Files
swift-mirror/lib/AST/Builtins.cpp
Chris Lattner 65b400e30d introduce a new "Builtin.RawPointer" type, which corresponds to LLVM's "i8*" type,
and is just an unmanaged pointer.  Also, introduce a basic swift.string type.

This is progress towards rdar://10923403 and strings.  Review welcome.



Swift SVN r1349
2012-04-10 00:52:52 +00:00

172 lines
5.9 KiB
C++

//===--- Builtins.cpp - Swift Language Builtin ASTs -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to the Builtin APIs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Builtins.h"
#include "swift/AST/AST.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
Type swift::getBuiltinType(ASTContext &Context, StringRef Name) {
if (Name == "RawPointer")
return Context.TheRawPointerType;
if (Name == "ObjectPointer")
return Context.TheObjectPointerType;
if (Name == "FPIEEE32")
return Context.TheIEEE32Type;
if (Name == "FPIEEE64")
return Context.TheIEEE64Type;
// Handle 'int8' and friends.
if (Name.substr(0, 3) == "Int") {
unsigned BitWidth;
if (!Name.substr(3).getAsInteger(10, BitWidth) &&
BitWidth <= 1024 && BitWidth != 0) // Cap to prevent insane things.
return BuiltinIntegerType::get(BitWidth, Context);
}
// Target specific FP types.
if (Name == "FPIEEE16")
return Context.TheIEEE16Type;
if (Name == "FPIEEE80")
return Context.TheIEEE80Type;
if (Name == "FPIEEE128")
return Context.TheIEEE128Type;
if (Name == "FPPPC128")
return Context.ThePPC128Type;
return Type();
}
BuiltinValueKind swift::isBuiltinValue(ASTContext &C, StringRef Name, Type &Ty){
// builtin-id ::= operation-id '_' type-id
// This will almost certainly get more sophisticated.
StringRef::size_type Underscore = Name.find_last_of('_');
if (Underscore == StringRef::npos) return BuiltinValueKind::None;
// Check that the type parameter is well-formed and set it up for returning.
Ty = getBuiltinType(C, Name.substr(Underscore + 1));
if (Ty.isNull())
return BuiltinValueKind::None;
// Check that the operation name is well-formed.
StringRef OperationName = Name.substr(0, Underscore);
return llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(id, name) \
.Case(name, BuiltinValueKind::id)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
}
/// Build a builtin function declarations.
static FuncDecl *getBuiltinFunction(ASTContext &Context, Identifier Id, Type T){
return new (Context) FuncDecl(SourceLoc(), SourceLoc(), Id, T,
/*init*/ nullptr, Context.TheBuiltinModule);
}
/// Build a unary operation declaration.
static ValueDecl *getUnaryOperation(ASTContext &Context, Identifier Id,
Type ArgType) {
Type FnTy = FunctionType::get(ArgType, ArgType, Context);
return getBuiltinFunction(Context, Id, FnTy);
}
/// Build a binary operation declaration.
static ValueDecl *getBinaryOperation(ASTContext &Context, Identifier Id,
Type ArgType) {
TupleTypeElt ArgElts[] = {
TupleTypeElt(ArgType, Identifier()),
TupleTypeElt(ArgType, Identifier())
};
Type Arg = TupleType::get(ArgElts, Context);
Type FnTy = FunctionType::get(Arg, ArgType, Context);
return getBuiltinFunction(Context, Id, FnTy);
}
/// Build a binary predicate declaration.
static ValueDecl *getBinaryPredicate(ASTContext &Context, Identifier Id,
Type ArgType) {
TupleTypeElt ArgElts[] = {
TupleTypeElt(ArgType, Identifier()),
TupleTypeElt(ArgType, Identifier())
};
Type Arg = TupleType::get(ArgElts, Context);
Type FnTy = FunctionType::get(Arg, BuiltinIntegerType::get(1, Context),
Context);
return getBuiltinFunction(Context, Id, FnTy);
}
/// An array of the overloaded builtin kinds.
static const OverloadedBuiltinKind OverloadedBuiltinKinds[] = {
OverloadedBuiltinKind::None,
// There's deliberately no BUILTIN clause here so that we'll blow up
// if new builtin categories are added there and not here.
#define BUILTIN_UNARY_OPERATION(id, name, overload) overload,
#define BUILTIN_BINARY_OPERATION(id, name, overload) overload,
#define BUILTIN_BINARY_PREDICATE(id, name, overload) overload,
#include "swift/AST/Builtins.def"
};
/// Determines if a builtin type falls within the given category.
/// The category cannot be OverloadedBuiltinKind::None.
inline bool isBuiltinTypeOverloaded(Type T, OverloadedBuiltinKind OK) {
switch (OK) {
case OverloadedBuiltinKind::None:
break; // invalid
case OverloadedBuiltinKind::Integer:
return T->is<BuiltinIntegerType>();
case OverloadedBuiltinKind::Float:
return T->is<BuiltinFloatType>();
case OverloadedBuiltinKind::Arithmetic:
return true;
}
llvm_unreachable("bad overloaded builtin kind");
}
ValueDecl *swift::getBuiltinValue(ASTContext &Context, Identifier Id) {
Type ArgType;
BuiltinValueKind BV = isBuiltinValue(Context, Id.str(), ArgType);
// Filter out inappropriate overloads.
OverloadedBuiltinKind OBK = OverloadedBuiltinKinds[unsigned(BV)];
if (OBK != OverloadedBuiltinKind::None &&
!isBuiltinTypeOverloaded(ArgType, OBK))
return nullptr;
switch (BV) {
case BuiltinValueKind::None: return nullptr;
#define BUILTIN(id, name)
#define BUILTIN_UNARY_OPERATION(id, name, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return getUnaryOperation(Context, Id, ArgType);
#define BUILTIN(id, name)
#define BUILTIN_BINARY_OPERATION(id, name, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return getBinaryOperation(Context, Id, ArgType);
#define BUILTIN(id, name)
#define BUILTIN_BINARY_PREDICATE(id, name, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return getBinaryPredicate(Context, Id, ArgType);
}
llvm_unreachable("bad builtin value!");
}