Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
Jordan Rose 69a51655c7 [ClangImporter] Instance methods on NSObject are also class methods.
More specifically, instance methods on root objects are also class methods,
because the metatype for that class will inherit from the root class.
(That is, NSObject's metatype extends NSObject.)

This is necessary to allow calling, say, -respondsToSelector: on a class.
Unfortunately, it also brings in every other method on NSObject, including
"informal protocol" category methods like -awakeFromNib. We should probably
disprefer these in code completion, especially if they're declared in another
module, but it is perfectly legal to call these methods on Class objects in
Objective-C.

<rdar://problem/13371711>

Swift SVN r11614
2013-12-24 01:34:07 +00:00

3275 lines
122 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
/// \brief Set the declaration context of each variable within the given
/// patterns to \p dc.
static void setVarDeclContexts(ArrayRef<Pattern *> patterns, DeclContext *dc) {
for (auto pattern : patterns) {
auto pat = pattern->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pat))
named->getDecl()->setDeclContext(dc);
if (auto tuple = dyn_cast<TuplePattern>(pat)) {
for (auto elt : tuple->getFields())
setVarDeclContexts(elt.getPattern(), dc);
}
}
}
/// \brief Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError, bool *ShouldCreateTypealias) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == "swift".
StringRef SwiftTypeName;
MappedLanguages Languages;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, LANGUAGES, \
CAN_BE_MISSING, CREATE_TYPEALIAS) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
if (Impl.SwiftContext.StdlibModuleName.str() == \
SWIFT_MODULE_NAME) \
IsSwiftModule = true; \
else { \
IsSwiftModule = false; \
SwiftModuleName = SWIFT_MODULE_NAME; \
} \
SwiftTypeName = SWIFT_TYPE_NAME; \
Languages = MappedLanguages::LANGUAGES; \
CanBeMissing = CAN_BE_MISSING; \
*ShouldCreateTypealias = CREATE_TYPEALIAS; \
break; \
}
#include "MappedTypes.def"
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while(0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
if (Languages != MappedLanguages::All) {
if ((unsigned(Languages) & unsigned(MappedLanguages::ObjC1)) != 0 &&
!ClangCtx.getLangOpts().ObjC1)
return std::make_pair(Type(), "");
}
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
if (Bitwidth != 0 &&
Bitwidth != ClangCtx.getTypeSize(ClangType))
return std::make_pair(Type(), "");
// Chceck other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended)
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
!(ClangCtx.getBOOLDecl() &&
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCSelRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCId:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCIdRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCClass:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCClassRedefinitionType()))
return std::make_pair(Type(), "");
break;
}
Module *M;
if (IsSwiftModule)
M = Impl.getSwiftModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
clang::Selector cmd) {
if (MD->getSelector() != cmd)
return false;
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
return false;
if (MD->getClassInterface()->getName() != "NSDictionary")
return false;
return true;
}
/// \brief Returns the common prefix of two strings at camel-case word
/// granularity.
///
/// For example, given "NSFooBar" and "NSFooBas", returns "NSFoo"
/// (not "NSFooBa"). The returned StringRef is a slice of the "a" argument.
///
/// This is used to derive the common prefix of enum constants so we can elide
/// it from the Swift interface.
static StringRef getCommonWordPrefix(StringRef a, StringRef b) {
unsigned prefixLength = 0;
unsigned commonSize = std::min(a.size(), b.size());
for (size_t i = 0; i < commonSize; ++i) {
// If this is a camel-case word boundary, advance the prefix length.
if (isupper(a[i]) && isupper(b[i]))
prefixLength = i;
if (a[i] != b[i])
return a.slice(0, prefixLength);
}
return a.slice(0, commonSize);
}
namespace {
enum class OptionSetFactoryMethod {
FromRaw,
FromMask,
};
}
/// Build the 'fromMask' or 'fromRaw' method for an option set.
/// struct NSSomeOptionSet : RawOptionSet {
/// var value : RawType
/// static func fromMask(value: RawType) -> NSSomeOptionSet {
/// return NSSomeOptionSet(value)
/// }
/// static func fromRaw(value: RawType) -> NSSomeOptionSet? {
/// return NSSomeOptionSet(value)
/// }
/// }
static FuncDecl *makeOptionSetFactoryMethod(StructDecl *optionSetDecl,
VarDecl *valueDecl,
OptionSetFactoryMethod factoryMethod) {
auto &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto rawType = valueDecl->getType();
VarDecl *selfDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/true,
SourceLoc(),
C.SelfIdentifier,
Type(),
optionSetDecl);
selfDecl->setImplicit();
auto metaTy = MetatypeType::get(optionSetType, C);
selfDecl->setType(metaTy);
Pattern *selfParam = new (C) NamedPattern(selfDecl, /*implicit*/ true);
selfParam->setType(metaTy);
selfParam = new (C) TypedPattern(selfParam, TypeLoc::withoutLoc(metaTy));
selfParam->setImplicit();
selfParam->setType(metaTy);
VarDecl * rawDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/true,
SourceLoc(),
C.getIdentifier("raw"),
Type(),
optionSetDecl);
rawDecl->setImplicit();
rawDecl->setType(rawType);
Pattern *rawParam = new (C) NamedPattern(rawDecl, /*implicit*/ true);
rawParam->setType(rawType);
rawParam = new (C) TypedPattern(rawParam, TypeLoc::withoutLoc(rawType));
rawParam->setImplicit();
rawParam->setType(rawType);
auto rawArgType = TupleType::get(TupleTypeElt(rawType,
C.getIdentifier("raw")), C);
rawParam = TuplePattern::create(C, SourceLoc(),
TuplePatternElt(rawParam), SourceLoc());
rawParam->setImplicit();
rawParam->setType(rawArgType);
Pattern *argParams[] = {selfParam->clone(C, /*Implicit=*/true),
rawParam->clone(C, /*Implicit=*/true)};
Pattern *bodyParams[] = {selfParam, rawParam};
Type retType;
switch (factoryMethod) {
case OptionSetFactoryMethod::FromMask:
retType = optionSetType;
break;
case OptionSetFactoryMethod::FromRaw:
retType = OptionalType::get(optionSetType);
break;
}
Identifier name;
switch (factoryMethod) {
case OptionSetFactoryMethod::FromMask:
name = C.getIdentifier("fromMask");
break;
case OptionSetFactoryMethod::FromRaw:
name = C.getIdentifier("fromRaw");
break;
}
auto factoryDecl = FuncDecl::create(C, SourceLoc(), SourceLoc(),
name,
SourceLoc(), nullptr, Type(),
argParams,
bodyParams,
TypeLoc::withoutLoc(retType),
optionSetDecl);
factoryDecl->setStatic();
factoryDecl->setImplicit();
selfDecl->setDeclContext(factoryDecl);
rawDecl->setDeclContext(factoryDecl);
Type factoryType = FunctionType::get(rawArgType, retType);
factoryType = FunctionType::get(metaTy, factoryType);
factoryDecl->setType(factoryType);
factoryDecl->setBodyResultType(retType);
auto *ctorRef = new (C) DeclRefExpr(ConcreteDeclRef(optionSetDecl),
SourceLoc(), /*implicit*/ true);
auto *rawRef = new (C) DeclRefExpr(ConcreteDeclRef(rawDecl),
SourceLoc(), /*implicit*/ true);
auto *ctorCall = new (C) CallExpr(ctorRef, rawRef,
/*implicit*/ true);
auto *ctorRet = new (C) ReturnStmt(SourceLoc(), ctorCall,
/*implicit*/ true);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(ctorRet),
SourceLoc(),
/*implicit*/ true);
factoryDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(factoryDecl);
return factoryDecl;
}
// Build the 'toRaw' method for an option set.
// struct NSSomeOptionSet : RawOptionSet {
// var value: RawType
// func toRaw() -> RawType {
// return self.value
// }
// }
static FuncDecl *makeOptionSetToRawMethod(StructDecl *optionSetDecl,
ValueDecl *valueDecl) {
ASTContext &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto rawType = valueDecl->getType();
// TODO: Shouldn't be an @inout method.
auto lvType = LValueType::get(optionSetType,
LValueType::Qual::DefaultForInOutSelf);
VarDecl *selfDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/false,
SourceLoc(),
C.SelfIdentifier,
Type(),
optionSetDecl);
selfDecl->setImplicit();
selfDecl->setType(lvType);
Pattern *selfParam = new (C) NamedPattern(selfDecl, /*implicit*/ true);
selfParam->setType(lvType);
selfParam = new (C) TypedPattern(selfParam,
TypeLoc::withoutLoc(optionSetType));
selfParam->setType(lvType);
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
methodParam->setType(TupleType::getEmpty(C));
Pattern *params[] = {selfParam, methodParam};
FuncDecl *toRawDecl = FuncDecl::create(C, SourceLoc(), SourceLoc(),
C.getIdentifier("toRaw"),
SourceLoc(), nullptr, Type(),
params, params,
TypeLoc::withoutLoc(rawType), optionSetDecl);
toRawDecl->setImplicit();
auto toRawArgType = TupleType::getEmpty(C);
Type toRawType = FunctionType::get(toRawArgType, rawType);
toRawType = FunctionType::get(lvType, toRawType);
toRawDecl->setType(toRawType);
toRawDecl->setBodyResultType(rawType);
selfDecl->setDeclContext(toRawDecl);
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
valueDecl, SourceLoc(),
/*implicit*/ true);
auto valueRet = new (C) ReturnStmt(SourceLoc(), valueRef);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(valueRet),
SourceLoc(),
/*implicit*/ true);
toRawDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(toRawDecl);
return toRawDecl;
}
static Expr *
getOperatorRef(ASTContext &C, Identifier name) {
// FIXME: This is hideous!
