Files
swift-mirror/lib/AST/RequirementMachine/HomotopyReduction.cpp

682 lines
21 KiB
C++

//===--- HomotopyReduction.cpp - Higher-dimensional term rewriting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the algorithm for computing a minimal set of rules from
// a confluent rewrite system. A minimal set of rules is:
//
// 1) Large enough that computing the confluent completion produces the original
// rewrite system;
//
// 2) Small enough that no further rules can be deleted without changing the
// resulting confluent rewrite system.
//
// Redundant rules that are not part of the minimal set are redundant are
// detected by analyzing the set of rewrite loops computed by the completion
// procedure.
//
// If a rewrite rule appears exactly once in a loop and without context, the
// loop witnesses a redundancy; the rewrite rule is equivalent to traveling
// around the loop "in the other direction". This rewrite rule and the
// corresponding rewrite loop can be deleted.
//
// Any occurrence of the rule in the remaining loops is replaced with the
// alternate definition obtained by splitting the loop that witnessed the
// redundancy.
//
// Iterating this process eventually produces a minimal set of rewrite rules.
//
// For a description of the general algorithm, see "A Homotopical Completion
// Procedure with Applications to Coherence of Monoids",
// https://hal.inria.fr/hal-00818253.
//
// Note that in the world of Swift, rewrite rules for introducing associated
// type symbols are marked 'permanent'; they are always re-added when a new
// rewrite system is built from a minimal generic signature, so instead of
// deleting them it is better to leave them in place in case it allows other
// rules to be deleted instead.
//
// Also, for a conformance rule (V.[P] => V) to be redundant, a stronger
// condition is needed than appearing once in a loop and without context;
// the rule must not be a _generating conformance_. The algorithm for computing
// a minimal set of generating conformances is implemented in
// GeneratingConformances.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// A rewrite rule is redundant if it appears exactly once in a loop
/// without context.
llvm::SmallVector<unsigned, 1>
RewriteLoop::findRulesAppearingOnceInEmptyContext(
const RewriteSystem &system) const {
// Rules appearing in empty context (possibly more than once).
llvm::SmallDenseSet<unsigned, 2> rulesInEmptyContext;
// The number of times each rule appears (with or without context).
llvm::SmallDenseMap<unsigned, unsigned, 2> ruleMultiplicity;
RewritePathEvaluator evaluator(Basepoint);
for (auto step : Path) {
switch (step.Kind) {
case RewriteStep::ApplyRewriteRule: {
if (!step.isInContext() && !evaluator.isInContext())
rulesInEmptyContext.insert(step.RuleID);
++ruleMultiplicity[step.RuleID];
break;
}
case RewriteStep::AdjustConcreteType:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::ConcreteConformance:
case RewriteStep::SuperclassConformance:
break;
}
evaluator.apply(step, system);
}
// Collect all rules that we saw exactly once in empty context.
SmallVector<unsigned, 1> result;
for (auto rule : rulesInEmptyContext) {
auto found = ruleMultiplicity.find(rule);
assert(found != ruleMultiplicity.end());
if (found->second == 1)
result.push_back(rule);
}
return result;
}
/// If a rewrite loop contains an explicit rule in empty context, propagate the
/// explicit bit to all other rules appearing in empty context within the same
/// loop.
///
/// When computing generating conformances we prefer to eliminate non-explicit
/// rules, as a heuristic to ensure that minimized conformance requirements
/// remain in the same protocol as originally written, in cases where they can
/// be moved between protocols.
///
/// However, conformance rules can also be written in a non-canonical way.
///
/// Most conformance requirements are non-canonical, since the original
/// requirements use unresolved types. For example, a requirement 'Self.X.Y : Q'
/// inside a protocol P will lower to a rewrite rule
///
/// [P].X.Y.[Q] => [P].X.Y
///
/// Completion will then add a new rule that looks something like this, using
/// associated type symbols:
///
/// [P:X].[P2:Y].[Q] => [P:X].[P2:Y]
///
/// Furthermore, if [P:X].[P2:Y] simplies to some other term, such as [P:Z],
/// there will be yet another rule added by completion:
///
/// [P:Z].[Q] => [P:Z]
///
/// The new rules are related to the original rule via rewrite loops where
/// both rules appear in empty context. This algorithm will propagate the
/// explicit bit from the original rule to the canonical rule.
void RewriteSystem::propagateExplicitBits() {
for (const auto &loop : Loops) {
SmallVector<unsigned, 1> rulesInEmptyContext =
loop.findRulesAppearingOnceInEmptyContext(*this);
bool sawExplicitRule = false;
for (unsigned ruleID : rulesInEmptyContext) {
const auto &rule = getRule(ruleID);
if (rule.isExplicit())
sawExplicitRule = true;
}
if (sawExplicitRule) {
for (unsigned ruleID : rulesInEmptyContext) {
auto &rule = getRule(ruleID);
if (!rule.isPermanent() && !rule.isExplicit())
rule.markExplicit();
}
}
}
}
/// Given a rewrite rule which appears exactly once in a loop
/// without context, return a new definition for this rewrite rule.
