TheRange;
};
} // end namespace detail
/// Given an input range, returns a new range whose values are are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence. Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
/// printf("Item %d - %c\n", X.index(), X.value());
/// }
///
/// Output:
/// Item 0 - A
/// Item 1 - B
/// Item 2 - C
/// Item 3 - D
///
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
return detail::enumerator<R>(std::forward<R>(TheRange));
}
namespace detail {
template <typename F, typename Tuple, std::size_t... I>
decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
} // end namespace detail
/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
decltype(auto) apply_tuple(F &&f, Tuple &&t) {
using Indices = std::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>;
return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
Indices{});
}
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to filter lazily some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItems(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
for (; Begin != End; ++Begin)
if (ShouldBeCounted(*Begin))
return false; // Too many.
return true;
}
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrMore(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
return true;
}
/// Returns true if the sequence [Begin, End) has N or less items. Can
/// optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrLess(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
return true;
}) {
assert(N != std::numeric_limits<unsigned>::max());
return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
}
/// Returns true if the given container has exactly N items
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
return hasNItems(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or more items
template <typename ContainerTy>
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
return hasNItemsOrMore(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or less items
template <typename ContainerTy>
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
return hasNItemsOrLess(std::begin(C), std::end(C), N);
}
/// Returns a raw pointer that represents the same address as the argument.
///
/// This implementation can be removed once we move to C++20 where it's defined
/// as std::to_address().
///
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
/// not been implemented.
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
template <class T> constexpr T *to_address(T *P) { return P; }
} // end namespace llvm
}} // namespace swift::runtime
#endif // LLVM_ADT_STLEXTRAS_H