UnqualifiedLookup lookup(name, C.getStdlibModule(), nullptr);
if (!lookup.isSuccess())
return nullptr;
SmallVector<ValueDecl *, 4> found;
for (auto &result : lookup.Results) {
if (!result.hasValueDecl())
continue;
if (!isa<FuncDecl>(result.getValueDecl()))
continue;
found.push_back(result.getValueDecl());
}
if (found.empty())
return nullptr;
if (found.size() == 1) {
return new (C) DeclRefExpr(found[0], SourceLoc(),
/*Implicit=*/true);
} else {
auto foundCopy = C.AllocateCopy(found);
return new (C) OverloadedDeclRefExpr(
foundCopy, SourceLoc(), /*Implicit=*/true);
}
}
// Build the 'getLogicValue' method for an option set.
// struct NSSomeOptionSet : RawOptionSet {
// var value: RawType
// func getLogicValue() -> Bool {
// return self.value != 0
// }
// }
static FuncDecl *makeOptionSetGetLogicValueMethod(StructDecl *optionSetDecl,
ValueDecl *valueDecl) {
ASTContext &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto boolType = C.getGetBoolDecl(nullptr)
->getType()
->castTo<AnyFunctionType>()
->getResult();
// TODO: Shouldn't be an @inout method.
auto lvType = LValueType::get(optionSetType,
LValueType::Qual::DefaultForInOutSelf);
VarDecl *selfDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/false,
SourceLoc(),
C.SelfIdentifier,
Type(),
optionSetDecl);
selfDecl->setImplicit();
selfDecl->setType(lvType);
Pattern *selfParam = new (C) NamedPattern(selfDecl, /*implicit*/ true);
selfParam->setType(lvType);
selfParam = new (C) TypedPattern(selfParam,
TypeLoc::withoutLoc(optionSetType));
selfParam->setType(lvType);
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
methodParam->setType(TupleType::getEmpty(C));
Pattern *params[] = {selfParam, methodParam};
FuncDecl *getLVDecl = FuncDecl::create(C, SourceLoc(), SourceLoc(),
C.getIdentifier("getLogicValue"),
SourceLoc(), nullptr, Type(),
params, params,
TypeLoc::withoutLoc(boolType), optionSetDecl);
getLVDecl->setImplicit();
auto toRawArgType = TupleType::getEmpty(C);
Type toRawType = FunctionType::get(toRawArgType, boolType);
toRawType = FunctionType::get(lvType, toRawType);
getLVDecl->setType(toRawType);
getLVDecl->setBodyResultType(boolType);
selfDecl->setDeclContext(getLVDecl);
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
valueDecl, SourceLoc(),
/*implicit*/ true);
auto zero = new (C) IntegerLiteralExpr("0", SourceLoc(), /*implicit*/ true);
auto neRef = getOperatorRef(C, C.getIdentifier("!="));
Expr *args[] = {valueRef, zero};
auto argsTuple = new (C) TupleExpr(SourceLoc(),
C.AllocateCopy(args),
nullptr,
SourceLoc(),
/*trailingClosure*/ false,
/*implicit*/ true);
auto apply = new (C) BinaryExpr(neRef, argsTuple, /*implicit*/ true);
auto ret = new (C) ReturnStmt(SourceLoc(), apply);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret),
SourceLoc(),
/*implicit*/ true);
getLVDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(getLVDecl);
return getLVDecl;
}
namespace {
typedef ClangImporter::Implementation::EnumKind EnumKind;
/// \brief Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl)
: Impl(impl) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
auto Name = Impl.importName(Decl->getDeclName());
if (Name.empty())
return nullptr;
Type SwiftType;
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
bool IsError;
StringRef StdlibTypeName;
bool ShouldCreateTypealias;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError,
&ShouldCreateTypealias);
if (IsError)
return nullptr;
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames.insert(Decl);
if (!ShouldCreateTypealias || Name.str() == StdlibTypeName) {
// Don't create an extra typealias in the imported module because
// doing so will cause ambiguity between the name in the imported
// module and the same name in the 'swift' module.
if (auto *NAT = dyn_cast<NameAliasType>(SwiftType.getPointer()))
return NAT->getDecl();
auto *NTD = SwiftType->getAnyNominal();
assert(NTD);
return NTD;
}
}
}
auto DC = Impl.importDeclContextOf(Decl);
if (!DC)
return nullptr;
if (!SwiftType)
SwiftType = Impl.importType(Decl->getUnderlyingType(),
ImportTypeKind::Normal);
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
return new (Impl.SwiftContext) TypeAliasDecl(
Impl.importSourceLoc(Decl->getLocStart()),
Name,
Loc,
TypeLoc::withoutLoc(SwiftType),
DC);
}
Decl *
VisitUnresolvedUsingTypenameDecl(const
clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// \brief Create a constructor that initializes a struct from its members.
ConstructorDecl *createValueConstructor(StructDecl *structDecl,
ArrayRef<Decl *> members) {
auto &context = Impl.SwiftContext;
// FIXME: Name hack.
auto name = context.getIdentifier("init");
// Create the 'self' declaration.
auto selfType = structDecl->getDeclaredTypeInContext();
auto selfMetatype = MetatypeType::get(selfType, context);
auto selfName = context.SelfIdentifier;
auto selfDecl = new (context) VarDecl(/*static*/ false, /*IsLet*/ false,
SourceLoc(), selfName, selfType,
structDecl);
// Construct the set of parameters from the list of members.
SmallVector<Pattern *, 4> paramPatterns;
SmallVector<TuplePatternElt, 8> patternElts;
SmallVector<TupleTypeElt, 8> tupleElts;
SmallVector<VarDecl *, 8> params;
for (auto member : members) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (var->isComputed())
continue;
auto param = new (context) VarDecl(/*static*/ false, /*IsLet*/ true,
SourceLoc(), var->getName(),
var->getType(), structDecl);
params.push_back(param);
Pattern *pattern = new (context) NamedPattern(param);
pattern->setType(var->getType());
auto tyLoc = TypeLoc::withoutLoc(var->getType());
pattern = new (context) TypedPattern(pattern, tyLoc);
pattern->setType(var->getType());
paramPatterns.push_back(pattern);
patternElts.push_back(TuplePatternElt(pattern));
tupleElts.push_back(TupleTypeElt(var->getType(), var->getName()));
}
}
auto paramPattern = TuplePattern::create(context, SourceLoc(), patternElts,
SourceLoc());
auto paramTy = TupleType::get(tupleElts, context);
paramPattern->setType(paramTy);
// Create the constructor
auto constructor = new (context) ConstructorDecl(name, SourceLoc(),
paramPattern,
paramPattern,
selfDecl,
nullptr, structDecl);
// Set the constructor's type.
auto fnTy = FunctionType::get(paramTy, selfType);
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
auto initFnTy = FunctionType::get(selfType, fnTy);
constructor->setType(allocFnTy);
constructor->setInitializerType(initFnTy);
// Fix the declaration contexts.
selfDecl->setDeclContext(constructor);
setVarDeclContexts(paramPatterns, constructor);
// Assign all of the member variables appropriately.
SmallVector<ASTNode, 4> stmts;
unsigned paramIdx = 0;
for (auto member : members) {
auto var = dyn_cast<VarDecl>(member);
if (!var || var->isComputed())
continue;
// Construct left-hand side.
Expr *lhs = new (context) DeclRefExpr(selfDecl, SourceLoc(),
/*Implicit=*/true);
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, SourceLoc(),
/*Implicit=*/true);
// Construct right-hand side.
auto param = params[paramIdx++];
auto rhs = new (context) DeclRefExpr(param, SourceLoc(),
/*Implicit=*/true);
// Add assignment.
stmts.push_back(new (context) AssignExpr(lhs, SourceLoc(), rhs,
/*Implicit=*/true));
}
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
constructor->setBody(body);
// Add this as an external definition.
Impl.SwiftContext.addedExternalDecl(constructor);
// We're done.
return constructor;
}
/// Get the Swift name for an enum constant.
Identifier getEnumConstantName(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum) {
// Look up the common name prefix for this enum's constants.
