Files
swift-mirror/stdlib/public/core/Collection.swift
2015-12-12 12:00:05 +11:00

821 lines
27 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
@available(*, unavailable, message="access the 'count' property on the collection")
public func count <T : CollectionType>(x: T) -> T.Index.Distance {
fatalError("unavailable function can't be called")
}
/// A protocol representing the minimal requirements of
/// `CollectionType`.
///
/// - Note: In most cases, it's best to ignore this protocol and use
/// `CollectionType` instead, as it has a more complete interface.
//
// This protocol is almost an implementation detail of the standard
// library; it is used to deduce things like the `SubSequence` and
// `Generator` type from a minimal collection, but it is also used in
// exposed places like as a constraint on IndexingGenerator.
public protocol Indexable {
/// A type that represents a valid position in the collection.
///
/// Valid indices consist of the position of every element and a
/// "past the end" position that's not valid for use as a subscript.
typealias Index : ForwardIndexType
/// The position of the first element in a non-empty collection.
///
/// In an empty collection, `startIndex == endIndex`.
///
/// - Complexity: O(1)
var startIndex: Index {get}
/// The collection's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
///
/// - Complexity: O(1)
var endIndex: Index {get}
// The declaration of _Element and subscript here is a trick used to
// break a cyclic conformance/deduction that Swift can't handle. We
// need something other than a CollectionType.Generator.Element that can
// be used as IndexingGenerator<T>'s Element. Here we arrange for the
// CollectionType itself to have an Element type that's deducible from
// its subscript. Ideally we'd like to constrain this
// Element to be the same as CollectionType.Generator.Element (see
// below), but we have no way of expressing it today.
typealias _Element
/// Returns the element at the given `position`.
///
/// - Complexity: O(1)
subscript(position: Index) -> _Element {get}
}
public protocol MutableIndexable {
typealias Index : ForwardIndexType
var startIndex: Index {get}
var endIndex: Index {get}
typealias _Element
subscript(position: Index) -> _Element {get set}
}
/// A *generator* for an arbitrary *collection*. Provided `C`
/// conforms to the other requirements of `Indexable`,
/// `IndexingGenerator<C>` can be used as the result of `C`'s
/// `generate()` method. For example:
///
/// struct MyCollection : CollectionType {
/// struct Index : ForwardIndexType { /* implementation hidden */ }
/// subscript(i: Index) -> MyElement { /* implementation hidden */ }
/// func generate() -> IndexingGenerator<MyCollection> { // <===
/// return IndexingGenerator(self)
/// }
/// }
public struct IndexingGenerator<Elements : Indexable>
: GeneratorType, SequenceType {
/// Create a *generator* over the given collection.
public init(_ elements: Elements) {
self._elements = elements
self._position = elements.startIndex
}
/// Advance to the next element and return it, or `nil` if no next
/// element exists.
///
/// - Requires: No preceding call to `self.next()` has returned `nil`.
public mutating func next() -> Elements._Element? {
guard _position != _elements.endIndex else { return .None }
let element: Elements._Element? = .Some(_elements[_position])
_position = _position.successor()
return element
}
internal let _elements: Elements
internal var _position: Elements.Index
}
/// A multi-pass *sequence* with addressable positions.
///
/// Positions are represented by an associated `Index` type. Whereas
/// an arbitrary *sequence* may be consumed as it is traversed, a
/// *collection* is multi-pass: any element may be revisited merely by
/// saving its index.
///
/// The sequence view of the elements is identical to the collection
/// view. In other words, the following code binds the same series of
/// values to `x` as does `for x in self {}`:
///
/// for i in startIndex..<endIndex {
/// let x = self[i]
/// }
public protocol CollectionType : Indexable, SequenceType {
/// A type that provides the *sequence*'s iteration interface and
/// encapsulates its iteration state.
///
/// By default, a `CollectionType` satisfies `SequenceType` by
/// supplying an `IndexingGenerator` as its associated `Generator`
/// type.
typealias Generator: GeneratorType = IndexingGenerator<Self>
// FIXME: Needed here so that the Generator is properly deduced from
// a custom generate() function. Otherwise we get an
// IndexingGenerator. <rdar://problem/21539115>
func generate() -> Generator
// FIXME: should be constrained to CollectionType
// (<rdar://problem/20715009> Implement recursive protocol
// constraints)
/// A `SequenceType` that can represent a contiguous subrange of `self`'s
/// elements.
