mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1221 lines
41 KiB
C++
1221 lines
41 KiB
C++
//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the \c ConstraintGraph class, which describes the
|
|
// relationships among the type variables within a constraint system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintGraphScope.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
#define DEBUG_TYPE "ConstraintGraph"
|
|
|
|
#pragma mark Graph construction/destruction
|
|
|
|
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
|
|
|
|
ConstraintGraph::~ConstraintGraph() {
|
|
assert(Changes.empty() && "Scope stack corrupted");
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto &impl = TypeVariables[i]->getImpl();
|
|
delete impl.getGraphNode();
|
|
impl.setGraphNode(nullptr);
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph accessors
|
|
|
|
std::pair<ConstraintGraphNode &, unsigned>
|
|
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
|
|
// Check whether we've already created a node for this type variable.
|
|
auto &impl = typeVar->getImpl();
|
|
if (auto nodePtr = impl.getGraphNode()) {
|
|
assert(impl.getGraphIndex() < TypeVariables.size() && "Out-of-bounds index");
|
|
assert(TypeVariables[impl.getGraphIndex()] == typeVar &&
|
|
"Type variable mismatch");
|
|
return { *nodePtr, impl.getGraphIndex() };
|
|
}
|
|
|
|
// Allocate the new node.
|
|
auto nodePtr = new ConstraintGraphNode(typeVar);
|
|
unsigned index = TypeVariables.size();
|
|
impl.setGraphNode(nodePtr);
|
|
impl.setGraphIndex(index);
|
|
|
|
// Record this type variable.
|
|
TypeVariables.push_back(typeVar);
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::addedTypeVariable(typeVar));
|
|
|
|
// If this type variable is not the representative of its equivalence class,
|
|
// add it to its representative's set of equivalences.
|
|
auto typeVarRep = CS.getRepresentative(typeVar);
|
|
if (typeVar != typeVarRep)
|
|
mergeNodes(typeVar, typeVarRep);
|
|
else if (auto fixed = CS.getFixedType(typeVarRep)) {
|
|
// Bind the type variable.
|
|
bindTypeVariable(typeVar, fixed);
|
|
}
|
|
|
|
return { *nodePtr, index };
|
|
}
|
|
|
|
llvm::TinyPtrVector<TypeVariableType *>
|
|
ConstraintGraphNode::getFixedAdjacencies() const {
|
|
llvm::TinyPtrVector<TypeVariableType *> results;
|
|
for (auto adj : getAdjacencies()) {
|
|
auto adjInfo = AdjacencyInfo.find(adj);
|
|
assert(adjInfo != AdjacencyInfo.end());
|
|
if (adjInfo->second.FixedBinding)
|
|
results.push_back(adj);
|
|
}
|
|
return results;
|
|
}
|
|
|
|
ArrayRef<TypeVariableType *> ConstraintGraphNode::getEquivalenceClass() const{
|
|
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
|
|
"Can't request equivalence class from non-representative type var");
|
|
return getEquivalenceClassUnsafe();
|
|
}
|
|
|
|
ArrayRef<TypeVariableType *>
|
|
ConstraintGraphNode::getEquivalenceClassUnsafe() const{
|
|
if (EquivalenceClass.empty())
|
|
EquivalenceClass.push_back(TypeVar);
|
|
return EquivalenceClass;
|
|
}
|
|
|
|
#pragma mark Node mutation
|
|
void ConstraintGraphNode::addConstraint(Constraint *constraint) {
|
|
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
|
|
ConstraintIndex[constraint] = Constraints.size();
|
|
Constraints.push_back(constraint);
|
|
}
|
|
|
|
void ConstraintGraphNode::removeConstraint(Constraint *constraint) {
|
|
auto pos = ConstraintIndex.find(constraint);
|
|
assert(pos != ConstraintIndex.end());
|
|
|
|
// Remove this constraint from the constraint mapping.
|
|
auto index = pos->second;
|
|
ConstraintIndex.erase(pos);
|
|
assert(Constraints[index] == constraint && "Mismatched constraint");
|
|
|
|
// If this is the last constraint, just pop it off the list and we're done.
|
|
unsigned lastIndex = Constraints.size()-1;
|
|
if (index == lastIndex) {
|
|
Constraints.pop_back();
|
|
return;
|
|
}
|
|
|
|
// This constraint is somewhere in the middle; swap it with the last
|
|
// constraint, so we can remove the constraint from the vector in O(1)
|
|
// time rather than O(n) time.
|
|
auto lastConstraint = Constraints[lastIndex];
|
|
Constraints[index] = lastConstraint;
|
|
ConstraintIndex[lastConstraint] = index;
|
|
Constraints.pop_back();
|
|
}
|
|
|
|
ConstraintGraphNode::Adjacency &
|
|
ConstraintGraphNode::getAdjacency(TypeVariableType *typeVar) {
|
|
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
|
|
|
|
// Look for existing adjacency information.
|
|
auto pos = AdjacencyInfo.find(typeVar);
|
|
|
|
if (pos != AdjacencyInfo.end())
|
|
return pos->second;
|
|
|
|
// If we weren't already adjacent to this type variable, add it to the
|
|
// list of adjacencies.
|
|
pos = AdjacencyInfo.insert(
|
|
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0, 0 } })
|
|
.first;
|
|
Adjacencies.push_back(typeVar);
|
|
return pos->second;
|
|
}
|
|
|
|
void ConstraintGraphNode::modifyAdjacency(
|
|
TypeVariableType *typeVar,
|
|
llvm::function_ref<void(Adjacency& adj)> modify) {
|
|
// Find the adjacency information.
