Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
Doug Gregor 6b3ef547ec Replace "Members" arrays with an intrusive linked list.
The use of ASTContext-allocated arrays to store the members of nominal
type declarations and the extensions thereof is an
abomination. Instead, introduce the notion of an "iterable"
declaration context, which keeps track of the declarations within that
context (stored as a singly-linked list) and allows iteration over
them. When a member is added, it will also make sure that the member
goes into the lookup table for its context immediately.

This eliminates a ton of wasted memory when we have to reallocate the
members arrays for types and extensions, and moves us toward a much
more sane model. The only functionality change here is that the Clang
importer no longer puts subscript declarations into the wrong class,
nor does it nested a C struct within another C struct.



Swift SVN r16572
2014-04-19 23:37:06 +00:00

4300 lines
157 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "ImporterImpl.h"
#include "swift/Strings.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#define DEBUG_TYPE "Clang module importer"
STATISTIC(NumTotalImportedEntities, "# of imported clang entities");
STATISTIC(NumFactoryMethodsNSError,
"# of factory methods not mapped due to NSError");
STATISTIC(NumFactoryMethodsWrongResult,
"# of factory methods not mapped due to an incorrect result type");
STATISTIC(NumFactoryMethodsAsInitializers,
"# of factory methods mapped to initializers");
using namespace swift;
namespace swift {
namespace inferred_attributes {
enum {
requires_stored_property_inits = 0x01
};
}
}
/// \brief Retrieve the type of 'self' for the given context.
static Type getSelfTypeForContext(DeclContext *dc) {
// For a protocol, the type is 'Self'.
if (auto proto = dyn_cast<ProtocolDecl>(dc))
return proto->getSelf()->getArchetype();
return dc->getDeclaredTypeOfContext();
}
/// Create an implicit 'self' decl for a method in the specified type. If
/// 'static' is true, then this is self for a static method in the type.
///
/// Note that this decl is created, but it is returned with an incorrect
/// DeclContext that needs to be reset once the method exists.
///
static VarDecl *createSelfDecl(DeclContext *DC, bool isStaticMethod) {
auto selfType = getSelfTypeForContext(DC);
ASTContext &C = DC->getASTContext();
if (isStaticMethod)
selfType = MetatypeType::get(selfType);
bool isLet = true;
if (auto *ND = selfType->getAnyNominal())
isLet = !isa<StructDecl>(ND) && !isa<EnumDecl>(ND);
VarDecl *selfDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/isLet,
SourceLoc(), C.Id_self, selfType, DC);
selfDecl->setImplicit();
return selfDecl;
}
/// Create a typedpattern(namedpattern(decl))
static Pattern *createTypedNamedPattern(VarDecl *decl) {
ASTContext &Ctx = decl->getASTContext();
Type ty = decl->getType();
Pattern *P = new (Ctx) NamedPattern(decl);
P->setType(ty);
P->setImplicit();
P = new (Ctx) TypedPattern(P, TypeLoc::withoutLoc(ty));
P->setType(ty);
P->setImplicit();
return P;
}
template <size_t A, size_t B>
static bool verifyNameMapping(MappedTypeNameKind NameMappping,
const char (&left)[A], const char (&right)[B]) {
return NameMappping == MappedTypeNameKind::DoNothing ||
strcmp(left, right) != 0;
}
/// \brief Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError, MappedTypeNameKind &NameMapping) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == STDLIB_NAME.
StringRef SwiftTypeName;
MappedLanguages Languages;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, LANGUAGES, \
CAN_BE_MISSING, C_NAME_MAPPING) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
if (StringRef(SWIFT_MODULE_NAME) == StringRef(STDLIB_NAME)) \
IsSwiftModule = true; \
else { \
IsSwiftModule = false; \
SwiftModuleName = SWIFT_MODULE_NAME; \
} \
SwiftTypeName = SWIFT_TYPE_NAME; \
Languages = MappedLanguages::LANGUAGES; \
CanBeMissing = CAN_BE_MISSING; \
NameMapping = MappedTypeNameKind::C_NAME_MAPPING; \
assert(verifyNameMapping(MappedTypeNameKind::C_NAME_MAPPING, \
C_TYPE_NAME, SWIFT_TYPE_NAME) && \
"MappedTypes.def: Identical names must use DoNothing"); \
break; \
}
#include "MappedTypes.def"
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while(0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
if (Languages != MappedLanguages::All) {
if ((unsigned(Languages) & unsigned(MappedLanguages::ObjC1)) != 0 &&
!ClangCtx.getLangOpts().ObjC1)
return std::make_pair(Type(), "");
}
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
unsigned ClangTypeSize = ClangCtx.getTypeSize(ClangType);
if (Bitwidth != 0 && Bitwidth != ClangTypeSize)
return std::make_pair(Type(), "");
// Check other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::UnsignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32)
return std::make_pair(Type(), "");
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32)
return std::make_pair(Type(), "");
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended)
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::VaList:
// FIXME: why is va_list not a pointer type on 32-bit arm
if (ClangTypeSize != 64 && ClangTypeSize != 32)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
!(ClangCtx.getBOOLDecl() &&
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCSelRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCId:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCIdRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCClass:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCClassRedefinitionType()))
return std::make_pair(Type(), "");
break;
}
Module *M;
if (IsSwiftModule)
M = Impl.getStdlibModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
clang::Selector cmd) {
if (MD->getSelector() != cmd)
return false;
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
return false;
if (MD->getClassInterface()->getName() != "NSDictionary")
return false;
return true;
}
/// \brief Returns the common prefix of two strings at camel-case word
/// granularity.
///
/// For example, given "NSFooBar" and "NSFooBas", returns "NSFoo"
/// (not "NSFooBa"). The returned StringRef is a slice of the "a" argument.
///
/// This is used to derive the common prefix of enum constants so we can elide
/// it from the Swift interface.
static StringRef getCommonWordPrefix(StringRef a, StringRef b) {
// Ensure that 'b' is the longer string.
if (a.size() > b.size())
std::swap(a, b);
unsigned prefixLength = 0;
unsigned commonSize = a.size();
for (size_t i = 0; i < commonSize; ++i) {
// If this is a camel-case word boundary, advance the prefix length.
if (clang::isUppercase(a[i]) && clang::isUppercase(b[i]))
prefixLength = i;
if (a[i] != b[i])
return a.slice(0, prefixLength);
}
// If the two strings match exactly, or if we're at a word boundary in the
// longer string, the entire shorter string is the prefix.
if (b.size() == commonSize || clang::isUppercase(b[commonSize]))
prefixLength = commonSize;
return a.slice(0, prefixLength);
}
/// Returns the common word-prefix of two strings, allowing the second string
/// to be a common English plural form of the first.
///
/// For example, given "NSProperty" and "NSProperties", the full "NSProperty"
/// is returned. Given "NSMagicArmor" and "NSMagicArmory", only
/// "NSMagic" is returned.
///
/// The "-s", "-es", and "-ies" patterns cover every plural NS_OPTIONS name
/// in Cocoa and Cocoa Touch.
///
/// \see getCommonWordPrefix
static StringRef getCommonPluralPrefix(StringRef singular, StringRef plural) {
assert(!singular.empty());
assert(!plural.empty());
StringRef commonPrefix = getCommonWordPrefix(singular, plural);
if (commonPrefix.size() == singular.size() || plural.back() != 's')
return commonPrefix;
StringRef leftover = singular.substr(commonPrefix.size());
// Is the plural string just "[singular]s"?
plural = plural.drop_back();
if (plural.endswith(leftover))
return singular;
if (plural.empty() || plural.back() != 'e')
return commonPrefix;
// Is the plural string "[singular]es"?
plural = plural.drop_back();
if (plural.endswith(leftover))
return singular;
if (plural.empty() || !(plural.back() == 'i' && singular.back() == 'y'))
return commonPrefix;
// Is the plural string "[prefix]ies" and the singular "[prefix]y"?
plural = plural.drop_back();
leftover = leftover.drop_back();
if (plural.endswith(leftover))
return singular;
return commonPrefix;
}
namespace {
enum class OptionSetFactoryMethod {
FromRaw,
FromMask,
};
}
/// Build the 'fromMask' or 'fromRaw' method for an option set.
/// struct NSSomeOptionSet : RawOptionSet {
/// var value : RawType
/// static func fromMask(value: RawType) -> NSSomeOptionSet {
/// return NSSomeOptionSet(value)
/// }
/// static func fromRaw(value: RawType) -> NSSomeOptionSet? {
/// return NSSomeOptionSet(value)
/// }
/// }
static FuncDecl *makeOptionSetFactoryMethod(
StructDecl *optionSetDecl,
VarDecl *valueDecl,
OptionSetFactoryMethod factoryMethod) {
auto &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto rawType = valueDecl->getType();
VarDecl *selfDecl = createSelfDecl(optionSetDecl, true);
Pattern *selfParam = createTypedNamedPattern(selfDecl);
VarDecl *rawDecl = new (C) VarDecl(/*static*/ false, /*IsLet*/true,
SourceLoc(), C.getIdentifier("raw"),
Type(), optionSetDecl);
rawDecl->setImplicit();
rawDecl->setType(rawType);
Pattern *rawParam = createTypedNamedPattern(rawDecl);
auto rawArgType = TupleType::get(TupleTypeElt(rawType,
C.getIdentifier("raw")), C);
rawParam = TuplePattern::create(C, SourceLoc(),
TuplePatternElt(rawParam), SourceLoc());
rawParam->setImplicit();
rawParam->setType(rawArgType);
Pattern *bodyParams[] = {selfParam, rawParam};
Type retType;
switch (factoryMethod) {
case OptionSetFactoryMethod::FromMask:
retType = optionSetType;
break;
case OptionSetFactoryMethod::FromRaw:
retType = OptionalType::get(optionSetType);
break;
}
Identifier baseName;
Identifier argName;
switch (factoryMethod) {
case OptionSetFactoryMethod::FromMask:
baseName = C.Id_fromMask;
argName = C.Id_raw;
break;
case OptionSetFactoryMethod::FromRaw:
baseName = C.Id_fromRaw;
argName = C.Id_raw;
break;
}
DeclName name(C, baseName, argName);
auto factoryDecl = FuncDecl::create(C, SourceLoc(), StaticSpellingKind::None,
SourceLoc(),
name,
SourceLoc(), nullptr, Type(),
bodyParams,
TypeLoc::withoutLoc(retType),
optionSetDecl);
factoryDecl->setStatic();
factoryDecl->setImplicit();
selfDecl->setDeclContext(factoryDecl);
rawDecl->setDeclContext(factoryDecl);
Type factoryType = FunctionType::get(rawArgType, retType);
factoryType = FunctionType::get(selfDecl->getType(), factoryType);
factoryDecl->setType(factoryType);
factoryDecl->setBodyResultType(retType);
auto *ctorRef = new (C) DeclRefExpr(ConcreteDeclRef(optionSetDecl),
SourceLoc(), /*implicit*/ true);
auto *rawRef = new (C) DeclRefExpr(ConcreteDeclRef(rawDecl),
SourceLoc(), /*implicit*/ true);
auto *ctorCall = new (C) CallExpr(ctorRef, rawRef,
/*implicit*/ true);
auto *ctorRet = new (C) ReturnStmt(SourceLoc(), ctorCall,
/*implicit*/ true);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(ctorRet),
SourceLoc(),
/*implicit*/ true);
factoryDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(factoryDecl);
return factoryDecl;
}
// Build the 'toRaw' method for an option set.
// struct NSSomeOptionSet : RawOptionSet {
// var value: RawType
// func toRaw() -> RawType {
// return self.value
// }
// }
static FuncDecl *makeOptionSetToRawMethod(StructDecl *optionSetDecl,
ValueDecl *valueDecl) {
ASTContext &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto rawType = valueDecl->getType();
VarDecl *selfDecl = createSelfDecl(optionSetDecl, false);
Pattern *selfParam = createTypedNamedPattern(selfDecl);
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
methodParam->setType(TupleType::getEmpty(C));
Pattern *params[] = {selfParam, methodParam};
DeclName name(C, C.Id_toRaw, { });
FuncDecl *toRawDecl = FuncDecl::create(
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
name, SourceLoc(), nullptr, Type(), params,
TypeLoc::withoutLoc(rawType), optionSetDecl);
toRawDecl->setImplicit();
auto toRawArgType = TupleType::getEmpty(C);
Type toRawType = FunctionType::get(toRawArgType, rawType);
toRawType = FunctionType::get(optionSetType, toRawType);
toRawDecl->setType(toRawType);
toRawDecl->setBodyResultType(rawType);
selfDecl->setDeclContext(toRawDecl);
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
valueDecl, SourceLoc(),
/*implicit*/ true);
auto valueRet = new (C) ReturnStmt(SourceLoc(), valueRef);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(valueRet),
SourceLoc(),
/*implicit*/ true);
toRawDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(toRawDecl);
return toRawDecl;
}
static Expr *
getOperatorRef(ASTContext &C, Identifier name) {
// FIXME: This is hideous!
