Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
Doug Gregor 6c80f64c6e Diagnostic circular class inheritance.
Break cycles agressively when we find circular class inheritance. The
stronger AST invariants prevent us from having to check for loops
everywhere in the front end.


Swift SVN r7325
2013-08-19 15:31:13 +00:00

2668 lines
99 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclVisitor.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
/// \brief Set the declaration context of each variable within the given
/// patterns to \p dc.
static void setVarDeclContexts(ArrayRef<Pattern *> patterns, DeclContext *dc) {
for (auto pattern : patterns) {
auto pat = pattern->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pat))
named->getDecl()->setDeclContext(dc);
if (auto tuple = dyn_cast<TuplePattern>(pat)) {
for (auto elt : tuple->getFields())
setVarDeclContexts(elt.getPattern(), dc);
}
}
}
/// \brief Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == "swift".
StringRef SwiftTypeName;
MappedLanguages Languages;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, LANGUAGES, \
CAN_BE_MISSING) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
if (StringRef("swift") == SWIFT_MODULE_NAME) \
IsSwiftModule = true; \
else { \
IsSwiftModule = false; \
SwiftModuleName = SWIFT_MODULE_NAME; \
} \
SwiftTypeName = SWIFT_TYPE_NAME; \
Languages = MappedLanguages::LANGUAGES; \
CanBeMissing = CAN_BE_MISSING; \
break; \
}
#include "MappedTypes.def"
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while(0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
if (Languages != MappedLanguages::All) {
if ((unsigned(Languages) & unsigned(MappedLanguages::ObjC1)) != 0 &&
!ClangCtx.getLangOpts().ObjC1)
return std::make_pair(Type(), "");
}
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
if (Bitwidth != 0 &&
Bitwidth != ClangCtx.getTypeSize(ClangType))
return std::make_pair(Type(), "");
// Chceck other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEsingle should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatIEEEsingle should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended)
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (auto PT = ClangType->getAs<clang::PointerType>()) {
if (!PT->getPointeeType()->isSpecificBuiltinType(
clang::BuiltinType::ObjCSel))
return std::make_pair(Type(), "");
}
break;
}
Module *M;
if (IsSwiftModule)
M = Impl.getSwiftModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
namespace {
typedef ClangImporter::Implementation::EnumKind EnumKind;
/// \brief Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl)
: Impl(impl) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
auto Name = Impl.importName(Decl->getDeclName());
if (Name.empty())
return nullptr;
auto DC = Impl.importDeclContextOf(Decl);
if (!DC)
return nullptr;
Type SwiftType;
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
bool IsError;
StringRef StdlibTypeName;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError);
if (IsError)
return nullptr;
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames.insert(Decl);
if (Name.str() == StdlibTypeName) {
// Don't create an extra typealias in the imported module because
// doing so will cause ambiguity between the name in the imported
// module and the same name in the 'swift' module.
return SwiftType->castTo<StructType>()->getDecl();
}
}
}
if (!SwiftType)
SwiftType = Impl.importType(Decl->getUnderlyingType(),
ImportTypeKind::Normal);
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
return new (Impl.SwiftContext) TypeAliasDecl(
Impl.importSourceLoc(Decl->getLocStart()),
Name,
Loc,
TypeLoc::withoutLoc(SwiftType),
DC,
{ });
}
Decl *
VisitUnresolvedUsingTypenameDecl(const clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// \brief Create a constructor that initializes a struct from its members.
ConstructorDecl *createValueConstructor(StructDecl *structDecl,
ArrayRef<Decl *> members) {
auto &context = Impl.SwiftContext;
// FIXME: Name hack.
auto name = context.getIdentifier("constructor");
// Create the 'this' declaration.
auto thisType = structDecl->getDeclaredTypeInContext();
auto thisMetaType = MetaTypeType::get(thisType, context);
auto thisName = context.getIdentifier("this");
auto thisDecl = new (context) VarDecl(SourceLoc(), thisName, thisType,
structDecl);
// Construct the set of parameters from the list of members.
