Files
swift-mirror/lib/DependencyScan/ScanDependencies.cpp
2021-09-23 15:18:58 -07:00

1587 lines
64 KiB
C++

//===--- ScanDependencies.cpp -- Scans the dependencies of a module -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/DependencyScan/ScanDependencies.h"
#include "swift/DependencyScan/SerializedModuleDependencyCacheFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsDriver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleDependencies.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/SourceFile.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/STLExtras.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/DependencyScan/DependencyScanImpl.h"
#include "swift/DependencyScan/StringUtils.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/FrontendOptions.h"
#include "swift/Frontend/ModuleInterfaceLoader.h"
#include "swift/Strings.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/YAMLTraits.h"
#include <set>
#include <string>
#include <sstream>
using namespace swift;
using namespace swift::dependencies;
using namespace llvm::yaml;
namespace {
static std::string getScalaNodeText(Node *N) {
SmallString<32> Buffer;
return cast<ScalarNode>(N)->getValue(Buffer).str();
}
/// Parse an entry like this, where the "platforms" key-value pair is optional:
/// {
/// "swiftModuleName": "Foo",
/// "arguments": "-target 10.15",
/// "output": "../Foo.json"
/// },
static bool parseBatchInputEntries(ASTContext &Ctx, llvm::StringSaver &saver,
Node *Node,
std::vector<BatchScanInput> &result) {
auto *SN = cast<SequenceNode>(Node);
if (!SN)
return true;
for (auto It = SN->begin(); It != SN->end(); ++It) {
auto *MN = cast<MappingNode>(&*It);
BatchScanInput entry;
Optional<std::set<int8_t>> Platforms;
for (auto &Pair : *MN) {
auto Key = getScalaNodeText(Pair.getKey());
auto *Value = Pair.getValue();
if (Key == "clangModuleName") {
entry.moduleName = saver.save(getScalaNodeText(Value));
entry.isSwift = false;
} else if (Key == "swiftModuleName") {
entry.moduleName = saver.save(getScalaNodeText(Value));
entry.isSwift = true;
} else if (Key == "arguments") {
entry.arguments = saver.save(getScalaNodeText(Value));
} else if (Key == "output") {
entry.outputPath = saver.save(getScalaNodeText(Value));
} else {
// Future proof.
continue;
}
}
if (entry.moduleName.empty())
return true;
if (entry.outputPath.empty())
return true;
result.emplace_back(std::move(entry));
}
return false;
}
static Optional<std::vector<BatchScanInput>>
parseBatchScanInputFile(ASTContext &ctx, StringRef batchInputPath,
llvm::StringSaver &saver) {
assert(!batchInputPath.empty());
namespace yaml = llvm::yaml;
std::vector<BatchScanInput> result;
// Load the input file.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
llvm::MemoryBuffer::getFile(batchInputPath);
if (!FileBufOrErr) {
ctx.Diags.diagnose(SourceLoc(), diag::batch_scan_input_file_missing,
batchInputPath);
return None;
}
StringRef Buffer = FileBufOrErr->get()->getBuffer();
// Use a new source manager instead of the one from ASTContext because we
// don't want the Json file to be persistent.
SourceManager SM;
yaml::Stream Stream(llvm::MemoryBufferRef(Buffer, batchInputPath),
SM.getLLVMSourceMgr());
for (auto DI = Stream.begin(); DI != Stream.end(); ++DI) {
assert(DI != Stream.end() && "Failed to read a document");
yaml::Node *N = DI->getRoot();
assert(N && "Failed to find a root");
if (parseBatchInputEntries(ctx, saver, N, result)) {
ctx.Diags.diagnose(SourceLoc(), diag::batch_scan_input_file_corrupted,
batchInputPath);
return None;
}
}
return result;
}
/// Find all of the imported Clang modules starting with the given module name.
static void findAllImportedClangModules(ASTContext &ctx, StringRef moduleName,
ModuleDependenciesCache &cache,
std::vector<std::string> &allModules,
llvm::StringSet<> &knownModules) {
if (!knownModules.insert(moduleName).second)
return;
allModules.push_back(moduleName.str());
auto currentImportPathSet = ctx.getAllModuleSearchPathsSet();
auto dependencies =
cache.findDependencies(moduleName,
{ModuleDependenciesKind::Clang, currentImportPathSet});
if (!dependencies)
return;
for (const auto &dep : dependencies->getModuleDependencies()) {
findAllImportedClangModules(ctx, dep, cache, allModules, knownModules);
}
}
/// Resolve the direct dependencies of the given module.
static std::vector<ModuleDependencyID>
resolveDirectDependencies(CompilerInstance &instance, ModuleDependencyID module,
ModuleDependenciesCache &cache,
InterfaceSubContextDelegate &ASTDelegate,
bool cacheOnly = false) {
auto &ctx = instance.getASTContext();
auto currentImportSet = ctx.getAllModuleSearchPathsSet();
auto knownDependencies = *cache.findDependencies(
module.first,
{module.second,currentImportSet});
auto isSwiftInterfaceOrSource = knownDependencies.isSwiftInterfaceModule() ||
knownDependencies.isSwiftSourceModule();
auto isSwift = isSwiftInterfaceOrSource ||
knownDependencies.isSwiftBinaryModule();
// Find the dependencies of every module this module directly depends on.
std::set<ModuleDependencyID> result;
for (auto dependsOn : knownDependencies.getModuleDependencies()) {
// Figure out what kind of module we need.
bool onlyClangModule = !isSwift || module.first == dependsOn;
if (auto found = ctx.getModuleDependencies(dependsOn, onlyClangModule,
cache, ASTDelegate, cacheOnly)) {
result.insert({dependsOn, found->getKind()});
}
}
if (isSwiftInterfaceOrSource) {
// A record of all of the Clang modules referenced from this Swift module.
std::vector<std::string> allClangModules;
llvm::StringSet<> knownModules;
// If the Swift module has a bridging header, add those dependencies.
if (knownDependencies.getBridgingHeader()) {
auto clangImporter =
static_cast<ClangImporter *>(ctx.getClangModuleLoader());
if (!clangImporter->addBridgingHeaderDependencies(module.first, module.second, cache)) {
// Grab the updated module dependencies.
// FIXME: This is such a hack.
knownDependencies =
*cache.findDependencies(module.first,
{module.second, currentImportSet});
// Add the Clang modules referenced from the bridging header to the
// set of Clang modules we know about.
const std::vector<std::string> *bridgingModuleDependencies = nullptr;
if (auto swiftDeps = knownDependencies.getAsSwiftInterfaceModule())
bridgingModuleDependencies = &(swiftDeps->textualModuleDetails.bridgingModuleDependencies);
else if (auto sourceDeps = knownDependencies.getAsSwiftSourceModule())
bridgingModuleDependencies = &(sourceDeps->textualModuleDetails.bridgingModuleDependencies);
assert(bridgingModuleDependencies);
for (const auto &clangDep : *bridgingModuleDependencies) {
findAllImportedClangModules(ctx, clangDep, cache, allClangModules,
knownModules);
}
}
}
// Find all of the Clang modules this Swift module depends on.
for (const auto &dep : result) {
if (dep.second != ModuleDependenciesKind::Clang)
continue;
findAllImportedClangModules(ctx, dep.first, cache, allClangModules,
knownModules);
}
// Look for overlays for each of the Clang modules. The Swift module
// directly depends on these.