UnqualifiedLookup lookup(name, C.getStdlibModule(), nullptr);
if (!lookup.isSuccess())
return nullptr;
SmallVector<ValueDecl *, 4> found;
for (auto &result : lookup.Results) {
if (!result.hasValueDecl())
continue;
if (!isa<FuncDecl>(result.getValueDecl()))
continue;
found.push_back(result.getValueDecl());
}
if (found.empty())
return nullptr;
if (found.size() == 1) {
return new (C) DeclRefExpr(found[0], SourceLoc(),
/*Implicit=*/true);
} else {
auto foundCopy = C.AllocateCopy(found);
return new (C) OverloadedDeclRefExpr(
foundCopy, SourceLoc(), /*Implicit=*/true);
}
}
// Build the 'getLogicValue' method for an option set.
// struct NSSomeOptionSet : RawOptionSet {
// var value: RawType
// func getLogicValue() -> Bool {
// return self.value != 0
// }
// }
static FuncDecl *makeOptionSetGetLogicValueMethod(StructDecl *optionSetDecl,
ValueDecl *valueDecl) {
ASTContext &C = optionSetDecl->getASTContext();
auto boolType = C.getGetBoolDecl(nullptr)->getType()
->castTo<AnyFunctionType>()->getResult();
VarDecl *selfDecl = createSelfDecl(optionSetDecl, /*NotStaticMethod*/false);
Pattern *selfParam = createTypedNamedPattern(selfDecl);
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
methodParam->setType(TupleType::getEmpty(C));
Pattern *params[] = {selfParam, methodParam};
DeclName name(C, C.Id_GetLogicValue, { });
FuncDecl *getLVDecl = FuncDecl::create(
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
name, SourceLoc(), nullptr, Type(),
params, TypeLoc::withoutLoc(boolType), optionSetDecl);
getLVDecl->setImplicit();
auto toRawArgType = TupleType::getEmpty(C);
Type toRawType = FunctionType::get(toRawArgType, boolType);
toRawType = FunctionType::get(optionSetDecl->getDeclaredTypeInContext(),
toRawType);
getLVDecl->setType(toRawType);
getLVDecl->setBodyResultType(boolType);
selfDecl->setDeclContext(getLVDecl);
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
valueDecl, SourceLoc(),
/*implicit*/ true);
auto zero = new (C) IntegerLiteralExpr("0", SourceLoc(), /*implicit*/ true);
auto neRef = getOperatorRef(C, C.Id_NotEqualsOperator);
Expr *args[] = {valueRef, zero};
auto argsTuple = new (C) TupleExpr(SourceLoc(),
C.AllocateCopy(args),
nullptr,
SourceLoc(),
/*trailingClosure*/ false,
/*implicit*/ true);
auto apply = new (C) BinaryExpr(neRef, argsTuple, /*implicit*/ true);
auto ret = new (C) ReturnStmt(SourceLoc(), apply);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret),
SourceLoc(),
/*implicit*/ true);
getLVDecl->setBody(body);
// Add as an external definition.
C.addedExternalDecl(getLVDecl);
return getLVDecl;
}
// Build the default initializer for an option set.
// struct NSSomeOptionSet : RawOptionSet {
// var value: RawType
// init() {
// return 0
// }
// }
static ConstructorDecl *makeOptionSetDefaultConstructor(StructDecl *optionSetDecl,
ValueDecl *valueDecl) {
ASTContext &C = optionSetDecl->getASTContext();
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
auto metaTy = MetatypeType::get(optionSetType);
VarDecl *selfDecl = createSelfDecl(optionSetDecl, false);
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
methodParam->setType(TupleType::getEmpty(C));
DeclName name(C, C.Id_init, { });
auto *ctorDecl = new (C) ConstructorDecl(name, optionSetDecl->getLoc(),
selfPattern, methodParam,
nullptr, optionSetDecl);
ctorDecl->setImplicit();
auto fnTy = FunctionType::get(TupleType::getEmpty(C), optionSetType);
auto allocFnTy = FunctionType::get(metaTy, fnTy);
auto initFnTy = FunctionType::get(optionSetType, fnTy);
ctorDecl->setType(allocFnTy);
ctorDecl->setInitializerType(initFnTy);
selfDecl->setDeclContext(ctorDecl);
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/true);
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
valueDecl, SourceLoc(),
/*implicit*/ true);
auto zero = new (C) IntegerLiteralExpr("0", SourceLoc(),
/*implicit*/ true);
auto assign = new (C) AssignExpr(valueRef, SourceLoc(), zero,
/*implicit*/ true);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(assign), SourceLoc(),
/*implicit*/ true);
ctorDecl->setBody(body);
C.addedExternalDecl(ctorDecl);
return ctorDecl;
}
namespace {
typedef ClangImporter::Implementation::EnumKind EnumKind;
/// \brief Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl)
: Impl(impl) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
auto Name = Impl.importName(Decl->getDeclName());
if (Name.empty())
return nullptr;
Type SwiftType;
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
bool IsError;
StringRef StdlibTypeName;
MappedTypeNameKind NameMapping;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError, NameMapping);
if (IsError)
return nullptr;
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames[Decl] = NameMapping;
if (NameMapping == MappedTypeNameKind::DoNothing) {
// Record the remapping using the name of the Clang declaration.
// This will be useful for type checker diagnostics when
// a user tries to use the Objective-C/C type instead of the
// Swift type.
Impl.SwiftContext.RemappedTypes[Decl->getNameAsString()]
= SwiftType;
// Don't create an extra typealias in the imported module because
// doing so will cause confusion (or even lookup ambiguity) between
// the name in the imported module and the same name in the
// standard library.
if (auto *NAT = dyn_cast<NameAliasType>(SwiftType.getPointer()))
return NAT->getDecl();
auto *NTD = SwiftType->getAnyNominal();
assert(NTD);
return NTD;
}
}
}
auto DC = Impl.importDeclContextOf(Decl);
if (!DC)
return nullptr;
if (!SwiftType)
SwiftType = Impl.importType(Decl->getUnderlyingType(),
ImportTypeKind::Normal);
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
return new (Impl.SwiftContext) TypeAliasDecl(
Impl.importSourceLoc(Decl->getLocStart()),
Name,
Loc,
TypeLoc::withoutLoc(SwiftType),
DC);
}
Decl *
VisitUnresolvedUsingTypenameDecl(const
clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// \brief Create a constructor that initializes a struct from its members.
ConstructorDecl *createValueConstructor(StructDecl *structDecl,
ArrayRef<Decl *> members) {
auto &context = Impl.SwiftContext;
// Create the 'self' declaration.
auto selfType = structDecl->getDeclaredTypeInContext();
auto selfMetatype = MetatypeType::get(selfType);
auto selfDecl = createSelfDecl(structDecl, false);
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
// Construct the set of parameters from the list of members.
SmallVector<Pattern *, 4> paramPatterns;
SmallVector<TuplePatternElt, 8> patternElts;
SmallVector<TupleTypeElt, 8> tupleElts;
SmallVector<VarDecl *, 8> params;
SmallVector<Identifier, 4> argNames;
for (auto member : members) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (!var->hasStorage())
continue;
auto param = new (context) VarDecl(/*static*/ false, /*IsLet*/ true,
SourceLoc(), var->getName(),
var->getType(), structDecl);
argNames.push_back(var->getName());
params.push_back(param);
Pattern *pattern = createTypedNamedPattern(param);
paramPatterns.push_back(pattern);
patternElts.push_back(TuplePatternElt(pattern));
tupleElts.push_back(TupleTypeElt(var->getType(), var->getName()));
}
}
auto paramPattern = TuplePattern::create(context, SourceLoc(), patternElts,
SourceLoc());
auto paramTy = TupleType::get(tupleElts, context);
paramPattern->setType(paramTy);
// Create the constructor
DeclName name(context, context.Id_init, argNames);
auto constructor =
new (context) ConstructorDecl(name, structDecl->getLoc(),
selfPattern, paramPattern,
nullptr, structDecl);
// Set the constructor's type.
auto fnTy = FunctionType::get(paramTy, selfType);
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
auto initFnTy = FunctionType::get(selfType, fnTy);
constructor->setType(allocFnTy);
constructor->setInitializerType(initFnTy);
// Assign all of the member variables appropriately.
SmallVector<ASTNode, 4> stmts;
unsigned paramIdx = 0;
for (auto member : members) {
auto var = dyn_cast<VarDecl>(member);
if (!var || !var->hasStorage())
continue;
// Construct left-hand side.
Expr *lhs = new (context) DeclRefExpr(selfDecl, SourceLoc(),
/*Implicit=*/true);
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, SourceLoc(),
/*Implicit=*/true);
// Construct right-hand side.
auto param = params[paramIdx++];
auto rhs = new (context) DeclRefExpr(param, SourceLoc(),
/*Implicit=*/true);
// Add assignment.
stmts.push_back(new (context) AssignExpr(lhs, SourceLoc(), rhs,
/*Implicit=*/true));
}
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
constructor->setBody(body);
// Add this as an external definition.
Impl.registerExternalDecl(constructor);
// We're done.
return constructor;
}
/// Get the Swift name for an enum constant.
Identifier getEnumConstantName(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum) {
// Look up the common name prefix for this enum's constants.
StringRef enumPrefix = "";
auto foundPrefix = Impl.EnumConstantNamePrefixes.find(clangEnum);
if (foundPrefix != Impl.EnumConstantNamePrefixes.end()) {
enumPrefix = foundPrefix->second;
}
return Impl.importName(decl->getDeclName(), /*suffix*/ "", enumPrefix);
}
/// Determine the common prefix to remove from the element names of an
/// enum. We'll elide this prefix from then names in
/// the Swift interface because Swift enum cases are naturally namespaced
/// by the enum type.
void computeEnumCommonWordPrefix(const clang::EnumDecl *decl,
Identifier enumName) {
auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
if (ec == ecEnd)
return;
StringRef commonPrefix = (*ec)->getName();
for (++ec; ec != ecEnd; ++ec) {
commonPrefix = getCommonWordPrefix(commonPrefix, (*ec)->getName());
if (commonPrefix.empty())
break;
}
if (!commonPrefix.empty()) {
StringRef checkPrefix = commonPrefix;
// Account for the 'kConstant' naming convention on enumerators.
bool dropKPrefix = false;
if (checkPrefix.size() >= 2) {
if (checkPrefix[0] == 'k' && clang::isUppercase(checkPrefix[1])) {
checkPrefix = checkPrefix.substr(1);
dropKPrefix = true;
}
}
StringRef commonWithEnum = getCommonPluralPrefix(checkPrefix,
enumName.str());
commonPrefix = commonPrefix.slice(0, commonWithEnum.size()+dropKPrefix);
}
Impl.EnumConstantNamePrefixes.insert({decl, commonPrefix});
}
/// Import an NS_ENUM constant as a case of a Swift enum.
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum) {
auto &context = Impl.SwiftContext;
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
// Use the constant's underlying value as its raw value in Swift.
bool negative = false;
llvm::APSInt rawValue = decl->getInitVal();
// Check that we didn't already import an enum constant for this enum
// with the same value. Swift enums don't currently support aliases.
if (Impl.EnumConstantValues.count({clangEnum, rawValue}))
return nullptr;
Impl.EnumConstantValues.insert({clangEnum, rawValue});
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType()
&& rawValue.slt(0)) {
rawValue = -rawValue;
negative = true;
}
llvm::SmallString<12> rawValueText;
rawValue.toString(rawValueText, 10, /*signed*/ false);
StringRef rawValueTextC
= context.AllocateCopy(StringRef(rawValueText));
auto rawValueExpr = new (context) IntegerLiteralExpr(rawValueTextC,
SourceLoc(),
/*implicit*/ false);
if (negative)
rawValueExpr->setNegative(SourceLoc());
auto element
= new (context) EnumElementDecl(SourceLoc(),
name, TypeLoc(),
SourceLoc(), rawValueExpr,
theEnum);
// Give the enum element the appropriate type.
auto argTy = MetatypeType::get(theEnum->getDeclaredType());
element->overwriteType(FunctionType::get(argTy,
theEnum->getDeclaredType()));
element->setClangNode(decl);
return element;
}
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
StructDecl *theStruct) {
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
// Create the constant.
auto element = Impl.createConstant(name, theStruct,
theStruct->getDeclaredTypeInContext(),
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction,
/*isStatic*/ true);
element->setClangNode(decl);
return element;
}
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
ASTContext &cxt = Impl.SwiftContext;
// Create the enum declaration and record it.
NominalTypeDecl *result;
auto enumKind = Impl.classifyEnum(decl);
switch (enumKind) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Unknown: {
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto structDecl = new (Impl.SwiftContext)
StructDecl(Loc, name, Loc, { }, nullptr, dc);
structDecl->computeType();
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Enum);
if (!underlyingType)
return nullptr;
// Create a variable to store the underlying value.
auto varName = Impl.SwiftContext.getIdentifier("value");
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ false,
SourceLoc(), varName,
underlyingType,
structDecl);
// Create a pattern binding to describe the variable.
Pattern *varPattern = createTypedNamedPattern(var);
auto patternBinding = new (Impl.SwiftContext)
PatternBindingDecl(SourceLoc(), StaticSpellingKind::None,
SourceLoc(), varPattern, nullptr,
/*conditional*/ false, structDecl);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *varDecl = var;
auto constructor = createValueConstructor(structDecl, varDecl);
// Set the members of the struct.
structDecl->addMember(constructor);
structDecl->addMember(patternBinding);
structDecl->addMember(var);
result = structDecl;
break;
}
case EnumKind::Enum: {
// Compute the underlying type.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Enum);
if (!underlyingType)
return nullptr;
auto enumDecl = new (Impl.SwiftContext)
EnumDecl(Impl.importSourceLoc(decl->getLocStart()),
name, Impl.importSourceLoc(decl->getLocation()),
{}, nullptr, dc);
enumDecl->computeType();
// Set up the C underlying type as its Swift raw type.
enumDecl->setRawType(underlyingType);
// Add delayed protocol declarations to the enum declaration.
