Files
swift-mirror/lib/SIL/IR/Linker.cpp
Doug Gregor 6b3935201d [Embedded] Only strip "external" from global variables that have definitions
Embedded Swift ends up rewriting the linkage of global variables as
part of linking together all of the Swift modules. Doing so for extern
global variables (e.g., ones meant to be implemented in C) breaks the
LLVM module, because they will never have definitions. Only make this
change when the global variable is a definition.
2025-12-01 15:47:32 -08:00

571 lines
21 KiB
C++

//===--- Linker.cpp -------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// The SIL linker walks the call graph beginning at a starting function,
/// deserializing functions, vtables and witness tables.
///
/// The behavior of the linker is controlled by a LinkMode value. The LinkMode
/// has two possible values:
///
/// - LinkNormal: The linker deserializes bodies for declarations that must be
/// emitted into the client because they do not have definitions available
/// externally. This includes:
///
/// - witness tables for imported conformances
///
/// - functions with shared linkage
///
/// - LinkAll: All reachable functions (including public functions) are
/// deserialized, including public functions.
///
/// The primary entry point into the linker is the SILModule::linkFunction()
/// function, which recursively walks the call graph starting from the given
/// function.
///
/// In the mandatory pipeline (-Onone), the linker is invoked from the mandatory
/// SIL linker pass, which pulls in just enough to allow us to emit code, using
/// LinkNormal mode.
///
/// In the performance pipeline, after guaranteed optimizations but before
/// performance optimizations, the 'performance SILLinker' pass links
/// transitively all reachable functions, to uncover optimization opportunities
/// that might be missed from deserializing late. The performance pipeline uses
/// LinkAll mode.
///
/// *NOTE*: In LinkAll mode, we deserialize all vtables and witness tables,
/// even those with public linkage. This is not strictly necessary, since the
/// devirtualizer deserializes vtables and witness tables as needed. However,
/// doing so early creates more opportunities for optimization.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-linker"
#include "Linker.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include <functional>
using namespace swift;
using namespace Lowering;
STATISTIC(NumFuncLinked, "Number of SIL functions linked");
//===----------------------------------------------------------------------===//
// Linker Helpers
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::deserializeAndPushToWorklist(SILFunction *F) {
ASSERT(F->isExternalDeclaration());
LLVM_DEBUG(llvm::dbgs() << "Imported function: "
<< F->getName() << "\n");
SILFunction *NewF =
Mod.getSILLoader()->lookupSILFunction(F, /*onlyUpdateLinkage*/ false);
ASSERT(!NewF || NewF == F);
if (!NewF || F->isExternalDeclaration()) {
ASSERT((!hasSharedVisibility(F->getLinkage()) || F->hasForeignBody()) &&
"cannot deserialize shared function");
return;
}
ASSERT(!F->isAnySerialized() == Mod.isSerialized() &&
"the de-serializer did set the wrong serialized flag");
F->setBare(IsBare);
toVerify.push_back(F);
Worklist.push_back(F);
Changed = true;
++NumFuncLinked;
}
/// Deserialize a function and add it to the worklist for processing.
void SILLinkerVisitor::maybeAddFunctionToWorklist(
SILFunction *F, SerializedKind_t callerSerializedKind, SILFunction *caller) {
SILLinkage linkage = F->getLinkage();
// Originally this was an assert. But it can happen if the user "re-defines"
// an existing function with a wrong linkage, e.g. using `@_cdecl`.
if(!(callerSerializedKind == IsNotSerialized ||
F->hasValidLinkageForFragileRef(callerSerializedKind) ||
hasSharedVisibility(linkage) || F->isExternForwardDeclaration())) {
StringRef name = "a serialized function";
llvm::SmallVector<char> scratch;
if (caller) {
name = caller->getName();
if (SILDeclRef declRef = caller->getDeclRef()) {
if (auto *decl = declRef.getDecl()) {
name = decl->getName().getString(scratch);
}
}
}
F->getModule().getASTContext().Diags.diagnose(
F->getLocation().getSourceLoc(),
diag::wrong_linkage_for_serialized_function, name);
hasError = true;
return;
}
if (!F->isExternalDeclaration()) {
// The function is already in the module, so no need to de-serialized it.
// But check if we need to set the IsSerialized flag.
// See the top-level comment for SILLinkerVisitor for details.
if (callerSerializedKind == IsSerialized &&
hasSharedVisibility(linkage) &&
!Mod.isSerialized() &&
!F->isAnySerialized()) {
F->setSerializedKind(IsSerialized);
// Push the function to the worklist so that all referenced shared functions
// are also set to IsSerialized.