for (const auto &clangDep : allClangModules) {
if (auto found = ctx.getModuleDependencies(
clangDep, /*onlyClangModule=*/false, cache, ASTDelegate, cacheOnly)) {
// ASTContext::getModuleDependencies returns dependencies for a module
// with a given name. This Clang module may have the same name as the
// Swift module we are resolving, so we need to make sure we don't add a
// dependency from a Swift module to itself.
if ((found->getKind() == ModuleDependenciesKind::SwiftInterface ||
found->getKind() == ModuleDependenciesKind::SwiftSource ||
found->getKind() == ModuleDependenciesKind::SwiftBinary ||
found->getKind() == ModuleDependenciesKind::SwiftPlaceholder) &&
clangDep != module.first) {
result.insert({clangDep, found->getKind()});
}
}
}
}
return std::vector<ModuleDependencyID>(result.begin(), result.end());
}
static void discoverCrosssImportOverlayDependencies(
CompilerInstance &instance, StringRef mainModuleName,
ArrayRef<ModuleDependencyID> allDependencies,
ModuleDependenciesCache &cache, InterfaceSubContextDelegate &ASTDelegate,
llvm::function_ref<void(ModuleDependencyID)> action,
llvm::StringSet<> &currentImportPathSet) {
// Modules explicitly imported. Only these can be secondary module.
llvm::SetVector<Identifier> newOverlays;
for (auto dep : allDependencies) {
auto moduleName = dep.first;
auto dependencies = *cache.findDependencies(
moduleName,
{dep.second, currentImportPathSet});
// Collect a map from secondary module name to cross-import overlay names.
auto overlayMap = dependencies.collectCrossImportOverlayNames(
instance.getASTContext(), moduleName);
if (overlayMap.empty())
continue;
std::for_each(allDependencies.begin(), allDependencies.end(),
[&](ModuleDependencyID Id) {
// check if any explicitly imported modules can serve as a
// secondary module, and add the overlay names to the
// dependencies list.
for (auto overlayName : overlayMap[Id.first]) {
if (std::find_if(allDependencies.begin(),
allDependencies.end(),
[&](ModuleDependencyID Id) {
return Id.first == overlayName.str();
}) == allDependencies.end()) {
newOverlays.insert(overlayName);
}
}
});
}
// No new cross-import overlays are found, return.
if (newOverlays.empty())
return;
// Construct a dummy main to resolve the newly discovered cross import
// overlays.
StringRef dummyMainName = "DummyMainModuleForResolvingCrossImportOverlays";
auto dummyMainDependencies = ModuleDependencies::forSwiftSourceModule({});
// Update main module's dependencies to include these new overlays.
auto mainDep = *cache.findDependencies(
mainModuleName,
{ModuleDependenciesKind::SwiftSource, currentImportPathSet});
std::for_each(newOverlays.begin(), newOverlays.end(),
[&](Identifier modName) {
dummyMainDependencies.addModuleDependency(modName.str());
mainDep.addModuleDependency(modName.str());
});
cache.updateDependencies(
{mainModuleName.str(), ModuleDependenciesKind::SwiftSource}, mainDep);
// Record the dummy main module's direct dependencies. The dummy main module
// only directly depend on these newly discovered overlay modules.
if (cache.findDependencies(
dummyMainName,
{ModuleDependenciesKind::SwiftSource, currentImportPathSet})) {
cache.updateDependencies(
std::make_pair(dummyMainName.str(),
ModuleDependenciesKind::SwiftSource),
dummyMainDependencies);
} else {
cache.recordDependencies(dummyMainName, dummyMainDependencies);
}
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>>
allModules;
// Seed the all module list from the dummpy main module.
allModules.insert({dummyMainName.str(), dummyMainDependencies.getKind()});
// Explore the dependencies of every module.
for (unsigned currentModuleIdx = 0; currentModuleIdx < allModules.size();
++currentModuleIdx) {
auto module = allModules[currentModuleIdx];
auto discoveredModules =
resolveDirectDependencies(instance, module, cache, ASTDelegate);
allModules.insert(discoveredModules.begin(), discoveredModules.end());
}
// Report any discovered modules to the clients, which include all overlays
// and their dependencies.
std::for_each(/* +1 to exclude dummy main*/ allModules.begin() + 1,
allModules.end(), action);
}
/// Write a single JSON field.
template <typename T>
void writeJSONSingleField(llvm::raw_ostream &out, StringRef fieldName,
const T &value, unsigned indentLevel,
bool trailingComma);
/// Write a string value as JSON.
void writeJSONValue(llvm::raw_ostream &out, StringRef value,
unsigned indentLevel) {
out << "\"";
out << value;
out << "\"";
}
void writeJSONValue(llvm::raw_ostream &out, swiftscan_string_ref_t value,
unsigned indentLevel) {
out << "\"";
out << get_C_string(value);
out << "\"";
}
void writeJSONValue(llvm::raw_ostream &out, swiftscan_string_set_t *value_set,
unsigned indentLevel) {
out << "[\n";
for (size_t i = 0; i < value_set->count; ++i) {
out.indent((indentLevel + 1) * 2);
writeJSONValue(out, value_set->strings[i], indentLevel + 1);
if (i != value_set->count - 1) {
out << ",";
}
out << "\n";
}
out.indent(indentLevel * 2);
out << "]";
}
void writeEncodedModuleIdJSONValue(llvm::raw_ostream &out,
swiftscan_string_ref_t value,
unsigned indentLevel) {
out << "{\n";
static const std::string textualPrefix("swiftTextual");
static const std::string binaryPrefix("swiftBinary");
static const std::string placeholderPrefix("swiftPlaceholder");
static const std::string clangPrefix("clang");
std::string valueStr = get_C_string(value);
std::string moduleKind;
std::string moduleName;
if (!valueStr.compare(0, textualPrefix.size(), textualPrefix)) {
moduleKind = "swift";
moduleName = valueStr.substr(textualPrefix.size() + 1);
} else if (!valueStr.compare(0, binaryPrefix.size(), binaryPrefix)) {
// FIXME: rename to be consistent in the clients (swift-driver)
moduleKind = "swiftPrebuiltExternal";
moduleName = valueStr.substr(binaryPrefix.size() + 1);
} else if (!valueStr.compare(0, placeholderPrefix.size(),
placeholderPrefix)) {
moduleKind = "swiftPlaceholder";
moduleName = valueStr.substr(placeholderPrefix.size() + 1);
} else {
moduleKind = "clang";
moduleName = valueStr.substr(clangPrefix.size() + 1);
}
writeJSONSingleField(out, moduleKind, moduleName, indentLevel + 1,
/*trailingComma=*/false);
out.indent(indentLevel * 2);
out << "}";
}
/// Write a boolean value as JSON.
void writeJSONValue(llvm::raw_ostream &out, bool value, unsigned indentLevel) {
out.write_escaped(value ? "true" : "false");
}
/// Write a JSON array.
template <typename T>
void writeJSONValue(llvm::raw_ostream &out, ArrayRef<T> values,
unsigned indentLevel) {
out << "[\n";
for (const auto &value : values) {
out.indent((indentLevel + 1) * 2);
writeJSONValue(out, value, indentLevel + 1);
if (&value != &values.back()) {
out << ",";
}
out << "\n";
}
out.indent(indentLevel * 2);
out << "]";
}
/// Write a JSON array.
template <typename T>
void writeJSONValue(llvm::raw_ostream &out, const std::vector<T> &values,
unsigned indentLevel) {
writeJSONValue(out, llvm::makeArrayRef(values), indentLevel);
}
/// Write a single JSON field.
