Files
swift-mirror/lib/SILOptimizer/Transforms/AllocBoxToStack.cpp
Adrian Prantl 64cbec3805 Add SIL syntax for declaring debug variables.
Debug variable info may be attached to debug_value, debug_value_addr,
alloc_box, and alloc_stack instructions.

In order to write textual SIL -> SIL testcases that exercise the handling
of debug information by SIL passes, we need to make a couple of additions
to the textual SIL language. In memory, the debug information attached to
SIL instructions references information from the AST. If we want to create
debug info from parsing a textual .sil file, these bits need to be made
explicit.

Performance Notes: This is memory neutral for compilations from Swift
source code, because the variable name is still stored in the AST. For
compilations from textual source the variable name is stored in tail-
allocated memory following the SIL instruction that introduces the
variable.

<rdar://problem/22707128>
2015-12-14 10:29:50 -08:00

893 lines
32 KiB
C++

//===--- AllocBoxToStack.cpp - Promote alloc_box to alloc_stack -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "allocbox-to-stack"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/Mangle.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumStackPromoted, "Number of alloc_box's promoted to the stack");
//===----------------------------------------------------------------------===//
// alloc_box Promotion
//===----------------------------------------------------------------------===//
/// This is a list we use to store a set of indices. We create the set by
/// sorting, uniqueing at the appropriate time. The reason why it makes sense to
/// just use a sorted vector with std::count is because generally functions do
/// not have that many arguments and even fewer promoted arguments.
using ParamIndexList = llvm::SmallVector<unsigned, 8>;
static SILInstruction* findUnexpectedBoxUse(SILValue Box,
bool examinePartialApply,
bool inAppliedFunction,
llvm::SmallVectorImpl<Operand*> &);
static bool partialApplyArgumentEscapes(Operand *O);
// Propagate liveness backwards from an initial set of blocks in our
// LiveIn set.
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock*> &LiveIn,
SILBasicBlock *DefBB) {
// First populate a worklist of predecessors.
llvm::SmallVector<SILBasicBlock*, 64> Worklist;
for (auto *BB : LiveIn)
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
// Now propagate liveness backwards until we hit the alloc_box.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (BB == DefBB || !LiveIn.insert(BB).second)
continue;
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
}
}
// Is any successor of BB in the LiveIn set?
static bool successorHasLiveIn(SILBasicBlock *BB,
llvm::SmallPtrSetImpl<SILBasicBlock*> &LiveIn) {
for (auto &Succ : BB->getSuccessors())
if (LiveIn.count(Succ))
return true;
return false;
}
// Walk backwards in BB looking for strong_release or dealloc_box of
// the given value, and add it to Releases.
static bool addLastRelease(SILValue V, SILBasicBlock *BB,
llvm::SmallVectorImpl<SILInstruction*> &Releases) {
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
if (isa<StrongReleaseInst>(*I) || isa<DeallocBoxInst>(*I)) {
if (I->getOperand(0) != V)
continue;
Releases.push_back(&*I);
return true;
}
}
return false;
}
// Find the final releases of the alloc_box along any given path.
// These can include paths from a release back to the alloc_box in a
// loop.
static bool getFinalReleases(AllocBoxInst *ABI,
llvm::SmallVectorImpl<SILInstruction*> &Releases) {
llvm::SmallPtrSet<SILBasicBlock*, 16> LiveIn;
llvm::SmallPtrSet<SILBasicBlock*, 16> UseBlocks;
auto *DefBB = ABI->getParent();
auto seenRelease = false;
SILInstruction *OneRelease = nullptr;
auto Box = ABI->getContainerResult();
// We'll treat this like a liveness problem where the alloc_box is
// the def. Each block that has a use of the owning pointer has the
// value live-in unless it is the block with the alloc_box.
for (auto UI : Box.getUses()) {
auto *User = UI->getUser();
auto *BB = User->getParent();
if (BB != DefBB)
LiveIn.insert(BB);
// Also keep track of the blocks with uses.