StringRef enumPrefix = "";
auto foundPrefix = Impl.EnumConstantNamePrefixes.find(clangEnum);
if (foundPrefix != Impl.EnumConstantNamePrefixes.end()) {
enumPrefix = foundPrefix->second;
}
return Impl.importName(decl->getDeclName(), /*suffix*/ "", enumPrefix);
}
/// Determine the common prefix to remove from the element names of an
/// enum. We'll elide this prefix from then names in
/// the Swift interface because Swift enum cases are naturally namespaced
/// by the enum type.
void computeEnumCommonWordPrefix(const clang::EnumDecl *decl) {
auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
if (ec != ecEnd) {
StringRef commonPrefix = (*ec)->getName();
++ec;
if (ec == ecEnd) {
// If there's only one enum constant, try to find a common prefix
// between the type name and the constant.
commonPrefix = getCommonWordPrefix(commonPrefix, decl->getName());
} else {
for (; ec != ecEnd; ++ec)
commonPrefix = getCommonWordPrefix(commonPrefix, (*ec)->getName());
}
Impl.EnumConstantNamePrefixes.insert({decl, commonPrefix});
}
}
/// Import an NS_ENUM constant as a case of a Swift enum.
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum) {
auto &context = Impl.SwiftContext;
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
// Use the constant's underlying value as its raw value in Swift.
bool negative = false;
llvm::APSInt rawValue = decl->getInitVal();
// Check that we didn't already import an enum constant for this enum
// with the same value. Swift enums don't currently support aliases.
if (Impl.EnumConstantValues.count({clangEnum, rawValue}))
return nullptr;
Impl.EnumConstantValues.insert({clangEnum, rawValue});
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType()
&& rawValue.slt(0)) {
rawValue = -rawValue;
negative = true;
}
llvm::SmallString<12> rawValueText;
rawValue.toString(rawValueText, 10, /*signed*/ false);
StringRef rawValueTextC
= context.AllocateCopy(StringRef(rawValueText));
auto rawValueExpr = new (context) IntegerLiteralExpr(rawValueTextC,
SourceLoc(),
/*implicit*/ false);
if (negative)
rawValueExpr->setNegative(SourceLoc());
auto element
= new (context) EnumElementDecl(SourceLoc(),
name, TypeLoc(),
SourceLoc(), rawValueExpr,
theEnum);
// Give the enum element the appropriate type.
auto argTy = MetatypeType::get(theEnum->getDeclaredType(), context);
element->overwriteType(FunctionType::get(argTy,
theEnum->getDeclaredType()));
element->setClangNode(decl);
return element;
}
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
StructDecl *theStruct) {
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
// Create the constant.
auto element = Impl.createConstant(name, theStruct,
theStruct->getDeclaredTypeInContext(),
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction,
/*isStatic*/ true);
element->setClangNode(decl);
return element;
}
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the enum declaration and record it.
Decl *result;
auto enumKind = Impl.classifyEnum(decl);
switch (enumKind) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Unknown: {
auto structDecl = new (Impl.SwiftContext)
StructDecl(SourceLoc(), name, SourceLoc(), { }, nullptr, dc);
structDecl->computeType();
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Normal);
if (!underlyingType)
return nullptr;
// Create a variable to store the underlying value.
auto varName = Impl.SwiftContext.getIdentifier("value");
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ false,
SourceLoc(), varName,
underlyingType,
structDecl);
// Create a pattern binding to describe the variable.
Pattern * varPattern = new (Impl.SwiftContext) NamedPattern(var);
varPattern->setType(var->getType());
varPattern
= new (Impl.SwiftContext) TypedPattern(
varPattern,
TypeLoc::withoutLoc(var->getType()));
varPattern->setType(var->getType());
auto patternBinding
= new (Impl.SwiftContext) PatternBindingDecl(SourceLoc(),
SourceLoc(),
varPattern,
nullptr, structDecl);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *varDecl = var;
auto constructor = createValueConstructor(structDecl, {&varDecl, 1});
// Set the members of the struct.
Decl *members[3] = { constructor, patternBinding, var };
structDecl->setMembers(
Impl.SwiftContext.AllocateCopy(ArrayRef<Decl *>(members, 3)),
SourceRange());
result = structDecl;
break;
}
case EnumKind::Enum: {
// Compute the underlying type.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Normal);
if (!underlyingType)
return nullptr;
auto enumDecl = new (Impl.SwiftContext)
EnumDecl(Impl.importSourceLoc(decl->getLocStart()),
name, Impl.importSourceLoc(decl->getLocation()),
{}, nullptr, dc);
enumDecl->computeType();
// Set up the C underlying type as its Swift raw type.
enumDecl->setRawType(underlyingType);
ProtocolDecl *rawRepresentable = Impl.SwiftContext
.getProtocol(KnownProtocolKind::RawRepresentable);
auto protoList = Impl.SwiftContext.AllocateCopy(
llvm::makeArrayRef(rawRepresentable));
enumDecl->setProtocols(protoList);
result = enumDecl;
computeEnumCommonWordPrefix(decl);
break;
}
case EnumKind::Options: {
// Compute the underlying type.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Normal);
if (!underlyingType)
return nullptr;
// Create a struct with the underlying type as a field.
auto structDecl = new (Impl.SwiftContext)
StructDecl(SourceLoc(), name, SourceLoc(), { }, nullptr, dc);
structDecl->computeType();
// Create a field to store the underlying value.
auto varName = Impl.SwiftContext.getIdentifier("value");
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ false,
SourceLoc(), varName,
underlyingType,
structDecl);
// Create a pattern binding to describe the variable.
Pattern * varPattern = new (Impl.SwiftContext) NamedPattern(var);
varPattern->setType(var->getType());
varPattern
= new (Impl.SwiftContext) TypedPattern(
varPattern,
TypeLoc::withoutLoc(var->getType()));
varPattern->setType(var->getType());
auto patternBinding
= new (Impl.SwiftContext) PatternBindingDecl(SourceLoc(),
SourceLoc(),
varPattern,
nullptr, structDecl);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *varDecl = var;
auto constructor = createValueConstructor(structDecl, {&varDecl, 1});
// Build a RawOptionSet conformance for the type.
ProtocolDecl *rawOptionSet = Impl.SwiftContext
.getProtocol(KnownProtocolKind::RawOptionSet);
auto protoList = Impl.SwiftContext.AllocateCopy(
llvm::makeArrayRef(rawOptionSet));
structDecl->setProtocols(protoList);
auto fromMask = makeOptionSetFactoryMethod(structDecl, var,
OptionSetFactoryMethod::FromMask);
auto fromRaw = makeOptionSetFactoryMethod(structDecl, var,
OptionSetFactoryMethod::FromRaw);
auto toRaw = makeOptionSetToRawMethod(structDecl, var);
auto getLV = makeOptionSetGetLogicValueMethod(structDecl, var);
// Set the members of the struct.
Decl *members[] = {
constructor,
patternBinding,
var,
fromMask,
fromRaw,
toRaw,
getLV,
};
structDecl->setMembers(
Impl.SwiftContext.AllocateCopy(members),
SourceRange());
result = structDecl;
computeEnumCommonWordPrefix(decl);
break;
}
}
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
// Import each of the enumerators.
SmallVector<Decl *, 4> enumeratorDecls;
bool addEnumeratorsAsMembers;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
addEnumeratorsAsMembers = false;
break;
case EnumKind::Options:
case EnumKind::Enum:
addEnumeratorsAsMembers = true;
break;
}
for (auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
ec != ecEnd; ++ec) {
Decl *enumeratorDecl;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
enumeratorDecl = Impl.importDecl(*ec);
break;
case EnumKind::Options:
enumeratorDecl = importOptionConstant(*ec, decl,
cast<StructDecl>(result));
break;
case EnumKind::Enum:
enumeratorDecl = importEnumCase(*ec, decl, cast<EnumDecl>(result));
break;
}
if (!enumeratorDecl)
continue;
enumeratorDecls.push_back(enumeratorDecl);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
if (addEnumeratorsAsMembers) {
auto nomResult = cast<NominalTypeDecl>(result);
enumeratorDecls.append(nomResult->getMembers().begin(),
nomResult->getMembers().end());
nomResult->setMembers(Impl.SwiftContext.AllocateCopy(enumeratorDecls),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
}
// Add the type decl to ExternalDefinitions so that we can type-check
// raw values and IRGen can emit metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// FIXME: Skip unions for now. We can't properly map them to Swift unions,
// because they aren't discriminated in any way. We could map them to
// structs, but that would make them very, very unsafe to use.
if (decl->isUnion())
return nullptr;
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
// The types of anonymous structs or unions are never imported; their
// fields are dumped directly into the enclosing class.
if (decl->isAnonymousStructOrUnion())
return nullptr;
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the struct declaration and record it.
auto result = new (Impl.SwiftContext)
StructDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
// Skip anonymous structs or unions; they'll be dealt with via the
// IndirectFieldDecls.
