mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Semantic context describes the origin of the declaration and serves the same purpose as opaque numeric "priority" in Clang -- to determine the most likely completion. This is the initial implementation. There are a few opportunities to bump the priority of a certain decl by giving it SemanticContextKind::ExprSpecific context that are not implemented yet. Swift SVN r9052
1131 lines
40 KiB
C++
1131 lines
40 KiB
C++
//===--- Module.cpp - Swift Language Module Implementation ----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Module class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/Diagnostics.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/LinkLibrary.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ModuleLoader.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/PrintOptions.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builtin Module Name lookup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// BuiltinModuleCache - This is the type of the cache for the BuiltinModule.
|
|
/// This is lazily created on its first use an hangs off
|
|
/// Module::LookupCachePimpl.
|
|
class BuiltinModuleCache {
|
|
/// The cache of identifiers we've already looked up. We use a
|
|
/// single hashtable for both types and values as a minor
|
|
/// optimization; this prevents us from having both a builtin type
|
|
/// and a builtin value with the same name, but that's okay.
|
|
llvm::DenseMap<Identifier, ValueDecl*> Cache;
|
|
public:
|
|
|
|
void lookupValue(Identifier Name, NLKind LookupKind, BuiltinModule &M,
|
|
SmallVectorImpl<ValueDecl*> &Result);
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
static BuiltinModuleCache &getBuiltinCachePimpl(void *&Ptr) {
|
|
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
|
|
// the DenseMap will leak.
|
|
if (Ptr == 0)
|
|
Ptr = new BuiltinModuleCache();
|
|
return *(BuiltinModuleCache*)Ptr;
|
|
}
|
|
|
|
void BuiltinModuleCache::lookupValue(Identifier Name, NLKind LookupKind,
|
|
BuiltinModule &M,
|
|
SmallVectorImpl<ValueDecl*> &Result) {
|
|
// Only qualified lookup ever finds anything in the builtin module.
|
|
if (LookupKind != NLKind::QualifiedLookup) return;
|
|
|
|
ValueDecl *&Entry = Cache[Name];
|
|
|
|
if (Entry == 0)
|
|
if (Type Ty = getBuiltinType(M.Ctx, Name.str()))
|
|
Entry = new (M.Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(),
|
|
TypeLoc::withoutLoc(Ty),
|
|
M.Ctx.TheBuiltinModule,
|
|
MutableArrayRef<TypeLoc>());
|
|
|
|
if (Entry == 0)
|
|
Entry = getBuiltinValue(M.Ctx, Name);
|
|
|
|
if (Entry)
|
|
Result.push_back(Entry);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Normal Module Name Lookup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This is the type of the cache for the TranslationUnit.
|
|
///
|
|
/// This is lazily created on its first use and hangs off
|
|
/// Module::LookupCachePimpl.
|
|
class TUModuleCache {
|
|
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> TopLevelValues;
|
|
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> ClassMembers;
|
|
bool MemberCachePopulated = false;
|
|
void doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators);
|
|
void addToMemberCache(ArrayRef<Decl*> decls);
|
|
void populateMemberCache(const TranslationUnit &TU);
|
|
public:
|
|
typedef Module::AccessPathTy AccessPathTy;
|
|
|
|
TUModuleCache(const TranslationUnit &TU);
|
|
|
|
void lookupValue(AccessPathTy AccessPath, Identifier Name,
|
|
NLKind LookupKind, TranslationUnit &TU,
|
|
SmallVectorImpl<ValueDecl*> &Result);
|
|
|
|
void lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind,
|
|
const TranslationUnit &TU);
|
|
|
|
void lookupClassMembers(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &consumer,
|
|
const TranslationUnit &TU);
|
|
|
|
void lookupClassMember(AccessPathTy accessPath,
|
|
Identifier name,
|
|
SmallVectorImpl<ValueDecl*> &results,
|
|
const TranslationUnit &TU);
|
|
|
|
SmallVector<ValueDecl *, 0> AllVisibleValues;
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
static TUModuleCache &getTUCachePimpl(void *&Ptr, const TranslationUnit &TU) {
|
|
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
|
|
// the DenseMap will leak.
|
|
if (Ptr == 0)
|
|
Ptr = new TUModuleCache(TU);
|
|
return *(TUModuleCache*)Ptr;
|
|
}
|
|
|
|
static void freeTUCachePimpl(void *&Ptr) {
|
|
delete (TUModuleCache*)Ptr;
|
|
Ptr = 0;
|
|
}
|
|
|
|
void TUModuleCache::doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators) {
|
|
for (Decl *D : decls) {
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
|
|
if (onlyOperators ? VD->getName().isOperator() : !VD->getName().empty())
|
|
TopLevelValues[VD->getName()].push_back(VD);
|
|
if (NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D))
|
|
doPopulateCache(NTD->getMembers(), true);
|
|
if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D))
|
|
doPopulateCache(ED->getMembers(), true);
|
|
}
|
|
}
|
|
|
|
void TUModuleCache::populateMemberCache(const TranslationUnit &TU) {
|
|
for (const Decl *D : TU.Decls) {
|
|
if (const NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D)) {
|
|
addToMemberCache(NTD->getMembers());
|
|
} else if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D)) {
|
|
addToMemberCache(ED->getMembers());
|
|
}
|
|
}
|
|
}
|
|
|
|
void TUModuleCache::addToMemberCache(ArrayRef<Decl*> decls) {
|
|
for (Decl *D : decls) {
|
|
auto VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD)
|
|
continue;
|
|
|
|
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
|
|
assert(!VD->canBeAccessedByDynamicLookup() &&
|
|
"inner types cannot be accessed by dynamic lookup");
|
|
addToMemberCache(NTD->getMembers());
|
|
} else if (VD->canBeAccessedByDynamicLookup()) {
|
|
ClassMembers[VD->getName()].push_back(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Populate our cache on the first name lookup.