UseBlocks.insert(BB);
// Try to speed up the trivial case of single release/dealloc.
if (isa<StrongReleaseInst>(User) || isa<DeallocBoxInst>(User)) {
if (!seenRelease)
OneRelease = User;
else
OneRelease = nullptr;
seenRelease = true;
}
}
// Only a single release/dealloc? We're done!
if (OneRelease) {
Releases.push_back(OneRelease);
return true;
}
propagateLiveness(LiveIn, DefBB);
// Now examine each block we saw a use in. If it has no successors
// that are in LiveIn, then the last use in the block is the final
// release/dealloc.
for (auto *BB : UseBlocks)
if (!successorHasLiveIn(BB, LiveIn))
if (!addLastRelease(Box, BB, Releases))
return false;
return true;
}
/// \brief Returns True if the operand or one of its users is captured.
static bool useCaptured(Operand *UI) {
auto *User = UI->getUser();
// These instructions do not cause the address to escape.
if (isa<DebugValueInst>(User) ||
isa<DebugValueAddrInst>(User) ||
isa<StrongReleaseInst>(User) ||
isa<StrongRetainInst>(User))
return false;
if (auto *Store = dyn_cast<StoreInst>(User)) {
if (Store->getDest() == UI->get())
return false;
} else if (auto *Assign = dyn_cast<AssignInst>(User)) {
if (Assign->getDest() == UI->get())
return false;
}
return true;
}
static bool partialApplyEscapes(SILValue V, bool examineApply) {
for (auto UI : V.getUses()) {
auto *User = UI->getUser();
// These instructions do not cause the address to escape.
if (!useCaptured(UI))
continue;
if (auto apply = dyn_cast<ApplyInst>(User)) {
// Applying a function does not cause the function to escape.
if (UI->getOperandNumber() == 0)
continue;
// apply instructions do not capture the pointer when it is passed
// indirectly
if (apply->getSubstCalleeType()
->getParameters()[UI->getOperandNumber()-1].isIndirect())
continue;
// Optionally drill down into an apply to see if the operand is
// captured in or returned from the apply.
if (examineApply && !partialApplyArgumentEscapes(UI))
continue;
}
// partial_apply instructions do not allow the pointer to escape
// when it is passed indirectly, unless the partial_apply itself
// escapes
if (auto partialApply = dyn_cast<PartialApplyInst>(User)) {
auto args = partialApply->getArguments();
auto params = partialApply->getSubstCalleeType()
->getParameters();
params = params.slice(params.size() - args.size(), args.size());
if (params[UI->getOperandNumber()-1].isIndirect()) {
if (partialApplyEscapes(partialApply, /*examineApply = */ true))
return true;
continue;
}
}
return true;
}
return false;
}
/// Given an apply or partial_apply, return the direct callee or
/// nullptr if this is not a direct call.
static FunctionRefInst *getDirectCallee(SILInstruction *Call) {
if (auto *Apply = dyn_cast<ApplyInst>(Call))
return dyn_cast<FunctionRefInst>(Apply->getCallee());
else
return dyn_cast<FunctionRefInst>(cast<PartialApplyInst>(Call)->getCallee());
}
/// Given an operand of a direct apply or partial_apply of a function,
/// return the index of the parameter used in the body of the function
/// to represent this operand.
static size_t getParameterIndexForOperand(Operand *O) {
assert(isa<ApplyInst>(O->getUser()) || isa<PartialApplyInst>(O->getUser()) &&
"Expected apply or partial_apply!");
CanSILFunctionType Type;
size_t ArgCount;
if (auto *Apply = dyn_cast<ApplyInst>(O->getUser())) {
Type = Apply->getSubstCalleeType();
ArgCount = Apply->getArguments().size();
assert(Type->getParameters().size() == ArgCount &&
"Expected all arguments to be supplied!");
} else {
auto *PartialApply = cast<PartialApplyInst>(O->getUser());
Type = PartialApply->getSubstCalleeType();
ArgCount = PartialApply->getArguments().size();
}
size_t ParamCount = Type->getParameters().size();
assert(ParamCount >= ArgCount && "Expected fewer arguments to function!");
auto OperandIndex = O->getOperandNumber();
assert(OperandIndex != 0 && "Operand cannot be the applied function!");
// The applied function is the first operand.
auto ParamIndex = (ParamCount - ArgCount) + OperandIndex - 1;
return ParamIndex;
}
/// Given an operand of a direct apply or partial_apply of a function,
/// return the parameter used in the body of the function to represent
/// this operand.
static SILArgument *getParameterForOperand(SILFunction *F, Operand *O) {
assert(F && !F->empty() && "Expected a function with a body!");
auto &Entry = F->front();
size_t ParamIndex = getParameterIndexForOperand(O);
return Entry.getBBArg(ParamIndex);
}
/// Return a pointer to the SILFunction called by Call if we can
/// determine which function that is, and we have a body for that
/// function. Otherwise return nullptr.