///
/// - Note: This associated type appears as a requirement in
/// `SequenceType`, but is restated here with stricter
/// constraints: in a `CollectionType`, the `SubSequence` should
/// also be a `CollectionType`.
typealias SubSequence: Indexable, SequenceType = Slice<Self>
/// Returns the element at the given `position`.
subscript(position: Index) -> Generator.Element {get}
/// Returns a collection representing a contiguous sub-range of
/// `self`'s elements.
///
/// - Complexity: O(1)
subscript(bounds: Range<Index>) -> SubSequence {get}
/// Returns `self[startIndex..<end]`
///
/// - Complexity: O(1)
@warn_unused_result
func prefixUpTo(end: Index) -> SubSequence
/// Returns `self[start..<endIndex]`
///
/// - Complexity: O(1)
@warn_unused_result
func suffixFrom(start: Index) -> SubSequence
/// Returns `prefixUpTo(position.successor())`
///
/// - Complexity: O(1)
@warn_unused_result
func prefixThrough(position: Index) -> SubSequence
/// Returns `true` iff `self` is empty.
var isEmpty: Bool { get }
/// Returns the number of elements.
///
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndexType`;
/// O(N) otherwise.
var count: Index.Distance { get }
// The following requirement enables dispatching for indexOf when
// the element type is Equatable.
/// Returns `Optional(Optional(index))` if an element was found;
/// `nil` otherwise.
///
/// - Complexity: O(N).
@warn_unused_result
func _customIndexOfEquatableElement(element: Generator.Element) -> Index??
/// Returns the first element of `self`, or `nil` if `self` is empty.
var first: Generator.Element? { get }
}
/// Supply the default `generate()` method for `CollectionType` models
/// that accept the default associated `Generator`,
/// `IndexingGenerator<Self>`.
extension CollectionType where Generator == IndexingGenerator<Self> {
public func generate() -> IndexingGenerator<Self> {
return IndexingGenerator(self)
}
}
/// Supply the default "slicing" `subscript` for `CollectionType` models
/// that accept the default associated `SubSequence`, `Slice<Self>`.
extension CollectionType where SubSequence == Slice<Self> {
public subscript(bounds: Range<Index>) -> Slice<Self> {
Index._failEarlyRangeCheck2(
bounds.startIndex, rangeEnd: bounds.endIndex,
boundsStart: startIndex, boundsEnd: endIndex)
return Slice(base: self, bounds: bounds)
}
}
extension CollectionType where SubSequence == Self {
/// If `!self.isEmpty`, remove the first element and return it, otherwise
/// return `nil`.
///
/// - Complexity: O(`self.count`)
@warn_unused_result
public mutating func popFirst() -> Generator.Element? {
guard !isEmpty else { return nil }
let element = first!
self = self[startIndex.successor()..<endIndex]
return element
}
/// If `!self.isEmpty`, remove the last element and return it, otherwise
/// return `nil`.
///
/// - Complexity: O(`self.count`)
@warn_unused_result
public mutating func popLast() -> Generator.Element? {
guard !isEmpty else { return nil }
let lastElementIndex = startIndex.advancedBy(numericCast(count) - 1)
let element = self[lastElementIndex]
self = self[startIndex..<lastElementIndex]
return element
}
}
/// Default implementations of core requirements
extension CollectionType {
/// Returns `true` iff `self` is empty.
///
/// - Complexity: O(1)
public var isEmpty: Bool {
return startIndex == endIndex
}
/// Returns the first element of `self`, or `nil` if `self` is empty.
///
/// - Complexity: O(1)
public var first: Generator.Element? {
return isEmpty ? nil : self[startIndex]
}
/// Returns a value less than or equal to the number of elements in
/// `self`, *nondestructively*.
///
/// - Complexity: O(N).
public func underestimateCount() -> Int {
return numericCast(count)
}
/// Returns the number of elements.