/// The new definition is the path obtained by deleting the
/// rewrite rule from the loop.
RewritePath RewritePath::splitCycleAtRule(unsigned ruleID) const {
// A cycle is a path from the basepoint to the basepoint.
// Somewhere in this path, an application of \p ruleID
// appears in an empty context.
// First, we split the cycle into two paths:
//
// (1) A path from the basepoint to the rule's
// left hand side,
RewritePath basepointToLhs;
// (2) And a path from the rule's right hand side
// to the basepoint.
RewritePath rhsToBasepoint;
// Because the rule only appears once, we know that basepointToLhs
// and rhsToBasepoint do not involve the rule itself.
// If the rule is inverted, we have to invert the whole thing
// again at the end.
bool ruleWasInverted = false;
bool sawRule = false;
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::ApplyRewriteRule: {
if (step.RuleID != ruleID)
break;
assert(!sawRule && "Rule appears more than once?");
assert(!step.isInContext() && "Rule appears in context?");
ruleWasInverted = step.Inverse;
sawRule = true;
continue;
}
case RewriteStep::AdjustConcreteType:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::ConcreteConformance:
case RewriteStep::SuperclassConformance:
break;
}
if (sawRule)
rhsToBasepoint.add(step);
else
basepointToLhs.add(step);
}
// Build a path from the rule's lhs to the rule's rhs via the
// basepoint.
RewritePath result = rhsToBasepoint;
result.append(basepointToLhs);
// We want a path from the lhs to the rhs, so invert it unless
// the rewrite step was also inverted.
if (!ruleWasInverted)
result.invert();
return result;
}
/// Replace every rewrite step involving the given rewrite rule with
/// either the replacement path (or its inverse, if the step was
/// inverted).
///
/// The replacement path is re-contextualized at each occurrence of a
/// rewrite step involving the given rule.
///
/// Returns true if any rewrite steps were replaced; false means the
/// rule did not appear in this path.
bool RewritePath::replaceRuleWithPath(unsigned ruleID,
const RewritePath &path) {
bool foundAny = false;
for (const auto &step : Steps) {
if (step.Kind == RewriteStep::ApplyRewriteRule &&
step.RuleID == ruleID) {
foundAny = true;
break;
}
}
if (!foundAny)
return false;
SmallVector<RewriteStep, 4> newSteps;
// Keep track of Decompose/Compose pairs. Any rewrite steps in
// between do not need to be re-contextualized, since they
// operate on new terms that were pushed on the stack by the
// Compose operation.
unsigned decomposeCount = 0;
for (const auto &step : Steps) {
switch (step.Kind) {
case RewriteStep::ApplyRewriteRule: {
if (step.RuleID != ruleID) {
newSteps.push_back(step);
break;
}
auto adjustStep = [&](RewriteStep newStep) {
bool inverse = newStep.Inverse ^ step.Inverse;
if (newStep.Kind == RewriteStep::Decompose && inverse) {
assert(decomposeCount > 0);
--decomposeCount;
}
if (decomposeCount == 0) {
newStep.StartOffset += step.StartOffset;
newStep.EndOffset += step.EndOffset;
}
newStep.Inverse = inverse;
newSteps.push_back(newStep);
if (newStep.Kind == RewriteStep::Decompose && !inverse) {
++decomposeCount;
}
};
if (step.Inverse) {
for (auto newStep : llvm::reverse(path))
adjustStep(newStep);
} else {
for (auto newStep : path)
adjustStep(newStep);
}
break;
}
case RewriteStep::AdjustConcreteType:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::ConcreteConformance:
case RewriteStep::SuperclassConformance:
newSteps.push_back(step);
break;
}
}
std::swap(newSteps, Steps);
return true;
}
/// Check if a rewrite rule is a candidate for deletion in this pass of the
/// minimization algorithm.
bool RewriteSystem::
isCandidateForDeletion(unsigned ruleID,
const llvm::DenseSet<unsigned> *redundantConformances) const {
const auto &rule = getRule(ruleID);
// We should not find a rule that has already been marked redundant
// here; it should have already been replaced with a rewrite path
// in all homotopy generators.
assert(!rule.isRedundant());
// Associated type introduction rules are 'permanent'. They're
// not worth eliminating since they are re-added every time; it
// is better to find other candidates to eliminate in the same
// loop instead.
if (rule.isPermanent())
return false;
// Other rules involving unresolved name symbols are derived from an
// associated type introduction rule together with a conformance rule.