static SILFunction *getFunctionBody(SILInstruction *Call) {
if (auto *FRI = getDirectCallee(Call))
if (auto *F = FRI->getReferencedFunction())
if (!F->empty())
return F;
return nullptr;
}
/// Could this operand to an apply escape that function by being
/// stored or returned?
static bool partialApplyArgumentEscapes(Operand *O) {
SILFunction *F = getFunctionBody(O->getUser());
// If we cannot examine the function body, assume the worst.
if (!F)
return true;
// Check the uses of the operand, but do not recurse down into other
// apply instructions.
auto Param = SILValue(getParameterForOperand(F, O));
return partialApplyEscapes(Param, /* examineApply = */ false);
}
/// checkPartialApplyBody - Check the body of a partial apply to see
/// if the box pointer argument passed to it has uses that would
/// disqualify it from being promoted to a stack location. Return
/// true if this partial apply will not block our promoting the box.
static bool checkPartialApplyBody(Operand *O) {
SILFunction *F = getFunctionBody(O->getUser());
// If we cannot examine the function body, assume the worst.
if (!F)
return false;
// We don't actually use these because we're not recursively
// rewriting the partial applies we find.
llvm::SmallVector<Operand *, 1> PromotedOperands;
auto Param = SILValue(getParameterForOperand(F, O));
return !findUnexpectedBoxUse(Param, /* examinePartialApply = */ false,
/* inAppliedFunction = */ true,
PromotedOperands);
}
/// findUnexpectedBoxUse - Validate that the uses of a pointer to a
/// box do not eliminate it from consideration for promotion to a
/// stack element. Optionally examine the body of partial_apply
/// to see if there is an unexpected use inside. Return the
/// instruction with the unexpected use if we find one.
static SILInstruction* findUnexpectedBoxUse(SILValue Box,
bool examinePartialApply,
bool inAppliedFunction,
llvm::SmallVectorImpl<Operand *> &PromotedOperands) {
assert((Box.getType().is<SILBoxType>()
|| Box.getType()
== SILType::getNativeObjectType(Box.getType().getASTContext()))
&& "Expected an object pointer!");
llvm::SmallVector<Operand *, 4> LocalPromotedOperands;
// Scan all of the uses of the retain count value, collecting all
// the releases and validating that we don't have an unexpected
// user.
for (auto UI : Box.getUses()) {
auto *User = UI->getUser();
// Retains and releases are fine. Deallocs are fine if we're not
// examining a function that the alloc_box was passed into.
// Projections are fine as well.
if (isa<StrongRetainInst>(User) || isa<StrongReleaseInst>(User) ||
isa<ProjectBoxInst>(User) ||
(!inAppliedFunction && isa<DeallocBoxInst>(User)))
continue;
// For partial_apply, if we've been asked to examine the body, the
// uses of the argument are okay there, and the partial_apply
// itself cannot escape, then everything is fine.
if (auto *PAI = dyn_cast<PartialApplyInst>(User))
if (examinePartialApply && checkPartialApplyBody(UI) &&
!partialApplyEscapes(PAI, /* examineApply = */ true)) {
LocalPromotedOperands.push_back(UI);
continue;
}
return User;
}
PromotedOperands.append(LocalPromotedOperands.begin(),
LocalPromotedOperands.end());
return nullptr;
}
/// canPromoteAllocBox - Can we promote this alloc_box to an alloc_stack?
static bool canPromoteAllocBox(AllocBoxInst *ABI,
llvm::SmallVectorImpl<Operand *> &PromotedOperands){
// Scan all of the uses of the address of the box to see if any
// disqualifies the box from being promoted to the stack.
if (auto *User = findUnexpectedBoxUse(ABI->getContainerResult(),
/* examinePartialApply = */ true,
/* inAppliedFunction = */ false,
PromotedOperands)) {
(void)User;
// Otherwise, we have an unexpected use.