DelayedProtocolDecl delayedProtocols[] = {
[&]() {return cxt.getProtocol(KnownProtocolKind::RawRepresentable);},
[&]() {return cxt.getProtocol(KnownProtocolKind::Hashable);}
};
auto delayedProtoList = Impl.SwiftContext.AllocateCopy(
delayedProtocols);
enumDecl->setDelayedProtocolDecls(delayedProtoList);
// The type checker assumes that all overloads for '==' are available
// when type checking begins, so we don't want to delay adding the
// Equatable protocol to the enumeration.
ProtocolDecl *initialProtocols[] = {
cxt.getProtocol(KnownProtocolKind::Equatable)
};
auto unforcedProtos = Impl.SwiftContext.AllocateCopy(initialProtocols);
enumDecl->setInitialUndelayedProtocols(unforcedProtos);
result = enumDecl;
computeEnumCommonWordPrefix(decl, name);
break;
}
case EnumKind::Options: {
// Compute the underlying type.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Enum);
if (!underlyingType)
return nullptr;
auto Loc = Impl.importSourceLoc(decl->getLocation());
// Create a struct with the underlying type as a field.
auto structDecl = new (Impl.SwiftContext)
StructDecl(Loc, name, Loc, { }, nullptr, dc);
structDecl->computeType();
// Create a field to store the underlying value.
auto varName = Impl.SwiftContext.getIdentifier("value");
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
/*IsLet*/ false,
SourceLoc(), varName,
underlyingType,
structDecl);
// Create a pattern binding to describe the variable.
Pattern *varPattern = createTypedNamedPattern(var);
auto patternBinding = new (Impl.SwiftContext)
PatternBindingDecl(SourceLoc(), StaticSpellingKind::None,
SourceLoc(), varPattern, nullptr,
/*conditional*/ false, structDecl);
// Create a default initializer to get the value with no options set.
auto defaultConstructor = makeOptionSetDefaultConstructor(structDecl,
var);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *varDecl = var;
auto valueConstructor = createValueConstructor(structDecl, varDecl);
// Build a delayed RawOptionSet conformance for the type.
DelayedProtocolDecl delayedProtocols[] = {
[&]() {return cxt.getProtocol(KnownProtocolKind::RawOptionSet);}
};
structDecl->setDelayedProtocolDecls(
Impl.SwiftContext.AllocateCopy(delayedProtocols));
// Add delayed implicit members to the type.
DelayedDecl delayedMembers[] = {
[=](){return makeOptionSetFactoryMethod(structDecl, var,
OptionSetFactoryMethod::FromMask);},
[=](){return makeOptionSetFactoryMethod(structDecl, var,
OptionSetFactoryMethod::FromRaw);},
[=](){return makeOptionSetToRawMethod(structDecl, var);},
[=](){return makeOptionSetGetLogicValueMethod(structDecl, var);}
};
structDecl->setDelayedMemberDecls(Impl.SwiftContext.AllocateCopy(
delayedMembers));
// Set the members of the struct.
structDecl->addMember(defaultConstructor);
structDecl->addMember(valueConstructor);
structDecl->addMember(patternBinding);
structDecl->addMember(var);
result = structDecl;
computeEnumCommonWordPrefix(decl, name);
break;
}
}
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
// Import each of the enumerators.
bool addEnumeratorsAsMembers;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
addEnumeratorsAsMembers = false;
break;
case EnumKind::Options:
case EnumKind::Enum:
addEnumeratorsAsMembers = true;
break;
}
for (auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
ec != ecEnd; ++ec) {
Decl *enumeratorDecl;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
enumeratorDecl = Impl.importDecl(*ec);
break;
case EnumKind::Options:
enumeratorDecl = importOptionConstant(*ec, decl,
cast<StructDecl>(result));
break;
case EnumKind::Enum:
enumeratorDecl = importEnumCase(*ec, decl, cast<EnumDecl>(result));
break;
}
if (!enumeratorDecl)
continue;
if (addEnumeratorsAsMembers)
result->addMember(enumeratorDecl);
}
// Add the type decl to ExternalDefinitions so that we can type-check
// raw values and IRGen can emit metadata for it.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
return result;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// FIXME: Skip unions for now. We can't properly map them to Swift unions,
// because they aren't discriminated in any way. We could map them to
// structs, but that would make them very, very unsafe to use.
if (decl->isUnion())
return nullptr;
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
// The types of anonymous structs or unions are never imported; their
// fields are dumped directly into the enclosing class.
if (decl->isAnonymousStructOrUnion())
return nullptr;
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// We don't import structs with bitfields because we can not layout them
// correctly in IRGen.
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
if (auto FD = dyn_cast<clang::FieldDecl>(*m))
if (FD->isBitField())
return nullptr;
}
// Create the struct declaration and record it.
auto result = new (Impl.SwiftContext)
StructDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
// Skip anonymous structs or unions; they'll be dealt with via the
// IndirectFieldDecls.
if (auto field = dyn_cast<clang::FieldDecl>(nd))
if (field->isAnonymousStructOrUnion())
continue;
auto member = Impl.importDecl(nd);
if (!member || !isa<VarDecl>(member))
continue;
members.push_back(member);
}
for (auto member : members) {
result->addMember(member);
}
// Add the struct decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
return result;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// FIXME: We could import specializations, but perhaps only as unnamed
// structural types.
return nullptr;
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
auto name = getEnumConstantName(decl, clangEnum);
if (name.empty())
return nullptr;
switch (Impl.classifyEnum(clangEnum)) {
case EnumKind::Constants: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// The context where the constant will be introduced.
auto dc = Impl.importDeclContextOf(clangEnum);
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!type)
return nullptr;
// FIXME: Importing the type will recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, type,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Coerce,
/*static*/ false);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Unknown: {
// The enumeration was mapped to a struct containining the integral
// type. Create a constant with that struct type.
auto dc = Impl.importDeclContextOf(clangEnum);
if (!dc)
return nullptr;
// Import the enumeration type.
auto enumType = Impl.importType(
Impl.getClangASTContext().getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!enumType)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, enumType,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction,
/*static*/ false);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Enum:
case EnumKind::Options: {
// The enumeration was mapped to a high-level Swift type, and its
// elements were created as children of that enum. They aren't available
// independently.
return nullptr;
}
}
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
// Check whether the context of any of the fields in the chain is a
// union. If so, don't import this field.
for (auto f = decl->chain_begin(), fEnd = decl->chain_end(); f != fEnd;
++f) {
if (auto record = dyn_cast<clang::RecordDecl>((*f)->getDeclContext())) {
if (record->isUnion())
return nullptr;
}
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Map this indirect field to a Swift variable.
return new (Impl.SwiftContext)
VarDecl(/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocStart()),
name, type, dc);
}
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
decl = decl->getMostRecentDecl();
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Import the function type. If we have parameters, make sure their names
// get into the resulting function type.
SmallVector<Pattern *, 4> bodyPatterns;
Type type = Impl.importFunctionType(decl->getReturnType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
decl->isNoReturn(),
bodyPatterns);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
auto loc = Impl.importSourceLoc(decl->getLocation());
// Form the name of the function.
// FIXME: Allow remapping of the name.
auto baseName = Impl.importName(decl->getDeclName());
if (baseName.empty())
return nullptr;
llvm::SmallVector<Identifier, 2>
argNames(bodyPatterns[0]->numTopLevelVariables(), Identifier());
DeclName name(Impl.SwiftContext, baseName, argNames);
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), StaticSpellingKind::None, loc,
name, nameLoc,
/*GenericParams=*/nullptr, type, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
if (decl->isNoReturn())
result->getMutableAttrs().add(
new (Impl.SwiftContext) NoReturnAttr(/*IsImplicit=*/false));
// Keep track of inline function bodies so that we can generate
// IR from them using Clang's IR generator.
if ((decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>())
&& decl->getBody()) {
// FIXME: Total hack to force instantiation of inline
// functions into the module rather than going through
// Clang's CodeGenModule::Release(), which will emit
// deferred decls that have been referenced, since
// Release() does many things including emitting stuff
// that along with what Swift emits results in broken
// modules.
auto *attr = clang::UsedAttr::CreateImplicit(decl->getASTContext());
const_cast<clang::FunctionDecl *>(decl)->addAttr(attr);
result->setClangNode(decl);
Impl.registerExternalDecl(result);
}
result->setBodyResultType(resultTy);
return result;
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// FIXME: Import C++ member functions as methods.
return nullptr;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
// We don't import bitfields because we can not layout them correctly in
// IRGen.
if (decl->isBitField())
return nullptr;
// Fields are imported as variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto result =
new (Impl.SwiftContext) VarDecl(/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
// FIXME: Handle IBOutletCollection.
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// Disallow direct ivar access (and avoid conflicts with property names).
return nullptr;
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// FIXME: Swift does not have static variables in structs/classes yet.
if (decl->getDeclContext()->isRecord())
return nullptr;
// Variables are imported as... variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// FIXME: Should 'const' vardecl's be imported as 'let' decls?
return new (Impl.SwiftContext)
VarDecl(/*static*/ false,
/*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// Using declarations are not imported.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Using shadow declarations are not imported; rather, name lookup just
// looks through them.
return nullptr;
}
/// Add an @objc(name) attribute with the given, optional name expressed as
/// selector.
///
/// The importer should use this rather than adding the attribute directly.
void addObjCAttribute(ValueDecl *decl, Optional<ObjCSelector> name) {
auto &ctx = Impl.SwiftContext;
decl->getMutableAttrs().add(ObjCAttr::create(ctx, name));
// If the declaration we attached the 'objc' attribute to is within a
// class, record it in the class.
if (auto contextTy = decl->getDeclContext()->getDeclaredInterfaceType()) {
if (auto classDecl = contextTy->getClassOrBoundGenericClass()) {
classDecl->recordObjCMember(decl);
}
}
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
if (auto Known = Impl.importDeclCached(decl))
return Known;
return VisitObjCMethodDecl(decl, dc);
}
bool isAnimatorProxy(const clang::ObjCMethodDecl *decl) {
// Special case -animator. We need to paper over
// the return type of 'instancetype' with 'id'.
// <rdar://problem/16020273>
if (!decl->isInstanceMethod())
return false;
auto DeclSel = decl->getSelector();
if (!(DeclSel.isUnarySelector() &&
DeclSel.getNameForSlot(0) == "animator"))
return false;
const clang::ASTContext &clangCtx = Impl.getClangASTContext();
auto ProtoIdent =
&clangCtx.Idents.get("NSAnimatablePropertyContainer");
auto clangDC = decl->getDeclContext();
if (auto Proto = dyn_cast<clang::ObjCProtocolDecl>(clangDC)) {
if (Proto->getIdentifier() == ProtoIdent)
return true;
return false;
}
if (auto ClassI = decl->getClassInterface()) {
for (auto I = ClassI->all_referenced_protocol_begin(),
E = ClassI->all_referenced_protocol_end();
I != E; ++I)
if ((*I)->getIdentifier() == ProtoIdent)
return true;
}
return false;
}
/// Returns a surrogate result type if one is desired for a specific API.
Optional<clang::QualType>
getSurrogateResultType(const clang::ObjCMethodDecl *decl) {
if (isAnimatorProxy(decl))
return decl->getASTContext().getObjCIdType();
return Optional<clang::QualType>();
}
/// Check whether we have already imported a method with the given
/// selector in the given context.
bool methodAlreadyImported(ObjCSelector selector, bool isInstance,
DeclContext *dc) {
// We only need to perform this check for classes.
auto classDecl
= dc->getDeclaredInterfaceType()->getClassOrBoundGenericClass();
if (!classDecl)
return false;
// Look for a matching member.
for (auto member : classDecl->lookupDirect(selector)) {
if (member->isInstanceMember() == isInstance)
return true;
}
return false;
}
/// If the given method is a factory method, import it as a constructor
Optional<ConstructorDecl *>
importFactoryMethodAsConstructor(Decl *member,
const clang::ObjCMethodDecl *decl,
ObjCSelector selector,
DeclContext *dc) {
if (!Impl.ImportFactoryMethodsAsConstructors)
return Nothing;
// Only class methods can be mapped to constructors.
if (!decl->isClassMethod())
return Nothing;
// Said class methods must be in an actual class.
auto objcClass = decl->getClassInterface();
if (!objcClass)
return Nothing;
// Check whether the name fits the pattern.
DeclName initName
= Impl.mapFactorySelectorToInitializerName(selector,
objcClass->getName());
if (!initName)
return Nothing;
// Check the result type to determine what kind of initializer we can
// create (if any).
CtorInitializerKind initKind;
if (decl->hasRelatedResultType()) {
// instancetype factory methods become convenience factory initializers.
initKind = CtorInitializerKind::ConvenienceFactory;
} else if (auto objcPtr = decl->getReturnType()
->getAs<clang::ObjCObjectPointerType>()) {
if (objcPtr->getInterfaceDecl() == objcClass) {
initKind = CtorInitializerKind::Factory;
} else {
// FIXME: Could allow a subclass here, but the rest of the compiler
// isn't prepared for that yet.
