Files
swift-mirror/lib/AST/RequirementMachine/RewriteSystem.h

530 lines
15 KiB
C++

//===--- RewriteSystem.h - Generics with term rewriting ---------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REWRITESYSTEM_H
#define SWIFT_REWRITESYSTEM_H
#include "llvm/ADT/DenseSet.h"
#include "Debug.h"
#include "ProtocolGraph.h"
#include "Symbol.h"
#include "Term.h"
#include "Trie.h"
namespace llvm {
class raw_ostream;
}
namespace swift {
namespace rewriting {
class PropertyMap;
class RewriteContext;
class RewriteSystem;
/// A rewrite rule that replaces occurrences of LHS with RHS.
///
/// LHS must be greater than RHS in the linear order over terms.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class Rule final {
Term LHS;
Term RHS;
/// Associated type introduction rules are 'permanent', meaning they cannot
/// be deleted by homotopy reduction. This is because they do not correspond
/// to generic requirements and are re-added when the rewrite system is
/// built, so by leaving them in place we can find other redundancies
/// instead.
unsigned Permanent : 1;
/// A 'simplified' rule was eliminated by simplifyRewriteSystem() if one of two
/// things happen:
/// - The rule's left hand side can be reduced via some other rule, in which
/// case completion will have filled in the missing edge if necessary.
/// - The rule's right hand side can be reduced, in which case the reduced
/// rule is added when simplifying the rewrite system.
///
/// Simplified rules do not participate in term rewriting, because other rules
/// can be used to derive an equivalent rewrite path.
unsigned Simplified : 1;
/// A 'redundant' rule was eliminated by homotopy reduction. Redundant rules
/// still participate in term rewriting, but they are not part of the minimal
/// set of requirements in a generic signature.
unsigned Redundant : 1;
public:
Rule(Term lhs, Term rhs)
: LHS(lhs), RHS(rhs) {
Permanent = false;
Simplified = false;
Redundant = false;
}
const Term &getLHS() const { return LHS; }
const Term &getRHS() const { return RHS; }
Optional<Symbol> isPropertyRule() const;
bool isProtocolConformanceRule() const;
/// See above for an explanation.
bool isPermanent() const {
return Permanent;
}
/// See above for an explanation.
bool isSimplified() const {
return Simplified;
}
/// See above for an explanation.
bool isRedundant() const {
return Redundant;
}
/// Deletes the rule, which removes it from consideration in term
/// simplification and completion. Deleted rules are simply marked as
/// such instead of being physically removed from the rules vector
/// in the rewrite system, to ensure that indices remain valid across
/// deletion.
void markSimplified() {
assert(!Simplified);
Simplified = true;
}
void markPermanent() {
assert(!Permanent);
Permanent = true;
}
void markRedundant() {
assert(!Redundant);
Redundant = true;
}
/// Returns the length of the left hand side.
unsigned getDepth() const {
return LHS.size();
}
bool containsUnresolvedSymbols() const;
void dump(llvm::raw_ostream &out) const;
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &out,
const Rule &rule) {
rule.dump(out);
return out;
}
};
struct AppliedRewriteStep {
Term lhs;
Term rhs;
MutableTerm prefix;
MutableTerm suffix;
};
/// Records the application of a rewrite rule to a term.
///
/// Formally, this is a whiskered, oriented rewrite rule. For example, given a
/// rule (X => Y) and the term A.X.B, the application at offset 1 yields A.Y.B.
///
/// This can be represented as A.(X => Y).B.
///
/// Similarly, going in the other direction, if we start from A.Y.B and apply
/// the inverse rule, we get A.(Y => X).B.
struct RewriteStep {
enum StepKind {
/// Apply a rewrite rule at the stored offset.
ApplyRewriteRule,
/// Prepend the prefix to each concrete substitution.
AdjustConcreteType
};
/// The rewrite step kind.
unsigned Kind : 1;
/// The size of the left whisker, which is the position within the term where
/// the rule is being applied. In A.(X => Y).B, this is |A|=1.
unsigned StartOffset : 7;
/// The size of the right whisker, which is the length of the remaining suffix
/// after the rule is applied. In A.(X => Y).B, this is |B|=1.
unsigned EndOffset : 7;
/// The index of the rule in the rewrite system.
unsigned RuleID : 15;
/// If false, the step replaces an occurrence of the rule's left hand side
/// with the right hand side. If true, vice versa.