DEBUG(llvm::dbgs() << "*** Failed to promote alloc_box in @"
<< ABI->getFunction()->getName() << ": " << *ABI
<< " Due to user: " << *User << "\n");
return false;
}
// Okay, it looks like this value doesn't escape.
return true;
}
/// rewriteAllocBoxAsAllocStack - Replace uses of the alloc_box with a
/// new alloc_stack, but do not delete the alloc_box yet.
static bool rewriteAllocBoxAsAllocStack(AllocBoxInst *ABI,
llvm::SmallVectorImpl<TermInst *> &Returns) {
DEBUG(llvm::dbgs() << "*** Promoting alloc_box to stack: " << *ABI);
llvm::SmallVector<SILInstruction*, 4> FinalReleases;
if (!getFinalReleases(ABI, FinalReleases))
return false;
// Promote this alloc_box to an alloc_stack. Insert the alloc_stack
// at the beginning of the function.
auto &Entry = ABI->getFunction()->front();
SILBuilder BuildAlloc(&Entry, Entry.begin());
BuildAlloc.setCurrentDebugScope(ABI->getDebugScope());
auto *ASI = BuildAlloc.createAllocStack(ABI->getLoc(), ABI->getElementType(),
ABI->getVarInfo());
// Replace all uses of the address of the box's contained value with
// the address of the stack location.
ABI->getAddressResult().replaceAllUsesWith(ASI->getAddressResult());
// Check to see if the alloc_box was used by a mark_uninitialized instruction.
// If so, any uses of the pointer result need to keep using the MUI, not the
// alloc_stack directly. If we don't do this, DI will miss the uses.
SILValue PointerResult = ASI->getAddressResult();
for (auto UI : ASI->getAddressResult().getUses())
if (auto *MUI = dyn_cast<MarkUninitializedInst>(UI->getUser())) {
assert(ASI->getAddressResult().hasOneUse() &&
"alloc_stack used by mark_uninitialized, but not exclusively!");
PointerResult = MUI;
break;
}
auto &Lowering = ABI->getModule().getTypeLowering(ABI->getElementType());
auto Loc = CleanupLocation::get(ABI->getLoc());
// For non-trivial types, insert destroys for each final release-like
// instruction we found that isn't an explicit dealloc_box.
if (!Lowering.isTrivial()) {
for (auto LastRelease : FinalReleases) {
if (isa<DeallocBoxInst>(LastRelease))
continue;
SILBuilderWithScope BuildDestroy(LastRelease);
BuildDestroy.emitDestroyAddrAndFold(Loc, PointerResult);
}
}
for (auto Return : Returns) {
SILBuilderWithScope BuildDealloc(Return);
BuildDealloc.createDeallocStack(Loc, ASI->getContainerResult());
}
// Remove any retain and release instructions. Since all uses of result #1
// are gone, this only walks through uses of result #0 (the retain count
// pointer).
while (!ABI->use_empty()) {
auto *User = (*ABI->use_begin())->getUser();
assert(isa<StrongReleaseInst>(User) || isa<StrongRetainInst>(User) ||
isa<DeallocBoxInst>(User));
User->eraseFromParent();
}
return true;
}
namespace {
/// \brief A SILCloner subclass which clones a closure function while
/// promoting some of its box parameters to stack addresses.
class PromotedParamCloner : public SILClonerWithScopes<PromotedParamCloner> {
public:
friend class SILVisitor<PromotedParamCloner>;
friend class SILCloner<PromotedParamCloner>;
PromotedParamCloner(SILFunction *Orig, ParamIndexList &PromotedParamIndices,
llvm::StringRef ClonedName);
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
private:
static SILFunction *initCloned(SILFunction *Orig,
ParamIndexList &PromotedParamIndices,
llvm::StringRef ClonedName);
void visitStrongReleaseInst(StrongReleaseInst *Inst);
void visitStrongRetainInst(StrongRetainInst *Inst);
void visitProjectBoxInst(ProjectBoxInst *Inst);
SILFunction *Orig;
ParamIndexList &PromotedParamIndices;
// The values in the original function that are promoted to stack
// references.
llvm::SmallSet<SILValue, 4> PromotedParameters;
};
} // end anonymous namespace.
PromotedParamCloner::PromotedParamCloner(SILFunction *Orig,
ParamIndexList &PromotedParamIndices,
llvm::StringRef ClonedName)
: SILClonerWithScopes<PromotedParamCloner>(*initCloned(Orig,
PromotedParamIndices,
ClonedName)),
Orig(Orig), PromotedParamIndices(PromotedParamIndices) {
assert(Orig->getDebugScope()->SILFn != getCloned()->getDebugScope()->SILFn);
}
static void getClonedName(SILFunction *F,
ParamIndexList &PromotedParamIndices,
llvm::SmallString<64> &Name) {
llvm::raw_svector_ostream buffer(Name);
Mangle::Mangler M(buffer);
auto P = Mangle::SpecializationPass::AllocBoxToStack;
Mangle::FunctionSignatureSpecializationMangler FSSM(P, M, F);
for (unsigned i : PromotedParamIndices)
FSSM.setArgumentBoxToStack(i);
FSSM.mangle();
}
/// \brief Create the function corresponding to the clone of the
/// original closure with the signature modified to reflect promoted
/// parameters (which are specified by PromotedParamIndices).