// Not a factory method.
++NumFactoryMethodsWrongResult;
return Nothing;
}
} else {
// Not a factory method.
++NumFactoryMethodsWrongResult;
return Nothing;
}
// Check whether there is an NSError parameter, which implies failability.
// FIXME: Revisit once we have failing initializers.
for (auto param : decl->parameters()) {
if (auto ptr = param->getType()->getAs<clang::PointerType>()) {
if (auto classPtr = ptr->getPointeeType()
->getAs<clang::ObjCObjectPointerType>()) {
if (auto classDecl = classPtr->getInterfaceDecl()) {
if (classDecl->getName() == "NSError") {
++NumFactoryMethodsNSError;
return Nothing;
}
}
}
}
}
// FIXME: Check for redundant initializers. It's very, very hard to
// avoid order dependencies here. Perhaps we should just deal with the
// ambiguity later?
auto result = importConstructor(decl, dc, false, initKind,
/*required=*/false, selector, initName);
if (result && member) {
++NumFactoryMethodsAsInitializers;
// Mark the imported class method "unavailable", with a useful error
// message.
llvm::SmallString<64> message;
llvm::raw_svector_ostream os(message);
os << "use object construction '" << objcClass->getName() << "(";
for (auto arg : initName.getArgumentNames()) {
os << arg << ":";
}
os << ")'";
member->getMutableAttrs().add(
AvailabilityAttr::createImplicitUnavailableAttr(
Impl.SwiftContext,
Impl.SwiftContext.AllocateCopy(os.str())));
}
return result;
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc,
bool forceClassMethod = false) {
// If we have an init method, import it as an initializer.
if (decl->getMethodFamily() == clang::OMF_init &&
isReallyInitMethod(decl)) {
// Cannot force initializers into class methods.
if (forceClassMethod)
return nullptr;
return importConstructor(decl, dc, /*isImplicit=*/false, Nothing,
/*required=*/false);
}
// Check whether we already imported this method.
if (!forceClassMethod && dc == Impl.importDeclContextOf(decl)) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
}
// Check whether another method with the same selector has already been
// imported into this context.
ObjCSelector selector = Impl.importSelector(decl->getSelector());
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
if (methodAlreadyImported(selector, isInstance, dc))
return nullptr;
DeclName name = Impl.mapSelectorToDeclName(selector,
/*isInitializer=*/false);
if (!name)
return nullptr;
assert(dc->getDeclaredTypeOfContext() && "Method in non-type context?");
assert(isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
"Clang method in Swift context?");
// FIXME: We should support returning "Self.Type" for a root class
// instance method mirrored as a class method, but it currently causes
// problems for the type checker.
if (forceClassMethod && decl->hasRelatedResultType())
return nullptr;
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> bodyPatterns;
auto selfVar =
createSelfDecl(dc, decl->isClassMethod() || forceClassMethod);
Pattern *selfPat = createTypedNamedPattern(selfVar);
bodyPatterns.push_back(selfPat);
SpecialMethodKind kind = SpecialMethodKind::Regular;
if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
auto SurrogateResultType = getSurrogateResultType(decl);
auto RetTy = SurrogateResultType.hasValue() ?
SurrogateResultType.getValue() : decl->getReturnType();
// Import the type that this method will have.
auto type = Impl.importMethodType(RetTy,
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
decl->hasAttr<clang::NoReturnAttr>(),
bodyPatterns,
name,
kind);
if (!type)
return nullptr;
// Check whether we recursively imported this method
if (!forceClassMethod && dc == Impl.importDeclContextOf(decl)) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
}
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), StaticSpellingKind::None,
SourceLoc(), name, SourceLoc(), /*GenericParams=*/nullptr, Type(),
bodyPatterns, TypeLoc(), dc);
auto resultTy = type->castTo<FunctionType>()->getResult();
Type interfaceType;
// If the method has a related result type that is representable
// in Swift as DynamicSelf, do so.
if (!SurrogateResultType.hasValue() && decl->hasRelatedResultType()) {
result->setDynamicSelf(true);
resultTy = result->getDynamicSelf();
assert(resultTy && "failed to get dynamic self");
Type interfaceSelfTy = result->getDynamicSelfInterface();
resultTy = UncheckedOptionalType::get(resultTy);
interfaceSelfTy = UncheckedOptionalType::get(interfaceSelfTy);
// Update the method type with the new result type.
auto methodTy = type->castTo<FunctionType>();
type = FunctionType::get(methodTy->getInput(), resultTy,
methodTy->getExtInfo());
// Create the interface type of the method.
interfaceType = FunctionType::get(methodTy->getInput(), interfaceSelfTy,
methodTy->getExtInfo());
interfaceType = FunctionType::get(selfVar->getType(), interfaceType);
}
// Add the 'self' parameter to the function type.
type = FunctionType::get(selfVar->getType(), type);
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(type, interfaceType)
= getProtocolMethodType(proto, type->castTo<AnyFunctionType>());
}
result->setBodyResultType(resultTy);
result->setType(type);
result->setInterfaceType(interfaceType);
// Optional methods in protocols.
if (decl->getImplementationControl() == clang::ObjCMethodDecl::Optional &&
isa<ProtocolDecl>(dc))
result->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// Mark this method @objc.
addObjCAttribute(result, selector);
// Mark class methods as static.
if (decl->isClassMethod() || forceClassMethod)
result->setStatic();
if (forceClassMethod)
result->setImplicit();
// If this method overrides another method, mark it as such.
recordObjCOverride(result);
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>())
result->getMutableAttrs().add(
new (Impl.SwiftContext) IBActionAttr(/*IsImplicit=*/false));
// Check whether there's some special method to import.
result->setClangNode(decl);
if (!forceClassMethod) {
if (dc == Impl.importDeclContextOf(decl) &&
!Impl.ImportedDecls[decl->getCanonicalDecl()])
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
importSpecialMethod(result, dc);
}
return result;
}
private:
/// Check whether the given name starts with the given word.
static bool startsWithWord(StringRef name, StringRef word) {
if (name.size() < word.size()) return false;
return ((name.size() == word.size() || !islower(name[word.size()])) &&
name.startswith(word));
}
/// Determine whether the given Objective-C method, which Clang classifies
/// as an init method, is considered an init method in Swift.
static bool isReallyInitMethod(const clang::ObjCMethodDecl *method) {
if (!method->isInstanceMethod())
return false;
auto selector = method->getSelector();
auto first = selector.getIdentifierInfoForSlot(0);
if (!first) return false;
return startsWithWord(first->getName(), "init");
}
public:
/// \brief Given an imported method, try to import it as some kind of
/// special declaration, e.g., a constructor or subscript.
Decl *importSpecialMethod(Decl *decl, DeclContext *dc) {
// Check whether there's a method associated with this declaration.
auto objcMethod
= dyn_cast_or_null<clang::ObjCMethodDecl>(decl->getClangDecl());
if (!objcMethod)
return nullptr;
// Only consider Objective-C methods...
switch (objcMethod->getMethodFamily()) {
case clang::OMF_None:
// Check for one of the subscripting selectors.
if (objcMethod->isInstanceMethod() &&
(objcMethod->getSelector() == Impl.objectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.objectForKeyedSubscript ||
objcMethod->getSelector() == Impl.setObjectForKeyedSubscript))
return importSubscript(decl, objcMethod, dc);
return nullptr;
case clang::OMF_init:
case clang::OMF_new:
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
// None of these methods have special consideration.
return nullptr;
}
}
private:
/// Record the function or initializer overridden by the given Swift method.
void recordObjCOverride(AbstractFunctionDecl *decl) {
// Figure out the class in which this method occurs.
auto classTy = decl->getExtensionType()->getAs<ClassType>();
if (!classTy)
return;
auto superTy = classTy->getSuperclass(nullptr);
if (!superTy)
return;
// Dig out the Objective-C superclass.
auto superDecl = superTy->getAnyNominal();
SmallVector<ValueDecl *, 4> results;
superDecl->lookupQualified(superTy, decl->getFullName(),
NL_QualifiedDefault, Impl.getTypeResolver(),
results);
for (auto member : results) {
if (member->getKind() != decl->getKind() ||
member->isInstanceMember() != decl->isInstanceMember())
continue;
// Set function override.
// FIXME: Proper type checking here!
if (auto func = dyn_cast<FuncDecl>(decl)) {
func->setOverriddenDecl(cast<FuncDecl>(member));
return;
}
// Set constructor override.
auto ctor = cast<ConstructorDecl>(decl);
ctor->setOverriddenDecl(cast<ConstructorDecl>(member));
}
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(withCapacity: 1024)
/// \endcode
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc,
bool implicit,
Optional<CtorInitializerKind> kind,
bool required) {
// Only methods in the 'init' family can become constructors.
assert(objcMethod->getMethodFamily() == clang::OMF_init &&
"Not an init method");
assert(isReallyInitMethod(objcMethod) && "Not a real init method");
// Check whether we've already created the constructor.
auto known = Impl.Constructors.find({objcMethod, dc});
if (known != Impl.Constructors.end())
return known->second;
// Check whether there is already a method with this selector.
auto selector = Impl.importSelector(objcMethod->getSelector());
if (methodAlreadyImported(selector, /*isInstance=*/false, dc))
return nullptr;
// Map the name and complete the import.
auto name = Impl.mapSelectorToDeclName(selector, /*isInitializer=*/true);
return importConstructor(objcMethod, dc, implicit, kind, required,
selector, name);
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(withCapacity: 1024)
/// \endcode
///
/// This variant of the function is responsible for actually binding the
/// constructor declaration appropriately.
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc,
bool implicit,
Optional<CtorInitializerKind> kind,
bool required,
ObjCSelector selector,
DeclName name) {
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> bodyPatterns;
auto selfTy = getSelfTypeForContext(dc);
auto selfMetaVar = createSelfDecl(dc, true);
Pattern *selfPat = createTypedNamedPattern(selfMetaVar);
bodyPatterns.push_back(selfPat);
// Import the type that this method will have.
auto type = Impl.importMethodType(objcMethod->getReturnType(),
{ objcMethod->param_begin(),
objcMethod->param_size() },
objcMethod->isVariadic(),
objcMethod->hasAttr<clang::NoReturnAttr>(),
bodyPatterns,
name,
SpecialMethodKind::Constructor);
if (!type)
return nullptr;
// Check whether we've already created the constructor.
auto known = Impl.Constructors.find({objcMethod, dc});
if (known != Impl.Constructors.end())
return known->second;
// Figure out the type of the container.
auto containerTy = dc->getDeclaredTypeOfContext();
assert(containerTy && "Method in non-type context?");
// Find the interface, if we can.
const clang::ObjCInterfaceDecl *interface = nullptr;
if (isa<clang::ObjCProtocolDecl>(objcMethod->getDeclContext())) {
// FIXME: Part of the mirroring hack.
if (auto classDecl = containerTy->getClassOrBoundGenericClass())
interface = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
classDecl->getClangDecl());
} else {
// For non-protocol methods, just look for the interface.
interface = objcMethod->getClassInterface();
}
// A constructor returns an object of the type, not 'id'.
// This is effectively implementing related-result-type semantics.
// FIXME: Perhaps actually check whether the routine has a related result
// type?
type = FunctionType::get(type->castTo<FunctionType>()->getInput(),
selfTy);
// Add the 'self' parameter to the function types.
Type allocType = FunctionType::get(selfMetaVar->getType(), type);
Type initType = FunctionType::get(selfTy, type);
VarDecl *selfVar = createSelfDecl(dc, false);
selfPat = createTypedNamedPattern(selfVar);
// Create the actual constructor.
auto result = new (Impl.SwiftContext)
ConstructorDecl(name, SourceLoc(), selfPat, bodyPatterns.back(),
/*GenericParams=*/0, dc);
result->setClangNode(objcMethod);
addObjCAttribute(result, selector);
// Fix the types when we've imported into a protocol.
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
Type interfaceAllocType;
Type interfaceInitType;
std::tie(allocType, interfaceAllocType)
= getProtocolMethodType(proto, allocType->castTo<AnyFunctionType>());
std::tie(initType, interfaceInitType)
= getProtocolMethodType(proto, initType->castTo<AnyFunctionType>());
result->setInitializerInterfaceType(interfaceInitType);
result->setInterfaceType(interfaceAllocType);
}
result->setType(allocType);
result->setInitializerType(initType);
if (implicit)
result->setImplicit();
// If we were told what kind of initializer this should be, set it.
if (kind) {
result->setInitKind(*kind);
} else {
// If the owning Objective-C class has designated initializers and this
// is not one of them, treat it as a convenience initializer.
if (interface && Impl.hasDesignatedInitializers(interface) &&
!Impl.isDesignatedInitializer(interface, objcMethod)) {
result->setInitKind(CtorInitializerKind::Convenience);
}
}
// If this initializer is required, add the appropriate attribute.
if (required) {
result->getMutableAttrs().add(
new (Impl.SwiftContext) RequiredAttr(/*implicit=*/true));
}
// Record the constructor for future re-use.