|
|
auto pos = AdjacencyInfo.find(typeVar);
|
|
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
|
|
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
|
|
|
|
// Perform the modification .
|
|
modify(pos->second);
|
|
|
|
// If the adjacency is not empty, leave the information in there.
|
|
if (!pos->second.empty())
|
|
return;
|
|
|
|
// Remove this adjacency from the mapping.
|
|
unsigned index = pos->second.Index;
|
|
AdjacencyInfo.erase(pos);
|
|
|
|
// If this adjacency is last in the vector, just pop it off.
|
|
unsigned lastIndex = Adjacencies.size()-1;
|
|
if (index == lastIndex) {
|
|
Adjacencies.pop_back();
|
|
return;
|
|
}
|
|
|
|
// This adjacency is somewhere in the middle; swap it with the last
|
|
// adjacency so we can remove the adjacency from the vector in O(1) time
|
|
// rather than O(n) time.
|
|
auto lastTypeVar = Adjacencies[lastIndex];
|
|
Adjacencies[index] = lastTypeVar;
|
|
AdjacencyInfo[lastTypeVar].Index = index;
|
|
Adjacencies.pop_back();
|
|
}
|
|
|
|
void ConstraintGraphNode::addAdjacency(TypeVariableType *typeVar) {
|
|
auto &adjacency = getAdjacency(typeVar);
|
|
|
|
// Bump the degree of the adjacency.
|
|
++adjacency.NumConstraints;
|
|
}
|
|
|
|
void ConstraintGraphNode::removeAdjacency(TypeVariableType *typeVar) {
|
|
modifyAdjacency(typeVar, [](Adjacency &adj) {
|
|
assert(adj.NumConstraints > 0 && "No adjacency to remove?");
|
|
--adj.NumConstraints;
|
|
});
|
|
}
|
|
|
|
void ConstraintGraphNode::addToEquivalenceClass(
|
|
ArrayRef<TypeVariableType *> typeVars) {
|
|
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
|
|
"Can't extend equivalence class of non-representative type var");
|
|
if (EquivalenceClass.empty())
|
|
EquivalenceClass.push_back(TypeVar);
|
|
EquivalenceClass.append(typeVars.begin(), typeVars.end());
|
|
}
|
|
|
|
void ConstraintGraphNode::addFixedBinding(TypeVariableType *typeVar) {
|
|
auto &adjacency = getAdjacency(typeVar);
|
|
|
|
assert(!adjacency.FixedBinding && "Already marked as a fixed binding?");
|
|
adjacency.FixedBinding = true;
|
|
}
|
|
|
|
void ConstraintGraphNode::removeFixedBinding(TypeVariableType *typeVar) {
|
|
modifyAdjacency(typeVar, [](Adjacency &adj) {
|
|
assert(adj.FixedBinding && "Not a fixed binding?");
|
|
adj.FixedBinding = false;
|
|
});
|
|
}
|
|
|
|
#pragma mark Graph scope management
|
|
ConstraintGraphScope::ConstraintGraphScope(ConstraintGraph &CG)
|
|
: CG(CG), ParentScope(CG.ActiveScope), NumChanges(CG.Changes.size())
|
|
{
|
|
CG.ActiveScope = this;
|
|
}
|
|
|
|
ConstraintGraphScope::~ConstraintGraphScope() {
|
|
// Pop changes off the stack until we hit the change could we had prior to
|
|
// introducing this scope.
|
|
assert(CG.Changes.size() >= NumChanges && "Scope stack corrupted");
|
|
while (CG.Changes.size() > NumChanges) {
|
|
CG.Changes.back().undo(CG);
|
|
CG.Changes.pop_back();
|
|
}
|
|
|
|
// The active scope is now the parent scope.
|
|
CG.ActiveScope = ParentScope;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::addedTypeVariable(TypeVariableType *typeVar) {
|
|
Change result;
|
|
result.Kind = ChangeKind::AddedTypeVariable;
|
|
result.TypeVar = typeVar;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::addedConstraint(Constraint *constraint) {
|
|
Change result;
|
|
result.Kind = ChangeKind::AddedConstraint;
|
|
result.TheConstraint = constraint;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::removedConstraint(Constraint *constraint) {
|
|
Change result;
|
|
result.Kind = ChangeKind::RemovedConstraint;
|
|
result.TheConstraint = constraint;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::extendedEquivalenceClass(TypeVariableType *typeVar,
|
|
unsigned prevSize) {
|
|
Change result;
|
|
result.Kind = ChangeKind::ExtendedEquivalenceClass;
|
|
result.EquivClass.TypeVar = typeVar;
|
|
result.EquivClass.PrevSize = prevSize;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::boundTypeVariable(TypeVariableType *typeVar,
|
|
Type fixed) {
|
|
Change result;
|
|
result.Kind = ChangeKind::BoundTypeVariable;
|
|
result.Binding.TypeVar = typeVar;
|
|
result.Binding.FixedType = fixed.getPointer();
|
|
return result;
|
|
}
|
|
|
|
void ConstraintGraph::Change::undo(ConstraintGraph &cg) {
|
|
/// Temporarily change the active scope to null, so we don't record
|
|
/// any changes made while performing the undo operation.