|
|
TUModuleCache::TUModuleCache(const TranslationUnit &TU) {
|
|
doPopulateCache(TU.Decls, false);
|
|
}
|
|
|
|
|
|
void TUModuleCache::lookupValue(AccessPathTy AccessPath, Identifier Name,
|
|
NLKind LookupKind, TranslationUnit &TU,
|
|
SmallVectorImpl<ValueDecl*> &Result) {
|
|
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
// If this import is specific to some named type or decl ("import swift.int")
|
|
// then filter out any lookups that don't match.
|
|
if (AccessPath.size() == 1 && AccessPath.front().first != Name)
|
|
return;
|
|
|
|
auto I = TopLevelValues.find(Name);
|
|
if (I == TopLevelValues.end()) return;
|
|
|
|
Result.reserve(I->second.size());
|
|
for (ValueDecl *Elt : I->second)
|
|
Result.push_back(Elt);
|
|
}
|
|
|
|
void TUModuleCache::lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind,
|
|
const TranslationUnit &TU) {
|
|
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
if (!AccessPath.empty()) {
|
|
auto I = TopLevelValues.find(AccessPath.front().first);
|
|
if (I == TopLevelValues.end()) return;
|
|
|
|
for (auto vd : I->second)
|
|
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
|
|
return;
|
|
}
|
|
|
|
for (auto &tlv : TopLevelValues) {
|
|
for (ValueDecl *vd : tlv.second)
|
|
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
|
|
}
|
|
}
|
|
|
|
void TUModuleCache::lookupClassMembers(AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer,
|
|
const TranslationUnit &TU) {
|
|
if (!MemberCachePopulated)
|
|
populateMemberCache(TU);
|
|
|
|
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
if (!accessPath.empty()) {
|
|
for (auto &member : ClassMembers) {
|
|
for (ValueDecl *vd : member.second) {
|
|
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
|
|
if (auto nominal = ty->getAnyNominal())
|
|
if (nominal->getName() == accessPath.front().first)
|
|
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (auto &member : ClassMembers) {
|
|
for (ValueDecl *vd : member.second)
|
|
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
|
|
}
|
|
}
|
|
|
|
void TUModuleCache::lookupClassMember(AccessPathTy accessPath,
|
|
Identifier name,
|
|
SmallVectorImpl<ValueDecl*> &results,
|
|
const TranslationUnit &TU) {
|
|
if (!MemberCachePopulated)
|
|
populateMemberCache(TU);
|
|
|
|
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
auto iter = ClassMembers.find(name);
|
|
if (iter == ClassMembers.end())
|
|
return;
|
|
|
|
if (!accessPath.empty()) {
|
|
for (ValueDecl *vd : iter->second) {
|
|
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
|
|
if (auto nominal = ty->getAnyNominal())
|
|
if (nominal->getName() == accessPath.front().first)
|
|
results.push_back(vd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
results.append(iter->second.begin(), iter->second.end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Module Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Module::lookupValue(AccessPathTy AccessPath, Identifier Name,
|
|
NLKind LookupKind,
|
|
SmallVectorImpl<ValueDecl*> &Result) {
|
|
if (BuiltinModule *BM = dyn_cast<BuiltinModule>(this)) {
|
|
assert(AccessPath.empty() && "builtin module's access path always empty!");
|
|
return getBuiltinCachePimpl(LookupCachePimpl)
|
|
.lookupValue(Name, LookupKind, *BM, Result);
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
// Look in the translation unit.
|
|
return getTUCachePimpl(LookupCachePimpl, *TU)
|
|
.lookupValue(AccessPath, Name, LookupKind, *TU, Result);
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.lookupValue(this, AccessPath, Name, LookupKind, Result);
|
|
}
|
|
|
|
void Module::lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind) const {
|
|
if (auto BM = dyn_cast<BuiltinModule>(this)) {
|
|
// TODO Look through the Builtin module.
|
|
(void)BM;
|
|
return;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
return getTUCachePimpl(LookupCachePimpl, *TU)
|
|
.lookupVisibleDecls(AccessPath, Consumer, LookupKind, *TU);
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.lookupVisibleDecls(this, AccessPath, Consumer, LookupKind);
|
|
}
|
|
|
|
void Module::lookupClassMembers(AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer) const {
|
|
if (isa<BuiltinModule>(this)) {
|
|
// The Builtin module defines no classes.