if (auto field = dyn_cast<clang::FieldDecl>(nd))
if (field->isAnonymousStructOrUnion())
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
members.push_back(member);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
// Add the struct decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// FIXME: We could import specializations, but perhaps only as unnamed
// structural types.
return nullptr;
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
switch (Impl.classifyEnum(clangEnum)) {
case EnumKind::Constants: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// The context where the constant will be introduced.
auto dc = Impl.importDeclContextOf(clangEnum);
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!type)
return nullptr;
// FIXME: Importing the type will recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, type,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Coerce,
/*static*/ false);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Unknown: {
// The enumeration was mapped to a struct containining the integral
// type. Create a constant with that struct type.
auto dc = Impl.importDeclContextOf(clangEnum);
if (!dc)
return nullptr;
// Import the enumeration type.
auto enumType = Impl.importType(
Impl.getClangASTContext().getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!enumType)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, enumType,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction,
/*static*/ false);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Enum:
case EnumKind::Options: {
// The enumeration was mapped to a high-level Swift type, and its
// elements were created as children of that enum. They aren't available
// independently.
return nullptr;
}
}
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
// Check whether the context of any of the fields in the chain is a
// union. If so, don't import this field.
for (auto f = decl->chain_begin(), fEnd = decl->chain_end(); f != fEnd;
++f) {
if (auto record = dyn_cast<clang::RecordDecl>((*f)->getDeclContext())) {
if (record->isUnion())
return nullptr;
}
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Map this indirect field to a Swift variable.
return new (Impl.SwiftContext)
VarDecl(/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocStart()),
name, type, dc);
}
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
decl = decl->getMostRecentDecl();
if (!decl->hasPrototype()) {
// We can't import a function without a prototype.
return nullptr;
}
// FIXME: We can't IRgen inline functions, so don't import them.
if (decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>()) {
return nullptr;
}
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Import the function type. If we have parameters, make sure their names
// get into the resulting function type.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
Type type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns, bodyPatterns);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
auto loc = Impl.importSourceLoc(decl->getLocation());
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), loc, name, nameLoc,
/*GenericParams=*/nullptr, type, argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
result->setBodyResultType(resultTy);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
return result;
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// FIXME: Import C++ member functions as methods.
return nullptr;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
// Fields are imported as variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto result =
new (Impl.SwiftContext) VarDecl(/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().setAttr(AK_IBOutlet, SourceLoc());
// FIXME: Handle IBOutletCollection.
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// FIXME: Deal with fact that a property and an ivar can have the same
// name.
return VisitFieldDecl(decl);
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// FIXME: Swift does not have static variables in structs/classes yet.
if (decl->getDeclContext()->isRecord())
return nullptr;
// Variables are imported as... variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// FIXME: Should 'const' vardecl's be imported as 'let' decls?
return new (Impl.SwiftContext)
VarDecl(/*static*/ false,
/*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// Using declarations are not imported.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Using shadow declarations are not imported; rather, name lookup just
// looks through them.
return nullptr;
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
if (auto Known = Impl.importDeclCached(decl))
return Known;
return VisitObjCMethodDecl(decl, dc);
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc, bool forceClassMethod = false) {
auto loc = Impl.importSourceLoc(decl->getLocStart());
// The name of the method is the first part of the selector.
auto name
= Impl.importName(decl->getSelector().getIdentifierInfoForSlot(0));
if (name.empty())
return nullptr;
assert(dc->getDeclaredTypeOfContext() && "Method in non-type context?");
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto selfTy = getSelfTypeForContext(dc);
if (decl->isClassMethod() || forceClassMethod)
selfTy = MetatypeType::get(selfTy, Impl.SwiftContext);
auto selfName = Impl.SwiftContext.SelfIdentifier;
auto selfVar = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ true,
SourceLoc(), selfName,
selfTy, dc);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfVar);
selfPat->setType(selfVar->getType());
selfPat
= new (Impl.SwiftContext) TypedPattern(selfPat,
TypeLoc::withoutLoc(selfTy));
selfPat->setType(selfVar->getType());
argPatterns.push_back(selfPat);
bodyPatterns.push_back(selfPat);
bool hasSelectorStyleSignature;
SpecialMethodKind kind = SpecialMethodKind::Regular;
if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
// Import the type that this method will have.
auto type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns,
bodyPatterns,
&hasSelectorStyleSignature,
decl->getSelector(),
kind);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
// Add the 'self' parameter to the function type.
type = FunctionType::get(selfTy, type);
Type interfaceType;
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(type, interfaceType)
= getProtocolMethodType(proto, type->castTo<AnyFunctionType>());
}
// FIXME: Related result type?
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), loc, name, nameLoc,
/*GenericParams=*/nullptr, type, argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
result->setBodyResultType(resultTy);
result->setInterfaceType(interfaceType);
if (hasSelectorStyleSignature)
result->setHasSelectorStyleSignature();
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
// Optional methods in protocols.
if (decl->getImplementationControl() == clang::ObjCMethodDecl::Optional &&
isa<ProtocolDecl>(dc))
result->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// Mark this as an Objective-C method.
result->setIsObjC(true);
// Mark class methods as static.
if (decl->isClassMethod() || forceClassMethod)
result->setStatic();
// If this method overrides another method, mark it as such.
// FIXME: We'll eventually have to deal with having multiple overrides
// in Swift.
if (auto selfClassTy = getSelfTypeForContext(dc)->getAs<ClassType>()) {
if (auto superTy = selfClassTy->getDecl()->getSuperclass()) {
auto superDecl = superTy->castTo<ClassType>()->getDecl();
if (auto superObjCClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
superDecl->getClangDecl())) {
if (auto superObjCMethod = superObjCClass->lookupMethod(
decl->getSelector(),
decl->isInstanceMethod())) {
// We found a method that we've overridden. Import it.
FuncDecl *superMethod = nullptr;
if (isa<clang::ObjCProtocolDecl>(
superObjCMethod->getDeclContext())) {
superMethod = cast_or_null<FuncDecl>(
Impl.importMirroredDecl(superObjCMethod,
superDecl));
} else {
superMethod = cast_or_null<FuncDecl>(
Impl.importDecl(superObjCMethod));
}
if (superMethod) {
assert(result->getDeclContext() !=
superMethod->getDeclContext() &&
"can not override method in the same DeclContext");
// FIXME: Proper type checking here!
result->setOverriddenDecl(superMethod);
}
}
}
}
}
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>())
result->getMutableAttrs().setAttr(AK_IBAction, SourceLoc());
// Check whether there's some special method to import.
result->setClangNode(decl);
if (!forceClassMethod) {
if (!Impl.ImportedDecls[decl->getCanonicalDecl()])
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
if (decl->getMethodFamily() != clang::OMF_init ||
!isReallyInitMethod(decl)) {
importSpecialMethod(result, dc);
}
}
return result;
}
private:
/// Check whether the given name starts with the given word.
static bool startsWithWord(StringRef name, StringRef word) {
if (name.size() < word.size()) return false;
return ((name.size() == word.size() || !islower(name[word.size()])) &&
name.startswith(word));
}
/// Determine whether the given Objective-C method, which Clang classifies
/// as an init method, is considered an init method in Swift.
static bool isReallyInitMethod(const clang::ObjCMethodDecl *method) {
if (!method->isInstanceMethod())
return false;
auto selector = method->getSelector();
auto first = selector.getIdentifierInfoForSlot(0);
if (!first) return false;
return startsWithWord(first->getName(), "init");
}
/// \brief Given an imported method, try to import it as some kind of
/// special declaration, e.g., a constructor or subscript.
Decl *importSpecialMethod(Decl *decl, DeclContext *dc) {
// Check whether there's a method associated with this declaration.
auto objcMethod
= dyn_cast_or_null<clang::ObjCMethodDecl>(decl->getClangDecl());
if (!objcMethod)
return nullptr;
// Only consider Objective-C methods...
switch (objcMethod->getMethodFamily()) {
case clang::OMF_None:
// Check for one of the subscripting selectors.
if (objcMethod->isInstanceMethod() &&
(objcMethod->getSelector() == Impl.objectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.objectForKeyedSubscript ||
objcMethod->getSelector() == Impl.setObjectForKeyedSubscript))
return importSubscript(decl, objcMethod, dc);
return nullptr;
case clang::OMF_init:
// An init instance method can be a constructor.
if (isReallyInitMethod(objcMethod))
return importConstructor(decl, objcMethod, dc);
return nullptr;
case clang::OMF_new:
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
// None of these methods have special consideration.
return nullptr;
}
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling the 'new' syntax, e.g.,
///
/// \code
/// new NSArray(1024) // in objc: [[NSArray alloc] initWithCapacity:1024]
/// \endcode
ConstructorDecl *importConstructor(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
// Figure out the type of the container.
auto containerTy = dc->getDeclaredTypeOfContext();
assert(containerTy && "Method in non-type context?");
// Only methods in the 'init' family can become constructors.