///
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndexType`;
/// O(N) otherwise.
public var count: Index.Distance {
return startIndex.distanceTo(endIndex)
}
/// Customization point for `SequenceType.indexOf()`.
///
/// Define this method if the collection can find an element in less than
/// O(N) by exploiting collection-specific knowledge.
///
/// - Returns: `nil` if a linear search should be attempted instead,
/// `Optional(nil)` if the element was not found, or
/// `Optional(Optional(index))` if an element was found.
///
/// - Complexity: O(N).
@warn_unused_result
public // dispatching
func _customIndexOfEquatableElement(_: Generator.Element) -> Index?? {
return nil
}
}
//===----------------------------------------------------------------------===//
// Default implementations for CollectionType
//===----------------------------------------------------------------------===//
extension CollectionType {
/// Return an `Array` containing the results of mapping `transform`
/// over `self`.
///
/// - Complexity: O(N).
@warn_unused_result
public func map<T>(
@noescape transform: (Generator.Element) throws -> T
) rethrows -> [T] {
let count: Int = numericCast(self.count)
if count == 0 {
return []
}
var result = ContiguousArray<T>()
result.reserveCapacity(count)
var i = self.startIndex
for _ in 0..<count {
result.append(try transform(self[i++]))
}
_expectEnd(i, self)
return Array(result)
}
/// Returns a subsequence containing all but the first `n` elements.
///
/// - Requires: `n >= 0`
/// - Complexity: O(`n`)
@warn_unused_result
public func dropFirst(n: Int) -> SubSequence {
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
let start = startIndex.advancedBy(numericCast(n), limit: endIndex)
return self[start..<endIndex]
}
/// Returns a subsequence containing all but the last `n` elements.
///
/// - Requires: `n >= 0`
/// - Complexity: O(`self.count`)
@warn_unused_result
public func dropLast(n: Int) -> SubSequence {
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
let amount = max(0, numericCast(count) - n)
let end = startIndex.advancedBy(numericCast(amount), limit: endIndex)
return self[startIndex..<end]
}
/// Returns a subsequence, up to `maxLength` in length, containing the
/// initial elements.
///
/// If `maxLength` exceeds `self.count`, the result contains all
/// the elements of `self`.
///
/// - Requires: `maxLength >= 0`
/// - Complexity: O(`maxLength`)
@warn_unused_result
public func prefix(maxLength: Int) -> SubSequence {
_precondition(maxLength >= 0, "Can't take a prefix of negative length from a collection")
let end = startIndex.advancedBy(numericCast(maxLength), limit: endIndex)
return self[startIndex..<end]
}
/// Returns a slice, up to `maxLength` in length, containing the
/// final elements of `s`.
///
/// If `maxLength` exceeds `s.count`, the result contains all
/// the elements of `s`.
///
/// - Requires: `maxLength >= 0`
/// - Complexity: O(`self.count`)
@warn_unused_result
public func suffix(maxLength: Int) -> SubSequence {
_precondition(maxLength >= 0, "Can't take a suffix of negative length from a collection")
let amount = max(0, numericCast(count) - maxLength)
let start = startIndex.advancedBy(numericCast(amount), limit: endIndex)
return self[start..<endIndex]
}
/// Returns `self[startIndex..<end]`
///
/// - Complexity: O(1)
@warn_unused_result
public func prefixUpTo(end: Index) -> SubSequence {
return self[startIndex..<end]
}
/// Returns `self[start..<endIndex]`
///
/// - Complexity: O(1)
@warn_unused_result
public func suffixFrom(start: Index) -> SubSequence {
return self[start..<endIndex]
}
/// Returns `prefixUpTo(position.successor())`
///
/// - Complexity: O(1)
@warn_unused_result
public func prefixThrough(position: Index) -> SubSequence {
return prefixUpTo(position.successor())
}
/// Returns the maximal `SubSequence`s of `self`, in order, that
/// don't contain elements satisfying the predicate `isSeparator`.
///
/// - Parameter maxSplit: The maximum number of `SubSequence`s to
/// return, minus 1.
/// If `maxSplit + 1` `SubSequence`s are returned, the last one is
/// a suffix of `self` containing the remaining elements.