|
|
llvm::SaveAndRestore<ConstraintGraphScope *> prevActiveScope(cg.ActiveScope,
|
|
nullptr);
|
|
|
|
switch (Kind) {
|
|
case ChangeKind::AddedTypeVariable:
|
|
cg.removeNode(TypeVar);
|
|
break;
|
|
|
|
case ChangeKind::AddedConstraint:
|
|
cg.removeConstraint(TheConstraint);
|
|
break;
|
|
|
|
case ChangeKind::RemovedConstraint:
|
|
cg.addConstraint(TheConstraint);
|
|
break;
|
|
|
|
case ChangeKind::ExtendedEquivalenceClass: {
|
|
auto &node = cg[EquivClass.TypeVar];
|
|
node.EquivalenceClass.erase(
|
|
node.EquivalenceClass.begin() + EquivClass.PrevSize,
|
|
node.EquivalenceClass.end());
|
|
break;
|
|
}
|
|
|
|
case ChangeKind::BoundTypeVariable:
|
|
cg.unbindTypeVariable(Binding.TypeVar, Binding.FixedType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph mutation
|
|
|
|
void ConstraintGraph::removeNode(TypeVariableType *typeVar) {
|
|
// Remove this node.
|
|
auto &impl = typeVar->getImpl();
|
|
unsigned index = impl.getGraphIndex();
|
|
delete impl.getGraphNode();
|
|
impl.setGraphNode(nullptr);
|
|
|
|
// Remove this type variable from the list.
|
|
unsigned lastIndex = TypeVariables.size()-1;
|
|
if (index < lastIndex)
|
|
TypeVariables[index] = TypeVariables[lastIndex];
|
|
TypeVariables.pop_back();
|
|
}
|
|
|
|
void ConstraintGraph::addConstraint(Constraint *constraint) {
|
|
// For the nodes corresponding to each type variable...
|
|
auto referencedTypeVars = constraint->getTypeVariables();
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Note the constraint within the node for that type variable.
|
|
node.addConstraint(constraint);
|
|
|
|
// Record the adjacent type variables.
|
|
// This is O(N^2) in the number of referenced type variables, because
|
|
// we're updating all of the adjacent type variables eagerly.
|
|
for (auto otherTypeVar : referencedTypeVars) {
|
|
if (typeVar == otherTypeVar)
|
|
continue;
|
|
|
|
node.addAdjacency(otherTypeVar);
|
|
}
|
|
}
|
|
|
|
// If the constraint doesn't reference any type variables, it's orphaned;
|
|
// track it as such.
|
|
if (referencedTypeVars.empty()) {
|
|
OrphanedConstraints.push_back(constraint);
|
|
}
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::addedConstraint(constraint));
|
|
}
|
|
|
|
void ConstraintGraph::removeConstraint(Constraint *constraint) {
|
|
// For the nodes corresponding to each type variable...
|
|
auto referencedTypeVars = constraint->getTypeVariables();
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Remove the constraint.
|
|
node.removeConstraint(constraint);
|
|
|
|
// Remove the adjacencies for all adjacent type variables.
|
|
// This is O(N^2) in the number of referenced type variables, because
|
|
// we're updating all of the adjacent type variables eagerly.
|
|
for (auto otherTypeVar : referencedTypeVars) {
|
|
if (typeVar == otherTypeVar)
|
|
continue;
|
|
|
|
node.removeAdjacency(otherTypeVar);
|
|
}
|
|
}
|
|
|
|
// If this is an orphaned constraint, remove it from the list.
|
|
if (referencedTypeVars.empty()) {
|
|
auto known = std::find(OrphanedConstraints.begin(),
|
|
OrphanedConstraints.end(),
|
|
constraint);
|
|
assert(known != OrphanedConstraints.end() && "missing orphaned constraint");
|
|
*known = OrphanedConstraints.back();
|
|
OrphanedConstraints.pop_back();
|
|
}
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::removedConstraint(constraint));
|
|
}
|
|
|
|
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
|
|
TypeVariableType *typeVar2) {
|
|
assert(CS.getRepresentative(typeVar1) == CS.getRepresentative(typeVar2) &&
|
|
"type representatives don't match");
|
|
|
|
// Retrieve the node for the representative that we're merging into.
|
|
auto typeVarRep = CS.getRepresentative(typeVar1);
|
|
auto &repNode = (*this)[typeVarRep];
|
|
|
|
// Retrieve the node for the non-representative.
|
|
assert((typeVar1 == typeVarRep || typeVar2 == typeVarRep) &&
|
|
"neither type variable is the new representative?");
|
|
auto typeVarNonRep = typeVar1 == typeVarRep? typeVar2 : typeVar1;
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::extendedEquivalenceClass(
|
|
typeVarRep,
|
|
repNode.getEquivalenceClass().size()));
|
|
|
|
// Merge equivalence class from the non-representative type variable.
|
|
auto &nonRepNode = (*this)[typeVarNonRep];
|
|
repNode.addToEquivalenceClass(nonRepNode.getEquivalenceClassUnsafe());
|
|
}
|
|
|
|
void ConstraintGraph::bindTypeVariable(TypeVariableType *typeVar, Type fixed) {
|
|
// If there are no type variables in the fixed type, there's nothing to do.
|
|
if (!fixed->hasTypeVariable())
|
|
return;
|
|
|
|
SmallVector<TypeVariableType *, 4> typeVars;
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
|
|
fixed->getTypeVariables(typeVars);
|
|
auto &node = (*this)[typeVar];
|
|
for (auto otherTypeVar : typeVars) {
|
|
if (knownTypeVars.insert(otherTypeVar).second) {
|
|
if (typeVar == otherTypeVar) continue;
|
|
|
|
(*this)[otherTypeVar].addFixedBinding(typeVar);
|
|
node.addFixedBinding(otherTypeVar);
|
|
}
|
|
}
|
|
|
|
// Record the change, if there are active scopes.
|
|
// Note: If we ever use this to undo the actual variable binding,
|
|
// we'll need to store the change along the early-exit path as well.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::boundTypeVariable(typeVar, fixed));
|
|
}
|
|
|
|
void ConstraintGraph::unbindTypeVariable(TypeVariableType *typeVar, Type fixed){
|
|
// If there are no type variables in the fixed type, there's nothing to do.