// They are eliminated in the first pass.
if (rule.getLHS().containsUnresolvedSymbols())
return true;
// Protocol conformance rules are eliminated via a different
// algorithm which computes "generating conformances".
//
// The first pass skips protocol conformance rules.
//
// The second pass eliminates any protocol conformance rule which is
// redundant according to both homotopy reduction and the generating
// conformances algorithm.
//
// Later on, we verify that any conformance redundant via generating
// conformances was also redundant via homotopy reduction. This
// means that the set of generating conformances is always a superset
// (or equal to) of the set of minimal protocol conformance
// requirements that homotopy reduction alone would produce.
if (rule.isAnyConformanceRule()) {
if (!redundantConformances)
return false;
if (!redundantConformances->count(ruleID))
return false;
}
return true;
}
/// Find a rule to delete by looking through all loops for rewrite rules appearing
/// once in empty context. Returns a redundant rule to delete if one was found,
/// otherwise returns None.
///
/// Minimization performs three passes over the rewrite system.
///
/// 1) First, rules that are not conformance rules are deleted, with
/// \p redundantConformances equal to nullptr.
///
/// 2) Second, generating conformances are computed.
///
/// 3) Finally, redundant conformance rules are deleted, with
/// \p redundantConformances equal to the set of conformance rules that are
/// not generating conformances.
Optional<unsigned> RewriteSystem::
findRuleToDelete(const llvm::DenseSet<unsigned> *redundantConformances,
RewritePath &replacementPath) {
SmallVector<std::pair<unsigned, unsigned>, 2> redundancyCandidates;
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool foundAny = false;
for (unsigned ruleID : loop.findRulesAppearingOnceInEmptyContext(*this)) {
redundancyCandidates.emplace_back(loopID, ruleID);
foundAny = true;
}
if (!foundAny)
loop.markDeleted();
}
Optional<std::pair<unsigned, unsigned>> found;
for (const auto &pair : redundancyCandidates) {
unsigned ruleID = pair.second;
if (!isCandidateForDeletion(ruleID, redundantConformances))
continue;
if (!found) {
found = pair;
continue;
}
const auto &rule = getRule(ruleID);
const auto &otherRule = getRule(found->second);
// Prefer to delete "less canonical" rules.
if (rule.compare(otherRule, Context) > 0)
found = pair;
}
if (!found)
return None;
unsigned loopID = found->first;
unsigned ruleID = found->second;
assert(replacementPath.empty());
auto &loop = Loops[loopID];
replacementPath = loop.Path.splitCycleAtRule(ruleID);
loop.markDeleted();
auto &rule = getRule(ruleID);
rule.markRedundant();
return ruleID;
}
/// Delete a rewrite rule that is known to be redundant, replacing all
/// occurrences of the rule in all loops with the replacement path.
void RewriteSystem::deleteRule(unsigned ruleID,
const RewritePath &replacementPath) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
const auto &rule = getRule(ruleID);
llvm::dbgs() << "* Deleting rule ";
rule.dump(llvm::dbgs());
llvm::dbgs() << " (#" << ruleID << ")\n";
llvm::dbgs() << "* Replacement path: ";
MutableTerm mutTerm(rule.getLHS());
replacementPath.dump(llvm::dbgs(), mutTerm, *this);
llvm::dbgs() << "\n";
}
// Replace all occurrences of the rule with the replacement path and
// normalize all loops.
for (auto &loop : Loops) {
if (loop.isDeleted())
continue;
bool changed = loop.Path.replaceRuleWithPath(ruleID, replacementPath);
if (!changed)
continue;
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Updated loop: ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
}
}
void RewriteSystem::performHomotopyReduction(
const llvm::DenseSet<unsigned> *redundantConformances) {
while (true) {
RewritePath replacementPath;
auto optRuleID = findRuleToDelete(redundantConformances,
replacementPath);
// If no redundant rules remain which can be eliminated by this pass, stop.
if (!optRuleID)
return;
deleteRule(*optRuleID, replacementPath);
}
}
/// Use the loops to delete redundant rewrite rules via a series of Tietze
/// transformations, updating and simplifying existing loops as each rule
/// is deleted.
///
/// Redundant rules are mutated to set their isRedundant() bit.
void RewriteSystem::minimizeRewriteSystem() {
assert(Complete);
assert(!Minimized);
Minimized = 1;
// Check invariants before homotopy reduction.
verifyRewriteLoops();
propagateExplicitBits();
// First pass: Eliminate all redundant rules that are not conformance rules.
performHomotopyReduction(/*redundantConformances=*/nullptr);
// Now find a minimal set of generating conformances.