unsigned Inverse : 1;
RewriteStep(StepKind kind, unsigned startOffset, unsigned endOffset,
unsigned ruleID, bool inverse) {
Kind = unsigned(kind);
StartOffset = startOffset;
assert(StartOffset == startOffset && "Overflow");
EndOffset = endOffset;
assert(EndOffset == endOffset && "Overflow");
RuleID = ruleID;
assert(RuleID == ruleID && "Overflow");
Inverse = inverse;
}
static RewriteStep forRewriteRule(unsigned startOffset, unsigned endOffset,
unsigned ruleID, bool inverse) {
return RewriteStep(ApplyRewriteRule, startOffset, endOffset, ruleID, inverse);
}
static RewriteStep forAdjustment(unsigned offset, bool inverse) {
return RewriteStep(AdjustConcreteType, offset, /*endOffset=*/0,
/*ruleID=*/0, inverse);
}
bool isInContext() const {
return StartOffset > 0 || EndOffset > 0;
}
void invert() {
Inverse = !Inverse;
}
AppliedRewriteStep applyRewriteRule(MutableTerm &term,
const RewriteSystem &system) const;
MutableTerm applyAdjustment(MutableTerm &term,
const RewriteSystem &system) const;
void apply(MutableTerm &term, const RewriteSystem &system) const;
bool isInverseOf(const RewriteStep &other) const;
bool maybeSwapRewriteSteps(RewriteStep &other,
const RewriteSystem &system);
void dump(llvm::raw_ostream &out,
MutableTerm &term,
const RewriteSystem &system) const;
};
/// Records a sequence of zero or more rewrite rules applied to a term.
class RewritePath {
SmallVector<RewriteStep, 3> Steps;
public:
bool empty() const {
return Steps.empty();
}
unsigned size() const {
return Steps.size();
}
void add(RewriteStep step) {
Steps.push_back(step);
}
// Horizontal composition of paths.
void append(RewritePath other) {
Steps.append(other.begin(), other.end());
}
decltype(Steps)::const_iterator begin() const {
return Steps.begin();
}
decltype(Steps)::const_iterator end() const {
return Steps.end();
}
llvm::SmallVector<unsigned, 1> findRulesAppearingOnceInEmptyContext() const;
RewritePath splitCycleAtRule(unsigned ruleID) const;
bool replaceRuleWithPath(unsigned ruleID, const RewritePath &path);
bool computeFreelyReducedPath();
bool computeCyclicallyReducedLoop(MutableTerm &basepoint,
const RewriteSystem &system);
bool computeLeftCanonicalForm(const RewriteSystem &system);
void invert();
void dump(llvm::raw_ostream &out,
MutableTerm term,
const RewriteSystem &system) const;
};
/// A loop (3-cell) that rewrites the basepoint back to the basepoint.
class HomotopyGenerator {
public:
MutableTerm Basepoint;
RewritePath Path;
private:
bool Deleted;
public:
HomotopyGenerator(MutableTerm basepoint, RewritePath path)
: Basepoint(basepoint), Path(path), Deleted(false) {}
bool isDeleted() const {
return Deleted;
}
void markDeleted() {
assert(!Deleted);
Deleted = true;
}
void normalize(const RewriteSystem &system);
bool isInContext() const;
void findProtocolConformanceRules(
SmallVectorImpl<unsigned> &notInContext,
SmallVectorImpl<std::pair<MutableTerm, unsigned>> &inContext,
const RewriteSystem &system) const;
void dump(llvm::raw_ostream &out, const RewriteSystem &system) const;
};
/// A term rewrite system for working with types in a generic signature.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class RewriteSystem final {
/// Rewrite context for memory allocation.
RewriteContext &Context;
/// The rules added so far, including rules from our client, as well
/// as rules introduced by the completion procedure.
std::vector<Rule> Rules;
/// A prefix trie of rule left hand sides to optimize lookup. The value
/// type is an index into the Rules array defined above.
Trie<unsigned, MatchKind::Shortest> Trie;
/// The graph of all protocols transitively referenced via our set of
/// rewrite rules, used for the linear order on symbols.
ProtocolGraph Protos;
/// Constructed from a rule of the form X.[P2:T] => X.[P1:T] by
/// checkMergedAssociatedType().
struct MergedAssociatedType {
/// The *right* hand side of the original rule, X.[P1:T].
Term rhs;
/// The associated type symbol appearing at the end of the *left*
/// hand side of the original rule, [P2:T].
Symbol lhsSymbol;
/// The merged associated type symbol, [P1&P2:T].
Symbol mergedSymbol;
};
/// A list of pending terms for the associated type merging completion
/// heuristic. Entries are added by checkMergedAssociatedType(), and
/// consumed in processMergedAssociatedTypes().
std::vector<MergedAssociatedType> MergedAssociatedTypes;
/// Pairs of rules which have already been checked for overlap.
llvm::DenseSet<std::pair<unsigned, unsigned>> CheckedOverlaps;
/// Homotopy generators for this rewrite system. These are the
/// cyclic rewrite paths which rewrite a term back to itself.