|
|
if (!fixed->hasTypeVariable())
|
|
return;
|
|
|
|
SmallVector<TypeVariableType *, 4> typeVars;
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
|
|
fixed->getTypeVariables(typeVars);
|
|
auto &node = (*this)[typeVar];
|
|
for (auto otherTypeVar : typeVars) {
|
|
if (knownTypeVars.insert(otherTypeVar).second) {
|
|
(*this)[otherTypeVar].removeFixedBinding(typeVar);
|
|
node.removeFixedBinding(otherTypeVar);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::gatherConstraints(
|
|
TypeVariableType *typeVar, llvm::SetVector<Constraint *> &constraints,
|
|
GatheringKind kind,
|
|
llvm::function_ref<bool(Constraint *)> acceptConstraint) {
|
|
auto &reprNode = (*this)[CS.getRepresentative(typeVar)];
|
|
auto equivClass = reprNode.getEquivalenceClass();
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
for (auto typeVar : equivClass) {
|
|
if (!typeVars.insert(typeVar).second)
|
|
continue;
|
|
|
|
for (auto constraint : (*this)[typeVar].getConstraints()) {
|
|
if (acceptConstraint(constraint))
|
|
constraints.insert(constraint);
|
|
}
|
|
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Retrieve the constraints from adjacent bindings.
|
|
for (auto adjTypeVar : node.getAdjacencies()) {
|
|
switch (kind) {
|
|
case GatheringKind::EquivalenceClass:
|
|
if (!node.getAdjacency(adjTypeVar).FixedBinding)
|
|
continue;
|
|
break;
|
|
|
|
case GatheringKind::AllMentions:
|
|
break;
|
|
}
|
|
|
|
ArrayRef<TypeVariableType *> adjTypeVarsToVisit;
|
|
switch (kind) {
|
|
case GatheringKind::EquivalenceClass:
|
|
adjTypeVarsToVisit = adjTypeVar;
|
|
break;
|
|
|
|
case GatheringKind::AllMentions:
|
|
adjTypeVarsToVisit
|
|
= (*this)[CS.getRepresentative(adjTypeVar)].getEquivalenceClass();
|
|
break;
|
|
}
|
|
|
|
for (auto adjTypeVarEquiv : adjTypeVarsToVisit) {
|
|
if (!typeVars.insert(adjTypeVarEquiv).second)
|
|
continue;
|
|
|
|
for (auto constraint : (*this)[adjTypeVarEquiv].getConstraints()) {
|
|
if (acceptConstraint(constraint))
|
|
constraints.insert(constraint);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma mark Algorithms
|
|
|
|
/// Perform a depth-first search.
|
|
///
|
|
/// \param cg The constraint graph.
|
|
/// \param node The current constraint graph node.
|
|
/// \param nodeIndex The index of the current constraint graph node.
|
|
/// \param visitFixedBindings Whether to visit the nodes by following
|
|
/// fixed bindings.
|
|
/// \param preVisitNode Called before traversing a node. Must return \c
|
|
/// false when the node has already been visited.
|
|
/// \param visitConstraint Called before considering a constraint. If it
|
|
/// returns \c false, that constraint will be skipped.
|
|
/// \param visitedConstraints Set of already-visited constraints, used
|
|
/// internally to avoid duplicated work.
|
|
static void depthFirstSearch(
|
|
ConstraintGraph &cg,
|
|
ConstraintGraphNode &node,
|
|
unsigned nodeIndex,
|
|
bool visitFixedBindings,
|
|
llvm::function_ref<bool(unsigned)> preVisitNode,
|
|
llvm::function_ref<bool(Constraint *)> visitConstraint,
|
|
llvm::DenseSet<Constraint *> &visitedConstraints) {
|
|
// Visit this node. If we've already seen it, bail out.
|
|
if (!preVisitNode(nodeIndex))
|
|
return;
|
|
|
|
// Local function to visit adjacent type variables.
|
|
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> adjTypeVars) {
|
|
for (auto adj : adjTypeVars) {
|
|
if (adj == node.getTypeVariable())
|
|
continue;
|
|
|
|
auto adjNodeAndIndex = cg.lookupNode(adj);
|
|
|
|
// Recurse into this node.
|
|
depthFirstSearch(cg, adjNodeAndIndex.first, adjNodeAndIndex.second,
|
|
visitFixedBindings, preVisitNode, visitConstraint,
|
|
visitedConstraints);
|
|
}
|
|
};
|
|
|
|
// Walk all of the constraints associated with this node to find related
|
|
// nodes.
|
|
for (auto constraint : node.getConstraints()) {
|
|
// If we've already seen this constraint, skip it.
|
|
if (!visitedConstraints.insert(constraint).second)
|
|
continue;
|
|
|
|
if (visitConstraint(constraint))
|
|
visitAdjacencies(constraint->getTypeVariables());
|
|
}
|
|
|
|
// Visit all of the other nodes in the equivalence class.
|
|
auto nodeTypeVar = node.getTypeVariable();
|
|
auto repTypeVar = cg.getConstraintSystem().getRepresentative(nodeTypeVar);
|
|
if (nodeTypeVar == repTypeVar) {
|
|
// We are the representative, so visit all of the other type variables
|
|
// in this equivalence class.
|
|
visitAdjacencies(node.getEquivalenceClass());
|
|
} else {
|
|
// We are not the representative; visit the representative.