template <typename T>
void writeJSONSingleField(llvm::raw_ostream &out, StringRef fieldName,
const T &value, unsigned indentLevel,
bool trailingComma) {
out.indent(indentLevel * 2);
writeJSONValue(out, fieldName, indentLevel);
out << ": ";
writeJSONValue(out, value, indentLevel);
if (trailingComma)
out << ",";
out << "\n";
}
void writeDirectDependencies(llvm::raw_ostream &out,
const swiftscan_string_set_t *dependencies,
unsigned indentLevel, bool trailingComma) {
out.indent(indentLevel * 2);
out << "\"directDependencies\": ";
out << "[\n";
for (size_t i = 0; i < dependencies->count; ++i) {
out.indent((indentLevel + 1) * 2);
writeEncodedModuleIdJSONValue(out, dependencies->strings[i],
indentLevel + 1);
if (i != dependencies->count - 1) {
out << ",";
}
out << "\n";
}
out.indent(indentLevel * 2);
out << "]";
if (trailingComma)
out << ",";
out << "\n";
}
static const swiftscan_swift_textual_details_t *
getAsTextualDependencyModule(swiftscan_module_details_t details) {
if (details->kind == SWIFTSCAN_DEPENDENCY_INFO_SWIFT_TEXTUAL)
return &details->swift_textual_details;
return nullptr;
}
static const swiftscan_swift_placeholder_details_t *
getAsPlaceholderDependencyModule(swiftscan_module_details_t details) {
if (details->kind == SWIFTSCAN_DEPENDENCY_INFO_SWIFT_PLACEHOLDER)
return &details->swift_placeholder_details;
return nullptr;
}
static const swiftscan_swift_binary_details_t *
getAsBinaryDependencyModule(swiftscan_module_details_t details) {
if (details->kind == SWIFTSCAN_DEPENDENCY_INFO_SWIFT_BINARY)
return &details->swift_binary_details;
return nullptr;
}
static const swiftscan_clang_details_t *
getAsClangDependencyModule(swiftscan_module_details_t details) {
if (details->kind == SWIFTSCAN_DEPENDENCY_INFO_CLANG)
return &details->clang_details;
return nullptr;
}
static void writePrescanJSON(llvm::raw_ostream &out,
const swiftscan_import_set_t importSet) {
// Write out a JSON containing all main module imports.
out << "{\n";
SWIFT_DEFER { out << "}\n"; };
writeJSONSingleField(out, "imports", importSet->imports, 0, false);
}
static void writeJSON(llvm::raw_ostream &out,
const swiftscan_dependency_graph_t fullDependencies) {
// Write out a JSON description of all of the dependencies.
out << "{\n";
SWIFT_DEFER { out << "}\n"; };
// Name of the main module.
writeJSONSingleField(out, "mainModuleName",
fullDependencies->main_module_name,
/*indentLevel=*/1, /*trailingComma=*/true);
// Write out all of the modules.
out << " \"modules\": [\n";
SWIFT_DEFER { out << " ]\n"; };
const auto module_set = fullDependencies->dependencies;
for (size_t mi = 0; mi < module_set->count; ++mi) {
const auto &moduleInfo = *module_set->modules[mi];
auto &directDependencies = moduleInfo.direct_dependencies;
// The module we are describing.
out.indent(2 * 2);
writeEncodedModuleIdJSONValue(out, moduleInfo.module_name, 2);
out << ",\n";
out.indent(2 * 2);
out << "{\n";
auto swiftPlaceholderDeps =
getAsPlaceholderDependencyModule(moduleInfo.details);
auto swiftTextualDeps = getAsTextualDependencyModule(moduleInfo.details);
auto swiftBinaryDeps = getAsBinaryDependencyModule(moduleInfo.details);
auto clangDeps = getAsClangDependencyModule(moduleInfo.details);
// Module path.
const char *modulePathSuffix = clangDeps ? ".pcm" : ".swiftmodule";
std::string modulePath;
std::string moduleKindAndName =
std::string(get_C_string(moduleInfo.module_name));
std::string moduleName =
moduleKindAndName.substr(moduleKindAndName.find(":") + 1);
if (swiftPlaceholderDeps)
modulePath = get_C_string(swiftPlaceholderDeps->compiled_module_path);
else if (swiftBinaryDeps)
modulePath = get_C_string(swiftBinaryDeps->compiled_module_path);
else
modulePath = moduleName + modulePathSuffix;
writeJSONSingleField(out, "modulePath", modulePath, /*indentLevel=*/3,
/*trailingComma=*/true);
// Source files.
if (swiftTextualDeps || clangDeps) {
writeJSONSingleField(out, "sourceFiles", moduleInfo.source_files, 3,
/*trailingComma=*/true);
}
// Direct dependencies.
if (swiftTextualDeps || swiftBinaryDeps || clangDeps)
writeDirectDependencies(out, directDependencies, 3,
/*trailingComma=*/true);
// Swift and Clang-specific details.
out.indent(3 * 2);
out << "\"details\": {\n";
out.indent(4 * 2);
if (swiftTextualDeps) {
out << "\"swift\": {\n";
/// Swift interface file, if there is one. The main module, for
/// example, will not have an interface file.
std::string moduleInterfacePath =
swiftTextualDeps->module_interface_path.data
? get_C_string(swiftTextualDeps->module_interface_path)
: "";
if (!moduleInterfacePath.empty()) {
writeJSONSingleField(out, "moduleInterfacePath", moduleInterfacePath, 5,
/*trailingComma=*/true);
writeJSONSingleField(out, "contextHash", swiftTextualDeps->context_hash,
5,
/*trailingComma=*/true);
out.indent(5 * 2);
out << "\"commandLine\": [\n";
for (int i = 0, count = swiftTextualDeps->command_line->count;
i < count; ++i) {
const auto &arg =
get_C_string(swiftTextualDeps->command_line->strings[i]);
out.indent(6 * 2);
out << "\"" << arg << "\"";
if (i != count - 1)
out << ",";
out << "\n";
}
out.indent(5 * 2);
out << "],\n";
out.indent(5 * 2);
out << "\"compiledModuleCandidates\": [\n";
for (int i = 0,
count = swiftTextualDeps->compiled_module_candidates->count;
i < count; ++i) {
const auto &candidate = get_C_string(
swiftTextualDeps->compiled_module_candidates->strings[i]);
out.indent(6 * 2);
out << "\"" << candidate << "\"";
if (i != count - 1)
out << ",";
out << "\n";
}
out.indent(5 * 2);
out << "],\n";
}
bool hasBridgingHeaderPath =
swiftTextualDeps->bridging_header_path.data &&
get_C_string(swiftTextualDeps->bridging_header_path)[0] != '\0';
bool commaAfterFramework =
swiftTextualDeps->extra_pcm_args->count != 0 || hasBridgingHeaderPath;
writeJSONSingleField(out, "isFramework", swiftTextualDeps->is_framework,
5, commaAfterFramework);
if (swiftTextualDeps->extra_pcm_args->count != 0) {
out.indent(5 * 2);
out << "\"extraPcmArgs\": [\n";
for (int i = 0, count = swiftTextualDeps->extra_pcm_args->count;
i < count; ++i) {
const auto &arg =
get_C_string(swiftTextualDeps->extra_pcm_args->strings[i]);
out.indent(6 * 2);
out << "\"" << arg << "\"";
if (i != count - 1)
out << ",";
out << "\n";
}
out.indent(5 * 2);
out << (hasBridgingHeaderPath ? "],\n" : "]\n");
}
/// Bridging header and its source file dependencies, if any.