Impl.Constructors[{objcMethod, dc}] = result;
// If this constructor overrides another constructor, mark it as such.
recordObjCOverride(result);
// Inform the context that we have external definitions.
Impl.registerExternalDecl(result);
return result;
}
/// \brief Retrieve the single variable described in the given pattern.
///
/// This routine assumes that the pattern is something very simple
/// like (x : type) or (x).
VarDecl *getSingleVar(Pattern *pattern) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto tuple = dyn_cast<TuplePattern>(pattern)) {
pattern = tuple->getFields()[0].getPattern()
->getSemanticsProvidingPattern();
}
return cast<NamedPattern>(pattern)->getDecl();
}
/// Retrieves the type and interface type for a protocol method given
/// the computed type of that method.
std::pair<Type, Type> getProtocolMethodType(ProtocolDecl *proto,
AnyFunctionType *fnType) {
Type type = PolymorphicFunctionType::get(fnType->getInput(),
fnType->getResult(),
proto->getGenericParams());
// Figure out the curried 'self' type for the interface type. It's always
// either the generic parameter type 'Self' or a metatype thereof.
auto selfDecl = proto->getSelf();
auto selfTy = selfDecl->getDeclaredType();
auto interfaceInputTy = selfTy;
auto inputTy = fnType->getInput();
if (auto tupleTy = inputTy->getAs<TupleType>()) {
if (tupleTy->getNumElements() == 1)
inputTy = tupleTy->getElementType(0);
}
if (inputTy->is<MetatypeType>())
interfaceInputTy = MetatypeType::get(interfaceInputTy);
auto selfArchetype = selfDecl->getArchetype();
auto interfaceResultTy = fnType->getResult().transform(
[&](Type type) -> Type {
if (type->is<DynamicSelfType>() || type->isEqual(selfArchetype)) {
return DynamicSelfType::get(selfTy, Impl.SwiftContext);
}
return type;
});
Type interfaceType = GenericFunctionType::get(
proto->getGenericSignature(),
interfaceInputTy,
interfaceResultTy,
AnyFunctionType::ExtInfo());
return { type, interfaceType };
}
/// \brief Build a thunk for an Objective-C getter.
///
/// \param getter The Objective-C getter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript getter. Null
/// indicates that we're generating a getter thunk for a property getter.
///
/// \returns The getter thunk.
FuncDecl *buildGetterThunk(const FuncDecl *getter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = getter->getLoc();
// Figure out the element type, by looking through 'self' and the normal
// parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'self'
getterArgs.push_back(createTypedNamedPattern(createSelfDecl(dc, false)));
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType()),
context));
getterArgs.push_back(pat);
} else {
// Otherwise, an empty tuple
getterArgs.push_back(TuplePattern::create(context, loc, { }, loc));
getterArgs.back()->setType(TupleType::getEmpty(context));
}
// Form the type of the getter.
auto getterType = elementTy;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(), getterType);
}
// If we're in a protocol, the getter thunk will be polymorphic.
Type interfaceType;
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(getterType, interfaceType)
= getProtocolMethodType(proto, getterType->castTo<AnyFunctionType>());
}
// Create the getter thunk.
auto thunk = FuncDecl::create(
context, SourceLoc(), StaticSpellingKind::None, getter->getLoc(),
Identifier(), SourceLoc(), nullptr, getterType, getterArgs,
TypeLoc::withoutLoc(elementTy), dc);
thunk->setBodyResultType(elementTy);
thunk->setInterfaceType(interfaceType);
if (auto objcAttr = getter->getAttrs().getAttribute<ObjCAttr>())
thunk->getMutableAttrs().add(objcAttr->clone(context));
else
thunk->setIsObjC(true);
// FIXME: Should we record thunks?
return thunk;
}
/// \brief Build a thunk for an Objective-C setter.
///
/// \param setter The Objective-C setter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript setter. Null
/// indicates that we're generating a setter thunk for a property setter.
///
/// \returns The getter thunk.
FuncDecl *buildSetterThunk(const FuncDecl *setter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = setter->getLoc();
auto tuple = cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
// Objective-C subscript setters are imported with a function type
// such as:
//
// (self) -> (value, index) -> ()
//
// Build a setter thunk with the latter signature that maps to the
// former.
//
// Property setters are similar, but don't have indices.
// Form the argument patterns.
SmallVector<Pattern *, 2> setterArgs;
// 'self'
setterArgs.push_back(createTypedNamedPattern(createSelfDecl(dc, false)));
SmallVector<TuplePatternElt, 2> ValueElts;
SmallVector<TupleTypeElt, 2> ValueEltTys;
auto valuePattern = tuple->getFields()[0].getPattern()->clone(context);
ValueElts.push_back(TuplePatternElt(valuePattern));
ValueEltTys.push_back(TupleTypeElt(valuePattern->getType()));
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
ValueElts.push_back(TuplePatternElt(indices));
ValueEltTys.push_back(TupleTypeElt(indices->getType()));
}
// value
setterArgs.push_back(TuplePattern::create(context, loc, ValueElts, loc));
setterArgs.back()->setType(TupleType::get(ValueEltTys, context));
// Form the type of the setter.
Type setterType = TupleType::getEmpty(context);
for (auto it = setterArgs.rbegin(), itEnd = setterArgs.rend();
it != itEnd; ++it) {
setterType = FunctionType::get((*it)->getType(), setterType);
}
// If we're in a protocol, the setter thunk will be polymorphic.
Type interfaceType;
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
std::tie(setterType, interfaceType)
= getProtocolMethodType(proto, setterType->castTo<AnyFunctionType>());
}
// Create the setter thunk.
auto thunk = FuncDecl::create(
context, SourceLoc(), StaticSpellingKind::None, setter->getLoc(),
Identifier(), SourceLoc(),
nullptr, setterType, setterArgs,
TypeLoc::withoutLoc(TupleType::getEmpty(context)), dc);
thunk->setBodyResultType(TupleType::getEmpty(context));
thunk->setInterfaceType(interfaceType);
if (auto objcAttr = setter->getAttrs().getAttribute<ObjCAttr>())
thunk->getMutableAttrs().add(objcAttr->clone(context));
else
thunk->setIsObjC(true);
return thunk;
}
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
const clang::ObjCInterfaceDecl *interface = nullptr;
const clang::ObjCProtocolDecl *protocol =
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
if (!protocol)
interface = objcMethod->getClassInterface();
auto lookupInstanceMethod = [&](clang::Selector Sel) ->
clang::ObjCMethodDecl * {
if (interface)
return interface->lookupInstanceMethod(Sel);
else
return protocol->lookupInstanceMethod(Sel);
};
bool optionalMethods = true;
FuncDecl *getter = nullptr, *setter = nullptr;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = lookupInstanceMethod(
Impl.setObjectAtIndexedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
if (setter) {
optionalMethods = optionalMethods &&
objcSetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript){
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = lookupInstanceMethod(
Impl.objectAtIndexedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
if (getter) {
optionalMethods = optionalMethods &&
objcGetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = lookupInstanceMethod(
Impl.setObjectForKeyedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
if (setter) {
optionalMethods = optionalMethods &&
objcSetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = lookupInstanceMethod(
Impl.objectForKeyedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
if (getter) {
optionalMethods = optionalMethods &&
objcGetter->getImplementationControl()
== clang::ObjCMethodDecl::Optional;
}
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (auto subscript = Impl.Subscripts[{getter, setter}])
return subscript->getDeclContext() == dc? subscript : nullptr;
// Compute the element type, looking through the implicit 'self'
// parameter and the normal function parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Check the form of the getter.
FuncDecl *getterThunk = nullptr;
Pattern *getterIndices = nullptr;
auto &context = Impl.SwiftContext;
// Find the getter indices and make sure they match.
{
auto tuple = dyn_cast<TuplePattern>(getter->getBodyParamPatterns()[1]);
if (tuple && tuple->getFields().size() != 1)
return nullptr;
getterIndices = tuple->getFields()[0].getPattern();
}
// Check the form of the setter.
FuncDecl *setterThunk = nullptr;
Pattern *setterIndices = nullptr;
if (setter) {
auto tuple = dyn_cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
if (!tuple)
return nullptr;
if (tuple->getFields().size() != 2)
return nullptr;
// The setter must accept elements of the same type as the getter
// returns.
// FIXME: Adjust C++ references?
auto setterElementTy = tuple->getFields()[0].getPattern()->getType();
if (!elementTy->isEqual(setterElementTy))
return nullptr;
setterIndices = tuple->getFields()[1].getPattern();
// The setter must use the same indices as the getter.
// FIXME: Adjust C++ references?
// FIXME: Special case for NSDictionary, which uses 'id' for the getter
// but 'id <NSCopying>' for the setter.
if (!setterIndices->getType()->isEqual(getterIndices->getType())) {
setter = nullptr;
setterIndices = nullptr;
// Check whether we've already created a subscript operation for
// this getter.
if (auto subscript = Impl.Subscripts[{getter, nullptr}])
return subscript->getDeclContext() == dc? subscript : nullptr;
}
}
getterThunk = buildGetterThunk(getter, dc, getterIndices);
if (setter)
setterThunk = buildSetterThunk(setter, dc, setterIndices);
// Build the subscript declaration.
auto bodyPatterns =
getterThunk->getBodyParamPatterns()[1]->clone(context);
auto name = context.Id_subscript;
auto subscript
= new (context) SubscriptDecl(name, decl->getLoc(), bodyPatterns,
decl->getLoc(),
TypeLoc::withoutLoc(elementTy), dc);
subscript->setAccessors(SourceRange(), getterThunk, setterThunk);
subscript->setType(FunctionType::get(subscript->getIndices()->getType(),
subscript->getElementType()));
addObjCAttribute(subscript, Nothing);
// Optional subscripts in protocols.
if (optionalMethods && isa<ProtocolDecl>(dc))
subscript->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
Impl.Subscripts[{getterThunk, nullptr}] = subscript;
// Determine whether this subscript operation overrides another subscript
// operation.
// FIXME: This ends up looking in the superclass for entirely bogus
// reasons. Fix it.
auto containerTy = dc->getDeclaredTypeInContext();
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(containerTy, name, NL_QualifiedDefault,
Impl.getTypeResolver(), lookup);
Type unlabeledIndices;
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
// Compute the type of indices for our own subscript operation, lazily.
if (!unlabeledIndices) {
unlabeledIndices = subscript->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
}
// Compute the type of indices for the subscript we found.
auto parentUnlabeledIndices = parentSub->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
continue;
if (parentSub == subscript)
continue;
assert(subscript->getDeclContext() != parentSub->getDeclContext() &&
"can not override method in the same DeclContext");
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
if (auto parentGetter = parentSub->getGetter()) {
if (getterThunk)
getterThunk->setOverriddenDecl(parentGetter);
}
if (auto parentSetter = parentSub->getSetter()) {
if (setterThunk)
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
return subscript;
}
public:
/// Recursively add the given protocol and its inherited protocols to the
/// given vector, guarded by the known set of protocols.
static void addProtocols(ProtocolDecl *protocol,
SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSet<ProtocolDecl *, 4> &known) {
if (!known.insert(protocol))
return;
protocols.push_back(protocol);
for (auto inherited : protocol->getProtocols())
addProtocols(inherited, protocols, known);
}
/// Finish the given protocol conformance (for an imported type)
/// by filling in any missing witnesses.
void finishProtocolConformance(NormalProtocolConformance *conformance) {
// Create witnesses for requirements not already met.
for (auto req : conformance->getProtocol()->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq)
continue;
if (!conformance->hasWitness(valueReq)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(valueReq)){
// For an optional requirement, record an empty witness:
// we'll end up querying this at runtime.
//
// Also treat 'unavailable' requirements as optional.
//
auto Attrs = func->getAttrs();
if (Attrs.isOptional() || Attrs.isUnavailable()) {
conformance->setWitness(valueReq, ConcreteDeclRef());
continue;
}
}
conformance->setWitness(valueReq, valueReq);
}
}
conformance->setState(ProtocolConformanceState::Complete);
}
// Import the given Objective-C protocol list, along with any
// implicitly-provided protocols, and attach them to the given
// declaration.
void importObjCProtocols(Decl *decl,
const clang::ObjCProtocolList &clangProtocols) {
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->getImplicitProtocols(protocols);
knownProtocols.insert(protocols.begin(), protocols.end());
}
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = cast_or_null<ProtocolDecl>(Impl.importDecl(*cp))) {
addProtocols(proto, protocols, knownProtocols);
}
}
// Copy the list of protocols.
MutableArrayRef<ProtocolDecl *> allProtocols
= Impl.SwiftContext.AllocateCopy(protocols);
// Set the protocols.
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->setProtocols(allProtocols);
} else {
auto ext = cast<ExtensionDecl>(decl);
ext->setProtocols(allProtocols);
}
// Protocols don't require conformances.
if (isa<ProtocolDecl>(decl))
return;
// Synthesize trivial conformances for each of the protocols.
MutableArrayRef<ProtocolConformance *> allConformances
= Impl.SwiftContext.Allocate<ProtocolConformance *>(allProtocols.size());
auto dc = decl->getInnermostDeclContext();
auto &ctx = Impl.SwiftContext;
for (unsigned i = 0, n = allProtocols.size(); i != n; ++i) {
// FIXME: Build a superclass conformance if the superclass
// conforms.
auto conformance
= ctx.getConformance(dc->getDeclaredTypeOfContext(),
allProtocols[i], SourceLoc(),
dc->getModuleScopeContext(),
ProtocolConformanceState::Incomplete);
finishProtocolConformance(conformance);
allConformances[i] = conformance;
}
// Set the conformances.