|
|
visitAdjacencies(repTypeVar);
|
|
}
|
|
|
|
if (visitFixedBindings) {
|
|
// Walk any type variables related via fixed bindings.
|
|
visitAdjacencies(node.getFixedAdjacencies());
|
|
}
|
|
}
|
|
|
|
/// Perform a depth-first search.
|
|
///
|
|
/// \param cg The constraint graph.
|
|
/// \param node The current constraint graph node.
|
|
/// \param nodeIndex The index of the current constraint graph node.
|
|
/// \param visitFixedBindings Whether to visit the nodes by following
|
|
/// fixed bindings.
|
|
/// \param preVisitNode Called before traversing a node. Must return \c
|
|
/// false when the node has already been visited.
|
|
/// \param visitConstraint Called before considering a constraint. If it
|
|
/// returns \c false, that constraint will be skipped.
|
|
static void depthFirstSearch(
|
|
ConstraintGraph &cg,
|
|
ConstraintGraphNode &node,
|
|
unsigned nodeIndex,
|
|
bool visitFixedBindings,
|
|
llvm::function_ref<bool(unsigned)> preVisitNode,
|
|
llvm::function_ref<bool(Constraint *)> visitConstraint) {
|
|
llvm::DenseSet<Constraint *> visitedConstraints;
|
|
depthFirstSearch(cg, node, nodeIndex, visitFixedBindings, preVisitNode,
|
|
visitConstraint, visitedConstraints);
|
|
}
|
|
|
|
unsigned ConstraintGraph::computeConnectedComponents(
|
|
std::vector<TypeVariableType *> &typeVars,
|
|
std::vector<unsigned> &components) {
|
|
// Track those type variables that the caller cares about.
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> typeVarSubset(typeVars.begin(),
|
|
typeVars.end());
|
|
typeVars.clear();
|
|
|
|
// Initialize the components with component == # of type variables,
|
|
// a sentinel value indicating that we have yet to assign a component to
|
|
// that particular type variable.
|
|
unsigned numTypeVariables = TypeVariables.size();
|
|
components.assign(numTypeVariables, numTypeVariables);
|
|
|
|
// Perform a depth-first search from each type variable to identify
|
|
// what component it is in.
|
|
llvm::DenseSet<Constraint *> visitedConstraints;
|
|
unsigned numComponents = 0;
|
|
for (unsigned i = 0; i != numTypeVariables; ++i) {
|
|
auto typeVar = TypeVariables[i];
|
|
|
|
// Look up the node for this type variable.
|
|
auto nodeAndIndex = lookupNode(typeVar);
|
|
|
|
// If we're already assigned a component for this node, skip it.
|
|
unsigned &curComponent = components[nodeAndIndex.second];
|
|
if (curComponent != numTypeVariables)
|
|
continue;
|
|
|
|
// Record this component.
|
|
unsigned component = numComponents++;
|
|
|
|
// Note that this node is part of this component, then visit it.
|
|
depthFirstSearch(
|
|
*this, nodeAndIndex.first, nodeAndIndex.second,
|
|
/*visitFixedBindings=*/true,
|
|
[&](unsigned nodeIndex) {
|
|
// If we have already seen this node, we're done.
|
|
unsigned &nodeComponent = components[nodeIndex];
|
|
if (nodeComponent == component)
|
|
return false;
|
|
|
|
assert(nodeComponent == components.size() &&
|
|
"Already in a component?");
|
|
nodeComponent = component;
|
|
return true;
|
|
},
|
|
[&](Constraint *constraint) {
|
|
return true;
|
|
});
|
|
}
|
|
|
|
// Figure out which components have unbound type variables; these
|
|
// are the only components and type variables we want to report.
|
|
SmallVector<bool, 4> componentHasUnboundTypeVar(numComponents, false);
|
|
for (unsigned i = 0; i != numTypeVariables; ++i) {
|
|
// If this type variable has a fixed type, skip it.
|
|
if (CS.getFixedType(TypeVariables[i]))
|
|
continue;
|
|
|
|
// If this type variable isn't in the subset of type variables we care
|
|
// about, skip it.
|
|
if (typeVarSubset.count(TypeVariables[i]) == 0)
|
|
continue;
|
|
|
|
componentHasUnboundTypeVar[components[i]] = true;
|
|
}
|
|
|
|
// Renumber the old components to the new components.
|
|
SmallVector<unsigned, 4> componentRenumbering(numComponents, 0);
|
|
numComponents = 0;
|
|
for (unsigned i = 0, n = componentHasUnboundTypeVar.size(); i != n; ++i) {
|
|
// Skip components that have no unbound type variables.
|
|
if (!componentHasUnboundTypeVar[i])
|
|
continue;
|
|
|
|
componentRenumbering[i] = numComponents++;
|
|
}
|
|
|
|
// Copy over the type variables in the live components and remap
|
|
// component numbers.
|
|
unsigned outIndex = 0;
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
// Skip type variables in dead components.
|
|
if (!componentHasUnboundTypeVar[components[i]])
|
|
continue;
|
|
|
|
typeVars.push_back(TypeVariables[i]);
|
|
components[outIndex] = componentRenumbering[components[i]];
|
|
++outIndex;
|
|
}
|
|
components.erase(components.begin() + outIndex, components.end());
|
|
|
|
return numComponents + getOrphanedConstraints().size();
|
|
}
|
|
|
|
|
|
/// For a given constraint kind, decide if we should attempt to eliminate its
|
|
/// edge in the graph.
|
|
static bool shouldContractEdge(ConstraintKind kind) {
|
|
switch (kind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Equal:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ConstraintGraph::contractEdges() {
|
|
SmallVector<Constraint *, 16> constraints;
|
|
CS.findConstraints(constraints, [&](const Constraint &constraint) {
|
|
// Track how many constraints did contraction algorithm iterated over.
