Files
swift-mirror/lib/AST/RequirementMachine/GeneratingConformances.cpp

550 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- GeneratingConformances.cpp - Reasoning about conformance rules ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm to find a minimal set of "generating
// conformances", which are rules (V1.[P1] => V1), ..., (Vn.[Pn] => Vn) such
// that any valid term of the form T.[P] can be written as a product of terms
// (Vi.[Pi]), where each Vi.[Pi] is a left hand side of a generating
// conformance.
//
// A "conformance-valid" rewrite system is one where if we can write
// T == U.V for arbitrary non-empty U and V, then U.[domain(V)] is joinable
// with U.
//
// If this holds, then starting with a term T.[P] that is joinable with T, we
// can reduce T to canonical form T', and find the unique rule (V.[P] => V) such
// that T' == U.V. Then we repeat this process with U.[domain(V)], which is
// known to be joinable with U, since T is conformance-valid.
//
// Iterating this process produces a decomposition of T.[P] as a product of
// left hand sides of conformance rules. Some of those rules are not minimal;
// they are added by completion, or they are redundant rules written by the
// user.
//
// Using the 3-cells that generate the homotopy relation on rewrite paths,
// decompositions can be found for all "derived" conformance rules, producing
// a minimal set of generating conformances.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Finds all protocol conformance rules appearing in a 3-cell, both without
/// context, and with a non-empty left context. Applications of rules with a
/// non-empty right context are ignored.
void HomotopyGenerator::findProtocolConformanceRules(
SmallVectorImpl<unsigned> &notInContext,
SmallVectorImpl<std::pair<MutableTerm, unsigned>> &inContext,
const RewriteSystem &system) const {
auto redundancyCandidates = Path.findRulesAppearingOnceInEmptyContext();
if (redundancyCandidates.empty())
return;
for (const auto &step : Path) {
switch (step.Kind) {
case RewriteStep::ApplyRewriteRule: {
const auto &rule = system.getRule(step.RuleID);
if (!rule.isProtocolConformanceRule())
break;
if (!step.isInContext() &&
step.Inverse &&
std::find(redundancyCandidates.begin(),
redundancyCandidates.end(),
step.RuleID) != redundancyCandidates.end()) {
notInContext.push_back(step.RuleID);
}
break;
}
case RewriteStep::AdjustConcreteType:
break;
}
}
if (notInContext.empty())
return;
if (notInContext.size() > 1) {
llvm::errs() << "Multiple conformance rules appear once without context:\n";
for (unsigned ruleID : notInContext)
llvm::errs() << system.getRule(ruleID) << "\n";
dump(llvm::errs(), system);
llvm::errs() << "\n";
abort();
}
MutableTerm term = Basepoint;
for (const auto &step : Path) {
switch (step.Kind) {
case RewriteStep::ApplyRewriteRule: {
const auto &rule = system.getRule(step.RuleID);
if (!rule.isProtocolConformanceRule())
break;
if (step.StartOffset > 0 &&
step.EndOffset == 0 &&
rule.getLHS().back() == system.getRule(notInContext[0]).getLHS().back()) {
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
inContext.emplace_back(prefix, step.RuleID);
}
break;
}
case RewriteStep::AdjustConcreteType:
break;
}
step.apply(term, system);
}
if (inContext.empty()) {
notInContext.clear();
return;
}
if (inContext.size() > 1) {
llvm::errs() << "Multiple candidate conformance rules in context?\n";
dump(llvm::errs(), system);
llvm::errs() << "\n";
abort();
}
}
/// Write the term as a product of left hand sides of protocol conformance
/// rules.
///
/// The term should be irreducible, except for a protocol symbol at the end.
void
RewriteSystem::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, SmallVectorImpl<unsigned> &result) const {
assert(term.back().getKind() == Symbol::Kind::Protocol);
// If T is canonical and T.[P] => T, then by confluence, T.[P]
// reduces to T in a single step, via a rule V.[P] => V, where
// T == U.V.