//
// FIXME: For now this just produces a set of redundant conformances, but
// it should actually output the canonical generating conformance equation
// for each non-generating conformance. We can then use information to
// compute conformance access paths, instead of the current "brute force"
// algorithm used for that purpose.
llvm::DenseSet<unsigned> redundantConformances;
computeGeneratingConformances(redundantConformances);
// Second pass: Eliminate all redundant conformance rules.
performHomotopyReduction(/*redundantConformances=*/&redundantConformances);
// Check invariants after homotopy reduction.
verifyRewriteLoops();
verifyRedundantConformances(redundantConformances);
verifyMinimizedRules();
}
/// In a conformance-valid rewrite system, any rule with unresolved symbols on
/// the left or right hand side should have been simplified by another rule.
bool RewriteSystem::hasNonRedundantUnresolvedRules() const {
assert(Complete);
assert(Minimized);
for (const auto &rule : Rules) {
if (!rule.isRedundant() &&
!rule.isPermanent() &&
rule.containsUnresolvedSymbols()) {
return true;
}
}
return false;
}
/// Collect all non-permanent, non-redundant rules whose domain is equal to
/// one of the protocols in \p proto. In other words, the first symbol of the
/// left hand side term is either a protocol symbol or associated type symbol
/// whose protocol is in \p proto.
///
/// These rules form the requirement signatures of these protocols.
llvm::DenseMap<const ProtocolDecl *, std::vector<unsigned>>
RewriteSystem::getMinimizedProtocolRules(
ArrayRef<const ProtocolDecl *> protos) const {
assert(Minimized);
llvm::DenseMap<const ProtocolDecl *, std::vector<unsigned>> rules;
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.containsUnresolvedSymbols()) {
continue;
}
auto domain = rule.getLHS()[0].getProtocols();
assert(domain.size() == 1);
const auto *proto = domain[0];
if (std::find(protos.begin(), protos.end(), proto) != protos.end())
rules[proto].push_back(ruleID);
}
return rules;
}
/// Collect all non-permanent, non-redundant rules whose left hand side
/// begins with a generic parameter symbol.
///
/// These rules form the top-level generic signature for this rewrite system.
std::vector<unsigned>
RewriteSystem::getMinimizedGenericSignatureRules() const {
assert(Minimized);
std::vector<unsigned> rules;
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.containsUnresolvedSymbols()) {
continue;
}
if (rule.getLHS()[0].getKind() != Symbol::Kind::GenericParam)
continue;
rules.push_back(ruleID);
}
return rules;
}
/// Verify that each loop begins and ends at its basepoint.
void RewriteSystem::verifyRewriteLoops() const {
#ifndef NDEBUG
for (const auto &loop : Loops) {
RewritePathEvaluator evaluator(loop.Basepoint);
for (const auto &step : loop.Path) {
evaluator.apply(step, *this);
}
if (evaluator.getCurrentTerm() != loop.Basepoint) {
llvm::errs() << "Not a loop: ";
loop.dump(llvm::errs(), *this);
llvm::errs() << "\n";
abort();
}
if (evaluator.isInContext()) {
llvm::errs() << "Leftover terms on evaluator stack\n";
evaluator.dump(llvm::errs());
abort();
}
}
#endif
}
/// Assert if homotopy reduction failed to eliminate a redundant conformance,
/// since this suggests a misunderstanding on my part.
void RewriteSystem::verifyRedundantConformances(
llvm::DenseSet<unsigned> redundantConformances) const {
#ifndef NDEBUG
for (unsigned ruleID : redundantConformances) {
const auto &rule = getRule(ruleID);
assert(!rule.isPermanent() &&
"Permanent rule cannot be redundant");
assert(!rule.isIdentityConformanceRule() &&
"Identity conformance cannot be redundant");
assert(rule.isAnyConformanceRule() &&
"Redundant conformance is not a conformance rule?");
if (!rule.isRedundant()) {
llvm::errs() << "Homotopy reduction did not eliminate redundant "
<< "conformance?\n";
llvm::errs() << "(#" << ruleID << ") " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
#endif
}
// Assert if homotopy reduction failed to eliminate a rewrite rule it was
// supposed to delete.
void RewriteSystem::verifyMinimizedRules() const {
#ifndef NDEBUG
for (const auto &rule : Rules) {
// Note that sometimes permanent rules can be simplified, but they can never
// be redundant.
if (rule.isPermanent()) {
if (rule.isRedundant()) {
llvm::errs() << "Permanent rule is redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
continue;
}
// Simplified rules should be redundant, unless they're protocol conformance
// rules, which unfortunately might no be redundant, because we try to keep
// them in the original protocol definition for compatibility with the
// GenericSignatureBuilder's minimization algorithm.
if (rule.isSimplified() &&
!rule.isRedundant() &&
!rule.isProtocolConformanceRule()) {
llvm::errs() << "Simplified rule is not redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
#endif
}