if (hasBridgingHeaderPath) {
out.indent(5 * 2);
out << "\"bridgingHeader\": {\n";
writeJSONSingleField(out, "path",
swiftTextualDeps->bridging_header_path, 6,
/*trailingComma=*/true);
writeJSONSingleField(out, "sourceFiles",
swiftTextualDeps->bridging_source_files, 6,
/*trailingComma=*/true);
writeJSONSingleField(out, "moduleDependencies",
swiftTextualDeps->bridging_module_dependencies, 6,
/*trailingComma=*/false);
out.indent(5 * 2);
out << "}\n";
}
} else if (swiftPlaceholderDeps) {
out << "\"swiftPlaceholder\": {\n";
// Module doc file
if (swiftPlaceholderDeps->module_doc_path.data &&
get_C_string(swiftPlaceholderDeps->module_doc_path)[0] != '\0')
writeJSONSingleField(out, "moduleDocPath",
swiftPlaceholderDeps->module_doc_path,
/*indentLevel=*/5,
/*trailingComma=*/true);
// Module Source Info file
if (swiftPlaceholderDeps->module_source_info_path.data &&
get_C_string(swiftPlaceholderDeps->module_source_info_path)[0] !=
'\0')
writeJSONSingleField(out, "moduleSourceInfoPath",
swiftPlaceholderDeps->module_source_info_path,
/*indentLevel=*/5,
/*trailingComma=*/false);
} else if (swiftBinaryDeps) {
out << "\"swiftPrebuiltExternal\": {\n";
bool hasCompiledModulePath =
swiftBinaryDeps->compiled_module_path.data &&
get_C_string(swiftBinaryDeps->compiled_module_path)[0] != '\0';
assert(hasCompiledModulePath &&
"Expected .swiftmodule for a Binary Swift Module Dependency.");
writeJSONSingleField(out, "compiledModulePath",
swiftBinaryDeps->compiled_module_path,
/*indentLevel=*/5,
/*trailingComma=*/true);
// Module doc file
if (swiftBinaryDeps->module_doc_path.data &&
get_C_string(swiftBinaryDeps->module_doc_path)[0] != '\0')
writeJSONSingleField(out, "moduleDocPath",
swiftBinaryDeps->module_doc_path,
/*indentLevel=*/5,
/*trailingComma=*/true);
// Module Source Info file
if (swiftBinaryDeps->module_source_info_path.data &&
get_C_string(swiftBinaryDeps->module_source_info_path)[0] != '\0')
writeJSONSingleField(out, "moduleSourceInfoPath",
swiftBinaryDeps->module_source_info_path,
/*indentLevel=*/5,
/*trailingComma=*/false);
} else {
out << "\"clang\": {\n";
// Module map file.
writeJSONSingleField(out, "moduleMapPath", clangDeps->module_map_path, 5,
/*trailingComma=*/true);
// Context hash.
writeJSONSingleField(out, "contextHash", clangDeps->context_hash, 5,
/*trailingComma=*/true);
// Command line.
writeJSONSingleField(out, "commandLine", clangDeps->command_line, 5,
/*trailingComma=*/true);
// Captured PCM arguments.
writeJSONSingleField(out, "capturedPCMArgs", clangDeps->captured_pcm_args, 5,
/*trailingComma=*/false);
}
out.indent(4 * 2);
out << "}\n";
out.indent(3 * 2);
out << "}\n";
out.indent(2 * 2);
out << "}";
if (mi != module_set->count - 1)
out << ",";
out << "\n";
}
}
static std::string createEncodedModuleKindAndName(ModuleDependencyID id) {
switch (id.second) {
case ModuleDependenciesKind::SwiftInterface:
case ModuleDependenciesKind::SwiftSource:
return "swiftTextual:" + id.first;
case ModuleDependenciesKind::SwiftBinary:
return "swiftBinary:" + id.first;
case ModuleDependenciesKind::SwiftPlaceholder:
return "swiftPlaceholder:" + id.first;
case ModuleDependenciesKind::Clang:
return "clang:" + id.first;
default:
llvm_unreachable("Unhandled dependency kind.");
}
}
static swiftscan_dependency_graph_t
generateFullDependencyGraph(CompilerInstance &instance,
ModuleDependenciesCache &cache,
InterfaceSubContextDelegate &ASTDelegate,
ArrayRef<ModuleDependencyID> allModules,
llvm::StringSet<> &currentImportPathSet) {
if (allModules.empty()) {
return nullptr;
}
std::string mainModuleName = allModules.front().first;
swiftscan_dependency_set_t *dependencySet = new swiftscan_dependency_set_t;
dependencySet->count = allModules.size();
dependencySet->modules =
new swiftscan_dependency_info_t[dependencySet->count];
for (size_t i = 0; i < allModules.size(); ++i) {
const auto &module = allModules[i];
// Grab the completed module dependencies.
auto moduleDepsQuery = cache.findDependencies(
module.first,
{module.second, currentImportPathSet});
if (!moduleDepsQuery) {
std::string err = "Module Dependency Cache missing module" + module.first;
llvm::report_fatal_error(err);
}
auto moduleDeps = *moduleDepsQuery;
// Collect all the required pieces to build a ModuleInfo
auto swiftPlaceholderDeps = moduleDeps.getAsPlaceholderDependencyModule();
auto swiftTextualDeps = moduleDeps.getAsSwiftInterfaceModule();
auto swiftSourceDeps = moduleDeps.getAsSwiftSourceModule();
auto swiftBinaryDeps = moduleDeps.getAsSwiftBinaryModule();
auto clangDeps = moduleDeps.getAsClangModule();
// ModulePath
const char *modulePathSuffix =
moduleDeps.isSwiftModule() ? ".swiftmodule" : ".pcm";
std::string modulePath;
if (swiftPlaceholderDeps)
modulePath = swiftPlaceholderDeps->compiledModulePath;
else if (swiftBinaryDeps)
modulePath = swiftBinaryDeps->compiledModulePath;
else
modulePath = module.first + modulePathSuffix;
// SourceFiles
std::vector<std::string> sourceFiles;
if (swiftSourceDeps) {
sourceFiles = swiftSourceDeps->sourceFiles;
} else if (clangDeps) {
sourceFiles = clangDeps->fileDependencies;
}
// DirectDependencies
auto directDependencies = resolveDirectDependencies(
instance, ModuleDependencyID(module.first, module.second), cache,
ASTDelegate, /*cacheOnly*/ true);
// Generate a swiftscan_clang_details_t object based on the dependency kind
auto getModuleDetails = [&]() -> swiftscan_module_details_t {
swiftscan_module_details_s *details = new swiftscan_module_details_s;
if (swiftTextualDeps) {
swiftscan_string_ref_t moduleInterfacePath =
create_clone(swiftTextualDeps->swiftInterfaceFile.c_str());
swiftscan_string_ref_t bridgingHeaderPath =
swiftTextualDeps->textualModuleDetails.bridgingHeaderFile.hasValue()
? create_clone(
swiftTextualDeps->textualModuleDetails.bridgingHeaderFile.getValue().c_str())
: create_null();
details->kind = SWIFTSCAN_DEPENDENCY_INFO_SWIFT_TEXTUAL;
details->swift_textual_details = {
moduleInterfacePath,
create_set(swiftTextualDeps->compiledModuleCandidates),
bridgingHeaderPath,
create_set(swiftTextualDeps->textualModuleDetails.bridgingSourceFiles),
create_set(swiftTextualDeps->textualModuleDetails.bridgingModuleDependencies),
create_set(swiftTextualDeps->buildCommandLine),
create_set(swiftTextualDeps->textualModuleDetails.extraPCMArgs),
create_clone(swiftTextualDeps->contextHash.c_str()),
swiftTextualDeps->isFramework};
} else if (swiftSourceDeps) {
swiftscan_string_ref_t moduleInterfacePath = create_null();
swiftscan_string_ref_t bridgingHeaderPath =
swiftSourceDeps->textualModuleDetails.bridgingHeaderFile.hasValue()
? create_clone(
swiftSourceDeps->textualModuleDetails.bridgingHeaderFile.getValue().c_str())
: create_null();
// TODO: Once the clients are taught about the new dependency kind,
// switch to using a bespoke kind here.
