Files
swift-mirror/lib/SILGen/SILGenProlog.cpp
Adrian Prantl 64cbec3805 Add SIL syntax for declaring debug variables.
Debug variable info may be attached to debug_value, debug_value_addr,
alloc_box, and alloc_stack instructions.

In order to write textual SIL -> SIL testcases that exercise the handling
of debug information by SIL passes, we need to make a couple of additions
to the textual SIL language. In memory, the debug information attached to
SIL instructions references information from the AST. If we want to create
debug info from parsing a textual .sil file, these bits need to be made
explicit.

Performance Notes: This is memory neutral for compilations from Swift
source code, because the variable name is still stored in the AST. For
compilations from textual source the variable name is stored in tail-
allocated memory following the SIL instruction that introduces the
variable.

<rdar://problem/22707128>
2015-12-14 10:29:50 -08:00

534 lines
19 KiB
C++

//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/Basic/Fallthrough.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = new (SGM.M) SILArgument(F.begin(), selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
unsigned ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue, {selfDecl->isLet(), ArgNo});
return selfValue;
}
namespace {
/// Cleanup that writes back to a inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitStrongReleaseAndFold(l, box);
}
};
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs,
ArrayRef<SILParameterInfo> &parameters)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
parameters(parameters) {}
ManagedValue getManagedValue(SILValue arg, CanType t,
SILParameterInfo parameterInfo) const {
switch (parameterInfo.getConvention()) {
case ParameterConvention::Direct_Deallocating:
// If we have a deallocating parameter, it is passed in at +0 and will not
// be deallocated since we do not allow for resurrection.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
// If we have a guaranteed parameter, it is passed in at +0, and its
// lifetime is guaranteed. We can potentially use the argument as-is
// if the parameter is bound as a 'let' without cleaning up.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Unowned:
// An unowned parameter is passed at +0, like guaranteed, but it isn't
// kept alive by the caller, so we need to retain and manage it
// regardless.
return gen.emitManagedRetain(loc, arg);
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// An inout parameter is +0 and guaranteed, but represents an lvalue.
return ManagedValue::forLValue(arg);
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
// An owned or 'in' parameter is passed in at +1. We can claim ownership
// of the parameter and clean it up when it goes out of scope.
return gen.emitManagedRValueWithCleanup(arg);
case ParameterConvention::Indirect_Out:
llvm_unreachable("should not emit @out parameters here");
}
}
ManagedValue visitType(CanType t) {
auto argType = gen.getLoweredType(t);
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
assert(argType == parent->getParent()
->mapTypeIntoContext(parameterInfo.getSILType()) &&
"argument does not have same type as specified by parameter info");
SILValue arg = new (gen.SGM.M)
SILArgument(parent, argType, loc.getAsASTNode<ValueDecl>());
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = gen.getTypeLowering(t);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(gen)
: element.copyUnmanaged(gen, loc).forward(gen);
elementValues.push_back(value);
}
}
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: gen.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(gen, loc, elementBuffer);
else
element.copyInto(gen, elementBuffer, loc);
}
return gen.emitManagedRValueWithCleanup(buffer);
}
}
};
/// A visitor for traversing a pattern, creating
/// SILArguments, and binding variables to the argument names.
struct ArgumentInitVisitor :
public PatternVisitor<ArgumentInitVisitor, /*RetTy=*/ void>
{
SILGenFunction &gen;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
unsigned ArgNo = 0;
ArgumentInitVisitor(SILGenFunction &gen, SILFunction &f)
: gen(gen), f(f), initB(gen.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
// If we have an out parameter, skip it.
if (parameters.size() && parameters[0].isIndirectResult())
parameters = parameters.slice(1);
}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
parameters).visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
SILLocation loc(vd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, parent, loc);
// Create a shadow copy of inout parameters so they can be captured
// by closures. The InOutDeshadowing guaranteed optimization will
// eliminate the variable if it is not needed.
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
SILValue address = argrv.getUnmanagedValue();
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
// As a special case, don't introduce a local variable for
// Builtin.UnsafeValueBuffer, which is not copyable.
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
// FIXME: mark a debug location?
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
gen.B.createDebugValueAddr(loc, address, {vd->isLet(), ArgNo});
return;
}
// Allocate the local variable for the inout.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false, ArgNo);
// Initialize with the value from the inout with an "autogenerated"
// copyaddr.
loc.markAutoGenerated();
gen.B.createCopyAddr(loc, address, initVar->getAddress(),
IsNotTake, IsInitialization);
initVar->finishInitialization(gen);
// Set up a cleanup to write back to the inout.
gen.Cleanups.pushCleanup<CleanupWriteBackToInOut>(vd, address);
} else if (vd->isLet()) {
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue(), {vd->isLet(), ArgNo});
else
gen.B.createDebugValue(loc, argrv.getValue(), {vd->isLet(), ArgNo});