/// The default value is `Int.max`.
///
/// - Parameter allowEmptySubsequences: If `true`, an empty `SubSequence`
/// is produced in the result for each pair of consecutive elements
/// satisfying `isSeparator`.
/// The default value is `false`.
///
/// - Requires: `maxSplit >= 0`
@warn_unused_result
public func split(
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false,
@noescape isSeparator: (Generator.Element) throws -> Bool
) rethrows -> [SubSequence] {
_precondition(maxSplit >= 0, "Must take zero or more splits")
var result: [SubSequence] = []
var subSequenceStart: Index = startIndex
func appendSubsequence(end end: Index) -> Bool {
if subSequenceStart == end && !allowEmptySlices {
return false
}
result.append(self[subSequenceStart..<end])
return true
}
if maxSplit == 0 || isEmpty {
appendSubsequence(end: endIndex)
return result
}
var subSequenceEnd = subSequenceStart
let cachedEndIndex = endIndex
while subSequenceEnd != cachedEndIndex {
if try isSeparator(self[subSequenceEnd]) {
let didAppend = appendSubsequence(end: subSequenceEnd)
++subSequenceEnd
subSequenceStart = subSequenceEnd
if didAppend && result.count == maxSplit {
break
}
continue
}
++subSequenceEnd
}
if subSequenceStart != cachedEndIndex || allowEmptySlices {
result.append(self[subSequenceStart..<cachedEndIndex])
}
return result
}
}
extension CollectionType where Generator.Element : Equatable {
/// Returns the maximal `SubSequence`s of `self`, in order, around a
/// `separator` element.
///
/// - Parameter maxSplit: The maximum number of `SubSequence`s to
/// return, minus 1.
/// If `maxSplit + 1` `SubSequence`s are returned, the last one is
/// a suffix of `self` containing the remaining elements.
/// The default value is `Int.max`.
///
/// - Parameter allowEmptySubsequences: If `true`, an empty `SubSequence`
/// is produced in the result for each pair of consecutive elements
/// satisfying `isSeparator`.
/// The default value is `false`.
///
/// - Requires: `maxSplit >= 0`
@warn_unused_result
public func split(
separator: Generator.Element,
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false
) -> [SubSequence] {
return split(maxSplit, allowEmptySlices: allowEmptySlices,
isSeparator: { $0 == separator })
}
}
extension CollectionType where Index : BidirectionalIndexType {
/// Returns a subsequence containing all but the last `n` elements.
///
/// - Requires: `n >= 0`
/// - Complexity: O(`n`)
@warn_unused_result
public func dropLast(n: Int) -> SubSequence {
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
let end = endIndex.advancedBy(numericCast(-n), limit: startIndex)
return self[startIndex..<end]
}
/// Returns a slice, up to `maxLength` in length, containing the
/// final elements of `s`.
///
/// If `maxLength` exceeds `s.count`, the result contains all
/// the elements of `s`.
///
/// - Requires: `maxLength >= 0`
/// - Complexity: O(`maxLength`)
@warn_unused_result
public func suffix(maxLength: Int) -> SubSequence {
_precondition(maxLength >= 0, "Can't take a suffix of negative length from a collection")
let start = endIndex.advancedBy(numericCast(-maxLength), limit: startIndex)
return self[start..<endIndex]
}
}
extension CollectionType where SubSequence == Self {
/// Remove the element at `startIndex` and return it.
///
/// - Complexity: O(1)
/// - Requires: `!self.isEmpty`.
public mutating func removeFirst() -> Generator.Element {
_precondition(!isEmpty, "can't remove items from an empty collection")
let element = first!
self = self[startIndex.successor()..<endIndex]
return element
}
/// Remove the first `n` elements.
///
/// - Complexity:
/// - O(1) if `Index` conforms to `RandomAccessIndexType`
/// - O(n) otherwise
/// - Requires: `n >= 0 && self.count >= n`.
public mutating func removeFirst(n: Int) {
if n == 0 { return }
_precondition(n >= 0, "number of elements to remove should be non-negative")
_precondition(count >= numericCast(n),
"can't remove more items from a collection than it contains")
self = self[startIndex.advancedBy(numericCast(n))..<endIndex]
}
}
extension CollectionType
where
SubSequence == Self,
Index : BidirectionalIndexType {
/// Remove an element from the end.
