Files
swift-mirror/lib/Parse/Scope.cpp
Michael Gottesman 6af14bdb4b [parse] Implement a dump method on Scope using a new debugVisit method on TreeScopedHashTable.
This is just for use in the debugger when one may want to know what is in the
current scope. The order is not guaranteed but at least it can provide /some/
info ignoring that property. These are no-ops when not in asserts and I put in a
compile time warnign to make sure it is not used in the actual code base.
2019-03-10 15:37:19 -07:00

165 lines
5.5 KiB
C++

//===--- Scope.cpp - Scope Implementation ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Swift declarations.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Scope.h"
#include "swift/Parse/Parser.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Scope Implementation
//===----------------------------------------------------------------------===//
static bool isResolvableScope(ScopeKind SK) {
switch (SK) {
case ScopeKind::Extension:
case ScopeKind::EnumBody:
case ScopeKind::StructBody:
case ScopeKind::ClassBody:
case ScopeKind::ProtocolBody:
case ScopeKind::TopLevel:
case ScopeKind::InheritanceClause:
return false;
case ScopeKind::FunctionBody:
case ScopeKind::Generics:
case ScopeKind::Brace:
case ScopeKind::ForeachVars:
case ScopeKind::ClosureParams:
case ScopeKind::CaseVars:
case ScopeKind::CatchVars:
case ScopeKind::IfVars:
case ScopeKind::WhileVars:
return true;
}
llvm_unreachable("Unhandled ScopeKind in switch.");
}
Scope::Scope(Parser *P, ScopeKind SC, bool isInactiveConfigBlock)
: SI(P->getScopeInfo()),
HTScope(SI.HT, SI.CurScope ? &SI.CurScope->HTScope : nullptr),
PrevScope(SI.CurScope),
PrevResolvableDepth(SI.ResolvableDepth),
Kind(SC),
IsInactiveConfigBlock(isInactiveConfigBlock) {
assert(PrevScope || Kind == ScopeKind::TopLevel);
if (SI.CurScope) {
Depth = SI.CurScope->Depth + 1;
IsInactiveConfigBlock |= SI.CurScope->IsInactiveConfigBlock;
} else {
Depth = 0;
}
SI.CurScope = this;
if (!isResolvableScope(Kind))
SI.ResolvableDepth = Depth + 1;
}
Scope::Scope(Parser *P, SavedScope &&SS):
SI(P->getScopeInfo()),
HTScope(std::move(SS.HTDetachedScope)),
PrevScope(SI.CurScope),
PrevResolvableDepth(SI.ResolvableDepth),
Depth(SS.Depth),
Kind(SS.Kind),
IsInactiveConfigBlock(SS.IsInactiveConfigBlock) {
SI.CurScope = this;
if (!isResolvableScope(Kind))
SI.ResolvableDepth = Depth + 1;
}
bool Scope::isResolvable() const {
return isResolvableScope(Kind);
}
//===----------------------------------------------------------------------===//
// ScopeInfo Implementation
//===----------------------------------------------------------------------===//
/// checkValidOverload - Check whether it is ok for D1 and D2 to be declared at
/// the same scope. This check is a transitive relationship, so if "D1 is a
/// valid overload of D2" and "D2 is a valid overload of D3" then we know that
/// D1/D3 are valid overloads and we don't have to check all permutations.
static bool checkValidOverload(const ValueDecl *D1, const ValueDecl *D2,
Parser &P) {
// Currently, there is no restriction on overloading.
return false;
}
/// addToScope - Register the specified decl as being in the current lexical
/// scope.
void ScopeInfo::addToScope(ValueDecl *D, Parser &TheParser) {
if (!CurScope->isResolvable())
return;
assert(CurScope->getDepth() >= ResolvableDepth &&
"inserting names into a non-resolvable scope");
// If we have a shadowed variable definition, check to see if we have a
// redefinition: two definitions in the same scope with the same name.
ScopedHTTy::iterator EntryI = HT.begin(CurScope->HTScope, D->getFullName());
// A redefinition is a hit in the scoped table at the same depth.
if (EntryI != HT.end() && EntryI->first == CurScope->getDepth()) {
ValueDecl *PrevDecl = EntryI->second;
// If this is in a resolvable scope, diagnose redefinitions. Later
// phases will handle scopes like module-scope, etc.
if (CurScope->getDepth() >= ResolvableDepth)
return TheParser.diagnoseRedefinition(PrevDecl, D);
// If this is at top-level scope, validate that the members of the overload
// set all agree.
// Check to see if D and PrevDecl are valid in the same overload set.
if (checkValidOverload(D, PrevDecl, TheParser))
return;
// Note: we don't check whether all of the elements of the overload set have
// different argument types. This is checked later.
}
HT.insertIntoScope(CurScope->HTScope,
D->getFullName(),
std::make_pair(CurScope->getDepth(), D));
}
void ScopeInfo::dump() const {
#ifndef NDEBUG
// Dump out the current list of scopes.
if (!CurScope->isResolvable())
return;
assert(CurScope->getDepth() >= ResolvableDepth &&
"Attempting to dump a non-resolvable scope?!");
llvm::dbgs() << "--- Dumping ScopeInfo ---\n";
std::function<void(decltype(HT)::DebugVisitValueTy)> func =
[&](const decltype(HT)::DebugVisitValueTy &iter) -> void {
llvm::dbgs() << "DeclName: " << iter->getKey() << "\n"
<< "KeyScopeID: " << iter->getValue().first << "\n"
<< "Decl: ";
iter->getValue().second->dumpRef(llvm::dbgs());
llvm::dbgs() << "\n";
};
HT.debugVisit(std::move(func));
llvm::dbgs() << "\n";
#endif
}