FuncDecl *alloc = nullptr;
switch (objcMethod->getMethodFamily()) {
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_None:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
case clang::OMF_new:
llvm_unreachable("Caller did not filter non-constructor methods");
case clang::OMF_init: {
assert(isReallyInitMethod(objcMethod) && "Caller didn't filter");
// Make sure we have a usable 'alloc' method. Otherwise, we can't
// build this constructor anyway.
const clang::ObjCInterfaceDecl *interface;
if (isa<clang::ObjCProtocolDecl>(objcMethod->getDeclContext())) {
// For a protocol method, look into the context in which we'll be
// mirroring the method to find 'alloc'.
// FIXME: Part of the mirroring hack.
auto classDecl = containerTy->getClassOrBoundGenericClass();
if (!classDecl)
return nullptr;
interface = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
classDecl->getClangDecl());
} else {
// For non-protocol methods, just look for the interface.
interface = objcMethod->getClassInterface();
}
// If we couldn't find a class, we're done.
if (!interface)
return nullptr;
// Form the Objective-C selector for alloc.
auto &clangContext = Impl.getClangASTContext();
auto allocId = &clangContext.Idents.get("alloc");
auto allocSel = clangContext.Selectors.getNullarySelector(allocId);
// Find the 'alloc' class method.
auto allocMethod = interface->lookupClassMethod(allocSel);
if (!allocMethod)
return nullptr;
// Import the 'alloc' class method.
alloc = cast_or_null<FuncDecl>(Impl.importDecl(allocMethod));
if (!alloc)
return nullptr;
break;
}
}
// FIXME: Hack.
auto loc = decl->getLoc();
auto name = Impl.SwiftContext.getIdentifier("init");
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto selfTy = getSelfTypeForContext(dc);
auto selfMetaTy = MetatypeType::get(selfTy, Impl.SwiftContext);
auto selfName = Impl.SwiftContext.SelfIdentifier;
auto selfMetaVar = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ true,
SourceLoc(), selfName,
selfMetaTy,
Impl.firstClangModule);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfMetaVar);
selfPat->setType(selfMetaTy);
selfPat
= new (Impl.SwiftContext) TypedPattern(selfPat,
TypeLoc::withoutLoc(selfMetaTy));
selfPat->setType(selfMetaTy);
argPatterns.push_back(selfPat);
bodyPatterns.push_back(selfPat);
bool hasSelectorStyleSignature;
// Import the type that this method will have.
auto type = Impl.importFunctionType(objcMethod->getResultType(),
{ objcMethod->param_begin(),
objcMethod->param_size() },
objcMethod->isVariadic(),
argPatterns,
bodyPatterns,
&hasSelectorStyleSignature,
objcMethod->getSelector(),
SpecialMethodKind::Constructor);
assert(type && "Type has already been successfully converted?");
// A constructor returns an object of the type, not 'id'.
// This is effectively implementing related-result-type semantics.
// FIXME: Perhaps actually check whether the routine has a related result
// type?
type = FunctionType::get(type->castTo<FunctionType>()->getInput(),
selfTy);
// Add the 'self' parameter to the function types.
Type allocType = FunctionType::get(selfMetaTy, type);
Type initType = FunctionType::get(selfTy, type);
VarDecl *selfVar = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ true,
SourceLoc(),
selfName, selfTy, dc);
selfVar->isImplicit();
// Create the actual constructor.
auto result = new (Impl.SwiftContext) ConstructorDecl(name, loc,
argPatterns.back(),
bodyPatterns.back(),
selfVar,
/*GenericParams=*/0,
dc);
result->setType(allocType);
result->setInitializerType(initType);
result->setIsObjC(true);
result->setClangNode(objcMethod);
if (hasSelectorStyleSignature)
result->setHasSelectorStyleSignature();
selfVar->setDeclContext(result);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
// Inform the context that we have external definitions.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
/// \brief Retrieve the single variable described in the given pattern.
///
/// This routine assumes that the pattern is something very simple
/// like (x : type) or (x).
VarDecl *getSingleVar(Pattern *pattern) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto tuple = dyn_cast<TuplePattern>(pattern)) {
pattern = tuple->getFields()[0].getPattern()
->getSemanticsProvidingPattern();
}
return cast<NamedPattern>(pattern)->getDecl();
}
/// \brief Add the implicit 'self' pattern to the given list of patterns.
///
/// \param selfTy The type of the 'self' parameter.
///
/// \param args The set of arguments
VarDecl *addImplicitSelfParameter(Type selfTy,
SmallVectorImpl<Pattern *> &args) {
auto selfName = Impl.SwiftContext.SelfIdentifier;
auto selfVar = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ true,
SourceLoc(), selfName,
selfTy,
Impl.firstClangModule);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfVar);
selfPat->setType(selfVar->getType());
selfPat = new (Impl.SwiftContext) TypedPattern(
selfPat,
TypeLoc::withoutLoc(selfTy));
selfPat->setType(selfVar->getType());
args.push_back(selfPat);
return selfVar;
}
/// Retrieves the type and interface type for a protocol method given
/// the computed type of that method.
std::pair<Type, Type> getProtocolMethodType(ProtocolDecl *proto,
AnyFunctionType *fnType) {
Type type = PolymorphicFunctionType::get(fnType->getInput(),
fnType->getResult(),
proto->getGenericParams());
// Figure out the curried 'self' type for the interface type. It's always
// either the generic parameter type 'Self' or a metatype thereof.
auto interfaceInputTy = proto->getSelf()->getDeclaredType();
auto inputTy = fnType->getInput();
if (auto tupleTy = inputTy->getAs<TupleType>()) {
if (tupleTy->getNumElements() == 1)
inputTy = tupleTy->getElementType(0);
}
if (inputTy->is<MetatypeType>())
interfaceInputTy = MetatypeType::get(interfaceInputTy,
Impl.SwiftContext);
Type interfaceType = GenericFunctionType::get(
proto->getGenericParamTypes(),
proto->getGenericRequirements(),
interfaceInputTy,
fnType->getResult(),
AnyFunctionType::ExtInfo());
return { type, interfaceType };
}
/// \brief Build a thunk for an Objective-C getter.
///
/// \param getter The Objective-C getter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript getter. Null
/// indicates that we're generating a getter thunk for a property getter.
///
/// \returns The getter thunk.
FuncDecl *buildGetterThunk(FuncDecl *getter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = getter->getLoc();
// Figure out the element type, by looking through 'self' and the normal
// parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'self'
addImplicitSelfParameter(dc->getDeclaredTypeOfContext(), getterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
getterArgs.push_back(pat);
}
// empty tuple
getterArgs.push_back(TuplePattern::create(context, loc, { }, loc));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = elementTy;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(), getterType);
}
// If we're in a protocol, the getter thunk will be polymorphic.
Type interfaceType;
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(getterType, interfaceType)
= getProtocolMethodType(proto, getterType->castTo<AnyFunctionType>());
}
// Create the getter thunk.
auto thunk = FuncDecl::create(context, SourceLoc(), getter->getLoc(),
Identifier(), SourceLoc(), nullptr,
getterType, getterArgs, getterArgs,
TypeLoc::withoutLoc(elementTy),
dc);
thunk->setBodyResultType(elementTy);
thunk->setInterfaceType(interfaceType);
setVarDeclContexts(getterArgs, thunk);
thunk->setIsObjC(true);
return thunk;
}
/// \brief Build a thunk for an Objective-C setter.
///
/// \param setter The Objective-C setter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript setter. Null
/// indicates that we're generating a setter thunk for a property setter.
///
/// \returns The getter thunk.
FuncDecl *buildSetterThunk(FuncDecl *setter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = setter->getLoc();
auto tuple = cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
// Objective-C subscript setters are imported with a function type
// such as:
//
// (self) -> (value, index) -> ()
//
// while Swift subscript setters are curried as
//
// (self) -> (index)(value) -> ()
//
// Build a setter thunk with the latter signature that maps to the
// former.
//
// Property setters are similar, but don't have indices.
// Form the argument patterns.
SmallVector<Pattern *, 3> setterArgs;
// 'self'
addImplicitSelfParameter(dc->getDeclaredTypeOfContext(), setterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
setterArgs.push_back(pat);
}
// value
auto valuePattern = tuple->getFields()[0].getPattern()->clone(context);
setterArgs.push_back(TuplePattern::create(context, loc,
TuplePatternElt(valuePattern),
loc));
setterArgs.back()->setType(
TupleType::get(TupleTypeElt(valuePattern->getType(),
valuePattern->getBoundName()),
context));
// Form the type of the setter.
Type setterType = TupleType::getEmpty(context);
for (auto it = setterArgs.rbegin(), itEnd = setterArgs.rend();
it != itEnd; ++it) {
setterType = FunctionType::get((*it)->getType(), setterType);
}
// If we're in a protocol, the setter thunk will be polymorphic.