|
|
return;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
return getTUCachePimpl(LookupCachePimpl, *TU)
|
|
.lookupClassMembers(accessPath, consumer, *TU);
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.lookupClassMembers(this, accessPath, consumer);
|
|
}
|
|
|
|
void Module::lookupClassMember(AccessPathTy accessPath,
|
|
Identifier name,
|
|
SmallVectorImpl<ValueDecl*> &results) const {
|
|
if (isa<BuiltinModule>(this)) {
|
|
// The Builtin module defines no classes.
|
|
return;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
return getTUCachePimpl(LookupCachePimpl, *TU)
|
|
.lookupClassMember(accessPath, name, results, *TU);
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.lookupClassMember(this, accessPath, name, results);
|
|
}
|
|
|
|
void Module::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) {
|
|
if (isa<BuiltinModule>(this)) {
|
|
return;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
Results.append(TU->Decls.begin(), TU->Decls.end());
|
|
return;
|
|
}
|
|
|
|
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
|
|
return Owner.getTopLevelDecls(this, Results);
|
|
}
|
|
|
|
ArrayRef<Substitution> BoundGenericType::getSubstitutions(
|
|
Module *module,
|
|
LazyResolver *resolver) {
|
|
// FIXME: If there is no module, infer one. This is a hack for callers that
|
|
// don't have access to the module. It will have to go away once we're
|
|
// properly differentiating bound generic types based on the protocol
|
|
// conformances visible from a given module.
|
|
if (!module) {
|
|
module = getDecl()->getParentModule();
|
|
}
|
|
|
|
// If we already have a cached copy of the substitutions, return them.
|
|
auto *canon = getCanonicalType()->castTo<BoundGenericType>();
|
|
const ASTContext &ctx = canon->getASTContext();
|
|
if (auto known = ctx.getSubstitutions(canon))
|
|
return *known;
|
|
|
|
// Compute the set of substitutions.
|
|
llvm::SmallPtrSet<ArchetypeType *, 8> knownArchetypes;
|
|
SmallVector<ArchetypeType *, 8> archetypeStack;
|
|
TypeSubstitutionMap substitutions;
|
|
auto genericParams = canon->getDecl()->getGenericParams();
|
|
unsigned index = 0;
|
|
for (Type arg : canon->getGenericArgs()) {
|
|
auto gp = genericParams->getParams()[index++];
|
|
auto archetype = gp.getAsTypeParam()->getArchetype();
|
|
substitutions[archetype] = arg;
|
|
}
|
|
|
|
// Collect all of the archetypes.
|
|
SmallVector<ArchetypeType *, 2> allArchetypesList;
|
|
ArrayRef<ArchetypeType *> allArchetypes = genericParams->getAllArchetypes();
|
|
if (genericParams->getOuterParameters()) {
|
|
SmallVector<const GenericParamList *, 2> allGenericParams;
|
|
unsigned numArchetypes = 0;
|
|
for (; genericParams; genericParams = genericParams->getOuterParameters()) {
|
|
allGenericParams.push_back(genericParams);
|
|
numArchetypes += genericParams->getAllArchetypes().size();
|
|
}
|
|
allArchetypesList.reserve(numArchetypes);
|
|
for (auto gp = allGenericParams.rbegin(), gpEnd = allGenericParams.rend();
|
|
gp != gpEnd; ++gp) {
|
|
allArchetypesList.append((*gp)->getAllArchetypes().begin(),
|
|
(*gp)->getAllArchetypes().end());
|
|
}
|
|
allArchetypes = allArchetypesList;
|
|
}
|
|
|
|
// For each of the archetypes, compute the substitution.
|
|
bool hasTypeVariables = canon->hasTypeVariable();
|
|
SmallVector<Substitution, 4> resultSubstitutions;
|
|
resultSubstitutions.resize(allArchetypes.size());
|
|
index = 0;
|
|
for (auto archetype : allArchetypes) {
|
|
// Substitute into the type.
|
|
auto type = Type(archetype).subst(module, substitutions,
|
|
/*ignoreMissing=*/hasTypeVariables,
|
|
resolver);
|
|
assert(type && "Unable to perform type substitution");
|
|
|
|
SmallVector<ProtocolConformance *, 4> conformances;
|
|
if (type->hasTypeVariable()) {
|
|
// If the type involves a type variable, just fill in null conformances.
|
|
// FIXME: It seems like we should record these as requirements (?).
|
|
conformances.assign(archetype->getConformsTo().size(), nullptr);
|
|
} else {
|
|
// Find the conformances.
|
|
for (auto proto : archetype->getConformsTo()) {
|
|
auto conforms = module->lookupConformance(type, proto, resolver);
|
|
switch (conforms.getInt()) {
|
|
case ConformanceKind::Conforms:
|
|
conformances.push_back(conforms.getPointer());
|
|
break;
|
|
|
|
case ConformanceKind::DoesNotConform:
|
|
case ConformanceKind::UncheckedConforms:
|
|
llvm_unreachable("Couldn't find conformance");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record this substitution.
|
|
resultSubstitutions[index].Archetype = archetype;
|
|
resultSubstitutions[index].Replacement = type;
|
|
resultSubstitutions[index].Conformance = ctx.AllocateCopy(conformances);
|
|
++index;
|
|
}
|
|
|
|
// Copy and record the substitutions.