RewritePath steps;
bool simplified = simplify(term, &steps);
if (!simplified) {
llvm::errs() << "Term does not conform to protocol: " << term << "\n";
abort();
}
assert(steps.size() == 1 &&
"Canonical conformance term should simplify in one step");
const auto &step = *steps.begin();
assert(step.Kind == RewriteStep::ApplyRewriteRule);
assert(step.EndOffset == 0);
assert(!step.Inverse);
// If |U| > 0, recurse with the term U.[domain(V)]. Since T is
// canonical, we know that U is canonical as well.
if (step.StartOffset > 0) {
// Build the term U.
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
decomposeTermIntoConformanceRuleLeftHandSides(prefix, step.RuleID, result);
} else {
result.push_back(step.RuleID);
}
}
/// Given a term U and a rule (V.[P] => V), write U.[domain(V)] as a
/// product of left hand sdies of conformance rules. The term U should
/// be irreducible.
void
RewriteSystem::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, unsigned ruleID,
SmallVectorImpl<unsigned> &result) const {
const auto &rule = getRule(ruleID);
assert(rule.isProtocolConformanceRule());
// Compute domain(V).
const auto &lhs = rule.getLHS();
auto protocols = lhs[0].getProtocols();
assert(protocols.size() == 1);
auto protocol = Symbol::forProtocol(protocols[0], Context);
// A same-type requirement of the form 'Self.Foo == Self' can induce a
// conformance rule [P].[P] => [P], and we can end up with a generating
// conformance decomposition of the form
//
// (V.[Q] => V) := [P].(V'.[Q] => V'),
//
// where domain(V) == [P]. Don't recurse on [P].[P] here since it won't
// yield anything useful, instead just return with (V'.[Q] => V').
if (term.size() == 1 && term[0] == protocol) {
result.push_back(ruleID);
return;
}
// Build the term U.[domain(V)].
term.add(protocol);
decomposeTermIntoConformanceRuleLeftHandSides(term, result);
// Add the rule V => V.[P].
result.push_back(ruleID);
}
/// Use homotopy information to discover all ways of writing the left hand side
/// of each conformance rule as a product of left hand sides of other conformance
/// rules.
///
/// Each conformance rule (Vi.[P] => Vi) can always be written in terms of itself,
/// so the first term of each disjunction is always (Vi.[P] => Vi).
///
/// Conformance rules can also be circular, so not every choice of disjunctions
/// produces a valid result; for example, if you have these definitions:
///
/// protocol P {
/// associatedtype T : P
/// }
///
/// struct G<X, Y> where X : P, X.T == Y, Y : P, Y.T == X {}
///
/// We have three conformance rules:
///
/// [P:T].[P] => [P:T]
/// <X>.[P] => <X>
/// <Y>.[P] => <Y>
///
/// The first rule, <X>.[P] => <X> has an alternate conformance path:
///
/// (<Y>.[P]).([P:T].[P])
///
/// The second rule similarly has an alternate conformance path:
///
/// (<X>.[P]).([P:T].[P])
///
/// This gives us the following initial set of candidate conformance paths:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P]) (<Y>.[P]).([P:T].[P])
/// <Y>.[P] := (<Y>.[P]) (<X>.[P]).([P:T].[P])
///
/// One valid solution is the following set of assignments:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P])
/// <Y>.[P] := (<X>.[P]).([P:T].[P])
///
/// That is, we can choose to eliminate <X>.[P], but not <Y>.[P], or vice
/// versa; but it is never valid to eliminate both.
void RewriteSystem::computeCandidateConformancePaths(
llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>> &conformancePaths) const {
for (const auto &loop : HomotopyGenerators) {
if (loop.isDeleted())
continue;
SmallVector<unsigned, 2> notInContext;
SmallVector<std::pair<MutableTerm, unsigned>, 2> inContext;
loop.findProtocolConformanceRules(notInContext, inContext, *this);
if (notInContext.empty())
continue;
// We must either have multiple conformance rules in empty context, or
// at least one conformance rule in non-empty context. Otherwise, we have
// a conformance rule which is written as a series of same-type rules,
// which doesn't make sense.