SILFunction*
PromotedParamCloner::initCloned(SILFunction *Orig,
ParamIndexList &PromotedParamIndices,
llvm::StringRef ClonedName) {
SILModule &M = Orig->getModule();
SmallVector<SILParameterInfo, 4> ClonedInterfaceArgTys;
// Generate a new parameter list with deleted parameters removed.
SILFunctionType *OrigFTI = Orig->getLoweredFunctionType();
unsigned Index = 0;
for (auto &param : OrigFTI->getParameters()) {
if (std::count(PromotedParamIndices.begin(), PromotedParamIndices.end(),
Index)) {
auto paramTy = param.getType()->castTo<SILBoxType>()
->getBoxedAddressType();
auto promotedParam = SILParameterInfo(paramTy.getSwiftRValueType(),
ParameterConvention::Indirect_InoutAliasable);
ClonedInterfaceArgTys.push_back(promotedParam);
} else {
ClonedInterfaceArgTys.push_back(param);
}
++Index;
}
// Create the new function type for the cloned function with some of
// the parameters promoted.
auto ClonedTy =
SILFunctionType::get(OrigFTI->getGenericSignature(),
OrigFTI->getExtInfo(),
OrigFTI->getCalleeConvention(),
ClonedInterfaceArgTys,
OrigFTI->getResult(),
OrigFTI->getOptionalErrorResult(),
M.getASTContext());
assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation())
&& "SILFunction missing location");
assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope())
&& "SILFunction missing DebugScope");
assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned");
auto *Fn = M.getOrCreateFunction(
SILLinkage::Shared, ClonedName, ClonedTy, Orig->getContextGenericParams(),
Orig->getLocation(), Orig->isBare(), IsNotTransparent, Orig->isFragile(),
Orig->isThunk(), Orig->getClassVisibility(), Orig->getInlineStrategy(),
Orig->getEffectsKind(), Orig, Orig->getDebugScope());
Fn->setSemanticsAttr(Orig->getSemanticsAttr());
Fn->setDeclCtx(Orig->getDeclContext());
return Fn;
}
/// \brief Populate the body of the cloned closure, modifying instructions as
/// necessary to take into consideration the removed parameters.
void
PromotedParamCloner::populateCloned() {
SILFunction *Cloned = getCloned();
SILModule &M = Cloned->getModule();
// Create arguments for the entry block
SILBasicBlock *OrigEntryBB = &*Orig->begin();
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);
unsigned ArgNo = 0;
auto I = OrigEntryBB->bbarg_begin(), E = OrigEntryBB->bbarg_end();
while (I != E) {
if (std::count(PromotedParamIndices.begin(),
PromotedParamIndices.end(), ArgNo)) {
// Create a new argument with the promoted type.
auto promotedTy = (*I)->getType().castTo<SILBoxType>()
->getBoxedAddressType();
auto promotedArg = new (M)
SILArgument(ClonedEntryBB, promotedTy, (*I)->getDecl());
PromotedParameters.insert(*I);
// Map any projections of the box to the promoted argument.
for (auto use : (*I)->getUses()) {
if (auto project = dyn_cast<ProjectBoxInst>(use->getUser())) {
ValueMap.insert(std::make_pair(project, promotedArg));
}
}
} else {
// Create a new argument which copies the original argument.
SILValue MappedValue =
new (M) SILArgument(ClonedEntryBB, (*I)->getType(), (*I)->getDecl());
ValueMap.insert(std::make_pair(*I, MappedValue));
}
++ArgNo;
++I;
}
getBuilder().setInsertionPoint(ClonedEntryBB);
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
/// \brief Handle a strong_release instruction during cloning of a closure; if
/// it is a strong release of a promoted box argument, then it is replaced with
/// a ReleaseValue of the new object type argument, otherwise it is handled
/// normally.
void
PromotedParamCloner::visitStrongReleaseInst(StrongReleaseInst *Inst) {
// If it's a release of a promoted parameter, just drop the instruction.
if (PromotedParameters.count(Inst->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitStrongReleaseInst(Inst);
}
void
PromotedParamCloner::visitStrongRetainInst(StrongRetainInst *Inst) {
// If it's a retain of a promoted parameter, just drop the instruction.
if (PromotedParameters.count(Inst->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitStrongRetainInst(Inst);
}
void
PromotedParamCloner::visitProjectBoxInst(ProjectBoxInst *Inst) {
// If it's a projection of a promoted parameter, drop the instruction.