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->setConformances(allConformances);
} else {
auto ext = cast<ExtensionDecl>(decl);
ext->setConformances(allConformances);
}
}
/// Finds the counterpart accessor method for \p MD, if one exists, in the
/// same lexical context.
const clang::ObjCMethodDecl *
findImplicitPropertyAccessor(const clang::ObjCMethodDecl *MD) {
// FIXME: Do we want to infer class properties?
if (!MD->isInstanceMethod())
return nullptr;
// First, collect information about the method we have.
clang::Selector sel = MD->getSelector();
llvm::SmallString<64> counterpartName;
auto numArgs = sel.getNumArgs();
clang::QualType propTy;
if (numArgs > 1)
return nullptr;
if (numArgs == 0) {
clang::IdentifierInfo *getterID = sel.getIdentifierInfoForSlot(0);
if (!getterID)
return nullptr;
counterpartName =
clang::SelectorTable::constructSetterName(getterID->getName());
propTy = MD->getReturnType();
} else {
if (!MD->getReturnType()->isVoidType())
return nullptr;
clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
if (!setterID || !setterID->getName().startswith("set"))
return nullptr;
counterpartName = setterID->getName().substr(3);
counterpartName[0] = tolower(counterpartName[0]);
propTy = MD->parameters().front()->getType();
}
// Next, look for its counterpart.
const clang::ASTContext &clangCtx = Impl.getClangASTContext();
auto container = cast<clang::ObjCContainerDecl>(MD->getDeclContext());
for (auto method : make_range(container->instmeth_begin(),
container->instmeth_end())) {
// Condition 1: it must be a getter if we have a setter, and vice versa.
clang::Selector nextSel = method->getSelector();
if (nextSel.getNumArgs() != (1 - numArgs))
continue;
// Condition 2: it must have the name we expect.
clang::IdentifierInfo *nextID = nextSel.getIdentifierInfoForSlot(0);
if (!nextID)
continue;
if (nextID->getName() != counterpartName)
continue;
// Condition 3: it must have the right type signature.
if (numArgs == 0) {
if (!method->getReturnType()->isVoidType())
continue;
clang::QualType paramTy = method->parameters().front()->getType();
if (!clangCtx.hasSameUnqualifiedType(propTy, paramTy))
continue;
} else {
clang::QualType returnTy = method->getReturnType();
if (!clangCtx.hasSameUnqualifiedType(propTy, returnTy))
continue;
}
return method;
}
return nullptr;
}
/// Creates a computed property VarDecl from the given getter and setter.
Decl *makeImplicitPropertyDecl(const Decl *opaqueGetter,
const Decl *opaqueSetter,
DeclContext *dc) {
auto getter = cast<FuncDecl>(opaqueGetter);
auto setter = cast<FuncDecl>(opaqueSetter);
assert(setter->getResultType()->isVoid());
auto name = getter->getName();
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
auto containerTy = dc->getDeclaredTypeInContext();
VarDecl *overridden = nullptr;
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(containerTy, name, NL_QualifiedDefault, nullptr,
lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result))
return nullptr;
if (auto var = dyn_cast<VarDecl>(result))
overridden = var;
}
// Re-import the type as a property type.
auto clangGetter = cast<clang::ObjCMethodDecl>(getter->getClangDecl());
auto type = Impl.importType(clangGetter->getReturnType(),
ImportTypeKind::Property);
if (!type)
return nullptr;
auto result = new (Impl.SwiftContext) VarDecl(
/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(clangGetter->getLocation()),
name, type, dc);
// Build thunks.
FuncDecl *getterThunk = buildGetterThunk(getter, dc, nullptr);
FuncDecl *setterThunk = buildSetterThunk(setter, dc, nullptr);
// Turn this into a computed property.
// FIXME: Fake locations for '{' and '}'?
result->makeComputed(SourceLoc(), getterThunk, setterThunk, SourceLoc());
addObjCAttribute(result, Nothing);
if (overridden)
result->setOverriddenDecl(overridden);
return result;
}
/// Import members of the given Objective-C container and add them to the
/// list of corresponding Swift members.
void importObjCMembers(const clang::ObjCContainerDecl *decl,
DeclContext *swiftContext,
SmallVectorImpl<Decl *> &members) {
llvm::SmallPtrSet<Decl *, 4> knownMembers;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, swiftContext)) {
if (knownMembers.insert(special))
members.push_back(special);
}
// If this is a factory method, try to import it as a constructor.
if (auto factory = importFactoryMethodAsConstructor(
member,
objcMethod,
Impl.importSelector(objcMethod->getSelector()),
swiftContext)) {
if (*factory)
members.push_back(*factory);
}
// Objective-C root class instance methods are reflected on the
// metatype as well.
if (objcMethod->isInstanceMethod()) {
Type swiftTy = swiftContext->getDeclaredTypeInContext();
auto swiftClass = swiftTy->getClassOrBoundGenericClass();
if (swiftClass && !swiftClass->getSuperclass() &&
!decl->getClassMethod(objcMethod->getSelector(),
/*AllowHidden=*/true)) {
auto classMember = VisitObjCMethodDecl(objcMethod, swiftContext,
true);
if (classMember)
members.push_back(classMember);
}
}
// Import explicit properties as instance properties, not as separate
// getter and setter methods.
if (objcMethod->isPropertyAccessor()) {
auto prop = objcMethod->findPropertyDecl(/*checkOverrides=*/false);
assert(prop);
if (Impl.importDecl(const_cast<clang::ObjCPropertyDecl *>(prop)))
continue;
} else if (Impl.InferImplicitProperties) {
// Try to infer properties for matched getter/setter pairs.
// Be careful to only do this once per matched pair.
if (auto counterpart = findImplicitPropertyAccessor(objcMethod)) {
if (auto counterpartImported = Impl.importDecl(counterpart)) {
if (objcMethod->getReturnType()->isVoidType()) {
if (auto prop = makeImplicitPropertyDecl(counterpartImported,
member,
swiftContext)) {
members.push_back(prop);
} else {
// If we fail to import the implicit property, fall back to
// adding the accessors as members. We have to add BOTH
// accessors here because we already skipped over the other
// one.
members.push_back(member);
members.push_back(counterpartImported);
}
}
continue;
}
}
}
}
members.push_back(member);
}
}
static bool
classImplementsProtocol(const clang::ObjCInterfaceDecl *constInterface,
const clang::ObjCProtocolDecl *constProto,
bool checkCategories) {
auto interface = const_cast<clang::ObjCInterfaceDecl *>(constInterface);
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
return interface->ClassImplementsProtocol(proto, checkCategories);
}
/// \brief Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now, and
/// it may still be necessary when the protocol's instance methods become
/// class methods on a root class (e.g. NSObject-the-protocol's instance
/// methods become class methods on NSObject).
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols,
SmallVectorImpl<Decl *> &members,
ASTContext &Ctx) {
Type swiftTy = dc->getDeclaredTypeInContext();
auto swiftClass = swiftTy->getClassOrBoundGenericClass();
bool isRoot = swiftClass && !swiftClass->getSuperclass();
for (auto proto : protocols) {
auto clangProto =
cast_or_null<clang::ObjCProtocolDecl>(proto->getClangDecl());
if (!clangProto)
continue;
// Don't import a protocol's members if the superclass already adopts
// the protocol, or (for categories) if the class itself adopts it
// in its main @interface.
auto interfaceDecl = dyn_cast<clang::ObjCInterfaceDecl>(decl);
if (!interfaceDecl) {
auto category = cast<clang::ObjCCategoryDecl>(decl);
interfaceDecl = category->getClassInterface();
if (classImplementsProtocol(interfaceDecl, clangProto, false))
continue;
}
if (auto superInterface = interfaceDecl->getSuperClass())
if (classImplementsProtocol(superInterface, clangProto, true))
continue;
for (auto member : proto->getMembers()) {
if (auto prop = dyn_cast<VarDecl>(member)) {
auto objcProp =
dyn_cast_or_null<clang::ObjCPropertyDecl>(prop->getClangDecl());
if (!objcProp)
continue;
// We can't import a property if there's already a method with this
// name. (This also covers other properties with that same name.)
// FIXME: We should still mirror the setter as a method if it's
// not already there.
clang::Selector sel = objcProp->getGetterName();
if (decl->getMethod(sel, /*instance=*/true))
continue;
if (auto imported = Impl.importMirroredDecl(objcProp, dc)) {
members.push_back(imported);
// FIXME: We should mirror properties of the root class onto the
// metatype.
}
continue;
}
auto afd = dyn_cast<AbstractFunctionDecl>(member);
if (!afd)
continue;
if (auto func = dyn_cast<FuncDecl>(afd))
if (func->isAccessor())
continue;
auto objcMethod =
dyn_cast_or_null<clang::ObjCMethodDecl>(member->getClangDecl());
if (!objcMethod)
continue;
// When mirroring an initializer, make it designated.
// FIXME: Should it be required?
if (objcMethod->getMethodFamily() == clang::OMF_init &&
isReallyInitMethod(objcMethod)) {
// Import the constructor.
if (auto imported = importConstructor(
objcMethod, dc, /*implicit=*/true,
CtorInitializerKind::Designated,
/*required=*/false)){
members.push_back(imported);
}
continue;
}
// Import the method.
if (auto imported = Impl.importMirroredDecl(objcMethod, dc)) {
members.push_back(imported);
}
// Import instance methods of a root class also as class methods.
if (isRoot && objcMethod->isInstanceMethod()) {
if (auto classImport = Impl.importMirroredDecl(objcMethod,
dc, true))
members.push_back(classImport);
}
}
}
}
/// \brief Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
void importInheritedConstructors(ClassDecl *classDecl,
SmallVectorImpl<Decl *> &newMembers) {
if (!classDecl->hasSuperclass())
return;
DeclContext *dc = classDecl;
auto inheritConstructors = [&](DeclRange members,
Optional<CtorInitializerKind> kind) {
for (auto member : members) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
// Don't inherit factory initializers.
if (ctor->isFactoryInit())
continue;
auto objcMethod
= dyn_cast_or_null<clang::ObjCMethodDecl>(ctor->getClangDecl());
if (!objcMethod)
continue;
// If this initializer came from a factory method, inherit
// it as an initializer.
if (objcMethod->isClassMethod()) {
if (auto newCtor = importConstructor(objcMethod, dc,
/*implicit=*/true,
ctor->getInitKind(),
/*required=*/false,
ctor->getObjCSelector(),
ctor->getFullName()))
newMembers.push_back(newCtor);
continue;
}
// Figure out what kind of constructor this will be.
CtorInitializerKind myKind;
bool isRequired = false;
if (ctor->isRequired()) {
// Required initializers are always considered designated.
isRequired = true;
myKind = CtorInitializerKind::Designated;
} else if (kind) {
myKind = *kind;
} else {
myKind = ctor->getInitKind();
}
// Import the constructor into this context.
if (auto newCtor = importConstructor(objcMethod, dc,
/*implicit=*/true,
myKind,
isRequired)) {
newMembers.push_back(newCtor);
}
}
};
// The kind of initializer to import. If this class has designated
// initializers, everything it imports is a convenience initializer.
Optional<CtorInitializerKind> kind;
auto curObjCClass
= cast<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (Impl.hasDesignatedInitializers(curObjCClass))
kind = CtorInitializerKind::Convenience;
auto superclass
= cast<ClassDecl>(classDecl->getSuperclass()->getAnyNominal());
// If we we have a superclass, import from it.
if (auto superclassClangDecl = superclass->getClangDecl()) {
if (isa<clang::ObjCInterfaceDecl>(superclassClangDecl)) {
inheritConstructors(superclass->getMembers(), kind);
for (auto ext : superclass->getExtensions())
inheritConstructors(ext->getMembers(), kind);
}
}
}
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// Objective-C categories and extensions map to Swift extensions.
// Find the Swift class being extended.
auto objcClass
= cast_or_null<ClassDecl>(Impl.importDecl(decl->getClassInterface()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the extension declaration and record it.
auto loc = Impl.importSourceLoc(decl->getLocStart());
auto result
= new (Impl.SwiftContext)
ExtensionDecl(loc,
TypeLoc::withoutLoc(objcClass->getDeclaredType()),
{ },
dc);
objcClass->addExtension(result);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
importObjCProtocols(result, decl->getReferencedProtocols());
result->setCheckedInheritanceClause();
result->setMemberLoader(&Impl, 0);
return result;
}
template <typename T, typename U>
T *resolveSwiftDecl(const U *decl, Identifier name, Module *adapter) {
SmallVector<ValueDecl *, 4> results;
adapter->lookupValue({}, name, NLKind::QualifiedLookup, results);
if (results.size() == 1) {
if (auto singleResult = dyn_cast<T>(results.front())) {
if (auto typeResolver = Impl.getTypeResolver())
typeResolver->resolveDeclSignature(singleResult);
Impl.ImportedDecls[decl->getCanonicalDecl()] = singleResult;
return singleResult;
}
}
return nullptr;
}
template <typename T, typename U>
T *resolveSwiftDeclIfAnnotated(const U *decl, Identifier name,
const DeclContext *dc) {
using clang::AnnotateAttr;
for (auto annotation : decl->template specific_attrs<AnnotateAttr>()) {
if (annotation->getAnnotation() == SWIFT_NATIVE_ANNOTATION_STRING) {
auto wrapperUnit = cast<ClangModuleUnit>(dc->getModuleScopeContext());
return resolveSwiftDecl<T>(decl, name,
wrapperUnit->getAdapterModule());
}
}
return nullptr;
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
// Form the protocol name, using the renaming table when necessary.