|
|
auto permanentSubs = ctx.AllocateCopy(resultSubstitutions,
|
|
hasTypeVariables
|
|
? AllocationArena::ConstraintSolver
|
|
: AllocationArena::Permanent);
|
|
ctx.setSubstitutions(canon, permanentSubs);
|
|
return permanentSubs;
|
|
}
|
|
|
|
/// Gather the set of substitutions required to map from the generic form of
|
|
/// the given type to the specialized form.
|
|
static ArrayRef<Substitution> gatherSubstitutions(Module *module, Type type,
|
|
LazyResolver *resolver) {
|
|
assert(type->isSpecialized() && "Type is not specialized");
|
|
SmallVector<ArrayRef<Substitution>, 2> allSubstitutions;
|
|
|
|
while (type) {
|
|
// Record the substitutions in a bound generic type.
|
|
if (auto boundGeneric = type->getAs<BoundGenericType>()) {
|
|
allSubstitutions.push_back(boundGeneric->getSubstitutions(module,
|
|
resolver));
|
|
type = boundGeneric->getParent();
|
|
continue;
|
|
}
|
|
|
|
// Skip to the parent of a nominal type.
|
|
if (auto nominal = type->getAs<NominalType>()) {
|
|
type = nominal->getParent();
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("Not a nominal or bound generic type");
|
|
}
|
|
assert(!allSubstitutions.empty() && "No substitutions?");
|
|
|
|
// If there is only one list of substitutions, return it. There's no
|
|
// need to copy it.
|
|
if (allSubstitutions.size() == 1)
|
|
return allSubstitutions.front();
|
|
|
|
SmallVector<Substitution, 4> flatSubstitutions;
|
|
for (auto substitutions : allSubstitutions)
|
|
flatSubstitutions.append(substitutions.begin(), substitutions.end());
|
|
auto &ctx = module->getASTContext();
|
|
return ctx.AllocateCopy(flatSubstitutions);
|
|
}
|
|
|
|
/// Given a type witness map and a set of substitutions, produce the specialized
|
|
/// type witness map by applying the substitutions to each type witness.
|
|
static TypeWitnessMap
|
|
specializeTypeWitnesses(ASTContext &ctx,
|
|
Module *module,
|
|
const TypeWitnessMap &witnesses,
|
|
ArrayRef<Substitution> substitutions,
|
|
LazyResolver *resolver) {
|
|
// Compute the substitution map, which is needed for substType().
|
|
TypeSubstitutionMap substitutionMap;
|
|
for (const auto &substitution : substitutions) {
|
|
substitutionMap[substitution.Archetype] = substitution.Replacement;
|
|
}
|
|
|
|
// Substitute into each of the type witnesses.
|
|
TypeWitnessMap result;
|
|
for (const auto &genericWitness : witnesses) {
|
|
// Substitute into the type witness to produce the type witness for
|
|
// the specialized type.
|
|
auto specializedType
|
|
= genericWitness.second.Replacement.subst(module, substitutionMap,
|
|
/*ignoreMissing=*/false,
|
|
resolver);
|
|
|
|
// If the type witness was unchanged, just copy it directly.
|
|
if (specializedType.getPointer() ==
|
|
genericWitness.second.Replacement.getPointer()) {
|
|
result.insert(genericWitness);
|
|
continue;
|
|
}
|
|
|
|
// Gather the conformances for the type witness. These should never fail.
|
|
SmallVector<ProtocolConformance *, 4> conformances;
|
|
auto archetype = genericWitness.second.Archetype;
|
|
for (auto proto : archetype->getConformsTo()) {
|
|
auto conforms = module->lookupConformance(specializedType, proto,
|
|
resolver);
|
|
switch (conforms.getInt()) {
|
|
case ConformanceKind::Conforms:
|
|
conformances.push_back(conforms.getPointer());
|
|
break;
|
|
|
|
case ConformanceKind::DoesNotConform:
|
|
case ConformanceKind::UncheckedConforms:
|
|
// FIXME: Signal errors in a more sane way.
|
|
return TypeWitnessMap();
|
|
}
|
|
}
|
|
|
|
result[genericWitness.first]
|
|
= Substitution{archetype, specializedType,
|
|
ctx.AllocateCopy(conformances)};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Retrieve the explicit conformance of the given nominal type declaration
|
|
/// to the given protocol.
|
|
static std::tuple<NominalTypeDecl *, Decl *, ProtocolConformance *>
|
|
findExplicitConformance(NominalTypeDecl *nominal, ProtocolDecl *protocol,
|
|
LazyResolver *resolver) {
|
|
// FIXME: Introduce a cache/lazy lookup structure to make this more efficient?
|
|
|
|
// Walk the nominal type, its extensions, superclasses, and so on.