Type interfaceType;
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(setterType, interfaceType)
= getProtocolMethodType(proto, setterType->castTo<AnyFunctionType>());
}
// Create the setter thunk.
auto thunk = FuncDecl::create(
context, SourceLoc(), setter->getLoc(), Identifier(), SourceLoc(),
nullptr, setterType, setterArgs, setterArgs,
TypeLoc::withoutLoc(TupleType::getEmpty(context)), dc);
thunk->setBodyResultType(TupleType::getEmpty(context));
thunk->setInterfaceType(interfaceType);
setVarDeclContexts(setterArgs, thunk);
thunk->setIsObjC(true);
return thunk;
}
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
const clang::ObjCInterfaceDecl *interface = nullptr;
const clang::ObjCProtocolDecl *protocol =
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
if (!protocol)
interface = objcMethod->getClassInterface();
auto lookupInstanceMethod = [&](clang::Selector Sel) ->
clang::ObjCMethodDecl * {
if (interface)
return interface->lookupInstanceMethod(Sel);
else
return protocol->lookupInstanceMethod(Sel);
};
bool optionalMethods = true;
FuncDecl *getter = nullptr, *setter = nullptr;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = lookupInstanceMethod(
Impl.setObjectAtIndexedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
if (setter) {
optionalMethods = optionalMethods &&
objcSetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript){
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = lookupInstanceMethod(
Impl.objectAtIndexedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
if (getter) {
optionalMethods = optionalMethods &&
objcGetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = lookupInstanceMethod(
Impl.setObjectForKeyedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
if (setter) {
optionalMethods = optionalMethods &&
objcSetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = lookupInstanceMethod(
Impl.objectForKeyedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
if (getter) {
optionalMethods = optionalMethods &&
objcGetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (auto subscript = Impl.Subscripts[{getter, setter}])
return subscript;
// Compute the element type, looking through the implicit 'self'
// parameter and the normal function parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Check the form of the getter.
FuncDecl *getterThunk = nullptr;
Pattern *getterIndices = nullptr;
auto &context = Impl.SwiftContext;
// Find the getter indices and make sure they match.
{
auto tuple = dyn_cast<TuplePattern>(getter->getArgParamPatterns()[1]);
if (tuple && tuple->getFields().size() != 1)
return nullptr;
getterIndices = tuple->getFields()[0].getPattern();
}
// Check the form of the setter.
FuncDecl *setterThunk = nullptr;
Pattern *setterIndices = nullptr;
if (setter) {
auto tuple = dyn_cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
if (!tuple)
return nullptr;
if (tuple->getFields().size() != 2)
return nullptr;
// The setter must accept elements of the same type as the getter
// returns.
// FIXME: Adjust C++ references?
auto setterElementTy = tuple->getFields()[0].getPattern()->getType();
if (!elementTy->isEqual(setterElementTy))
return nullptr;
setterIndices = tuple->getFields()[1].getPattern();
// The setter must use the same indices as the getter.
// FIXME: Adjust C++ references?
// FIXME: Special case for NSDictionary, which uses 'id' for the getter
// but 'id <NSCopying>' for the setter.
if (!setterIndices->getType()->isEqual(getterIndices->getType())) {
setter = nullptr;
setterIndices = nullptr;
// Check whether we've already created a subscript operation for
// this getter.
if (auto subscript = Impl.Subscripts[{getter, nullptr}])
return subscript;
}
}
if (getter && getterIndices)
getterThunk = buildGetterThunk(getter, dc, getterIndices);
if (setter && setterIndices)
setterThunk = buildSetterThunk(setter, dc, setterIndices);
// Build the subscript declaration.
auto argPatterns =
getterThunk->getArgParamPatterns()[1]->clone(context);
auto name = context.getIdentifier("subscript");
auto subscript
= new (context) SubscriptDecl(name, decl->getLoc(), argPatterns,
decl->getLoc(),
TypeLoc::withoutLoc(elementTy),
SourceRange(), getterThunk, setterThunk,
dc);
setVarDeclContexts(argPatterns, subscript->getDeclContext());
subscript->setType(FunctionType::get(subscript->getIndices()->getType(),
subscript->getElementType()));
getterThunk->makeGetter(subscript);
if (setterThunk)
setterThunk->makeSetter(subscript);
subscript->setIsObjC(true);
// Optional subscripts in protocols.
if (optionalMethods && isa<ProtocolDecl>(dc))
subscript->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
Impl.Subscripts[{getterThunk, nullptr}] = subscript;
// Determine whether this subscript operation overrides another subscript
// operation.
// FIXME: This ends up looking in the superclass for entirely bogus
// reasons. Fix it.
auto containerTy = dc->getDeclaredTypeInContext();
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(containerTy, name, NL_QualifiedDefault, nullptr,
lookup);
Type unlabeledIndices;
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
// Compute the type of indices for our own subscript operation, lazily.
if (!unlabeledIndices) {
unlabeledIndices = subscript->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
}
// Compute the type of indices for the subscript we found.
auto parentUnlabeledIndices = parentSub->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
continue;
if (parentSub == subscript)
continue;
assert(subscript->getDeclContext() != parentSub->getDeclContext() &&
"can not override method in the same DeclContext");
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
if (auto parentGetter = parentSub->getGetter()) {
if (getterThunk)
getterThunk->setOverriddenDecl(parentGetter);
}
if (auto parentSetter = parentSub->getSetter()) {
if (setterThunk)
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
return subscript;
}
public:
/// \brief Retrieve the type of 'self' for the given context.
Type getSelfTypeForContext(DeclContext *dc) {
// For a protocol, the type is 'Self'.
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
return proto->getSelf()->getArchetype();
}
return dc->getDeclaredTypeOfContext();
}
/// Recursively add the given protocol and its inherited protocols to the
/// given vector, guarded by the known set of protocols.
static void addProtocols(ProtocolDecl *protocol,
SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSet<ProtocolDecl *, 4> &known) {
if (!known.insert(protocol))
return;
protocols.push_back(protocol);
for (auto inherited : protocol->getProtocols())
addProtocols(inherited, protocols, known);
}
// Import the given Objective-C protocol list and return a context-allocated
// ArrayRef that can be passed to the declaration.
MutableArrayRef<ProtocolDecl *>
importObjCProtocols(Decl *decl,
const clang::ObjCProtocolList &clangProtocols) {
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->getImplicitProtocols(protocols);
knownProtocols.insert(protocols.begin(), protocols.end());
}
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = cast_or_null<ProtocolDecl>(Impl.importDecl(*cp))) {
addProtocols(proto, protocols, knownProtocols);
}
}
// FIXME: We should be synthesizing protocol conformances as well.
return Impl.SwiftContext.AllocateCopy(protocols);
}
/// Import members of the given Objective-C container and add them to the
/// list of corresponding Swift members.
void importObjCMembers(const clang::ObjCContainerDecl *decl,
DeclContext *swiftContext,
SmallVectorImpl<Decl *> &members) {
llvm::SmallPtrSet<Decl *, 4> knownMembers;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (auto property = objcMethod->findPropertyDecl())
if (Impl.importDecl(
const_cast<clang::ObjCPropertyDecl *>(property)))
continue;
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, swiftContext)) {
if (knownMembers.insert(special))
members.push_back(special);
// If we imported a constructor, the underlying init method is not
// visible.
if (isa<ConstructorDecl>(special))
continue;
}
// Objective-C root class instance methods are reflected on the
// metatype as well.
if (objcMethod->isInstanceMethod()) {
Type swiftTy = swiftContext->getDeclaredTypeInContext();
auto swiftClass = swiftTy->getClassOrBoundGenericClass();
if (swiftClass && !swiftClass->getSuperclass() &&
!decl->getClassMethod(objcMethod->getSelector(),
/*AllowHidden=*/true)) {
auto classMember = VisitObjCMethodDecl(objcMethod, swiftContext,
true);
if (classMember)
members.push_back(classMember);
}
}
}
members.push_back(member);
}
}
/// \brief Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now.