|
|
incrementConstraintsPerContractionCounter();
|
|
return shouldContractEdge(constraint.getKind());
|
|
});
|
|
|
|
bool didContractEdges = false;
|
|
for (auto *constraint : constraints) {
|
|
auto kind = constraint->getKind();
|
|
|
|
// Contract binding edges between type variables.
|
|
assert(shouldContractEdge(kind));
|
|
|
|
auto t1 = constraint->getFirstType()->getDesugaredType();
|
|
auto t2 = constraint->getSecondType()->getDesugaredType();
|
|
|
|
auto tyvar1 = t1->getAs<TypeVariableType>();
|
|
auto tyvar2 = t2->getAs<TypeVariableType>();
|
|
|
|
if (!(tyvar1 && tyvar2))
|
|
continue;
|
|
|
|
auto isParamBindingConstraint = kind == ConstraintKind::BindParam;
|
|
|
|
// If the argument is allowed to bind to `inout`, in general,
|
|
// it's invalid to contract the edge between argument and parameter,
|
|
// but if we can prove that there are no possible bindings
|
|
// which result in attempt to bind `inout` type to argument
|
|
// type variable, we should go ahead and allow (temporary)
|
|
// contraction, because that greatly helps with performance.
|
|
// Such action is valid because argument type variable can
|
|
// only get its bindings from related overload, which gives
|
|
// us enough information to decided on l-valueness.
|
|
if (isParamBindingConstraint && tyvar1->getImpl().canBindToInOut()) {
|
|
bool isNotContractable = true;
|
|
if (auto bindings = CS.getPotentialBindings(tyvar1)) {
|
|
for (auto &binding : bindings.Bindings) {
|
|
auto type = binding.BindingType;
|
|
isNotContractable = type.findIf([&](Type nestedType) -> bool {
|
|
if (auto tv = nestedType->getAs<TypeVariableType>()) {
|
|
if (tv->getImpl().canBindToInOut())
|
|
return true;
|
|
}
|
|
|
|
return nestedType->is<InOutType>();
|
|
});
|
|
|
|
// If there is at least one non-contractable binding, let's
|
|
// not risk contracting this edge.
|
|
if (isNotContractable)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isNotContractable)
|
|
continue;
|
|
}
|
|
|
|
auto rep1 = CS.getRepresentative(tyvar1);
|
|
auto rep2 = CS.getRepresentative(tyvar2);
|
|
|
|
if (((rep1->getImpl().canBindToLValue() ==
|
|
rep2->getImpl().canBindToLValue()) ||
|
|
// Allow l-value contractions when binding parameter types.
|
|
isParamBindingConstraint)) {
|
|
if (CS.TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = CS.getASTContext().TypeCheckerDebug->getStream();
|
|
if (CS.solverState)
|
|
log.indent(CS.solverState->depth * 2);
|
|
|
|
log << "Contracting constraint ";
|
|
constraint->print(log, &CS.getASTContext().SourceMgr);
|
|
log << "\n";
|
|
}
|
|
|
|
// Merge the edges and remove the constraint.
|
|
removeEdge(constraint);
|
|
if (rep1 != rep2)
|
|
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
|
|
didContractEdges = true;
|
|
}
|
|
}
|
|
return didContractEdges;
|
|
}
|
|
|
|
void ConstraintGraph::removeEdge(Constraint *constraint) {
|
|
bool isExistingConstraint = false;
|
|
|
|
for (auto &active : CS.ActiveConstraints) {
|
|
if (&active == constraint) {
|
|
CS.ActiveConstraints.erase(constraint);
|
|
isExistingConstraint = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (auto &inactive : CS.InactiveConstraints) {
|
|
if (&inactive == constraint) {
|
|
CS.InactiveConstraints.erase(constraint);
|
|
isExistingConstraint = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CS.solverState) {
|
|
if (isExistingConstraint)
|
|
CS.solverState->retireConstraint(constraint);
|
|
else
|
|
CS.solverState->removeGeneratedConstraint(constraint);
|
|
}
|
|
|
|
removeConstraint(constraint);
|
|
}
|
|
|
|
void ConstraintGraph::optimize() {
|
|
// Merge equivalence classes until a fixed point is reached.
|
|
while (contractEdges()) {}
|
|
}
|
|
|
|
void ConstraintGraph::incrementConstraintsPerContractionCounter() {
|
|
SWIFT_FUNC_STAT;
|
|
auto &context = CS.getASTContext();
|
|
if (context.Stats)
|
|
context.Stats->getFrontendCounters()
|
|
.NumConstraintsConsideredForEdgeContraction++;
|
|
}
|
|
|
|
#pragma mark Debugging output
|
|
|
|
void ConstraintGraphNode::print(llvm::raw_ostream &out, unsigned indent) {
|
|
out.indent(indent);
|
|
TypeVar->print(out);
|
|
out << ":\n";
|
|
|
|
// Print constraints.
|
|
if (!Constraints.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Constraints:\n";
|
|
SmallVector<Constraint *, 4> sortedConstraints(Constraints.begin(),
|
|
Constraints.end());
|
|
std::sort(sortedConstraints.begin(), sortedConstraints.end());
|
|
for (auto constraint : sortedConstraints) {
|
|
out.indent(indent + 4);
|
|
constraint->print(out, &TypeVar->getASTContext().SourceMgr);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
// Print adjacencies.