} else {
// If the variable is mutable, we need to copy or move the argument
// value to local mutable memory.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false, ArgNo);
// If we have a cleanup on the value, we can move it into the variable.
if (argrv.hasCleanup())
argrv.forwardInto(gen, loc, initVar->getAddress());
// Otherwise, we need an independently-owned copy.
else
argrv.copyInto(gen, initVar->getAddress(), loc);
initVar->finishInitialization(gen);
}
}
// Paren, Typed, and Var patterns are no-ops. Just look through them.
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
// Destructure tuples into their elements.
for (size_t i = 0, size = P->getNumElements(); i < size; ++i)
visit(P->getElement(i).getPattern());
}
void visitAnyPattern(AnyPattern *P) {
llvm_unreachable("unnamed parameters should have a ParamDecl");
}
void visitNamedPattern(NamedPattern *P) {
++ArgNo;
auto PD = P->getDecl();
if (!PD->hasName()) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(gen.Cleanups, CleanupLocation(P));
makeArgument(P->getType(), &*f.begin(), PD);
// Popping the scope destroys the value.
} else {
makeArgumentIntoBinding(P->getType(), &*f.begin(), PD);
}
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
// Unlike the ArgumentInitVisitor, this visitor generates arguments but leaves
// them destructured instead of storing them to lvalues so that the
// argument set can be easily forwarded to another function.
class ArgumentForwardVisitor
: public PatternVisitor<ArgumentForwardVisitor>
{
SILGenFunction &gen;
SmallVectorImpl<SILValue> &args;
public:
ArgumentForwardVisitor(SILGenFunction &gen,
SmallVectorImpl<SILValue> &args)
: gen(gen), args(args) {}
void makeArgument(Type ty, VarDecl *varDecl) {
assert(ty && "no type?!");
// Destructure tuple arguments.
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, varDecl);
} else {
SILValue arg =
new (gen.F.getModule()) SILArgument(gen.F.begin(),
gen.getLoweredType(ty),
varDecl);
args.push_back(arg);
}
}
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
// FIXME: work around a bug in visiting the "self" argument of methods
if (auto NP = dyn_cast<NamedPattern>(P->getSubPattern()))
makeArgument(P->getType(), NP->getDecl());
else
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getElements())
visit(elt.getPattern());
}
void visitAnyPattern(AnyPattern *P) {
llvm_unreachable("unnamed parameters should have a ParamDecl");
}
void visitNamedPattern(NamedPattern *P) {
makeArgument(P->getType(), P->getDecl());
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
void SILGenFunction::bindParametersForForwarding(Pattern *pattern,
SmallVectorImpl<SILValue> &parameters) {
ArgumentForwardVisitor(*this, parameters).visit(pattern);
}
/// Tuple values captured by a closure are passed as individual arguments to the
/// SILFunction since SILFunctionType canonicalizes away tuple types.
static SILValue
emitReconstitutedConstantCaptureArguments(SILType ty,
ValueDecl *capture,
SILGenFunction &gen) {
auto TT = ty.getAs<TupleType>();
if (!TT)
return new (gen.SGM.M) SILArgument(gen.F.begin(), ty, capture);
SmallVector<SILValue, 4> Elts;
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
auto EltTy = ty.getTupleElementType(i);
auto EV =
emitReconstitutedConstantCaptureArguments(EltTy, capture, gen);
Elts.push_back(EV);
}
return gen.B.createTuple(capture, ty, Elts);
}
static void emitCaptureArguments(SILGenFunction &gen, CapturedValue capture,
unsigned ArgNo) {
auto *VD = capture.getDecl();
auto type = VD->getType();
SILLocation Loc(VD);
Loc.markAsPrologue();
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
auto &lowering = gen.getTypeLowering(VD->getType());
// Constant decls are captured by value. If the captured value is a tuple
// value, we need to reconstitute it before sticking it in VarLocs.
SILType ty = lowering.getLoweredType();
SILValue val = emitReconstitutedConstantCaptureArguments(ty, VD, gen);
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = gen.emitTemporaryAllocation(VD, ty);
gen.B.createStore(VD, val, addr);
val = addr;
}
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else
gen.B.createDebugValue(Loc, val, {/*Constant*/true, ArgNo});
if (!lowering.isTrivial())
gen.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILType boxTy = SILType::getPrimitiveObjectType(
SILBoxType::get(ty.getSwiftRValueType()));
SILValue box = new (gen.SGM.M) SILArgument(gen.F.begin(), boxTy, VD);
SILValue addr = gen.B.createProjectBox(VD, box);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/false, ArgNo});
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/true, ArgNo});
break;
}
}
}
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
ArrayRef<Pattern *> paramPatterns,
Type resultType) {
unsigned ArgNo =
emitProlog(paramPatterns, resultType, TheClosure.getAsDeclContext());
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
auto captureInfo = SGM.Types.getLoweredLocalCaptures(TheClosure);
for (auto capture : captureInfo.getCaptures())
emitCaptureArguments(*this, capture, ++ArgNo);
}
unsigned SILGenFunction::emitProlog(ArrayRef<Pattern *> paramPatterns,
Type resultType, DeclContext *DeclCtx) {
// If the return type is address-only, emit the indirect return argument.
const TypeLowering &returnTI = getTypeLowering(resultType);
if (returnTI.isReturnedIndirectly()) {
auto &AC = getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"), SourceLoc(),
AC.getIdentifier("$return_value"), resultType,
DeclCtx);
IndirectReturnAddress = new (SGM.M)
SILArgument(F.begin(), returnTI.getLoweredType(), VD);
}
// Emit the argument variables in calling convention order.
ArgumentInitVisitor argVisitor(*this, F);
for (Pattern *p : reversed(paramPatterns)) {
// Add the SILArguments and use them to initialize the local argument
// values.
argVisitor.visit(p);
}
return argVisitor.getNumArgs();
}