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols,
SmallVectorImpl<Decl *> &members,
SmallVectorImpl<ProtocolConformance *> &Conformances,
ASTContext &Ctx) {
for (auto proto : protocols) {
NormalProtocolConformance *conformance
= Ctx.getConformance(dc->getDeclaredTypeOfContext(),
proto, SourceLoc(),
dc->getModuleScopeContext(),
ProtocolConformanceState::Incomplete);
for (auto member : proto->getMembers()) {
if (auto func = dyn_cast<FuncDecl>(member)) {
if (auto objcMethod = dyn_cast_or_null<clang::ObjCMethodDecl>(
func->getClangDecl())) {
if (!decl->getMethod(objcMethod->getSelector(),
objcMethod->isInstanceMethod())) {
if (auto imported = Impl.importMirroredDecl(objcMethod, dc)) {
members.push_back(imported);
conformance->setWitness(cast<ValueDecl>(member),
cast<ValueDecl>(imported));
// Import any special methods based on this member.
if (auto special = importSpecialMethod(imported, dc)) {
members.push_back(special);
}
}
}
}
}
}
// Introduce empty mappings for any requirements not handled by the
// above.
for (auto req : proto->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq)
continue;
if (!conformance->hasWitness(valueReq))
conformance->setWitness(valueReq, valueReq);
}
conformance->setState(ProtocolConformanceState::Complete);
Conformances.push_back(conformance);
}
}
/// \brief Determine whether the given Objective-C class has an instance or
/// class method with the given selector directly declared (i.e., not in
/// a superclass or protocol).
static bool hasMethodShallow(const clang::Selector sel, bool isInstance,
const clang::ObjCInterfaceDecl *objcClass) {
if (objcClass->getMethod(sel, isInstance))
return true;
for (auto cat = objcClass->visible_categories_begin(),
catEnd = objcClass->visible_categories_end();
cat != catEnd;
++cat) {
if ((*cat)->getMethod(sel, isInstance))
return true;
}
return false;
}
/// \brief Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
///
/// FIXME: Does it make sense to have inherited constructors as a real
/// Swift feature?
void importInheritedConstructors(const clang::ObjCInterfaceDecl *objcClass,
DeclContext *dc,
SmallVectorImpl<Decl *> &members) {
// FIXME: Would like a more robust way to ensure that we aren't creating
// duplicates.
llvm::SmallSet<clang::Selector, 16> knownSelectors;
auto inheritConstructors = [&](const clang::ObjCContainerDecl *container) {
for (auto meth = container->meth_begin(),
methEnd = container->meth_end();
meth != methEnd; ++meth) {
if ((*meth)->getMethodFamily() == clang::OMF_init &&
isReallyInitMethod(*meth) &&
!hasMethodShallow((*meth)->getSelector(),
(*meth)->isInstanceMethod(),
objcClass) &&
knownSelectors.insert((*meth)->getSelector())) {
if (auto imported = Impl.importDecl(*meth)) {
if (auto special = importConstructor(imported, *meth, dc)) {
members.push_back(special);
}
}
}
}
};
for (auto curObjCClass = objcClass; curObjCClass;
curObjCClass = curObjCClass->getSuperClass()) {
inheritConstructors(curObjCClass);
for (auto cat = curObjCClass->visible_categories_begin(),
catEnd = curObjCClass->visible_categories_end();
cat != catEnd;
++cat) {
inheritConstructors(*cat);
}
}
}
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// Objective-C categories and extensions map to Swift extensions.
// Find the Swift class being extended.
auto objcClass
= cast_or_null<ClassDecl>(Impl.importDecl(decl->getClassInterface()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the extension declaration and record it.
auto loc = Impl.importSourceLoc(decl->getLocStart());
auto result
= new (Impl.SwiftContext)
ExtensionDecl(loc,
TypeLoc::withoutLoc(objcClass->getDeclaredType()),
{ },
dc);
objcClass->addExtension(result);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Import each of the members.
SmallVector<Decl *, 4> members;
importObjCMembers(decl, result, members);
// Import mirrored declarations for protocols to which this category
// or extension conforms.
// FIXME: This is a short-term hack.
SmallVector<ProtocolConformance *, 4> Conformances;
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members, Conformances, Impl.SwiftContext);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
result->setConformances(Impl.SwiftContext.AllocateCopy(Conformances));
return result;
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
// FIXME: Figure out how to deal with incomplete protocols, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Append "Proto" to protocol names.
auto name = Impl.importName(decl->getDeclName(), "Proto");
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the protocol declaration and record it.
auto result = new (Impl.SwiftContext)
ProtocolDecl(dc,
Impl.importSourceLoc(decl->getLocStart()),
Impl.importSourceLoc(decl->getLocation()),
name,
{ });
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
result->setCircularityCheck(CircularityCheck::Checked);
// Import protocols this protocol conforms to.
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Note that this is an Objective-C and class protocol.
result->getMutableAttrs().setAttr(AK_class_protocol, SourceLoc());
result->setIsObjC(true);
// Create the archetype for the implicit 'Self'.
auto selfId = Impl.SwiftContext.getIdentifier("Self");
auto selfDecl = result->getSelf();
auto selfArchetype = ArchetypeType::getNew(Impl.SwiftContext, nullptr,
result, selfId,
Type(result->getDeclaredType()),
Type());
selfDecl->setArchetype(selfArchetype);
// Set the generic parameters and requirements.
auto genericParam = selfDecl->getDeclaredType()
->castTo<GenericTypeParamType>();
Requirement genericRequirements[2] = {
Requirement(RequirementKind::ValueWitnessMarker, genericParam, Type()),
Requirement(RequirementKind::Conformance, genericParam,
result->getDeclaredType())
};
result->setGenericSignature(genericParam, genericRequirements);
// Import each of the members.
SmallVector<Decl *, 4> members;
importObjCMembers(decl, result, members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the class declaration and record it.
auto result = new (Impl.SwiftContext)
ClassDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
result->setCircularityCheck(CircularityCheck::Checked);
// If this Objective-C class has a supertype, import it.
if (auto objcSuper = decl->getSuperClass()) {
auto super = cast_or_null<ClassDecl>(Impl.importDecl(objcSuper));
if (!super)
return nullptr;
result->setSuperclass(super->getDeclaredType());
}
// Import protocols this class conforms to.
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Note that this is an Objective-C class.
result->setIsObjC(true);
// Import each of the members.
SmallVector<Decl *, 4> members;
importObjCMembers(decl, result, members);
// Import inherited constructors.
// FIXME: Don't create constructors for class Protocol
if (decl->getDeclName().getAsString() != "Protocol") {
importInheritedConstructors(decl, result, members);
}
// Import mirrored declarations for protocols to which this class
// conforms.
// FIXME: This is a short-term hack.
SmallVector<ProtocolConformance *, 4> Conformances;
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members, Conformances, Impl.SwiftContext);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
result->setConformances(Impl.SwiftContext.AllocateCopy(Conformances));
// Pass the class to the type checker to create an implicit destructor.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
// Properties are imported as variables.
// FIXME: For now, don't import properties in protocols, because IRGen
// can't handle them.
if (isa<clang::ObjCProtocolDecl>(decl->getDeclContext()))
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// We might have imported this decl while importing the DeclContext.
if (auto Known = Impl.importDeclCached(decl))
return Known;
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
auto containerTy = dc->getDeclaredTypeInContext();
VarDecl *overridden = nullptr;
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(containerTy, name, NL_QualifiedDefault, nullptr,
lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result))
return nullptr;
if (auto var = dyn_cast<VarDecl>(result))
overridden = var;
}
auto type = Impl.importType(decl->getType(), ImportTypeKind::Property);
if (!type)
return nullptr;
// Import the getter.
auto getter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getGetterMethodDecl()));
if (!getter && decl->getGetterMethodDecl())
return nullptr;
// Import the setter, if there is one.
auto setter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getSetterMethodDecl()));
if (!setter && decl->getSetterMethodDecl())
return nullptr;
auto result = new (Impl.SwiftContext)
VarDecl(/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Build thunks.
FuncDecl *getterThunk = buildGetterThunk(getter, dc, nullptr);
getterThunk->makeGetter(result);
FuncDecl *setterThunk = nullptr;
if (setter) {
setterThunk = buildSetterThunk(setter, dc, nullptr);
setterThunk->makeSetter(result);
}
// Turn this into a computed property.
// FIXME: Fake locations for '{' and '}'?
result->setComputedAccessors(Impl.SwiftContext, SourceLoc(),
getterThunk, setterThunk,
SourceLoc());
result->setIsObjC(true);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().setAttr(AK_IBOutlet, SourceLoc());
if (decl->getPropertyImplementation() == clang::ObjCPropertyDecl::Optional
&& isa<ProtocolDecl>(dc))
result->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// FIXME: Handle IBOutletCollection.
if (overridden)
result->setOverriddenDecl(overridden);
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Like C++ using declarations, name lookup simply looks through
// Objective-C compatibility aliases. They are not imported directly.
return nullptr;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitClassScopeFunctionSpecializationDecl(
const clang::ClassScopeFunctionSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
}
/// \brief Classify the given Clang enumeration to describe how to import it.
EnumKind ClangImporter::Implementation::
classifyEnum(const clang::EnumDecl *decl) {
Identifier name;
if (decl->getDeclName())
name = importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name = importName(decl->getTypedefNameForAnonDecl()->getDeclName());
// Anonymous enumerations simply get mapped to constants of the
// underlying type of the enum, because there is no way to conjure up a
// name for the Swift type.
if (name.empty())
return EnumKind::Constants;
// Was the enum declared using NS_ENUM or NS_OPTIONS?