// Its uses will be replaced by the promoted address.
// and replace its uses with
if (PromotedParameters.count(Inst->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitProjectBoxInst(Inst);
}
static void emitStrongReleaseAfter(SILValue V, SILInstruction *I) {
SILBuilderWithScope Builder(std::next(SILBasicBlock::iterator(I)));
Builder.emitStrongReleaseAndFold(I->getLoc(), V);
}
namespace {
class LifetimeTracker {
SILValue TheValue;
Optional<ValueLifetime> Lifetime;
public:
LifetimeTracker(SILValue Value): TheValue(Value) {}
using EndpointRange =
iterator_range<llvm::SmallVectorImpl<SILInstruction *>::const_iterator>;
SILValue getStart() { return TheValue; }
EndpointRange getEndpoints();
};
}
LifetimeTracker::EndpointRange LifetimeTracker::getEndpoints() {
if (!Lifetime) {
if (TheValue->hasOneUse()) {
Lifetime = ValueLifetime();
Lifetime->LastUsers.insert(TheValue->use_begin().getUser());
}
else {
ValueLifetimeAnalysis VLA(TheValue);
Lifetime = VLA.computeFromDirectUses();
}
}
return EndpointRange(Lifetime->LastUsers.begin(), Lifetime->LastUsers.end());
}
/// Specialize a partial_apply by promoting the parameters indicated by
/// indices. We expect these parameters to be replaced by stack address
/// references.
static PartialApplyInst *
specializePartialApply(PartialApplyInst *PartialApply,
ParamIndexList &PromotedParamIndices) {
auto *FRI = cast<FunctionRefInst>(PartialApply->getCallee());
assert(FRI && "Expected a direct partial_apply!");
auto *F = FRI->getReferencedFunction();
assert(F && "Expected a referenced function!");
llvm::SmallString<64> ClonedName;
getClonedName(F, PromotedParamIndices, ClonedName);
auto &M = PartialApply->getModule();
SILFunction *ClonedFn;
if (auto *PrevFn = M.lookUpFunction(ClonedName)) {
ClonedFn = PrevFn;
} else {
// Clone the function the existing partial_apply references.
PromotedParamCloner Cloner(F, PromotedParamIndices, ClonedName);
Cloner.populateCloned();
ClonedFn = Cloner.getCloned();
}
// Now create the new partial_apply using the cloned function.
llvm::SmallVector<SILValue, 16> Args;
LifetimeTracker Lifetime(PartialApply);
// Promote the arguments that need promotion.
for (auto &O : PartialApply->getArgumentOperands()) {
auto ParamIndex = getParameterIndexForOperand(&O);
if (!std::count(PromotedParamIndices.begin(), PromotedParamIndices.end(),
ParamIndex)) {
Args.push_back(O.get());
continue;
}
auto Endpoints = Lifetime.getEndpoints();
// If this argument is promoted, it is a box that we're
// turning into an address because we've proven we can
// keep this value on the stack. The partial_apply had ownership
// of this box so we must now release it explicitly when the
// partial_apply is released.
auto box = cast<AllocBoxInst>(O.get());
assert(box->getContainerResult() == O.get() &&
"Expected promoted param to be an alloc_box container!");
// If the box address has a MUI, route accesses through it so DI still
// works.
auto promoted = box->getAddressResult();
for (auto use : promoted->getUses()) {
if (auto MUI = dyn_cast<MarkUninitializedInst>(use->getUser())) {
assert(promoted.hasOneUse() && "box value used by mark_uninitialized"
" but not exclusively!");
promoted = MUI;
break;
}
}
Args.push_back(promoted);
// If the partial_apply is dead, insert a release after it.
if (Endpoints.begin() == Endpoints.end()) {
emitStrongReleaseAfter(O.get(), PartialApply);
continue;
}
// Otherwise insert releases after each point where the
// partial_apply becomes dead.
for (auto *User : Endpoints) {
assert((isa<StrongReleaseInst>(User) || isa<ApplyInst>(User)) &&
"Unexpected end of lifetime for partial_apply!");
emitStrongReleaseAfter(O.get(), User);
}
}
SILBuilderWithScope Builder(PartialApply);
// Build the function_ref and partial_apply.