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> visitedProtocols;
|
|
SmallVector<std::tuple<NominalTypeDecl *, NominalTypeDecl *, Decl *>,4> stack;
|
|
NominalTypeDecl *owningNominal = nullptr;
|
|
Decl *declaresConformance = nullptr;
|
|
ProtocolConformance *nominalConformance = nullptr;
|
|
|
|
// Local function that checks for our protocol in the given array of
|
|
// protocols.
|
|
auto isProtocolInList
|
|
= [&](NominalTypeDecl *currentNominal,
|
|
Decl *currentOwner,
|
|
ArrayRef<ProtocolDecl *> protocols,
|
|
ArrayRef<ProtocolConformance *> conformances) -> bool {
|
|
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
|
|
auto testProto = protocols[i];
|
|
if (testProto == protocol) {
|
|
owningNominal = currentNominal;
|
|
declaresConformance = currentOwner;
|
|
if (i < conformances.size())
|
|
nominalConformance = conformances[i];
|
|
return true;
|
|
}
|
|
|
|
if (visitedProtocols.insert(testProto))
|
|
stack.push_back({testProto, currentNominal, currentOwner});
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
resolver->resolveDeclSignature(nominal);
|
|
|
|
// Walk the stack of types to find a conformance.
|
|
stack.push_back({nominal, nominal, nominal});
|
|
while (!stack.empty()) {
|
|
NominalTypeDecl *current;
|
|
NominalTypeDecl *currentNominal;
|
|
Decl *currentOwner;
|
|
std::tie(current, currentNominal, currentOwner) = stack.back();
|
|
stack.pop_back();
|
|
|
|
// Visit the superclass of a class.
|
|
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
|
|
if (auto superclassTy = classDecl->getSuperclass()) {
|
|
auto nominal = superclassTy->getAnyNominal();
|
|
stack.push_back({nominal, nominal, nominal});
|
|
}
|
|
}
|
|
|
|
// Visit the protocols this type conforms to directly.
|
|
if (isProtocolInList(currentNominal, currentOwner,
|
|
current->getProtocols(),
|
|
current->getConformances()))
|
|
break;
|
|
|
|
// Visit the extensions of this type.
|
|
for (auto ext : current->getExtensions()) {
|
|
if (isProtocolInList(currentNominal, ext, ext->getProtocols(),
|
|
ext->getConformances()))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we didn't find the protocol, we don't conform. Cache the negative result
|
|
// and return.
|
|
if (!owningNominal) {
|
|
return { nullptr, nullptr, nullptr };
|
|
}
|
|
|
|
// If we don't have a nominal conformance, but we do have a resolver, try
|
|
// to resolve the nominal conformance now.
|
|
if (!nominalConformance && resolver) {
|
|
nominalConformance = resolver->resolveConformance(
|
|
owningNominal,
|
|
protocol,
|
|
dyn_cast<ExtensionDecl>(declaresConformance));
|
|
}
|
|
|
|
// If we have a nominal conformance, we're done.
|
|
if (nominalConformance) {
|
|
return { owningNominal, declaresConformance, nominalConformance };
|
|
}
|
|
|
|
return { nullptr, nullptr, nullptr };
|
|
}
|
|
|
|
LookupConformanceResult Module::lookupConformance(Type type,
|
|
ProtocolDecl *protocol,
|
|
LazyResolver *resolver) {
|
|
ASTContext &ctx = getASTContext();
|
|
|
|
// An archetype conforms to a protocol if the protocol is listed in the
|
|
// archetype's list of conformances.
|
|
if (auto archetype = type->getAs<ArchetypeType>()) {
|
|
for (auto ap : archetype->getConformsTo()) {
|
|
if (ap == protocol || ap->inheritsFrom(protocol))
|
|
return { nullptr, ConformanceKind::Conforms };
|
|
}
|
|
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// An archetype conforms to a protocol if the protocol is listed in the
|
|
// existential's list of conformances and the existential conforms to
|
|
// itself.
|
|
if (type->isExistentialType()) {
|
|
// If the protocol doesn't conform to itself, there's no point in looking
|
|
// further.
|
|
auto known = protocol->existentialConformsToSelf();
|
|
if (!known && resolver) {
|
|
resolver->resolveExistentialConformsToItself(protocol);
|
|
known = protocol->existentialConformsToSelf();
|
|
}
|
|
|
|
// If we know that protocol doesn't conform to itself, we're done.
|
|
if (known && !*known)
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
|
|
// Look for this protocol within the existential's list of conformances.
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
type->isExistentialType(protocols);
|
|
for (auto ap : protocols) {
|
|
if (ap == protocol || ap->inheritsFrom(protocol)) {
|
|
return { nullptr,
|
|
known? ConformanceKind::Conforms
|
|
: ConformanceKind::UncheckedConforms };
|
|
}
|
|
}
|
|
|
|
// We didn't find our protocol in the existential's list; it doesn't
|
|
// conform.
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// Check whether we have already cached an answer to this query.
|
|
ASTContext::ConformsToMap::key_type key(type->getCanonicalType(), protocol);
|
|
auto known = ctx.ConformsTo.find(key);
|
|
if (known != ctx.ConformsTo.end()) {
|
|
// If we conform, return the conformance.
|
|
if (known->second.getInt()) {
|
|
return { known->second.getPointer(), ConformanceKind::Conforms };
|
|
}
|
|
|
|
// We don't conform.