details->kind = SWIFTSCAN_DEPENDENCY_INFO_SWIFT_TEXTUAL;
details->swift_textual_details = {
moduleInterfacePath,
create_empty_set(),
bridgingHeaderPath,
create_set(swiftSourceDeps->textualModuleDetails.bridgingSourceFiles),
create_set(swiftSourceDeps->textualModuleDetails.bridgingModuleDependencies),
create_empty_set(),
create_set(swiftSourceDeps->textualModuleDetails.extraPCMArgs),
/*contextHash*/create_null(),
/*isFramework*/false};
} else if (swiftPlaceholderDeps) {
details->kind = SWIFTSCAN_DEPENDENCY_INFO_SWIFT_PLACEHOLDER;
details->swift_placeholder_details = {
create_clone(swiftPlaceholderDeps->compiledModulePath.c_str()),
create_clone(swiftPlaceholderDeps->moduleDocPath.c_str()),
create_clone(swiftPlaceholderDeps->sourceInfoPath.c_str())};
} else if (swiftBinaryDeps) {
details->kind = SWIFTSCAN_DEPENDENCY_INFO_SWIFT_BINARY;
details->swift_binary_details = {
create_clone(swiftBinaryDeps->compiledModulePath.c_str()),
create_clone(swiftBinaryDeps->moduleDocPath.c_str()),
create_clone(swiftBinaryDeps->sourceInfoPath.c_str())};
} else {
// Clang module details
details->kind = SWIFTSCAN_DEPENDENCY_INFO_CLANG;
details->clang_details = {
create_clone(clangDeps->moduleMapFile.c_str()),
create_clone(clangDeps->contextHash.c_str()),
create_set(clangDeps->nonPathCommandLine),
create_set(clangDeps->capturedPCMArgs)
};
}
return details;
};
swiftscan_dependency_info_s *moduleInfo = new swiftscan_dependency_info_s;
dependencySet->modules[i] = moduleInfo;
std::string encodedModuleName = createEncodedModuleKindAndName(module);
auto ttt = create_clone(encodedModuleName.c_str());
moduleInfo->module_name = ttt;
moduleInfo->module_path = create_clone(modulePath.c_str());
moduleInfo->source_files = create_set(sourceFiles);
// Create a direct dependencies set according to the output format
std::vector<std::string> bridgedDependencyNames;
for (const auto &dep : directDependencies) {
std::string dependencyKindAndName;
switch (dep.second) {
case ModuleDependenciesKind::SwiftInterface:
case ModuleDependenciesKind::SwiftSource:
dependencyKindAndName = "swiftTextual";
break;
case ModuleDependenciesKind::SwiftBinary:
dependencyKindAndName = "swiftBinary";
break;
case ModuleDependenciesKind::SwiftPlaceholder:
dependencyKindAndName = "swiftPlaceholder";
break;
case ModuleDependenciesKind::Clang:
dependencyKindAndName = "clang";
break;
default:
llvm_unreachable("Unhandled dependency kind.");
}
dependencyKindAndName += ":";
dependencyKindAndName += dep.first;
bridgedDependencyNames.push_back(dependencyKindAndName);
}
moduleInfo->direct_dependencies = create_set(bridgedDependencyNames);
moduleInfo->details = getModuleDetails();
}
swiftscan_dependency_graph_t result = new swiftscan_dependency_graph_s;
result->main_module_name = create_clone(mainModuleName.c_str());
result->dependencies = dependencySet;
return result;
}
static bool diagnoseCycle(CompilerInstance &instance,
ModuleDependenciesCache &cache,
ModuleDependencyID mainId,
InterfaceSubContextDelegate &astDelegate) {
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>>
openSet;
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>>
closeSet;
// Start from the main module.
openSet.insert(mainId);
while (!openSet.empty()) {
auto &lastOpen = openSet.back();
auto beforeSize = openSet.size();
for (auto dep :
resolveDirectDependencies(instance, lastOpen, cache, astDelegate, /*cacheOnly*/ true)) {
if (closeSet.count(dep))
continue;
if (openSet.insert(dep)) {
break;
} else {
// Find a cycle, diagnose.
auto startIt = std::find(openSet.begin(), openSet.end(), dep);
assert(startIt != openSet.end());
llvm::SmallString<64> buffer;
for (auto it = startIt; it != openSet.end(); ++it) {
buffer.append(it->first);
buffer.append((it->second == ModuleDependenciesKind::SwiftInterface ||
it->second == ModuleDependenciesKind::SwiftSource ||
it->second == ModuleDependenciesKind::SwiftBinary)
? ".swiftmodule"
: ".pcm");
buffer.append(" -> ");
}
buffer.append(startIt->first);
buffer.append(
(startIt->second == ModuleDependenciesKind::SwiftInterface ||
startIt->second == ModuleDependenciesKind::SwiftSource ||
startIt->second == ModuleDependenciesKind::SwiftBinary)
? ".swiftmodule"
: ".pcm");
instance.getASTContext().Diags.diagnose(
SourceLoc(), diag::scanner_find_cycle, buffer.str());
return true;
}
}
// No new node added. We can close this node
if (openSet.size() == beforeSize) {
closeSet.insert(openSet.back());
openSet.pop_back();
} else {
assert(openSet.size() == beforeSize + 1);
}
}
assert(openSet.empty());
return false;
}
static void updateCachedInstanceOpts(CompilerInstance &cachedInstance,
const CompilerInstance &invocationInstance,
llvm::StringRef entryArguments) {
cachedInstance.getASTContext().SearchPathOpts =
invocationInstance.getASTContext().SearchPathOpts;
// The Clang Importer arguments must consiste of a combination of
// Clang Importer arguments of the current invocation to inherit its Clang-specific
// search path options, followed by the options speicific to the given batch-entry,
// which may overload some of the invocation's options (e.g. target)
cachedInstance.getASTContext().ClangImporterOpts =
invocationInstance.getASTContext().ClangImporterOpts;
std::istringstream iss(entryArguments.str());
std::vector<std::string> splitArguments(
std::istream_iterator<std::string>{iss},
std::istream_iterator<std::string>());
for (auto it = splitArguments.begin(), end = splitArguments.end(); it != end;
++it) {
if ((*it) == "-Xcc") {
assert((it + 1 != end) && "Expected option following '-Xcc'");
cachedInstance.getASTContext().ClangImporterOpts.ExtraArgs.push_back(
*(it + 1));
}
}
}
static bool
forEachBatchEntry(CompilerInstance &invocationInstance,
ModuleDependenciesCache &invocationCache,
CompilerArgInstanceCacheMap *versionedPCMInstanceCache,
llvm::StringSaver &saver,
const std::vector<BatchScanInput> &batchInput,
llvm::function_ref<void(BatchScanInput, CompilerInstance &,
ModuleDependenciesCache &)>
scanningAction) {
const CompilerInvocation &invok = invocationInstance.getInvocation();
bool localSubInstanceMap = false;
CompilerArgInstanceCacheMap *subInstanceMap;
if (versionedPCMInstanceCache)
subInstanceMap = versionedPCMInstanceCache;
else {
subInstanceMap = new CompilerArgInstanceCacheMap;
localSubInstanceMap = true;
}
auto &diags = invocationInstance.getDiags();
ForwardingDiagnosticConsumer FDC(invocationInstance.getDiags());
for (auto &entry : batchInput) {
CompilerInstance *pInstance = nullptr;
ModuleDependenciesCache *pCache = nullptr;
if (entry.arguments.empty()) {
// Use the compiler's instance if no arguments are specified.