Worklist.push_back(F);
}
if (F->markedAsAlwaysEmitIntoClient()) {
// For @_alwaysEmitIntoClient functions, we need to lookup its
// differentiability witness and, if present, ask SILLoader to obtain its
// definition. Otherwise, a linker error would occur due to undefined
// reference to these symbols.
for (SILDifferentiabilityWitness *witness :
F->getModule().lookUpDifferentiabilityWitnessesForFunction(
F->getName())) {
F->getModule().getSILLoader()->lookupDifferentiabilityWitness(
witness->getKey());
}
}
return;
}
// In the performance pipeline or embedded mode, we deserialize all reachable
// functions.
if (isLinkAll())
return deserializeAndPushToWorklist(F);
// Otherwise, make sure to deserialize shared functions; we need to
// emit them into the client binary since they're not available
// externally.
if (hasSharedVisibility(linkage))
return deserializeAndPushToWorklist(F);
// Functions with PublicNonABI linkage are deserialized as having
// HiddenExternal linkage when they are declarations, then they
// become Shared after the body has been deserialized.
// So try deserializing HiddenExternal functions too.
if (linkage == SILLinkage::HiddenExternal) {
deserializeAndPushToWorklist(F);
if (!F->markedAsAlwaysEmitIntoClient())
return;
// For @_alwaysEmitIntoClient functions, we need to lookup its
// differentiability witness and, if present, ask SILLoader to obtain its
// definition. Otherwise, a linker error would occur due to undefined
// reference to these symbols.
for (SILDifferentiabilityWitness *witness :
F->getModule().lookUpDifferentiabilityWitnessesForFunction(
F->getName())) {
F->getModule().getSILLoader()->lookupDifferentiabilityWitness(
witness->getKey());
}
return;
}
// Update the linkage of the function in case it's different in the serialized
// SIL than derived from the AST. This can be the case with cross-module-
// optimizations.
Mod.updateFunctionLinkage(F);
}
/// Process F, recursively deserializing any thing F may reference.
bool SILLinkerVisitor::processFunction(SILFunction *F) {
// If F is a declaration, first deserialize it.
if (F->isExternalDeclaration()) {
maybeAddFunctionToWorklist(F, /*serializedKind*/ IsNotSerialized);
} else {
Worklist.push_back(F);
}
process();
return Changed;
}
bool SILLinkerVisitor::processConformance(ProtocolConformanceRef conformanceRef) {
visitProtocolConformance(conformanceRef, false);
process();
return Changed;
}
/// Deserialize the given VTable all SIL the VTable transitively references.
void SILLinkerVisitor::linkInVTable(ClassDecl *D) {
// Devirtualization already deserializes vtables as needed in both the
// mandatory and performance pipelines, and we don't support specialized
// vtables that might have shared linkage yet, so this is only needed in
// the performance pipeline to deserialize more functions early, and expose
// optimization opportunities.
ASSERT(isLinkAll());
// Attempt to lookup the Vtbl from the SILModule.
SILVTable *Vtbl = Mod.lookUpVTable(D);
if (!Vtbl)
return;
// Ok we found our VTable. Visit each function referenced by the VTable. If
// any of the functions are external declarations, add them to the worklist
// for processing.
for (auto &entry : Vtbl->getEntries()) {
SILFunction *impl = entry.getImplementation();
if (!Vtbl->isAnySerialized() ||
impl->hasValidLinkageForFragileRef(Vtbl->getSerializedKind())) {
// Deserialize and recursively walk any vtable entries that do not have
// bodies yet.