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
auto nominal = type->getAnyNominal();
|
|
|
|
// If we don't have a nominal type, there are no conformances.
|
|
// FIXME: We may have implicit conformances for some cases. Handle those
|
|
// here.
|
|
if (!nominal) {
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// Find the explicit conformance.
|
|
NominalTypeDecl *owningNominal = nullptr;
|
|
Decl *declaresConformance = nullptr;
|
|
ProtocolConformance *nominalConformance = nullptr;
|
|
std::tie(owningNominal, declaresConformance, nominalConformance)
|
|
= findExplicitConformance(nominal, protocol, resolver);
|
|
|
|
// If we didn't find an owning nominal, we don't conform. Cache the negative
|
|
// result and return.
|
|
if (!owningNominal) {
|
|
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// If we found an owning nominal but didn't have a conformance, this is
|
|
// an unchecked conformance.
|
|
if (!nominalConformance) {
|
|
return { nullptr, ConformanceKind::UncheckedConforms };
|
|
}
|
|
|
|
// If the nominal type in which we found the conformance is not the same
|
|
// as the type we asked for, it's an inherited type.
|
|
if (owningNominal != nominal) {
|
|
// Find the superclass type
|
|
Type superclassTy = type->getSuperclass(resolver);
|
|
while (superclassTy->getAnyNominal() != owningNominal)
|
|
superclassTy = superclassTy->getSuperclass(resolver);
|
|
|
|
// Compute the conformance for the inherited type.
|
|
auto inheritedConformance = lookupConformance(superclassTy, protocol,
|
|
resolver);
|
|
switch (inheritedConformance.getInt()) {
|
|
case ConformanceKind::DoesNotConform:
|
|
llvm_unreachable("We already found the inherited conformance");
|
|
|
|
case ConformanceKind::UncheckedConforms:
|
|
return inheritedConformance;
|
|
|
|
case ConformanceKind::Conforms:
|
|
// Create inherited conformance below.
|
|
break;
|
|
}
|
|
|
|
// Create the inherited conformance entry.
|
|
auto result
|
|
= ctx.getInheritedConformance(type, inheritedConformance.getPointer());
|
|
ctx.ConformsTo[key] = ConformanceEntry(result, true);
|
|
return { result, ConformanceKind::Conforms };
|
|
}
|
|
|
|
// If the type is specialized, find the conformance for the generic type.
|
|
if (type->isSpecialized()) {
|
|
// Figure out the type that's explicitly conforming to this protocol.
|
|
Type explicitConformanceType;
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(declaresConformance)) {
|
|
explicitConformanceType = nominal->getDeclaredTypeInContext();
|
|
} else {
|
|
explicitConformanceType = cast<ExtensionDecl>(declaresConformance)
|
|
->getDeclaredTypeInContext();
|
|
}
|
|
|
|
// If the explicit conformance is associated with a type that is different
|
|
// from the type we're checking, retrieve generic conformance.
|
|
if (!explicitConformanceType->isEqual(type)) {
|
|
// Gather the substitutions we need to map the generic conformance to
|
|
// the specialized conformance.
|
|
auto substitutions = gatherSubstitutions(this, type, resolver);
|
|
|
|
// The type witnesses for the specialized conformance.
|
|
TypeWitnessMap typeWitnesses
|
|
= specializeTypeWitnesses(ctx, this,
|
|
nominalConformance->getTypeWitnesses(),
|
|
substitutions,
|
|
resolver);
|
|
|
|
// Create the specialized conformance entry.
|
|
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
|
|
auto result = ctx.getSpecializedConformance(type, nominalConformance,
|
|
substitutions,
|
|
std::move(typeWitnesses));
|
|
ctx.ConformsTo[key] = ConformanceEntry(result, true);
|
|
return { result, ConformanceKind::Conforms };
|
|
}
|
|
}
|
|
|
|
// Record and return the simple conformance.
|
|
ctx.ConformsTo[key] = ConformanceEntry(nominalConformance, true);
|
|
return { nominalConformance, ConformanceKind::Conforms };
|
|
}
|
|
|
|
void Module::getDisplayDecls(SmallVectorImpl<Decl*> &results) {
|
|
if (isa<BuiltinModule>(this)) {
|
|
// FIXME: The Builtin module isn't usually visible, but it would be nice
|
|
// to have the option to display its decls. Unfortunately those decls are
|
|
// lazily generated.
|
|
return;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
results.append(TU->Decls.begin(), TU->Decls.end());
|
|
return;
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.getDisplayDecls(this, results);
|
|
}
|
|
|
|
namespace {
|
|
// Returns Nothing on error, Optional(nullptr) if no operator decl found, or
|
|
// Optional(decl) if decl was found.
|
|
template<typename OP_DECL>
|
|
Optional<OP_DECL *> lookupOperatorDeclForName(Module *M,
|
|
SourceLoc Loc,
|
|
Identifier Name,
|
|
llvm::StringMap<OP_DECL *> TranslationUnit::*OP_MAP)
|
|
{
|
|
if (auto loadedModule = dyn_cast<LoadedModule>(M))
|
|
return loadedModule->lookupOperator<OP_DECL>(Name);
|
|
|
|
auto *TU = dyn_cast<TranslationUnit>(M);
|
|
if (!TU)
|
|
return Nothing;
|
|
|
|
// Look for an operator declaration in the current module.
|
|
auto found = (TU->*OP_MAP).find(Name.get());
|
|
if (found != (TU->*OP_MAP).end())
|
|
return found->getValue()? Optional<OP_DECL *>(found->getValue()) : Nothing;
|
|
|
|
// Look for imported operator decls.