pInstance = &invocationInstance;
pCache = &invocationCache;
} else if (subInstanceMap->count(entry.arguments)) {
// Use the previously created instance if we've seen the arguments
// before.
pInstance = std::get<0>((*subInstanceMap)[entry.arguments]).get();
pCache = std::get<2>((*subInstanceMap)[entry.arguments]).get();
// We must update the search paths of this instance to instead reflect
// those of the current scanner invocation.
updateCachedInstanceOpts(*pInstance, invocationInstance, entry.arguments);
} else {
// We must reset option occurences because we are handling an unrelated command-line
// to those parsed before. We must do so because LLVM options parsing is done
// using a managed static `GlobalParser`.
llvm::cl::ResetAllOptionOccurrences();
// Create a new instance by the arguments and save it in the map.
auto newGlobalCache = std::make_unique<GlobalModuleDependenciesCache>();
subInstanceMap->insert(
{entry.arguments,
std::make_tuple(std::make_unique<CompilerInstance>(),
std::move(newGlobalCache),
std::make_unique<ModuleDependenciesCache>(*newGlobalCache))});
pInstance = std::get<0>((*subInstanceMap)[entry.arguments]).get();
auto globalCache = std::get<1>((*subInstanceMap)[entry.arguments]).get();
pCache = std::get<2>((*subInstanceMap)[entry.arguments]).get();
SmallVector<const char *, 4> args;
llvm::cl::TokenizeGNUCommandLine(entry.arguments, saver, args);
CompilerInvocation subInvok = invok;
pInstance->addDiagnosticConsumer(&FDC);
if (subInvok.parseArgs(args, diags)) {
invocationInstance.getDiags().diagnose(
SourceLoc(), diag::scanner_arguments_invalid, entry.arguments);
return true;
}
if (pInstance->setup(subInvok)) {
invocationInstance.getDiags().diagnose(
SourceLoc(), diag::scanner_arguments_invalid, entry.arguments);
return true;
}
globalCache->configureForTriple(pInstance->getInvocation()
.getLangOptions().Target.str());
}
assert(pInstance);
assert(pCache);
scanningAction(entry, *pInstance, *pCache);
}
if (localSubInstanceMap)
delete subInstanceMap;
return false;
}
static ModuleDependencies
identifyMainModuleDependencies(CompilerInstance &instance) {
ModuleDecl *mainModule = instance.getMainModule();
// Main module file name.
auto newExt = file_types::getExtension(file_types::TY_SwiftModuleFile);
llvm::SmallString<32> mainModulePath = mainModule->getName().str();
llvm::sys::path::replace_extension(mainModulePath, newExt);
std::string apinotesVer =
(llvm::Twine("-fapinotes-swift-version=") +
instance.getASTContext()
.LangOpts.EffectiveLanguageVersion.asAPINotesVersionString())
.str();
// Compute the dependencies of the main module.
std::vector<StringRef> ExtraPCMArgs = {
"-Xcc", apinotesVer
};
if (!instance.getASTContext().LangOpts.ClangTarget.hasValue())
ExtraPCMArgs.insert(ExtraPCMArgs.begin(),
{"-Xcc", "-target", "-Xcc",
instance.getASTContext().LangOpts.Target.str()});
auto mainDependencies = ModuleDependencies::forSwiftSourceModule(ExtraPCMArgs);
// Compute Implicit dependencies of the main module
{
llvm::StringSet<> alreadyAddedModules;
for (auto fileUnit : mainModule->getFiles()) {
auto sf = dyn_cast<SourceFile>(fileUnit);
if (!sf)
continue;
mainDependencies.addModuleDependencies(*sf, alreadyAddedModules);
}
const auto &importInfo = mainModule->getImplicitImportInfo();
// Swift standard library.
switch (importInfo.StdlibKind) {
case ImplicitStdlibKind::None:
case ImplicitStdlibKind::Builtin:
break;
case ImplicitStdlibKind::Stdlib:
mainDependencies.addModuleDependency("Swift", &alreadyAddedModules);
break;
}
// Add any implicit module names.
for (const auto &import : importInfo.AdditionalUnloadedImports) {
mainDependencies.addModuleDependency(import.module.getModulePath(),
&alreadyAddedModules);
}
// Already-loaded, implicitly imported module names.
for (const auto &import : importInfo.AdditionalImports) {
mainDependencies.addModuleDependency(
import.module.importedModule->getNameStr(), &alreadyAddedModules);
}
// Add the bridging header.
if (!importInfo.BridgingHeaderPath.empty()) {
mainDependencies.addBridgingHeader(importInfo.BridgingHeaderPath);
}
// If we are to import the underlying Clang module of the same name,
// add a dependency with the same name to trigger the search.
if (importInfo.ShouldImportUnderlyingModule) {
mainDependencies.addModuleDependency(mainModule->getName().str(),
&alreadyAddedModules);
}
}
return mainDependencies;
}
} // namespace
static void serializeDependencyCache(CompilerInstance &instance,
const GlobalModuleDependenciesCache &cache) {
const FrontendOptions &opts = instance.getInvocation().getFrontendOptions();
ASTContext &Context = instance.getASTContext();
auto savePath = opts.SerializedDependencyScannerCachePath;
module_dependency_cache_serialization::writeInterModuleDependenciesCache(
Context.Diags, savePath, cache);
if (opts.EmitDependencyScannerCacheRemarks) {
Context.Diags.diagnose(SourceLoc(), diag::remark_save_cache, savePath);
}
}
static void deserializeDependencyCache(CompilerInstance &instance,
GlobalModuleDependenciesCache &cache) {
const FrontendOptions &opts = instance.getInvocation().getFrontendOptions();
ASTContext &Context = instance.getASTContext();
auto loadPath = opts.SerializedDependencyScannerCachePath;
if (module_dependency_cache_serialization::readInterModuleDependenciesCache(
loadPath, cache)) {
Context.Diags.diagnose(SourceLoc(), diag::warn_scaner_deserialize_failed,
loadPath);
} else if (opts.EmitDependencyScannerCacheRemarks) {
Context.Diags.diagnose(SourceLoc(), diag::remark_reuse_cache, loadPath);
}
}
bool swift::dependencies::scanDependencies(CompilerInstance &instance) {
ASTContext &Context = instance.getASTContext();
const FrontendOptions &opts = instance.getInvocation().getFrontendOptions();
std::string path = opts.InputsAndOutputs.getSingleOutputFilename();
std::error_code EC;
llvm::raw_fd_ostream out(path, EC, llvm::sys::fs::OF_None);
if (out.has_error() || EC) {
Context.Diags.diagnose(SourceLoc(), diag::error_opening_output, path,
EC.message());
out.clear_error();
return true;
}
// `-scan-dependencies` invocations use a single new instance
// of a module cache
GlobalModuleDependenciesCache globalCache;
globalCache.configureForTriple(instance.getInvocation()
.getLangOptions().Target.str());
if (opts.ReuseDependencyScannerCache)
deserializeDependencyCache(instance, globalCache);
ModuleDependenciesCache cache(globalCache);
// Execute scan
auto dependenciesOrErr = performModuleScan(instance, cache);
// Serialize the dependency cache if -serialize-dependency-scan-cache
// is specified
if (opts.SerializeDependencyScannerCache)
serializeDependencyCache(instance, globalCache);
if (dependenciesOrErr.getError())
return true;
auto dependencies = std::move(*dependenciesOrErr);
// Write out the JSON description.
writeJSON(out, dependencies);
// This process succeeds regardless of whether any errors occurred.