|
|
if (!Adjacencies.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Adjacencies:";
|
|
SmallVector<TypeVariableType *, 4> sortedAdjacencies(Adjacencies.begin(),
|
|
Adjacencies.end());
|
|
std::sort(sortedAdjacencies.begin(), sortedAdjacencies.end(),
|
|
[&](TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
|
|
return typeVar1->getID() < typeVar2->getID();
|
|
});
|
|
|
|
for (auto adj : sortedAdjacencies) {
|
|
out << ' ';
|
|
adj->print(out);
|
|
|
|
auto &info = AdjacencyInfo[adj];
|
|
auto degree = info.NumConstraints;
|
|
if (degree > 1 || info.FixedBinding) {
|
|
out << " (";
|
|
if (degree > 1) {
|
|
out << degree;
|
|
if (info.FixedBinding)
|
|
out << ", fixed";
|
|
} else {
|
|
out << "fixed";
|
|
}
|
|
out << ")";
|
|
}
|
|
}
|
|
out << "\n";
|
|
}
|
|
|
|
// Print equivalence class.
|
|
if (TypeVar->getImpl().getRepresentative(nullptr) == TypeVar &&
|
|
EquivalenceClass.size() > 1) {
|
|
out.indent(indent + 2);
|
|
out << "Equivalence class:";
|
|
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
|
|
out << ' ';
|
|
EquivalenceClass[i]->print(out);
|
|
}
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::dump() {
|
|
llvm::SaveAndRestore<bool>
|
|
debug(TypeVar->getASTContext().LangOpts.DebugConstraintSolver, true);
|
|
print(llvm::dbgs(), 0);
|
|
}
|
|
|
|
void ConstraintGraph::print(llvm::raw_ostream &out) {
|
|
for (auto typeVar : TypeVariables) {
|
|
(*this)[typeVar].print(out, 2);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::dump() {
|
|
llvm::SaveAndRestore<bool>
|
|
debug(CS.getASTContext().LangOpts.DebugConstraintSolver, true);
|
|
print(llvm::dbgs());
|
|
}
|
|
|
|
void ConstraintGraph::printConnectedComponents(llvm::raw_ostream &out) {
|
|
std::vector<TypeVariableType *> typeVars;
|
|
typeVars.insert(typeVars.end(), TypeVariables.begin(), TypeVariables.end());
|
|
std::vector<unsigned> components;
|
|
unsigned numComponents = computeConnectedComponents(typeVars, components);
|
|
for (unsigned component = 0; component != numComponents; ++component) {
|
|
out.indent(2);
|
|
out << component << ":";
|
|
for (unsigned i = 0, n = typeVars.size(); i != n; ++i) {
|
|
if (components[i] == component) {
|
|
out << ' ';
|
|
typeVars[i]->print(out);
|
|
}
|
|
}
|
|
out << '\n';
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::dumpConnectedComponents() {
|
|
printConnectedComponents(llvm::dbgs());
|
|
}
|
|
|
|
#pragma mark Verification of graph invariants
|
|
|
|
/// Require that the given condition evaluate true.
|
|
///
|
|
/// If the condition is not true, complain about the problem and abort.
|
|
///
|
|
/// \param condition The actual Boolean condition.
|
|
///
|
|
/// \param complaint A string that describes the problem.
|
|
///
|
|
/// \param cg The constraint graph that failed verification.
|
|
///
|
|
/// \param node If non-null, the graph node that failed verification.
|
|
///
|
|
/// \param extraContext If provided, a function that will be called to
|
|
/// provide extra, contextual information about the failure.
|
|
static void _require(bool condition, const Twine &complaint,
|
|
ConstraintGraph &cg,
|
|
ConstraintGraphNode *node,
|
|
const std::function<void()> &extraContext = nullptr) {
|
|
if (condition)
|
|
return;
|
|
|
|
// Complain
|
|
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
|
|
if (extraContext)
|
|
extraContext();
|
|
|
|
// Print the graph.
|
|
// FIXME: Highlight the offending node/constraint/adjacency/etc.
|
|
cg.print(llvm::dbgs());
|
|
|
|
abort();
|
|
}
|
|
|
|
/// Print a type variable value.
|
|
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
|
|
typeVar->print(os);
|
|
}
|
|
|
|
/// Print a constraint value.
|
|
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
|
|
constraint->print(os, nullptr);
|
|
}
|
|
|
|
/// Print an unsigned value.
|
|
static void printValue(llvm::raw_ostream &os, unsigned value) {
|
|
os << value;
|
|
}
|
|
|
|
void ConstraintGraphNode::verify(ConstraintGraph &cg) {
|
|
#define require(condition, complaint) _require(condition, complaint, cg, this)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, cg, this, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, cg, this, [&] { \
|
|
llvm::dbgs() << " "; \
|
|
printValue(llvm::dbgs(), value1); \
|
|
llvm::dbgs() << " != "; \
|
|
printValue(llvm::dbgs(), value2); \
|
|
llvm::dbgs() << '\n'; \
|
|
})
|
|
|
|
// Verify that the constraint map/vector haven't gotten out of sync.
|
|
requireSameValue(Constraints.size(), ConstraintIndex.size(),
|
|
"constraint vector and map have different sizes");
|
|
for (auto info : ConstraintIndex) {
|
|
require(info.second < Constraints.size(), "constraint index out-of-range");
|
|
requireSameValue(info.first, Constraints[info.second],
|
|
"constraint map provides wrong index into vector");
|
|
}
|
|
|
|
// Verify that the adjacency map/vector haven't gotten out of sync.