maybeAddFunctionToWorklist(impl,
Vtbl->getSerializedKind());
}
}
if (auto *S = D->getSuperclassDecl()) {
linkInVTable(S);
}
}
//===----------------------------------------------------------------------===//
// Visitors
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::visitApplyInst(ApplyInst *AI) {
visitApplySubstitutions(AI->getSubstitutionMap());
}
void SILLinkerVisitor::visitTryApplyInst(TryApplyInst *TAI) {
visitApplySubstitutions(TAI->getSubstitutionMap());
}
void SILLinkerVisitor::visitPartialApplyInst(PartialApplyInst *PAI) {
visitApplySubstitutions(PAI->getSubstitutionMap());
}
void SILLinkerVisitor::visitFunctionRefInst(FunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getReferencedFunction(),
FRI->getFunction()->getSerializedKind(),
FRI->getFunction());
}
void SILLinkerVisitor::visitDynamicFunctionRefInst(
DynamicFunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getInitiallyReferencedFunction(),
FRI->getFunction()->getSerializedKind(),
FRI->getFunction());
}
void SILLinkerVisitor::visitPreviousDynamicFunctionRefInst(
PreviousDynamicFunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getInitiallyReferencedFunction(),
FRI->getFunction()->getSerializedKind(),
FRI->getFunction());
}
// Eagerly visiting all used conformances leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
static bool mustDeserializeProtocolConformance(SILModule &M,
ProtocolConformanceRef c) {
if (!c.isConcrete())
return false;
auto conformance = c.getConcrete()->getRootConformance();
return M.Types.protocolRequiresWitnessTable(conformance->getProtocol())
&& conformance->isSynthesized();
}
void SILLinkerVisitor::visitProtocolConformance(
ProtocolConformanceRef ref, bool referencedFromInitExistential) {
// If an abstract protocol conformance was passed in, do nothing.
if (ref.isAbstract())
return;
bool isEmbedded = Mod.getOptions().EmbeddedSwift;
bool mustDeserialize = (isEmbedded && referencedFromInitExistential) ||
mustDeserializeProtocolConformance(Mod, ref);
// Otherwise try and lookup a witness table for C.
ProtocolConformance *C = ref.getConcrete();
if (!VisitedConformances.insert(C).second)
return;
RootProtocolConformance *rootC = C->getRootConformance();
auto *WT = Mod.lookUpWitnessTable(rootC);
if ((!WT || WT->isDeclaration()) &&
(mustDeserialize || Mode == SILModule::LinkingMode::LinkAll)) {
if (!WT) {
// Marker protocols should never have witness tables.
if (C->getProtocol()->isMarkerProtocol())
return;
SILLinkage linkage = getLinkageForProtocolConformance(rootC, NotForDefinition);
WT = SILWitnessTable::create(Mod, linkage,
const_cast<RootProtocolConformance *>(rootC),
/*specialized=*/ false);
}
// If the module is at or past the Lowered stage, then we can't do any
// further deserialization, since pre-IRGen SIL lowering changes the types
// of definitions to make them incompatible with canonical serialized SIL.
if (Mod.getStage() == SILStage::Lowered)
return;
WT = Mod.getSILLoader()->lookupWitnessTable(WT);
}
// If the looked up witness table is a declaration, there is nothing we can
// do here.
if (WT == nullptr || WT->isDeclaration()) {
#ifndef NDEBUG
if (mustDeserialize) {
llvm::errs() << "SILGen failed to emit required conformance:\n";
ref.dump(llvm::errs());
llvm::errs() << "\n";
abort();
}
#endif
return;
}
if (Mod.getASTContext().LangOpts.hasFeature(Feature::Embedded) &&
isAvailableExternally(WT->getLinkage()) &&
WT->getProtocol()->requiresClass()) {
// In embedded swift all the code is generated in the top-level module.
// De-serialized tables (= public_external) must be code-gen'd and
// therefore made non-external.
// Note: for functions we do that at the end of the pipeline in the
// IRGenPrepare pass to be able to eliminate dead functions.
WT->setLinkage(SILLinkage::Hidden);
}
auto maybeVisitRelatedConformance = [&](ProtocolConformanceRef c) {
// Formally all conformances referenced by a used conformance are used.
// However, eagerly visiting them all at this point leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if ((isEmbedded && referencedFromInitExistential) ||
mustDeserializeProtocolConformance(Mod, c)) {
visitProtocolConformance(c, referencedFromInitExistential);
}
};
// For each entry in the witness table...
for (auto &E : WT->getEntries()) {
switch (E.getKind()) {
// If the entry is a witness method...
case SILWitnessTable::WitnessKind::Method: {
// The witness could be removed by dead function elimination.
if (!E.getMethodWitness().Witness)
continue;
// Otherwise, deserialize the witness if it has shared linkage, or if
// we were asked to deserialize everything.
maybeAddFunctionToWorklist(E.getMethodWitness().Witness,
(WT->isSerialized() || isAvailableExternally(WT->getLinkage()) ?