|
|
|
|
llvm::DenseSet<OP_DECL*> importedOperators;
|
|
for (auto &imported : TU->getImports()) {
|
|
Optional<OP_DECL *> maybeOp
|
|
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
|
|
if (!maybeOp)
|
|
return Nothing;
|
|
|
|
if (OP_DECL *op = *maybeOp)
|
|
importedOperators.insert(op);
|
|
}
|
|
|
|
// If we found a single import, use it.
|
|
if (importedOperators.empty()) {
|
|
// Cache the mapping so we don't need to troll imports next time.
|
|
(TU->*OP_MAP)[Name.get()] = nullptr;
|
|
return Nothing;
|
|
}
|
|
if (importedOperators.size() == 1) {
|
|
// Cache the mapping so we don't need to troll imports next time.
|
|
OP_DECL *result = *importedOperators.begin();
|
|
(TU->*OP_MAP)[Name.get()] = result;
|
|
return result;
|
|
}
|
|
|
|
// Otherwise, check for conflicts.
|
|
auto i = importedOperators.begin(), end = importedOperators.end();
|
|
OP_DECL *first = *i;
|
|
for (++i; i != end; ++i) {
|
|
if ((*i)->conflictsWith(first)) {
|
|
if (Loc.isValid()) {
|
|
ASTContext &C = M->getASTContext();
|
|
C.Diags.diagnose(Loc, diag::ambiguous_operator_decls);
|
|
C.Diags.diagnose(first->getLoc(), diag::found_this_operator_decl);
|
|
C.Diags.diagnose((*i)->getLoc(), diag::found_this_operator_decl);
|
|
}
|
|
return Nothing;
|
|
}
|
|
}
|
|
// Cache the mapping so we don't need to troll imports next time.
|
|
(TU->*OP_MAP)[Name.get()] = first;
|
|
return first;
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
Optional<PrefixOperatorDecl *> Module::lookupPrefixOperator(Identifier name,
|
|
SourceLoc diagLoc) {
|
|
return lookupOperatorDeclForName(this, diagLoc, name,
|
|
&TranslationUnit::PrefixOperators);
|
|
}
|
|
|
|
Optional<PostfixOperatorDecl *> Module::lookupPostfixOperator(Identifier name,
|
|
SourceLoc diagLoc) {
|
|
return lookupOperatorDeclForName(this, diagLoc, name,
|
|
&TranslationUnit::PostfixOperators);
|
|
}
|
|
|
|
Optional<InfixOperatorDecl *> Module::lookupInfixOperator(Identifier name,
|
|
SourceLoc diagLoc) {
|
|
return lookupOperatorDeclForName(this, diagLoc, name,
|
|
&TranslationUnit::InfixOperators);
|
|
}
|
|
|
|
void
|
|
Module::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
|
|
bool includePrivate) const {
|
|
if (isa<BuiltinModule>(this))
|
|
return;
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
for (auto importPair : TU->getImports())
|
|
if (includePrivate || importPair.second)
|
|
modules.push_back(importPair.first);
|
|
return;
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
|
|
return owner.getImportedModules(this, modules, includePrivate);
|
|
}
|
|
|
|
namespace {
|
|
/// Arbitrarily orders ImportedModule records, for inclusion in sets and such.
|
|
class OrderImportedModules {
|
|
using ImportedModule = Module::ImportedModule;
|
|
using AccessPathTy = Module::AccessPathTy;
|
|
public:
|
|
bool operator()(const ImportedModule &lhs, const ImportedModule &rhs) {
|
|
if (lhs.second != rhs.second)
|
|
return std::less<const Module *>()(lhs.second, rhs.second);
|
|
if (lhs.first.data() != rhs.first.data())
|
|
return std::less<AccessPathTy::iterator>()(lhs.first.begin(),
|
|
rhs.first.begin());
|
|
return lhs.first.size() < rhs.first.size();
|
|
}
|
|
};
|
|
}
|
|
|
|
bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
|
|
using AccessPathElem = std::pair<Identifier, SourceLoc>;
|
|
if (lhs.size() != rhs.size())
|
|
return false;
|
|
auto iters = std::mismatch(lhs.begin(), lhs.end(), rhs.begin(),
|
|
[](const AccessPathElem &lElem,
|
|
const AccessPathElem &rElem) {
|
|
return lElem.first == rElem.first;
|
|
});
|
|
return iters.first == lhs.end();
|
|
}
|
|
|
|
StringRef Module::getModuleFilename() const {
|
|
if (isa<BuiltinModule>(this))
|
|
return StringRef();
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(this)) {
|
|
if (TU->getImportBufferID() == -1)
|
|
return StringRef();
|
|
return Ctx.SourceMgr->getMemoryBuffer(
|
|
TU->getImportBufferID())->getBufferIdentifier();
|
|
}
|
|
|
|
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
|
|
return Owner.getModuleFilename(this);
|
|
}
|
|
|
|
bool Module::isStdlibModule() const {
|
|
return !getParent() && Name == Ctx.StdlibModuleName;
|
|
}
|
|
|
|
template<bool respectVisibility, typename Callback>
|
|
static void forAllImportedModules(Module *topLevel,
|
|
Optional<Module::AccessPathTy> thisPath,
|
|
const Callback &fn) {
|
|
using ImportedModule = Module::ImportedModule;
|
|
using AccessPathTy = Module::AccessPathTy;
|
|
|
|
llvm::SmallSet<ImportedModule, 32, OrderImportedModules> visited;
|
|
SmallVector<ImportedModule, 32> queue;
|
|
|
|
AccessPathTy overridingPath;
|
|
if (thisPath.hasValue()) {
|
|
if (respectVisibility)
|
|
overridingPath = thisPath.getValue();
|
|
queue.push_back(ImportedModule(overridingPath, topLevel));
|
|
} else {
|
|
visited.insert(ImportedModule({}, topLevel));
|
|
}
|
|
|
|
// Even if we're processing the top-level module like any other, we still want
|
|
// to include non-exported modules.