Identifier name;
Identifier origName = Impl.importName(decl->getDeclName());
if (false) { }
#define RENAMED_PROTOCOL(ObjCName, SwiftName) \
else if (decl->getName().equals(#ObjCName)) { \
name = Impl.SwiftContext.getIdentifier(#SwiftName); \
}
#include "swift/ClangImporter/RenamedProtocols.def"
else {
name = origName;
}
if (name.empty())
return nullptr;
// FIXME: Figure out how to deal with incomplete protocols, since that
// notion doesn't exist in Swift.
if (!decl->hasDefinition()) {
// Check if this protocol is implemented in its adapter.
// FIXME: This only matters for the module currently being built.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
if (auto adapter = clangModule->getAdapterModule())
if (auto native = resolveSwiftDecl<ProtocolDecl>(decl, name,
adapter))
return native;
forwardDeclaration = true;
return nullptr;
}
decl = decl->getDefinition();
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
if (auto native = resolveSwiftDeclIfAnnotated<ProtocolDecl>(decl, name,
dc))
return native;
// Create the protocol declaration and record it.
auto result = new (Impl.SwiftContext)
ProtocolDecl(dc,
Impl.importSourceLoc(decl->getLocStart()),
Impl.importSourceLoc(decl->getLocation()),
name,
{ });
result->computeType();
addObjCAttribute(result, ObjCSelector(Impl.SwiftContext, 0, origName));
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
// Create the archetype for the implicit 'Self'.
auto selfId = Impl.SwiftContext.Id_Self;
auto selfDecl = result->getSelf();
auto selfArchetype = ArchetypeType::getNew(Impl.SwiftContext, nullptr,
result, selfId,
Type(result->getDeclaredType()),
Type(), /*Index=*/0);
selfDecl->setArchetype(selfArchetype);
// Set AllArchetypes of the protocol. ObjC protocols don't have associated
// types so only the Self archetype is present.
result->getGenericParams()->setAllArchetypes(
Impl.SwiftContext.AllocateCopy(llvm::makeArrayRef(selfArchetype)));
// Set the generic parameters and requirements.
auto genericParam = selfDecl->getDeclaredType()
->castTo<GenericTypeParamType>();
Requirement genericRequirements[2] = {
Requirement(RequirementKind::WitnessMarker, genericParam, Type()),
Requirement(RequirementKind::Conformance, genericParam,
result->getDeclaredType())
};
auto sig = GenericSignature::get(genericParam, genericRequirements);
result->setGenericSignature(sig);
result->setClangNode(decl);
result->setCircularityCheck(CircularityCheck::Checked);
// Import protocols this protocol conforms to.
importObjCProtocols(result, decl->getReferencedProtocols());
result->setCheckedInheritanceClause();
result->setMemberLoader(&Impl, 0);
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
return result;
}
// Hack: support Clang source that doesn't have @partial_interface.
template <typename T = clang::ObjCInterfaceDecl,
bool (T::*Pred)() const = &T::isPartialInterface>
static bool isPartialInterface(const clang::ObjCInterfaceDecl *objcClass) {
return (objcClass->*Pred)();
}
template <typename T>
static bool isPartialInterface(const T *) {
return false;
}
// Add inferred attributes.
void addInferredAttributes(Decl *decl, unsigned attributes) {
using namespace inferred_attributes;
if (attributes & requires_stored_property_inits) {
decl->getMutableAttrs().setAttr(AK_requires_stored_property_inits,
SourceLoc());
cast<ClassDecl>(decl)->setRequiresStoredPropertyInits(true);
}
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
if (!decl->hasDefinition()) {
// Special case for Protocol, which gets forward-declared everywhere but
// really lives in ObjectiveC.
// FIXME: This is a workaround for a Clang modules bug.
// See http://llvm.org/bugs/show_bug.cgi?id=19061
clang::ASTContext &clangCtx = Impl.getClangASTContext();
if (decl->getCanonicalDecl() ==
clangCtx.getObjCProtocolDecl()->getCanonicalDecl()) {
Type nsObjectTy = Impl.getNSObjectType();
if (!nsObjectTy)
return nullptr;
const ClassDecl *nsObjectDecl =
nsObjectTy->getClassOrBoundGenericClass();
auto dc = nsObjectDecl->getDeclContext();
auto result = new (Impl.SwiftContext) ClassDecl(SourceLoc(), name,
SourceLoc(), {},
nullptr, dc);
result->setAddedImplicitInitializers();
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
result->setCircularityCheck(CircularityCheck::Checked);
result->setSuperclass(nsObjectTy);
result->setCheckedInheritanceClause();
result->setAddedImplicitInitializers();
addObjCAttribute(result, ObjCSelector(Impl.SwiftContext, 0, name));
Impl.registerExternalDecl(result);
return result;
}
// Otherwise, check if this class is implemented in its adapter.
// FIXME: This only matters for the module currently being built.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
if (auto adapter = clangModule->getAdapterModule())
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name, adapter))
return native;
}
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Resolve @partial_interfaces to a definition in the adapter, just like
// @class. If it fails, don't bring it in as a new class -- that's likely
// to lead to problems down the line.
// FIXME: This only matters for the module currently being built.
if (isPartialInterface(decl)) {
auto clangModule = cast<ClangModuleUnit>(dc->getModuleScopeContext());
if (auto adapter = clangModule->getAdapterModule())
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name, adapter))
return native;
return nullptr;
}
if (auto native = resolveSwiftDeclIfAnnotated<ClassDecl>(decl, name, dc))
return native;
// Create the class declaration and record it.
auto result = new (Impl.SwiftContext)
ClassDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl);
result->setCircularityCheck(CircularityCheck::Checked);
result->setAddedImplicitInitializers();
addObjCAttribute(result, ObjCSelector(Impl.SwiftContext, 0, name));
// If this Objective-C class has a supertype, import it.
if (auto objcSuper = decl->getSuperClass()) {
auto super = cast_or_null<ClassDecl>(Impl.importDecl(objcSuper));
if (!super)
return nullptr;
result->setSuperclass(super->getDeclaredType());
}
// Import protocols this class conforms to.
importObjCProtocols(result, decl->getReferencedProtocols());
result->setCheckedInheritanceClause();
// Add inferred attributes.
#define INFERRED_ATTRIBUTES(ModuleName, ClassName, AttributeSet) \
if (name.str().equals(#ClassName) && \
result->getParentModule()->Name.str().equals(#ModuleName)) { \
using namespace inferred_attributes; \
addInferredAttributes(result, AttributeSet); \
}
#include "InferredAttributes.def"
result->setMemberLoader(&Impl, 0);
// Pass the class to the type checker to create an implicit destructor.
Impl.registerExternalDecl(result);
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
if (auto Known = Impl.importDeclCached(decl))
return Known;
return VisitObjCPropertyDecl(decl, dc);
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl,
DeclContext *dc) {
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
auto containerTy = dc->getDeclaredTypeInContext();
VarDecl *overridden = nullptr;
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(containerTy, name, NL_QualifiedDefault,
Impl.getTypeResolver(), lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result) && result->isInstanceMember() &&
result->getFullName().getArgumentNames().empty())
return nullptr;
if (auto var = dyn_cast<VarDecl>(result))
overridden = var;
}
auto type = Impl.importType(decl->getType(), ImportTypeKind::Property);
if (!type)
return nullptr;
// Import the getter.
FuncDecl *getter = nullptr;
if (auto clangGetter = decl->getGetterMethodDecl()) {
getter = cast_or_null<FuncDecl>(VisitObjCMethodDecl(clangGetter, dc));
if (!getter)
return nullptr;
}
// Import the setter, if there is one.
FuncDecl *setter = nullptr;
if (auto clangSetter = decl->getSetterMethodDecl()) {
setter = cast_or_null<FuncDecl>(VisitObjCMethodDecl(clangSetter, dc));
if (!setter)
return nullptr;
}
// Check whether the property already got imported.
if (dc == Impl.importDeclContextOf(decl)) {
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
}
auto result = new (Impl.SwiftContext) VarDecl(
/*static*/ false, /*IsLet*/ false,
Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Build thunks.
FuncDecl *getterThunk = buildGetterThunk(getter, dc, nullptr);
FuncDecl *setterThunk = nullptr;
if (setter)
setterThunk = buildSetterThunk(setter, dc, nullptr);
// Turn this into a computed property.
// FIXME: Fake locations for '{' and '}'?
result->makeComputed(SourceLoc(), getterThunk, setterThunk, SourceLoc());
addObjCAttribute(result, Nothing);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
if (decl->getPropertyImplementation() == clang::ObjCPropertyDecl::Optional
&& isa<ProtocolDecl>(dc))
result->getMutableAttrs().setAttr(AK_optional, SourceLoc());
// FIXME: Handle IBOutletCollection.
if (overridden)
result->setOverriddenDecl(overridden);
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Like C++ using declarations, name lookup simply looks through
// Objective-C compatibility aliases. They are not imported directly.
return nullptr;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitClassScopeFunctionSpecializationDecl(
const clang::ClassScopeFunctionSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
}
/// \brief Classify the given Clang enumeration to describe how to import it.
EnumKind ClangImporter::Implementation::
classifyEnum(const clang::EnumDecl *decl) {
Identifier name;
if (decl->getDeclName())
name = importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name = importName(decl->getTypedefNameForAnonDecl()->getDeclName());
// Anonymous enumerations simply get mapped to constants of the
// underlying type of the enum, because there is no way to conjure up a
// name for the Swift type.
if (name.empty())
return EnumKind::Constants;
// Was the enum declared using NS_ENUM or NS_OPTIONS?
// FIXME: Use Clang attributes instead of grovelling the macro expansion loc.
auto loc = decl->getLocStart();
if (loc.isMacroID()) {
StringRef MacroName = getClangPreprocessor().getImmediateMacroName(loc);
if (MacroName == "CF_ENUM")
return EnumKind::Enum;
if (MacroName == "CF_OPTIONS")
return EnumKind::Options;
}
// Fall back to the 'Unknown' path.
return EnumKind::Unknown;
}
Decl *ClangImporter::Implementation::importDeclCached(
const clang::NamedDecl *ClangDecl) {
auto Known = ImportedDecls.find(ClangDecl->getCanonicalDecl());
if (Known != ImportedDecls.end())
return Known->second;
return nullptr;
}
/// Checks if we don't need to import the typedef itself. If the typedef
/// should be skipped, returns the underlying declaration that the typedef
/// refers to -- this declaration should be imported instead.
static const clang::TagDecl *
canSkipOverTypedef(ClangImporter::Implementation &Impl,
const clang::NamedDecl *D,
bool &TypedefIsSuperfluous) {
// If we have a typedef that refers to a tag type of the same name,
// skip the typedef and import the tag type directly.
TypedefIsSuperfluous = false;
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
if (!ClangTypedef)
return nullptr;
const clang::DeclContext *RedeclContext =
ClangTypedef->getDeclContext()->getRedeclContext();
if (!RedeclContext->isTranslationUnit())
return nullptr;
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
auto *TT = UnderlyingType->getAs<clang::TagType>();
if (!TT)
return nullptr;
clang::TagDecl *UnderlyingDecl = TT->getDecl();
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
return nullptr;
if (UnderlyingDecl->getDeclName().isEmpty())
return UnderlyingDecl;
auto TypedefName = ClangTypedef->getDeclName();
auto TagDeclName = UnderlyingDecl->getDeclName();
if (TypedefName != TagDeclName)
return nullptr;
TypedefIsSuperfluous = true;
return UnderlyingDecl;
}
/// Import Clang attributes as Swift attributes.
static void importAttributes(ASTContext &C, const clang::NamedDecl *ClangDecl,
Decl *MappedDecl) {
// Scan through Clang attributes and map them onto Swift
// equivalents.
bool IsUnavailable = false;
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
AE = ClangDecl->attr_end(); AI != AE; ++AI) {
//
// __attribute__((uanavailable)
//
// Mapping: @availability(*,unavailable)
//
if (auto unavailable = dyn_cast<clang::UnavailableAttr>(*AI)) {
auto Message = unavailable->getMessage();
auto attr =
AvailabilityAttr::createImplicitUnavailableAttr(C, Message);
MappedDecl->getMutableAttrs().add(attr);
IsUnavailable = true;
}
//
// __attribute__((deprecated))
//
// Mapping: @availability(*,unavailable)
//
// APIs marked as 'deprecated' are implicitly mapped in as 'unavailable'
// for stricter API rules going forward.
//
// FIXME: This will possibly need to account for versioning and API
// evolution in the future if other APIs are marked deprecated.