|
|
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
|
|
"adjacency vector and map have different sizes");
|
|
for (auto info : AdjacencyInfo) {
|
|
require(info.second.Index < Adjacencies.size(),
|
|
"adjacency index out-of-range");
|
|
requireSameValue(info.first, Adjacencies[info.second.Index],
|
|
"adjacency map provides wrong index into vector");
|
|
require(!info.second.empty(),
|
|
"adjacency information should have been removed");
|
|
require(info.second.NumConstraints <= Constraints.size(),
|
|
"adjacency information has higher degree than # of constraints");
|
|
}
|
|
|
|
// Based on the constraints we have, build up a representation of what
|
|
// we expect the adjacencies to look like.
|
|
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
|
|
for (auto constraint : Constraints) {
|
|
for (auto adjTypeVar : constraint->getTypeVariables()) {
|
|
if (adjTypeVar == TypeVar)
|
|
continue;
|
|
|
|
++expectedAdjacencies[adjTypeVar];
|
|
}
|
|
}
|
|
|
|
// Make sure that the adjacencies we expect are the adjacencies we have.
|
|
for (auto adj : expectedAdjacencies) {
|
|
auto knownAdj = AdjacencyInfo.find(adj.first);
|
|
requireWithContext(knownAdj != AdjacencyInfo.end(),
|
|
"missing adjacency information for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
|
|
});
|
|
|
|
requireWithContext(adj.second == knownAdj->second.NumConstraints,
|
|
"wrong number of adjacencies for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString()
|
|
<< " (" << adj.second << " vs. "
|
|
<< knownAdj->second.NumConstraints
|
|
<< ")\n";
|
|
});
|
|
}
|
|
|
|
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
|
|
// The adjacency information has something extra in it. Find the
|
|
// extraneous type variable.
|
|
for (auto adj : AdjacencyInfo) {
|
|
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
|
|
"extraneous adjacency info for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
|
|
});
|
|
}
|
|
}
|
|
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
void ConstraintGraph::verify() {
|
|
#define require(condition, complaint) \
|
|
_require(condition, complaint, *this, nullptr)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, *this, nullptr, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, *this, nullptr, [&] { \
|
|
llvm::dbgs() << " "; \
|
|
printValue(llvm::dbgs(), value1); \
|
|
llvm::dbgs() << " != "; \
|
|
printValue(llvm::dbgs(), value2); \
|
|
llvm::dbgs() << '\n'; \
|
|
})
|
|
|
|
// Verify that the type variables are either representatives or represented
|
|
// within their representative's equivalence class.
|
|
// FIXME: Also check to make sure the equivalence classes aren't too large?
|
|
for (auto typeVar : TypeVariables) {
|
|
auto typeVarRep = CS.getRepresentative(typeVar);
|
|
auto &repNode = (*this)[typeVarRep];
|
|
if (typeVar != typeVarRep) {
|
|
// This type variable should be in the equivalence class of its
|
|
// representative.
|
|
require(std::find(repNode.getEquivalenceClass().begin(),
|
|
repNode.getEquivalenceClass().end(),
|
|
typeVar) != repNode.getEquivalenceClass().end(),
|
|
"type variable not present in its representative's equiv class");
|
|
} else {
|
|
// Each of the type variables in the same equivalence class as this type
|
|
// should have this type variable as their representative.
|
|
for (auto equiv : repNode.getEquivalenceClass()) {
|
|
requireSameValue(
|
|
typeVar, equiv->getImpl().getRepresentative(nullptr),
|
|
"representative and an equivalent type variable's representative");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that our type variable map/vector are in sync.
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto typeVar = TypeVariables[i];
|
|
auto &impl = typeVar->getImpl();
|
|
requireSameValue(impl.getGraphIndex(), i, "wrong graph node index");
|
|
require(impl.getGraphNode(), "null graph node");
|
|
}
|
|
|
|
// Verify consistency of all of the nodes in the graph.
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto typeVar = TypeVariables[i];
|
|
auto &impl = typeVar->getImpl();
|
|
impl.getGraphNode()->verify(*this);
|
|
}
|
|
|
|
// Collect all of the constraints known to the constraint graph.
|
|
llvm::SmallPtrSet<Constraint *, 4> knownConstraints;
|
|
for (auto typeVar : getTypeVariables()) {
|
|
for (auto constraint : (*this)[typeVar].getConstraints())
|
|
knownConstraints.insert(constraint);
|
|
}
|
|
|
|
// Verify that all of the constraints in the constraint system
|
|
// are accounted for.
|
|
for (auto &constraint : CS.getConstraints()) {
|
|
// Check whether the constraint graph knows about this constraint.
|
|
auto referencedTypeVars = constraint.getTypeVariables();
|
|
requireWithContext((knownConstraints.count(&constraint) ||
|
|
referencedTypeVars.empty()),
|
|
"constraint graph doesn't know about constraint",
|
|
[&] {
|
|
llvm::dbgs() << "constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
// Make sure each of the type variables referenced knows about this
|
|
// constraint.
|
|
for (auto typeVar : referencedTypeVars) {
|
|
auto nodePtr = typeVar->getImpl().getGraphNode();
|
|
requireWithContext(nodePtr,
|
|
"type variable in constraint not known",
|
|
[&] {
|
|
llvm::dbgs() << "type variable = ";
|
|
printValue(llvm::dbgs(), typeVar);
|
|
llvm::dbgs() << ", constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
auto &node = *nodePtr;
|
|
auto constraintPos = node.ConstraintIndex.find(&constraint);
|
|
requireWithContext(constraintPos != node.ConstraintIndex.end(),
|
|
"type variable doesn't know about constraint",
|
|
[&] {
|
|
llvm::dbgs() << "type variable = ";
|
|
printValue(llvm::dbgs(), typeVar);
|
|
llvm::dbgs() << ", constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
}
|
|
}
|
|
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
|