|
|
topLevel->getImportedModules(queue, true);
|
|
|
|
while (!queue.empty()) {
|
|
auto next = queue.pop_back_val();
|
|
|
|
// Filter any whole-module imports, and skip specific-decl imports if the
|
|
// import path doesn't match exactly.
|
|
if (next.first.empty() || !respectVisibility)
|
|
next.first = overridingPath;
|
|
else if (!overridingPath.empty() &&
|
|
!Module::isSameAccessPath(next.first, overridingPath)) {
|
|
// If we ever allow importing non-top-level decls, it's possible the rule
|
|
// above isn't what we want.
|
|
assert(next.first.size() == 1 && "import of non-top-level decl");
|
|
continue;
|
|
}
|
|
|
|
if (!visited.insert(next))
|
|
continue;
|
|
|
|
if (!fn(next))
|
|
break;
|
|
next.second->getImportedModules(queue, !respectVisibility);
|
|
}
|
|
}
|
|
|
|
void Module::forAllVisibleModules(Optional<AccessPathTy> thisPath,
|
|
std::function<bool(ImportedModule)> fn) {
|
|
forAllImportedModules<true>(this, thisPath, fn);
|
|
}
|
|
|
|
void Module::collectLinkLibraries(LinkLibraryCallback callback) {
|
|
forAllImportedModules<false>(this, AccessPathTy(),
|
|
[=](ImportedModule import) -> bool {
|
|
Module *module = import.second;
|
|
if (isa<BuiltinModule>(module)) {
|
|
// The Builtin module requires no libraries.
|
|
return true;
|
|
}
|
|
|
|
if (auto TU = dyn_cast<TranslationUnit>(module)) {
|
|
for (auto lib : TU->getLinkLibraries())
|
|
callback(lib);
|
|
return true;
|
|
}
|
|
|
|
ModuleLoader &owner = cast<LoadedModule>(module)->getOwner();
|
|
owner.getLinkLibraries(module, callback);
|
|
return true;
|
|
});
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TranslationUnit Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TranslationUnit::print(raw_ostream &os) {
|
|
print(os, PrintOptions::printEverything());
|
|
}
|
|
|
|
void TranslationUnit::print(raw_ostream &os, const PrintOptions &options) {
|
|
for (auto decl : Decls) {
|
|
if (!decl->shouldPrintInContext())
|
|
continue;
|
|
|
|
decl->print(os, options);
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
void TranslationUnit::clearLookupCache() {
|
|
freeTUCachePimpl(LookupCachePimpl);
|
|
}
|
|
|
|
void
|
|
TranslationUnit::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const{
|
|
auto &cached = getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues;
|
|
static_cast<SmallVectorImpl<ValueDecl*>&>(cached) = std::move(globals);
|
|
}
|
|
|
|
const SmallVectorImpl<ValueDecl *> &
|
|
TranslationUnit::getCachedVisibleDecls() const {
|
|
return getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues;
|
|
}
|
|
|
|
bool TranslationUnit::walk(ASTWalker &Walker) {
|
|
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(Walker.Parent, this);
|
|
for (Decl *D : Decls) {
|
|
if (D->walk(Walker))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadedModule Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OperatorDecl *LoadedModule::lookupOperator(Identifier name, DeclKind fixity) {
|
|
return getOwner().lookupOperator(this, name, fixity);
|
|
}
|
|
|
|
template<>
|
|
PrefixOperatorDecl *
|
|
LoadedModule::lookupOperator<PrefixOperatorDecl>(Identifier name) {
|
|
auto result = lookupOperator(name, DeclKind::PrefixOperator);
|
|
return cast_or_null<PrefixOperatorDecl>(result);
|
|
}
|
|
|
|
template<>
|
|
PostfixOperatorDecl *
|
|
LoadedModule::lookupOperator<PostfixOperatorDecl>(Identifier name) {
|
|
auto result = lookupOperator(name, DeclKind::PostfixOperator);
|
|
return cast_or_null<PostfixOperatorDecl>(result);
|
|
}
|
|
|
|
template<>
|
|
InfixOperatorDecl *
|
|
LoadedModule::lookupOperator<InfixOperatorDecl>(Identifier name) {
|
|
auto result = lookupOperator(name, DeclKind::InfixOperator);
|
|
return cast_or_null<InfixOperatorDecl>(result);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ModuleLoader Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
ModuleLoader::~ModuleLoader() {}
|