//
if (auto deprecated = dyn_cast<clang::DeprecatedAttr>(*AI)) {
auto Message = deprecated->getMessage();
auto attr =
AvailabilityAttr::createImplicitUnavailableAttr(C, Message);
MappedDecl->getMutableAttrs().add(attr);
IsUnavailable = true;
}
}
// Add implicit unavailablility.
if (IsUnavailable)
return;
if (auto MD = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
// Ban uses of 'performSelector'.
auto sel = MD->getSelector();
if (sel.getNameForSlot(0).startswith("performSelector")) {
auto attr = AvailabilityAttr::createImplicitUnavailableAttr(C,
"'performSelector' methods are unavailable");
MappedDecl->getMutableAttrs().add(attr);
return;
}
}
// Ban NSInvocation.
if (auto ID = dyn_cast<clang::ObjCInterfaceDecl>(ClangDecl)) {
if (ID->getName() == "NSInvocation") {
auto attr = AvailabilityAttr::createImplicitUnavailableAttr(C, "");
MappedDecl->getMutableAttrs().add(attr);
return;
}
}
}
Decl *
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration) {
assert(ClangDecl);
bool SkippedOverTypedef = false;
Decl *Result = nullptr;
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
TypedefIsSuperfluous)) {
Result = importDecl(UnderlyingDecl);
SkippedOverTypedef = true;
}
if (!Result) {
SwiftDeclConverter converter(*this);
Result = converter.Visit(ClangDecl);
HadForwardDeclaration = converter.hadForwardDeclaration();
}
if (!Result)
return nullptr;
if (Result)
importAttributes(SwiftContext, ClangDecl, Result);
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
(void)Canon;
// Note that the decl was imported from Clang. Don't mark Swift decls as
// imported.
if (!Result->getDeclContext()->isModuleScopeContext() ||
isa<ClangModuleUnit>(Result->getDeclContext())) {
#ifndef NDEBUG
// Either the Swift declaration was from stdlib,
// or we imported the underlying decl of the typedef,
// or we imported the decl itself.
bool ImportedCorrectly =
!Result->getClangDecl() || SkippedOverTypedef ||
Result->getClangDecl()->getCanonicalDecl() == Canon;
// Or the other type is a typedef,
if (!ImportedCorrectly &&
isa<clang::TypedefNameDecl>(Result->getClangDecl())) {
// both types are ValueDecls:
if (isa<clang::ValueDecl>(Result->getClangDecl())) {
ImportedCorrectly =
getClangASTContext().hasSameType(
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
cast<clang::ValueDecl>(Canon)->getType());
} else if (isa<clang::TypeDecl>(Result->getClangDecl())) {
// both types are TypeDecls:
ImportedCorrectly =
getClangASTContext().hasSameUnqualifiedType(
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Result->getClangDecl())),
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Canon)));
}
assert(ImportedCorrectly);
}
#endif
if (SkippedOverTypedef || !Result->getClangDecl())
Result->setClangNode(ClangDecl);
}
return Result;
}
void ClangImporter::Implementation::startedImportingEntity() {
++NumCurrentImportingEntities;
++NumTotalImportedEntities;
}
void ClangImporter::Implementation::finishedImportingEntity() {
assert(NumCurrentImportingEntities &&
"finishedImportingEntity not paired with startedImportingEntity");
if (NumCurrentImportingEntities == 1) {
// We decrease NumCurrentImportingEntities only after pending actions
// are finished, to avoid recursively re-calling finishPendingActions().
finishPendingActions();
}
--NumCurrentImportingEntities;
}
void ClangImporter::Implementation::finishPendingActions() {
while (!RegisteredExternalDecls.empty()) {
Decl *D = RegisteredExternalDecls.pop_back_val();
SwiftContext.addedExternalDecl(D);
if (auto typeResolver = getTypeResolver())
if (auto *nominal = dyn_cast<NominalTypeDecl>(D))
if (!nominal->hasDelayedMembers())
typeResolver->resolveExternalDeclImplicitMembers(nominal);
}
}
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
const clang::NamedDecl *ClangDecl,
bool SuperfluousTypedefsAreTransparent) {
if (!ClangDecl)
return nullptr;
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
if (auto Known = importDeclCached(Canon)) {
if (!SuperfluousTypedefsAreTransparent &&
SuperfluousTypedefs.count(Canon))
return nullptr;
return Known;
}
bool TypedefIsSuperfluous = false;
bool HadForwardDeclaration = false;
ImportingEntityRAII ImportingEntity(*this);
Decl *Result = importDeclImpl(ClangDecl, TypedefIsSuperfluous,
HadForwardDeclaration);
if (!Result)
return nullptr;
if (TypedefIsSuperfluous)
SuperfluousTypedefs.insert(Canon);
if (!HadForwardDeclaration)
ImportedDecls[Canon] = Result;
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
return nullptr;
return Result;
}
Decl *
ClangImporter::Implementation::importMirroredDecl(const clang::NamedDecl *decl,
DeclContext *dc,
bool forceClassMethod) {
if (!decl)
return nullptr;
auto canon = decl->getCanonicalDecl();
auto known = ImportedProtocolDecls.find({{canon, forceClassMethod}, dc });
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
Decl *result;
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
result = converter.VisitObjCMethodDecl(method, dc, forceClassMethod);
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
assert(!forceClassMethod && "can't mirror properties yet");
result = converter.VisitObjCPropertyDecl(prop, dc);
} else {
llvm_unreachable("unexpected mirrored decl");
}
if (result) {
if (!forceClassMethod) {
if (auto special = converter.importSpecialMethod(result, dc))
result = special;
}
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(decl);
result->setImplicit();
// Map the Clang attributes onto Swift attributes.
importAttributes(SwiftContext, decl, result);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[{{canon, forceClassMethod}, dc}] = result;
return result;
}
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
const clang::DeclContext *dc) {
// Every declaration should come from a module, so we should not see the
// TranslationUnit DeclContext here.
assert(!dc->isTranslationUnit());
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
auto swiftDecl = importDecl(decl);
if (!swiftDecl)
return nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(const clang::Decl *D) {
const clang::DeclContext *DC = D->getDeclContext();
if (DC->isTranslationUnit()) {
if (auto *M = getClangModuleForDecl(D))
return M;
else
return nullptr;
}
return importDeclContextImpl(DC);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type,
const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic) {
auto &context = SwiftContext;
// Create the integer literal value.
Expr *expr = nullptr;
switch (value.getKind()) {
case clang::APValue::AddrLabelDiff:
case clang::APValue::Array:
case clang::APValue::ComplexFloat:
case clang::APValue::ComplexInt:
case clang::APValue::LValue:
case clang::APValue::MemberPointer:
case clang::APValue::Struct:
case clang::APValue::Uninitialized:
case clang::APValue::Union:
case clang::APValue::Vector:
llvm_unreachable("Unhandled APValue kind");
case clang::APValue::Float:
case clang::APValue::Int: {
// Print the value.
llvm::SmallString<16> printedValue;
if (value.getKind() == clang::APValue::Int) {
value.getInt().toString(printedValue);
} else {
assert(value.getFloat().isFinite() && "can't handle infinities or NaNs");
value.getFloat().toString(printedValue);
}
// If this was a negative number, record that and strip off the '-'.
// FIXME: This is hideous!
// FIXME: Actually make the negation work.
bool isNegative = printedValue[0] == '-';
if (isNegative)
printedValue.erase(printedValue.begin());
// Create the expression node.
StringRef printedValueCopy(context.AllocateCopy(printedValue).data(),
printedValue.size());
if (value.getKind() == clang::APValue::Int) {
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
} else {
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
}
if (!isNegative)
break;
// If it was a negative number, negate the integer literal.
auto minusRef = getOperatorRef(context, context.getIdentifier("-"));
if (!minusRef)
return nullptr;
expr = new (context) PrefixUnaryExpr(minusRef, expr);
break;
}
}
assert(expr);
return createConstant(name, dc, type, expr, convertKind, isStatic);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type, StringRef value,
ConstantConvertKind convertKind,
bool isStatic) {
auto expr = new (SwiftContext) StringLiteralExpr(value, SourceRange());
return createConstant(name, dc, type, expr, convertKind, isStatic);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type, Expr *valueExpr,
ConstantConvertKind convertKind,
bool isStatic) {
auto &context = SwiftContext;
auto var = new (context) VarDecl(isStatic, /*IsLet*/ false,
SourceLoc(), name, type, dc);
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'self'
if (dc->isTypeContext()) {
auto selfTy = dc->getDeclaredTypeInContext();
if (isStatic)
selfTy = MetatypeType::get(selfTy);
Pattern *anyP = new (context) AnyPattern(SourceLoc(), /*implicit*/ true);
anyP->setType(selfTy);
getterArgs.push_back(anyP);
}
// empty tuple
getterArgs.push_back(TuplePattern::create(context, SourceLoc(), { },
SourceLoc()));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = type;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(), getterType);
}
// Create the getter function declaration.
auto func = FuncDecl::create(context, SourceLoc(), StaticSpellingKind::None,
SourceLoc(), Identifier(),
SourceLoc(), nullptr, getterType, getterArgs,
TypeLoc::withoutLoc(type), dc);
func->setStatic(isStatic);
func->setBodyResultType(type);
auto expr = valueExpr;
// If we need a conversion, add one now.
switch (convertKind) {
case ConstantConvertKind::None:
break;
case ConstantConvertKind::Construction: {
auto typeRef = new (context) MetatypeExpr(nullptr, SourceLoc(),
MetatypeType::get(type));
expr = new (context) CallExpr(typeRef, expr, /*Implicit=*/true);
break;
}
case ConstantConvertKind::Coerce:
break;
case ConstantConvertKind::Downcast: {
auto cast = new (context) ConditionalCheckedCastExpr(expr,
SourceLoc(),
TypeLoc::withoutLoc(type));
cast->setCastKind(CheckedCastKind::Downcast);
cast->setImplicit();
expr = new (context) ForceValueExpr(cast, SourceLoc());
break;
}
}
// Create the return statement.
auto ret = new (context) ReturnStmt(SourceLoc(), expr);
// Finally, set the body.
func->setBody(BraceStmt::create(context, SourceLoc(),
ASTNode(ret),
SourceLoc()));
// Set the function up as the getter.
var->makeComputed(SourceLoc(), func, nullptr, SourceLoc());
// Register this thunk as an external definition.
registerExternalDecl(func);
return var;
}
ArrayRef<Decl *>
ClangImporter::Implementation::loadAllMembers(const Decl *D, uint64_t unused) {
assert(D->hasClangNode());
auto clangDecl = cast<clang::ObjCContainerDecl>(D->getClangDecl());
SmallVector<Decl *, 4> members;
SwiftDeclConverter converter(*this);
const DeclContext *DC;
ArrayRef<ProtocolDecl *> protos;
// Figure out the declaration context we're importing into.
if (auto nominal = dyn_cast<NominalTypeDecl>(D)) {
DC = nominal;
} else {
DC = cast<ExtensionDecl>(D);
}
converter.importObjCMembers(clangDecl, const_cast<DeclContext *>(DC),
members);
if (auto clangClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl)) {
auto swiftClass = cast<ClassDecl>(D);
protos = swiftClass->getProtocols();
clangDecl = clangClass = clangClass->getDefinition();
// Imported inherited initializers.
if (clangClass->getName() != "Protocol") {
converter.importInheritedConstructors(const_cast<ClassDecl *>(swiftClass),
members);
}
} else if (auto clangProto = dyn_cast<clang::ObjCProtocolDecl>(clangDecl)) {
clangDecl = clangProto->getDefinition();
} else {
auto extension = cast<ExtensionDecl>(D);
protos = extension->getProtocols();
}
// Import mirrored declarations for protocols to which this category
// or extension conforms.
// FIXME: This is supposed to be a short-term hack.
converter.importMirroredProtocolMembers(clangDecl,
const_cast<DeclContext *>(DC),
protos, members, SwiftContext);
// Clean up duplicate initializers that may have come from
// duplication between init methods and factory methods.
// FIXME: This should be done "online", as we visit declarations,
// both because it's silly to have a separate pass here and because
// we're not properly dealing with duplication between extensions.
// First, gather the initializers.
llvm::SmallDenseMap<DeclName, llvm::TinyPtrVector<ConstructorDecl *>>
AllInitializers;
bool anyDuplicates = false;
for (auto member : members) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
auto &inits = AllInitializers[ctor->getFullName()];
if (!inits.empty())
anyDuplicates = true;
inits.push_back(ctor);
}
llvm::SmallPtrSet<Decl *, 4> redundantMembers;
if (anyDuplicates) {
// Next, find any redundant initializers.
for (const auto &colliding : AllInitializers) {
if (colliding.second.size() == 1)
continue;
// Find the "best" constructor kind with this signature.
CtorInitializerKind bestKind = colliding.second[0]->getInitKind();
for (auto ctor : colliding.second) {
auto kind = ctor->getInitKind();
if (static_cast<unsigned>(kind) < static_cast<unsigned>(bestKind))
bestKind = kind;
}
// Shadow any initializers with a worse kind.
for (auto ctor : colliding.second) {
auto kind = ctor->getInitKind();
if (static_cast<unsigned>(kind) > static_cast<unsigned>(bestKind))
redundantMembers.insert(ctor);
}
}
// Remove the redundant initializers.
members.erase(std::remove_if(members.begin(), members.end(),
[&](Decl *decl) -> bool {
return redundantMembers.count(decl) > 0;
}),
members.end());
}
return SwiftContext.AllocateCopy(members);
}