///
/// - Complexity: O(1)
/// - Requires: `!self.isEmpty`
public mutating func removeLast() -> Generator.Element {
let element = last!
self = self[startIndex..<endIndex.predecessor()]
return element
}
/// Remove the last `n` elements.
///
/// - Complexity:
/// - O(1) if `Index` conforms to `RandomAccessIndexType`
/// - O(n) otherwise
/// - Requires: `n >= 0 && self.count >= n`.
public mutating func removeLast(n: Int) {
if n == 0 { return }
_precondition(n >= 0, "number of elements to remove should be non-negative")
_precondition(count >= numericCast(n),
"can't remove more items from a collection than it contains")
self = self[startIndex..<endIndex.advancedBy(numericCast(-n))]
}
}
extension SequenceType
where Self : _ArrayType, Self.Element == Self.Generator.Element {
// A fast implementation for when you are backed by a contiguous array.
public func _initializeTo(ptr: UnsafeMutablePointer<Generator.Element>)
-> UnsafeMutablePointer<Generator.Element> {
let s = self._baseAddressIfContiguous
if s != nil {
let count = self.count
ptr.initializeFrom(s, count: count)
_fixLifetime(self._owner)
return ptr + count
} else {
var p = ptr
for x in self {
p++.initialize(x)
}
return p
}
}
}
extension CollectionType {
public func _preprocessingPass<R>(preprocess: (Self)->R) -> R? {
return preprocess(self)
}
}
/// Returns `true` iff `x` is empty.
@available(*, unavailable, message="access the 'isEmpty' property on the collection")
public func isEmpty<C: CollectionType>(x: C) -> Bool {
fatalError("unavailable function can't be called")
}
/// Returns the first element of `x`, or `nil` if `x` is empty.
@available(*, unavailable, message="access the 'first' property on the collection")
public func first<C: CollectionType>(x: C) -> C.Generator.Element? {
fatalError("unavailable function can't be called")
}
/// Returns the last element of `x`, or `nil` if `x` is empty.
@available(*, unavailable, message="access the 'last' property on the collection")
public func last<C: CollectionType where C.Index: BidirectionalIndexType>(
x: C
) -> C.Generator.Element? {
fatalError("unavailable function can't be called")
}
/// A *collection* that supports subscript assignment.
///
/// For any instance `a` of a type conforming to
/// `MutableCollectionType`, :
///
/// a[i] = x
/// let y = a[i]
///
/// is equivalent to:
///
/// a[i] = x
/// let y = x
///
public protocol MutableCollectionType : MutableIndexable, CollectionType {
// FIXME: should be constrained to MutableCollectionType
// (<rdar://problem/20715009> Implement recursive protocol
// constraints)
typealias SubSequence : CollectionType /*: MutableCollectionType*/
= MutableSlice<Self>
/// Access the element at `position`.
///
/// - Requires: `position` indicates a valid position in `self` and
/// `position != endIndex`.
///
/// - Complexity: O(1)
subscript(position: Index) -> Generator.Element {get set}
/// Returns a collection representing a contiguous sub-range of
/// `self`'s elements.
///
/// - Complexity: O(1) for the getter, O(`bounds.count`) for the setter.
subscript(bounds: Range<Index>) -> SubSequence {get set}
/// Call `body(p)`, where `p` is a pointer to the collection's
/// mutable contiguous storage. If no such storage exists, it is
/// first created. If the collection does not support an internal
/// representation in a form of mutable contiguous storage, `body` is not
/// called and `nil` is returned.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks
/// within an algorithm, but when that fails, invoking the
/// same algorithm on `body`\ 's argument lets you trade safety for
/// speed.
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
@noescape body: (UnsafeMutablePointer<Generator.Element>, Int) throws -> R
) rethrows -> R?
// FIXME: the signature should use UnsafeMutableBufferPointer, but the
// compiler can't handle that.