IsSerialized : WT->getSerializedKind()));
break;
}
// If the entry is a related witness table, see whether we need to
// eagerly deserialize it.
case SILWitnessTable::WitnessKind::BaseProtocol: {
auto baseConformance = E.getBaseProtocolWitness().Witness;
maybeVisitRelatedConformance(ProtocolConformanceRef(baseConformance));
break;
}
case SILWitnessTable::WitnessKind::AssociatedConformance: {
auto assocConformance = E.getAssociatedConformanceWitness().Witness;
maybeVisitRelatedConformance(assocConformance);
break;
}
case SILWitnessTable::WitnessKind::AssociatedType:
case SILWitnessTable::WitnessKind::Invalid:
break;
}
}
}
void SILLinkerVisitor::visitApplySubstitutions(SubstitutionMap subs) {
for (auto conformance : subs.getConformances()) {
// Formally all conformances referenced in a function application are
// used. However, eagerly visiting them all at this point leads to a
// large blowup in the amount of SIL we read in, and we aren't very
// systematic about laziness. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if (mustDeserializeProtocolConformance(Mod, conformance)) {
visitProtocolConformance(conformance, false);
}
}
}
void SILLinkerVisitor::visitInitExistentialAddrInst(
InitExistentialAddrInst *IEI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the open_existential_addr/witness_method before the
// init_existential_inst.
for (ProtocolConformanceRef C : IEI->getConformances()) {
visitProtocolConformance(C, true);
}
}
void SILLinkerVisitor::visitInitExistentialRefInst(
InitExistentialRefInst *IERI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
for (ProtocolConformanceRef C : IERI->getConformances()) {
visitProtocolConformance(C, true);
}
}
void SILLinkerVisitor::visitBuiltinInst(BuiltinInst *bi) {
switch (bi->getBuiltinInfo().ID) {
case BuiltinValueKind::BuildOrdinaryTaskExecutorRef:
case BuiltinValueKind::BuildOrdinarySerialExecutorRef:
case BuiltinValueKind::BuildComplexEqualitySerialExecutorRef:
if (Mod.getOptions().EmbeddedSwift) {
// Those builtins act like init_existential_ref instructions and therefore
// it's important to have the Executor witness tables available in embedded
// mode.
auto executorConf = bi->getSubstitutions().getConformances()[0];
visitProtocolConformance(executorConf, true);
}
break;
default:
break;
}
}
void SILLinkerVisitor::visitAllocRefDynamicInst(AllocRefDynamicInst *ARI) {
if (!isLinkAll())
return;
if (!ARI->isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType())
return;
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return;
linkInVTable(D);
}
void SILLinkerVisitor::visitAllocRefInst(AllocRefInst *ARI) {
if (!isLinkAll())
return;
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return;
linkInVTable(D);
}
void SILLinkerVisitor::visitMetatypeInst(MetatypeInst *MI) {
if (!isLinkAll())
return;
CanType instTy = MI->getType().castTo<MetatypeType>().getInstanceType();
ClassDecl *C = instTy.getClassOrBoundGenericClass();
if (!C)
return;
linkInVTable(C);
}
void SILLinkerVisitor::visitGlobalAddrInst(GlobalAddrInst *GAI) {
if (!Mod.getOptions().EmbeddedSwift)
return;
// In Embedded Swift, we want to actually link globals from other modules too,
// so strip "external" from the linkage.
SILGlobalVariable *G = GAI->getReferencedGlobal();
if (G->isDefinition())
G->setLinkage(stripExternalFromLinkage(G->getLinkage()));
}
//===----------------------------------------------------------------------===//
// Top Level Routine
//===----------------------------------------------------------------------===//
// Main loop of the visitor. Called by one of the other *visit* methods.
void SILLinkerVisitor::process() {
// Process everything transitively referenced by one of the functions in the
// worklist.
while (!Worklist.empty()) {
auto *Fn = Worklist.pop_back_val();
if (Fn->getModule().isSerialized()) {
// If the containing module has been serialized,
// Remove The Serialized state (if any)
// This allows for more optimizations
Fn->setSerializedKind(SerializedKind_t::IsNotSerialized);
}
if (Fn->getModule().getOptions().EmbeddedSwift &&
Fn->getModule().getASTContext().LangOpts.DebuggerSupport) {
// LLDB requires that functions with bodies are not external.
Fn->setLinkage(stripExternalFromLinkage(Fn->getLinkage()));
}
LLVM_DEBUG(llvm::dbgs() << "Process imports in function: "
<< Fn->getName() << "\n");
for (auto &BB : *Fn) {
for (auto &I : BB) {
visit(&I);
if (hasError)
return;
}
}
}
while (!toVerify.empty()) {
auto *fn = toVerify.pop_back_val();
fn->verify();
}
}