// FIXME: We shouldn't need this, but it's masking bugs in our scanning
// logic where we don't create a fresh context when scanning Swift interfaces
// that includes their own command-line flags.
Context.Diags.resetHadAnyError();
return false;
}
bool swift::dependencies::prescanDependencies(CompilerInstance &instance) {
ASTContext &Context = instance.getASTContext();
const FrontendOptions &opts = instance.getInvocation().getFrontendOptions();
std::string path = opts.InputsAndOutputs.getSingleOutputFilename();
std::error_code EC;
llvm::raw_fd_ostream out(path, EC, llvm::sys::fs::OF_None);
// `-scan-dependencies` invocations use a single new instance
// of a module cache
GlobalModuleDependenciesCache singleUseGlobalCache;
singleUseGlobalCache.configureForTriple(instance.getInvocation()
.getLangOptions().Target.str());
ModuleDependenciesCache cache(singleUseGlobalCache);
if (out.has_error() || EC) {
Context.Diags.diagnose(SourceLoc(), diag::error_opening_output, path,
EC.message());
out.clear_error();
return true;
}
// Execute import prescan, and write JSON output to the output stream
auto importSetOrErr = performModulePrescan(instance);
if (importSetOrErr.getError())
return true;
auto importSet = std::move(*importSetOrErr);
// Serialize and output main module dependencies only and exit.
writePrescanJSON(out, importSet);
// This process succeeds regardless of whether any errors occurred.
// FIXME: We shouldn't need this, but it's masking bugs in our scanning
// logic where we don't create a fresh context when scanning Swift interfaces
// that includes their own command-line flags.
Context.Diags.resetHadAnyError();
return false;
}
bool swift::dependencies::batchScanDependencies(
CompilerInstance &instance, llvm::StringRef batchInputFile) {
// The primary cache used for scans carried out with the compiler instance
// we have created
GlobalModuleDependenciesCache singleUseGlobalCache;
singleUseGlobalCache.configureForTriple(instance.getInvocation()
.getLangOptions().Target.str());
ModuleDependenciesCache cache(singleUseGlobalCache);
(void)instance.getMainModule();
llvm::BumpPtrAllocator alloc;
llvm::StringSaver saver(alloc);
auto batchInput =
parseBatchScanInputFile(instance.getASTContext(), batchInputFile, saver);
if (!batchInput.hasValue())
return true;
auto batchScanResults = performBatchModuleScan(
instance, cache, /*versionedPCMInstanceCache*/ nullptr, saver,
*batchInput);
// Write the result JSON to the specified output path, for each entry
auto ientries = batchInput->cbegin();
auto iresults = batchScanResults.cbegin();
for (; ientries != batchInput->end() and iresults != batchScanResults.end();
++ientries, ++iresults) {
std::error_code EC;
llvm::raw_fd_ostream out((*ientries).outputPath, EC, llvm::sys::fs::OF_None);
if ((*iresults).getError())
return true;
writeJSON(out, **iresults);
}
return false;
}
bool swift::dependencies::batchPrescanDependencies(
CompilerInstance &instance, llvm::StringRef batchInputFile) {
// The primary cache used for scans carried out with the compiler instance
// we have created
GlobalModuleDependenciesCache singleUseGlobalCache;
singleUseGlobalCache.configureForTriple(instance.getInvocation()
.getLangOptions().Target.str());
ModuleDependenciesCache cache(singleUseGlobalCache);
(void)instance.getMainModule();
llvm::BumpPtrAllocator alloc;
llvm::StringSaver saver(alloc);
auto batchInput =
parseBatchScanInputFile(instance.getASTContext(), batchInputFile, saver);
if (!batchInput.hasValue())
return true;
auto batchPrescanResults =
performBatchModulePrescan(instance, cache, saver, *batchInput);
// Write the result JSON to the specified output path, for each entry
auto ientries = batchInput->cbegin();
auto iresults = batchPrescanResults.cbegin();
for (;
ientries != batchInput->end() and iresults != batchPrescanResults.end();
++ientries, ++iresults) {
std::error_code EC;
llvm::raw_fd_ostream out((*ientries).outputPath, EC, llvm::sys::fs::OF_None);
if ((*iresults).getError())
return true;
writePrescanJSON(out, **iresults);
}
return false;
}
llvm::ErrorOr<swiftscan_dependency_graph_t>
swift::dependencies::performModuleScan(CompilerInstance &instance,
ModuleDependenciesCache &cache) {
ModuleDecl *mainModule = instance.getMainModule();
// First, identify the dependencies of the main module
auto mainDependencies = identifyMainModuleDependencies(instance);
auto &ctx = instance.getASTContext();
auto currentImportPathSet = ctx.getAllModuleSearchPathsSet();
// Add the main module.
StringRef mainModuleName = mainModule->getNameStr();
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>> allModules;
allModules.insert({mainModuleName.str(), mainDependencies.getKind()});
// We may be re-using an instance of the cache which already contains
// an entry for this module.
if (cache.findDependencies(
mainModuleName,
{ModuleDependenciesKind::SwiftSource, currentImportPathSet})) {
cache.updateDependencies(
std::make_pair(mainModuleName.str(),
ModuleDependenciesKind::SwiftSource),
std::move(mainDependencies));
} else {
cache.recordDependencies(mainModuleName, std::move(mainDependencies));
}
auto ModuleCachePath = getModuleCachePathFromClang(
ctx.getClangModuleLoader()->getClangInstance());
auto &FEOpts = instance.getInvocation().getFrontendOptions();
ModuleInterfaceLoaderOptions LoaderOpts(FEOpts);
InterfaceSubContextDelegateImpl ASTDelegate(
ctx.SourceMgr, &ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts,
ctx.ClangImporterOpts, LoaderOpts,
/*buildModuleCacheDirIfAbsent*/ false, ModuleCachePath,
FEOpts.PrebuiltModuleCachePath,
FEOpts.BackupModuleInterfaceDir,
FEOpts.SerializeModuleInterfaceDependencyHashes,
FEOpts.shouldTrackSystemDependencies(),
RequireOSSAModules_t(instance.getSILOptions()));
// Explore the dependencies of every module.
for (unsigned currentModuleIdx = 0; currentModuleIdx < allModules.size();
++currentModuleIdx) {
auto module = allModules[currentModuleIdx];
auto discoveredModules =
resolveDirectDependencies(instance, module, cache, ASTDelegate);
allModules.insert(discoveredModules.begin(), discoveredModules.end());
}
// We have all explicit imports now, resolve cross import overlays.
discoverCrosssImportOverlayDependencies(
instance, mainModuleName,
/*All transitive dependencies*/ allModules.getArrayRef().slice(1), cache,
ASTDelegate, [&](ModuleDependencyID id) { allModules.insert(id); },
currentImportPathSet);
// Dignose cycle in dependency graph.
if (diagnoseCycle(instance, cache, /*MainModule*/ allModules.front(),
ASTDelegate))
return std::make_error_code(std::errc::not_supported);
auto dependencyGraph = generateFullDependencyGraph(
instance, cache, ASTDelegate,
allModules.getArrayRef(), currentImportPathSet);
// Update the dependency tracker.