//
// <rdar://problem/21933004> Restore the signature of
// _withUnsafeMutableBufferPointerIfSupported() that mentions
// UnsafeMutableBufferPointer
}
extension MutableCollectionType {
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
@noescape body: (UnsafeMutablePointer<Generator.Element>, Int) throws -> R
) rethrows -> R? {
return nil
}
public subscript(bounds: Range<Index>) -> MutableSlice<Self> {
get {
Index._failEarlyRangeCheck2(
bounds.startIndex, rangeEnd: bounds.endIndex,
boundsStart: startIndex, boundsEnd: endIndex)
return MutableSlice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
}
internal func _writeBackMutableSlice<
Collection : MutableCollectionType,
Slice_ : CollectionType
where
Collection._Element == Slice_.Generator.Element,
Collection.Index == Slice_.Index
>(inout self_: Collection, bounds: Range<Collection.Index>, slice: Slice_) {
Collection.Index._failEarlyRangeCheck2(
bounds.startIndex, rangeEnd: bounds.endIndex,
boundsStart: self_.startIndex, boundsEnd: self_.endIndex)
// FIXME(performance): can we use
// _withUnsafeMutableBufferPointerIfSupported? Would that create inout
// aliasing violations if the newValue points to the same buffer?
var selfElementIndex = bounds.startIndex
let selfElementsEndIndex = bounds.endIndex
var newElementIndex = slice.startIndex
let newElementsEndIndex = slice.endIndex
while selfElementIndex != selfElementsEndIndex &&
newElementIndex != newElementsEndIndex {
self_[selfElementIndex] = slice[newElementIndex]
++selfElementIndex
++newElementIndex
}
_precondition(
selfElementIndex == selfElementsEndIndex,
"Can not replace a slice of a MutableCollectionType with a slice of a larger size")
_precondition(
newElementIndex == newElementsEndIndex,
"Can not replace a slice of a MutableCollectionType with a slice of a smaller size")
}
/// Returns the range of `x`'s valid index values.
///
/// The result's `endIndex` is the same as that of `x`. Because
/// `Range` is half-open, iterating the values of the result produces
/// all valid subscript arguments for `x`, omitting its `endIndex`.
@available(*, unavailable, message="access the 'indices' property on the collection")
public func indices<
C : CollectionType>(x: C) -> Range<C.Index> {
fatalError("unavailable function can't be called")
}
/// A *generator* that adapts a *collection* `C` and any *sequence* of
/// its `Index` type to present the collection's elements in a
/// permuted order.
public struct PermutationGenerator<
C: CollectionType, Indices: SequenceType
where C.Index == Indices.Generator.Element
> : GeneratorType, SequenceType {
var seq : C
var indices : Indices.Generator
/// The type of element returned by `next()`.
public typealias Element = C.Generator.Element
/// Advance to the next element and return it, or `nil` if no next
/// element exists.
///
/// - Requires: No preceding call to `self.next()` has returned `nil`.
public mutating func next() -> Element? {
return indices.next().map { seq[$0] }
}
/// Construct a *generator* over a permutation of `elements` given
/// by `indices`.
///
/// - Requires: `elements[i]` is valid for every `i` in `indices`.
public init(elements: C, indices: Indices) {
self.seq = elements
self.indices = indices.generate()
}
}
/// A *collection* with mutable slices.
///
/// For example,
///
/// x[i..<j] = someExpression
/// x[i..<j].mutatingMethod()
public protocol MutableSliceable : CollectionType, MutableCollectionType {
subscript(_: Range<Index>) -> SubSequence { get set }
}
@available(*, unavailable, message="Use the dropFirst() method instead.")
public func dropFirst<Seq : CollectionType>(s: Seq) -> Seq.SubSequence {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, message="Use the dropLast() method instead.")
public func dropLast<
S : CollectionType
where S.Index: BidirectionalIndexType
>(s: S) -> S.SubSequence {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, message="Use the prefix() method.")
public func prefix<S : CollectionType>(s: S, _ maxLength: Int) -> S.SubSequence {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, message="Use the suffix() method instead.")
public func suffix<
S : CollectionType where S.Index: BidirectionalIndexType
>(s: S, _ maxLength: Int) -> S.SubSequence {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, renamed="CollectionType")
public struct Sliceable {}