assert(inContext.size() > 0 || notInContext.size() > 1);
if (Debug.contains(DebugFlags::GeneratingConformances)) {
llvm::dbgs() << "Candidate homotopy generator: ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
llvm::dbgs() << "* Conformance rules not in context:\n";
for (unsigned ruleID : notInContext) {
llvm::dbgs() << "- (#" << ruleID << ") " << getRule(ruleID) << "\n";
}
llvm::dbgs() << "* Conformance rules in context:\n";
for (auto pair : inContext) {
llvm::dbgs() << "- " << pair.first;
unsigned ruleID = pair.second;
llvm::dbgs() << " (#" << ruleID << ") " << getRule(ruleID) << "\n";
}
llvm::dbgs() << "\n";
}
// Suppose a 3-cell contains a conformance rule (T.[P] => T) in an empty
// context, and a conformance rule (V.[P] => V) with a possibly non-empty
// left context U and empty right context.
//
// We can decompose U into a product of conformance rules:
//
// (V1.[P1] => V1)...(Vn.[Pn] => Vn),
//
// Now, we can record a candidate decomposition of (T.[P] => T) as a
// product of conformance rules:
//
// (T.[P] => T) := (V1.[P1] => V1)...(Vn.[Pn] => Vn).(V.[P] => V)
//
// Now if U is empty, this becomes the trivial candidate:
//
// (T.[P] => T) := (V.[P] => V)
SmallVector<SmallVector<unsigned, 2>, 2> candidatePaths;
for (auto pair : inContext) {
// We have a term U, and a rule V.[P] => V.
SmallVector<unsigned, 2> conformancePath;
// Simplify U to get U'.
MutableTerm term = pair.first;
(void) simplify(term);
// Write U'.[domain(V)] as a product of left hand sides of protocol
// conformance rules.
decomposeTermIntoConformanceRuleLeftHandSides(term, pair.second,
conformancePath);
candidatePaths.push_back(conformancePath);
}
for (unsigned candidateRuleID : notInContext) {
// If multiple conformance rules appear in an empty context, each one
// can be replaced with any other conformance rule.
for (unsigned otherRuleID : notInContext) {
if (otherRuleID == candidateRuleID)
continue;
SmallVector<unsigned, 2> path;
path.push_back(otherRuleID);
conformancePaths[candidateRuleID].push_back(path);
}
// If conformance rules appear in non-empty context, they define a
// conformance access path for each conformance rule in empty context.
for (const auto &path : candidatePaths) {
conformancePaths[candidateRuleID].push_back(path);
}
}
}
}
/// Determines if \p path can be expressed without any of the conformance
/// rules appearing in \p redundantConformances, by possibly substituting
/// any occurrences of the redundant rules with alternate definitions
/// appearing in \p conformancePaths.
///
/// The \p conformancePaths map sends conformance rules to a list of
/// disjunctions, where each disjunction is a product of other conformance
/// rules.