// FIXME: Use Clang attributes instead of grovelling the macro expansion loc.
auto loc = decl->getLocStart();
if (loc.isMacroID()) {
StringRef MacroName = getClangPreprocessor().getImmediateMacroName(loc);
if (MacroName == "CF_ENUM")
return EnumKind::Enum;
if (MacroName == "CF_OPTIONS")
return EnumKind::Options;
}
// Fall back to the 'Unknown' path.
return EnumKind::Unknown;
}
Decl *ClangImporter::Implementation::importDeclCached(
const clang::NamedDecl *ClangDecl) {
auto Known = ImportedDecls.find(ClangDecl->getCanonicalDecl());
if (Known != ImportedDecls.end())
return Known->second;
return nullptr;
}
/// Checks if we don't need to import the typedef itself. If the typedef
/// should be skipped, returns the underlying declaration that the typedef
/// refers to -- this declaration should be imported instead.
static const clang::TagDecl *
canSkipOverTypedef(ClangImporter::Implementation &Impl,
const clang::NamedDecl *D,
bool &TypedefIsSuperfluous) {
// If we have a typedef that refers to a tag type of the same name,
// skip the typedef and import the tag type directly.
TypedefIsSuperfluous = false;
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
if (!ClangTypedef)
return nullptr;
const clang::DeclContext *RedeclContext =
ClangTypedef->getDeclContext()->getRedeclContext();
if (!RedeclContext->isTranslationUnit())
return nullptr;
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
auto *TT = UnderlyingType->getAs<clang::TagType>();
if (!TT)
return nullptr;
clang::TagDecl *UnderlyingDecl = TT->getDecl();
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
return nullptr;
if (UnderlyingDecl->getDeclName().isEmpty())
return UnderlyingDecl;
auto TypedefName = ClangTypedef->getDeclName();
auto TagDeclName = UnderlyingDecl->getDeclName();
if (TypedefName != TagDeclName)
return nullptr;
TypedefIsSuperfluous = true;
return UnderlyingDecl;
}
Decl *
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration) {
assert(ClangDecl);
bool SkippedOverTypedef = false;
Decl *Result = nullptr;
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
TypedefIsSuperfluous)) {
Result = importDecl(UnderlyingDecl);
SkippedOverTypedef = true;
}
if (!Result) {
SwiftDeclConverter converter(*this);
Result = converter.Visit(ClangDecl);
HadForwardDeclaration = converter.hadForwardDeclaration();
}
if (!Result)
return nullptr;
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
// Note that the decl was imported from Clang. Don't mark stdlib decls as
// imported.
if (!Result->getDeclContext()->isModuleScopeContext() ||
(Result->getModuleContext() != getSwiftModule() &&
Result->getModuleContext() != getNamedModule("ObjectiveC"))) {
assert(
// Either the Swift declaration was from stdlib,
!Result->getClangDecl() ||
// or we imported the underlying decl of the typedef,
SkippedOverTypedef ||
// or the other type is a typedef,
(isa<clang::TypedefNameDecl>(Result->getClangDecl()) &&
// both types are ValueDecls:
(isa<clang::ValueDecl>(Result->getClangDecl()) &&
getClangASTContext().hasSameType(
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
cast<clang::ValueDecl>(Canon)->getType())) ||
// both types are TypeDecls:
(isa<clang::TypeDecl>(Result->getClangDecl()) &&
getClangASTContext().hasSameUnqualifiedType(
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Result->getClangDecl())),
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Canon))))) ||
// or we imported the decl itself.
Result->getClangDecl()->getCanonicalDecl() == Canon);
(void) SkippedOverTypedef;
Result->setClangNode(ClangDecl);
}
return Result;
}
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
const clang::NamedDecl *ClangDecl,
bool SuperfluousTypedefsAreTransparent) {
if (!ClangDecl)
return nullptr;
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
if (auto Known = importDeclCached(Canon)) {
if (!SuperfluousTypedefsAreTransparent &&
SuperfluousTypedefs.count(Canon))
return nullptr;
return Known;
}
bool TypedefIsSuperfluous = false;
bool HadForwardDeclaration = false;
Decl *Result = importDeclImpl(ClangDecl, TypedefIsSuperfluous,
HadForwardDeclaration);
if (!Result)
return nullptr;
if (TypedefIsSuperfluous)
SuperfluousTypedefs.insert(Canon);
if (!HadForwardDeclaration)
ImportedDecls[Canon] = Result;
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
return nullptr;
return Result;
}
Decl *
ClangImporter::Implementation::
importMirroredDecl(const clang::ObjCMethodDecl *decl, DeclContext *dc) {
if (!decl)
return nullptr;
auto known = ImportedProtocolDecls.find({decl->getCanonicalDecl(), dc});
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
auto result = converter.VisitObjCMethodDecl(decl, dc);
auto canon = decl->getCanonicalDecl();
if (result) {
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(decl);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[{canon, dc}] = result;
return result;
}
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
const clang::DeclContext *dc) {
// Every declaration should come from a module, so we should not see the
// TranslationUnit DeclContext here.
assert(!dc->isTranslationUnit());
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
auto swiftDecl = importDecl(decl);
if (!swiftDecl)
return nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(const clang::Decl *D) {
const clang::DeclContext *DC = D->getDeclContext();
if (DC->isTranslationUnit()) {
if (auto *M = getClangModuleForDecl(D))
return M;
else
return nullptr;
}
return importDeclContextImpl(DC);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type,
const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic) {
auto &context = SwiftContext;
auto var = new (context) VarDecl(isStatic, /*IsLet*/ false,
SourceLoc(), name, type, dc);
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'self'
if (dc->isTypeContext()) {
auto selfTy = dc->getDeclaredTypeInContext();
if (isStatic)
selfTy = MetatypeType::get(selfTy, context);
Pattern *anyP = new (context) AnyPattern(SourceLoc(), /*implicit*/ true);
anyP->setType(selfTy);
getterArgs.push_back(anyP);
}
// empty tuple
getterArgs.push_back(TuplePattern::create(context, SourceLoc(), { },
SourceLoc()));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = type;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(), getterType);
}
// Create the getter function declaration.
auto func = FuncDecl::create(context, SourceLoc(), SourceLoc(), Identifier(),
SourceLoc(), nullptr, getterType, getterArgs,
getterArgs, TypeLoc::withoutLoc(type), dc);
func->setStatic(isStatic);
func->setBodyResultType(type);
setVarDeclContexts(getterArgs, func);
// Create the integer literal value.
// FIXME: Handle other kinds of values.
Expr *expr = nullptr;
switch (value.getKind()) {
case clang::APValue::AddrLabelDiff:
case clang::APValue::Array:
case clang::APValue::ComplexFloat:
case clang::APValue::ComplexInt:
case clang::APValue::LValue:
case clang::APValue::MemberPointer:
case clang::APValue::Struct:
case clang::APValue::Uninitialized:
case clang::APValue::Union:
case clang::APValue::Vector:
llvm_unreachable("Unhandled APValue kind");
case clang::APValue::Float:
case clang::APValue::Int: {
// Print the value.
llvm::SmallString<16> printedValue;
if (value.getKind() == clang::APValue::Int) {
value.getInt().toString(printedValue);
} else {
assert(value.getFloat().isFinite() && "can't handle infinities or NaNs");
value.getFloat().toString(printedValue);
}
// If this was a negative number, record that and strip off the '-'.
// FIXME: This is hideous!
// FIXME: Actually make the negation work.
bool isNegative = printedValue[0] == '-';
if (isNegative)
printedValue.erase(printedValue.begin());
// Create the expression node.
StringRef printedValueCopy(context.AllocateCopy(printedValue).data(),
printedValue.size());
if (value.getKind() == clang::APValue::Int) {
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
} else {
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
}
if (!isNegative)
break;
// If it was a negative number, negate the integer literal.
auto minusRef = getOperatorRef(context, context.getIdentifier("-"));
if (!minusRef)
return nullptr;
expr = new (context) PrefixUnaryExpr(minusRef, expr);
break;
}
}
// If we need a conversion, add one now.
switch (convertKind) {
case ConstantConvertKind::None:
break;
case ConstantConvertKind::Construction: {
auto typeRef = new (context) MetatypeExpr(nullptr, SourceLoc(),
MetatypeType::get(type, context));
expr = new (context) CallExpr(typeRef, expr, /*Implicit=*/true);
break;
}
case ConstantConvertKind::Coerce:
break;
case ConstantConvertKind::Downcast: {
auto cast = new (context) ConditionalCheckedCastExpr(expr,
SourceLoc(),
TypeLoc::withoutLoc(type));
cast->setCastKind(CheckedCastKind::Downcast);
cast->setImplicit();
expr = new (context) ForceValueExpr(cast, SourceLoc());
break;
}
}
// Create the return statement.
auto ret = new (context) ReturnStmt(SourceLoc(), expr);
// Finally, set the body.
func->setBody(BraceStmt::create(context, SourceLoc(),
ASTNode(ret),
SourceLoc()));
// Write the function up as the getter.
func->makeGetter(var);
var->setComputedAccessors(context, SourceLoc(), func, nullptr, SourceLoc());
// Register this thunk as an external definition.
SwiftContext.addedExternalDecl(func);
return var;
}