if (auto depTracker = instance.getDependencyTracker()) {
for (auto module : allModules) {
auto deps = cache.findDependencies(module.first,
{module.second, currentImportPathSet});
if (!deps)
continue;
if (auto swiftDeps = deps->getAsSwiftInterfaceModule()) {
depTracker->addDependency(swiftDeps->swiftInterfaceFile, /*IsSystem=*/false);
for (const auto &bridgingSourceFile : swiftDeps->textualModuleDetails.bridgingSourceFiles)
depTracker->addDependency(bridgingSourceFile, /*IsSystem=*/false);
} else if (auto swiftSourceDeps = deps->getAsSwiftSourceModule()) {
for (const auto &sourceFile : swiftSourceDeps->sourceFiles)
depTracker->addDependency(sourceFile, /*IsSystem=*/false);
for (const auto &bridgingSourceFile : swiftSourceDeps->textualModuleDetails.bridgingSourceFiles)
depTracker->addDependency(bridgingSourceFile, /*IsSystem=*/false);
} else if (auto clangDeps = deps->getAsClangModule()) {
if (!clangDeps->moduleMapFile.empty())
depTracker->addDependency(clangDeps->moduleMapFile,
/*IsSystem=*/false);
for (const auto &sourceFile : clangDeps->fileDependencies)
depTracker->addDependency(sourceFile, /*IsSystem=*/false);
}
}
}
return dependencyGraph;
}
llvm::ErrorOr<swiftscan_import_set_t>
swift::dependencies::performModulePrescan(CompilerInstance &instance) {
// Execute import prescan, and write JSON output to the output stream
auto mainDependencies = identifyMainModuleDependencies(instance);
auto *importSet = new swiftscan_import_set_s;
importSet->imports = create_set(mainDependencies.getModuleDependencies());
return importSet;
}
std::vector<llvm::ErrorOr<swiftscan_dependency_graph_t>>
swift::dependencies::performBatchModuleScan(
CompilerInstance &invocationInstance,
ModuleDependenciesCache &invocationCache,
CompilerArgInstanceCacheMap *versionedPCMInstanceCache,
llvm::StringSaver &saver, const std::vector<BatchScanInput> &batchInput) {
std::vector<llvm::ErrorOr<swiftscan_dependency_graph_t>> batchScanResult;
batchScanResult.reserve(batchInput.size());
// Perform a full dependency scan for each batch entry module
forEachBatchEntry(
invocationInstance, invocationCache, versionedPCMInstanceCache, saver,
batchInput,
[&batchScanResult](BatchScanInput entry, CompilerInstance &instance,
ModuleDependenciesCache &cache) {
StringRef moduleName = entry.moduleName;
bool isClang = !entry.isSwift;
ASTContext &ctx = instance.getASTContext();
auto currentImportPathSet = ctx.getAllModuleSearchPathsSet();
auto &FEOpts = instance.getInvocation().getFrontendOptions();
ModuleInterfaceLoaderOptions LoaderOpts(FEOpts);
auto ModuleCachePath = getModuleCachePathFromClang(
ctx.getClangModuleLoader()->getClangInstance());
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>>
allModules;
InterfaceSubContextDelegateImpl ASTDelegate(
ctx.SourceMgr, &ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts,
ctx.ClangImporterOpts, LoaderOpts,
/*buildModuleCacheDirIfAbsent*/ false, ModuleCachePath,
FEOpts.PrebuiltModuleCachePath,
FEOpts.BackupModuleInterfaceDir,
FEOpts.SerializeModuleInterfaceDependencyHashes,
FEOpts.shouldTrackSystemDependencies(),
RequireOSSAModules_t(instance.getSILOptions()));
Optional<ModuleDependencies> rootDeps;
if (isClang) {
// Loading the clang module using Clang importer.
// This action will populate the cache with the main module's
// dependencies.
rootDeps = ctx.getModuleDependencies(moduleName, /*IsClang*/ true,
cache, ASTDelegate);
} else {
// Loading the swift module's dependencies.
rootDeps =
ctx.getSwiftModuleDependencies(moduleName, cache, ASTDelegate);
}
if (!rootDeps.hasValue()) {
// We cannot find the clang module, abort.
batchScanResult.push_back(
std::make_error_code(std::errc::invalid_argument));
return;
}
// Add the main module.
allModules.insert(
{moduleName.str(), isClang ? ModuleDependenciesKind::Clang
: ModuleDependenciesKind::SwiftInterface});
// Explore the dependencies of every module.
for (unsigned currentModuleIdx = 0;
currentModuleIdx < allModules.size(); ++currentModuleIdx) {
auto module = allModules[currentModuleIdx];
auto discoveredModules =
resolveDirectDependencies(instance, module, cache, ASTDelegate);
allModules.insert(discoveredModules.begin(), discoveredModules.end());
}
batchScanResult.push_back(generateFullDependencyGraph(
instance, cache, ASTDelegate,
allModules.getArrayRef(), currentImportPathSet));
});
return batchScanResult;
}
std::vector<llvm::ErrorOr<swiftscan_import_set_t>>
swift::dependencies::performBatchModulePrescan(
CompilerInstance &instance, ModuleDependenciesCache &cache,
llvm::StringSaver &saver, const std::vector<BatchScanInput> &batchInput) {
std::vector<llvm::ErrorOr<swiftscan_import_set_t>> batchPrescanResult;
// Perform a full dependency scan for each batch entry module
forEachBatchEntry(
instance, cache, /*versionedPCMInstanceCache*/ nullptr, saver, batchInput,
[&batchPrescanResult](BatchScanInput entry, CompilerInstance &instance,
ModuleDependenciesCache &cache) {
StringRef moduleName = entry.moduleName;
bool isClang = !entry.isSwift;
ASTContext &ctx = instance.getASTContext();
auto &FEOpts = instance.getInvocation().getFrontendOptions();
ModuleInterfaceLoaderOptions LoaderOpts(FEOpts);
auto ModuleCachePath = getModuleCachePathFromClang(
ctx.getClangModuleLoader()->getClangInstance());
llvm::SetVector<ModuleDependencyID, std::vector<ModuleDependencyID>,
std::set<ModuleDependencyID>>
allModules;
InterfaceSubContextDelegateImpl ASTDelegate(
ctx.SourceMgr, &ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts,
ctx.ClangImporterOpts, LoaderOpts,
/*buildModuleCacheDirIfAbsent*/ false, ModuleCachePath,
FEOpts.PrebuiltModuleCachePath,
FEOpts.BackupModuleInterfaceDir,
FEOpts.SerializeModuleInterfaceDependencyHashes,
FEOpts.shouldTrackSystemDependencies(),
RequireOSSAModules_t(instance.getSILOptions()));
Optional<ModuleDependencies> rootDeps;
if (isClang) {
// Loading the clang module using Clang importer.
// This action will populate the cache with the main module's
// dependencies.
rootDeps = ctx.getModuleDependencies(moduleName, /*IsClang*/
true, cache, ASTDelegate);
} else {
// Loading the swift module's dependencies.
rootDeps =
ctx.getSwiftModuleDependencies(moduleName, cache, ASTDelegate);
}
if (!rootDeps.hasValue()) {
// We cannot find the clang module, abort.
batchPrescanResult.push_back(
std::make_error_code(std::errc::invalid_argument));
return;
}
auto *importSet = new swiftscan_import_set_s;
importSet->imports = create_set(rootDeps->getModuleDependencies());
batchPrescanResult.push_back(importSet);
});
return batchPrescanResult;
}