bool RewriteSystem::isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
llvm::DenseSet<unsigned> &redundantConformances,
const llvm::SmallVectorImpl<unsigned> &path,
const llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>>
&conformancePaths) const {
for (unsigned ruleID : path) {
if (visited.count(ruleID) > 0)
return false;
if (!redundantConformances.count(ruleID))
continue;
SWIFT_DEFER {
visited.erase(ruleID);
};
visited.insert(ruleID);
auto found = conformancePaths.find(ruleID);
assert(found != conformancePaths.end());
bool foundValidConformancePath = false;
for (const auto &otherPath : found->second) {
if (isValidConformancePath(visited, redundantConformances,
otherPath, conformancePaths)) {
foundValidConformancePath = true;
break;
}
}
if (!foundValidConformancePath)
return false;
}
return true;
}
void RewriteSystem::dumpGeneratingConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const {
out << getRule(baseRuleID).getLHS() << " := ";
bool first = true;
for (const auto &path : paths) {
if (!first)
out << " ";
else
first = false;
for (unsigned ruleID : path)
out << "(" << getRule(ruleID).getLHS() << ")";
}
}
void RewriteSystem::verifyGeneratingConformanceEquations(
const llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>>
&conformancePaths) const {
#ifndef NDEBUG
for (const auto &pair : conformancePaths) {
const auto &rule = getRule(pair.first);
auto *proto = rule.getLHS().back().getProtocol();
MutableTerm baseTerm(rule.getLHS());
(void) simplify(baseTerm);
for (const auto &path : pair.second) {
const auto &otherRule = getRule(path.back());
auto *otherProto = otherRule.getLHS().back().getProtocol();
if (proto != otherProto) {
llvm::errs() << "Invalid equation: ";
dumpGeneratingConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Mismatched conformance:\n";
llvm::errs() << "Base rule: " << rule << "\n";
llvm::errs() << "Final rule: " << otherRule << "\n\n";
dump(llvm::errs());
abort();
}
MutableTerm otherTerm;
for (unsigned otherRuleID : path) {
otherTerm.append(getRule(otherRuleID).getLHS());
}
(void) simplify(otherTerm);
if (baseTerm != otherTerm) {
llvm::errs() << "Invalid equation: ";
llvm::errs() << "\n";
dumpGeneratingConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "Invalid conformance path:\n";
llvm::errs() << "Expected: " << baseTerm << "\n";
llvm::errs() << "Got: " << otherTerm << "\n\n";
dump(llvm::errs());
abort();
}
}
}
#endif
}
/// Computes a minimal set of generating conformances, assuming that homotopy
/// reduction has already eliminated all redundant rewrite rules that are not
/// conformance rules.
void RewriteSystem::computeGeneratingConformances(
llvm::DenseSet<unsigned> &redundantConformances) {
llvm::MapVector<unsigned, std::vector<SmallVector<unsigned, 2>>> conformancePaths;
// Prepare the initial set of equations: every non-redundant conformance rule
// can be expressed as itself.
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
if (rule.isRedundant())
continue;
if (!rule.isProtocolConformanceRule())
continue;
SmallVector<unsigned, 2> path;
path.push_back(ruleID);
conformancePaths[ruleID].push_back(path);
}
computeCandidateConformancePaths(conformancePaths);
if (Debug.contains(DebugFlags::GeneratingConformances)) {
llvm::dbgs() << "Initial set of equations:\n";
for (const auto &pair : conformancePaths) {
llvm::dbgs() << "- ";
dumpGeneratingConformanceEquation(llvm::dbgs(),
pair.first, pair.second);
llvm::dbgs() << "\n";
}
}
verifyGeneratingConformanceEquations(conformancePaths);
// Find a minimal set of generating conformances.
for (const auto &pair : conformancePaths) {
for (const auto &path : pair.second) {
llvm::SmallDenseSet<unsigned, 4> visited;
visited.insert(pair.first);
if (isValidConformancePath(visited, redundantConformances,
path, conformancePaths)) {
redundantConformances.insert(pair.first);
break;
}
}
}
// Check invariants.
#ifndef NDEBUG
for (const auto &pair : conformancePaths) {
if (redundantConformances.count(pair.first) > 0)
continue;
const auto &rule = getRule(pair.first);
if (rule.isRedundant()) {
llvm::errs() << "Generating conformance is redundant: ";
llvm::errs() << rule << "\n\n";
dump(llvm::errs());
abort();
}
if (rule.containsUnresolvedSymbols()) {
llvm::errs() << "Generating conformance contains unresolved symbols: ";
llvm::errs() << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
#endif
if (Debug.contains(DebugFlags::GeneratingConformances)) {
llvm::dbgs() << "Generating conformances:\n";
for (const auto &pair : conformancePaths) {
if (redundantConformances.count(pair.first) > 0)
continue;
llvm::dbgs() << "- " << getRule(pair.first) << "\n";
}
}
}