///
/// In the category theory interpretation, a rewrite rule is a generating
/// 2-cell, and a rewrite path is a 2-cell made from a composition of
/// generating 2-cells.
///
/// Homotopy generators, in turn, are 3-cells. The special case of a
/// 3-cell discovered during completion can be viewed as two parallel
/// 2-cells; this is actually represented as a single 2-cell forming a
/// loop around a base point.
///
/// This data informs the generic signature minimization algorithm.
std::vector<HomotopyGenerator> HomotopyGenerators;
DebugOptions Debug;
public:
explicit RewriteSystem(RewriteContext &ctx);
~RewriteSystem();
RewriteSystem(const RewriteSystem &) = delete;
RewriteSystem(RewriteSystem &&) = delete;
RewriteSystem &operator=(const RewriteSystem &) = delete;
RewriteSystem &operator=(RewriteSystem &&) = delete;
/// Return the rewrite context used for allocating memory.
RewriteContext &getRewriteContext() const { return Context; }
/// Return the object recording information about known protocols.
const ProtocolGraph &getProtocols() const { return Protos; }
void initialize(std::vector<std::pair<MutableTerm, MutableTerm>> &&assocaitedTypeRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules,
ProtocolGraph &&protos);
unsigned getRuleID(const Rule &rule) const {
assert((unsigned)(&rule - &*Rules.begin()) < Rules.size());
return (unsigned)(&rule - &*Rules.begin());
}
Rule &getRule(unsigned ruleID) {
return Rules[ruleID];
}
const Rule &getRule(unsigned ruleID) const {
return Rules[ruleID];
}
bool addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path=nullptr);
bool simplify(MutableTerm &term, RewritePath *path=nullptr) const;
//////////////////////////////////////////////////////////////////////////////
///
/// Completion
///
//////////////////////////////////////////////////////////////////////////////
enum class CompletionResult {
/// Confluent completion was computed successfully.
Success,
/// Maximum number of iterations reached.
MaxIterations,
/// Completion produced a rewrite rule whose left hand side has a length
/// exceeding the limit.
MaxDepth
};
std::pair<CompletionResult, unsigned>
computeConfluentCompletion(unsigned maxIterations,
unsigned maxDepth);
void simplifyRewriteSystem();
enum ValidityPolicy {
AllowInvalidRequirements,
DisallowInvalidRequirements
};
void verifyRewriteRules(ValidityPolicy policy) const;
private:
bool
computeCriticalPair(
ArrayRef<Symbol>::const_iterator from,
const Rule &lhs, const Rule &rhs,
std::vector<std::pair<MutableTerm, MutableTerm>> &pairs,
std::vector<RewritePath> &paths,
std::vector<HomotopyGenerator> &loops) const;
void processMergedAssociatedTypes();
void checkMergedAssociatedType(Term lhs, Term rhs);
public:
//////////////////////////////////////////////////////////////////////////////
///
/// Homotopy reduction
///
//////////////////////////////////////////////////////////////////////////////
Optional<unsigned>
findRuleToDelete(bool firstPass,
const llvm::DenseSet<unsigned> *redundantConformances,
RewritePath &replacementPath);
void deleteRule(unsigned ruleID, const RewritePath &replacementPath);
void performHomotopyReduction(
bool firstPass,
const llvm::DenseSet<unsigned> *redundantConformances);
void minimizeRewriteSystem();
void verifyHomotopyGenerators() const;
//////////////////////////////////////////////////////////////////////////////
///
/// Generating conformances
///
//////////////////////////////////////////////////////////////////////////////
void decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term,
SmallVectorImpl<unsigned> &result) const;
void decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, unsigned ruleID,
SmallVectorImpl<unsigned> &result) const;
void computeCandidateConformancePaths(
llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>>
&conformancePaths) const;
bool isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
llvm::DenseSet<unsigned> &redundantConformances,
const llvm::SmallVectorImpl<unsigned> &path,
const llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>>
&conformancePaths) const;
void dumpGeneratingConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const;
void verifyGeneratingConformanceEquations(
const llvm::MapVector<unsigned,
std::vector<SmallVector<unsigned, 2>>>
&conformancePaths) const;
void computeGeneratingConformances(
llvm::DenseSet<unsigned> &redundantConformances);
//////////////////////////////////////////////////////////////////////////////
///
/// Property map
///
//////////////////////////////////////////////////////////////////////////////
std::pair<CompletionResult, unsigned>
buildPropertyMap(PropertyMap &map,
unsigned maxIterations,
unsigned maxDepth);
void dump(llvm::raw_ostream &out) const;
};
} // end namespace rewriting
} // end namespace swift
#endif