SILValue FunctionRef = Builder.createFunctionRef(PartialApply->getLoc(),
ClonedFn);
CanSILFunctionType CanFnTy = ClonedFn->getLoweredFunctionType();
auto const &Subs = PartialApply->getSubstitutions();
CanSILFunctionType SubstCalleeTy = CanFnTy->substGenericArgs(M,
M.getSwiftModule(),
Subs);
return Builder.createPartialApply(PartialApply->getLoc(), FunctionRef,
SILType::getPrimitiveObjectType(SubstCalleeTy),
PartialApply->getSubstitutions(), Args,
PartialApply->getType());
}
static void
rewritePartialApplies(llvm::SmallVectorImpl<Operand *> &PromotedOperands) {
llvm::DenseMap<PartialApplyInst *, ParamIndexList> IndexMap;
ParamIndexList Indices;
// Build a map from partial_apply to the indices of the operands
// that will be promoted in our rewritten version.
for (auto *O : PromotedOperands) {
auto ParamIndexNumber = getParameterIndexForOperand(O);
Indices.clear();
Indices.push_back(ParamIndexNumber);
auto *PartialApply = cast<PartialApplyInst>(O->getUser());
llvm::DenseMap<PartialApplyInst *, ParamIndexList>::iterator It;
bool Inserted;
std::tie(It, Inserted) = IndexMap.insert(std::make_pair(PartialApply,
Indices));
if (!Inserted)
It->second.push_back(ParamIndexNumber);
}
// Clone the referenced function of each partial_apply, removing the
// operands that we will not need, and remove the existing
// partial_apply.
for (auto &It : IndexMap) {
auto *PartialApply = It.first;
auto &Indices = It.second;
// Sort the indices and unique them.
std::sort(Indices.begin(), Indices.end());
Indices.erase(std::unique(Indices.begin(), Indices.end()), Indices.end());
auto *Replacement = specializePartialApply(PartialApply, Indices);
PartialApply->replaceAllUsesWith(Replacement);
auto *FRI = cast<FunctionRefInst>(PartialApply->getCallee());
PartialApply->eraseFromParent();
// TODO: Erase from module if there are no more uses.
if (FRI->use_empty())
FRI->eraseFromParent();
}
}
static unsigned
rewritePromotedBoxes(llvm::SmallVectorImpl<AllocBoxInst *> &Promoted,
llvm::SmallVectorImpl<Operand *> &PromotedOperands,
llvm::SmallVectorImpl<TermInst *> &Returns) {
// First we'll rewrite any partial applies that we can to remove the
// box container pointer from the operands.
rewritePartialApplies(PromotedOperands);
unsigned Count = 0;
auto rend = Promoted.rend();
for (auto I = Promoted.rbegin(); I != rend; ++I) {
auto *ABI = *I;
if (rewriteAllocBoxAsAllocStack(ABI, Returns)) {
++Count;
ABI->eraseFromParent();
}
}
return Count;
}
namespace {
class AllocBoxToStack : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
llvm::SmallVector<AllocBoxInst *, 8> Promotable;
llvm::SmallVector<Operand *, 8> PromotedOperands;
llvm::SmallVector<TermInst *, 8> Returns;
for (auto &BB : *getFunction()) {
auto *Term = BB.getTerminator();
if (isa<ReturnInst>(Term) || isa<ThrowInst>(Term))
Returns.push_back(Term);
for (auto &I : BB)
if (auto *ABI = dyn_cast<AllocBoxInst>(&I))
if (canPromoteAllocBox(ABI, PromotedOperands))
Promotable.push_back(ABI);
}
if (!Promotable.empty()) {
auto Count = rewritePromotedBoxes(Promotable, PromotedOperands, Returns);
NumStackPromoted += Count;
// TODO: Update the call graph instead of invalidating it.
// Currently we need it invalidate it because we clone functions and
// replace partial_apply instructions which may be used by apply
// instructions.
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
StringRef getName() override { return "AllocBox-To-Stack Optimization"; }
};
} // end anonymous namespace
SILTransform *swift::createAllocBoxToStack() {
return new AllocBoxToStack();
}