SmallVector<Pattern *, 4> paramPatterns;
SmallVector<TuplePatternElt, 8> patternElts;
SmallVector<TupleTypeElt, 8> tupleElts;
SmallVector<VarDecl *, 8> params;
for (auto member : members) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (var->isProperty())
continue;
auto param = new (context) VarDecl(SourceLoc(), var->getName(),
var->getType(), structDecl);
params.push_back(param);
Pattern *pattern = new (context) NamedPattern(param);
pattern->setType(var->getType());
auto tyLoc = TypeLoc::withoutLoc(var->getType());
pattern = new (context) TypedPattern(pattern, tyLoc);
pattern->setType(var->getType());
paramPatterns.push_back(pattern);
patternElts.push_back(TuplePatternElt(pattern));
tupleElts.push_back(TupleTypeElt(var->getType(), var->getName()));
}
}
auto paramPattern = TuplePattern::create(context, SourceLoc(), patternElts,
SourceLoc());
auto paramTy = TupleType::get(tupleElts, context);
paramPattern->setType(paramTy);
// Create the constructor
auto constructor = new (context) ConstructorDecl(name, SourceLoc(),
paramPattern, thisDecl,
nullptr, structDecl);
// Set the constructor's type.
auto fnTy = FunctionType::get(paramTy, thisType, context);
auto allocFnTy = FunctionType::get(thisMetaType, fnTy, context);
auto initFnTy = FunctionType::get(thisType, fnTy, context);
constructor->setType(allocFnTy);
constructor->setInitializerType(initFnTy);
// Fix the declaration contexts.
thisDecl->setDeclContext(constructor);
setVarDeclContexts(paramPatterns, constructor);
// Assign all of the member variables appropriately.
SmallVector<BraceStmt::ExprStmtOrDecl, 4> stmts;
unsigned paramIdx = 0;
for (auto member : members) {
auto var = dyn_cast<VarDecl>(member);
if (!var || var->isProperty())
continue;
// Construct left-hand side.
Expr *lhs = new (context) DeclRefExpr(thisDecl, SourceLoc(),
thisDecl->getTypeOfReference());
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, SourceLoc());
// Construct right-hand side.
auto param = params[paramIdx++];
auto rhs = new (context) DeclRefExpr(param, SourceLoc(),
param->getTypeOfReference());
// Add assignment.
stmts.push_back(new (context) AssignExpr(lhs, SourceLoc(), rhs));
}
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
constructor->setBody(body);
// Add this as an external definition.
Impl.SwiftContext.addedExternalDecl(constructor);
// We're done.
return constructor;
}
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the union declaration and record it.
Decl *result;
UnionDecl *unionDecl = nullptr;
switch (Impl.classifyEnum(decl)) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Options: {
auto structDecl = new (Impl.SwiftContext)
StructDecl(SourceLoc(), name, SourceLoc(), { }, nullptr, dc);
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Normal);
if (!underlyingType)
return nullptr;
// Create a field to store the underlying value.
auto fieldName = Impl.SwiftContext.getIdentifier("value");
auto field = new (Impl.SwiftContext) VarDecl(SourceLoc(), fieldName,
underlyingType,
structDecl);
// Create a pattern binding to describe the field.
Pattern * fieldPattern = new (Impl.SwiftContext) NamedPattern(field);
fieldPattern->setType(field->getType());
fieldPattern
= new (Impl.SwiftContext) TypedPattern(
fieldPattern,
TypeLoc::withoutLoc(field->getType()));
fieldPattern->setType(field->getType());
auto patternBinding
= new (Impl.SwiftContext) PatternBindingDecl(SourceLoc(),
fieldPattern,
nullptr, structDecl);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *fieldDecl = field;
auto constructor = createValueConstructor(structDecl, {&fieldDecl, 1});
// Set the members of the struct.
Decl *members[3] = { constructor, patternBinding, field };
structDecl->setMembers(
Impl.SwiftContext.AllocateCopy(ArrayRef<Decl *>(members, 3)),
SourceRange());
result = structDecl;
break;
}
case EnumKind::Union:
unionDecl = new (Impl.SwiftContext)
UnionDecl(Impl.importSourceLoc(decl->getLocStart()),
/*isEnum*/ true,
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result = unionDecl;
break;
}
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
// Import each of the enumerators.
SmallVector<Decl *, 4> members;
for (auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
ec != ecEnd; ++ec) {
auto ood = Impl.importDecl(*ec);
if (!ood)
continue;
members.push_back(ood);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
// FIXME: Eventually, we'd like to be able to do this for structs as well,
// but we need static variables first.
if (unionDecl) {
unionDecl->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
}
return result;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// FIXME: Skip unions for now. We can't properly map them to Swift unions,
// because they aren't discriminated in any way. We could map them to
// structs, but that would make them very, very unsafe to use.
if (decl->isUnion())
return nullptr;
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
// The types of anonymous structs or unions are never imported; their
// fields are dumped directly into the enclosing class.
if (decl->isAnonymousStructOrUnion())
return nullptr;
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the struct declaration and record it.
auto result = new (Impl.SwiftContext)
StructDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
// Skip anonymous structs or unions; they'll be dealt with via the
// IndirectFieldDecls.
if (auto field = dyn_cast<clang::FieldDecl>(nd))
if (field->isAnonymousStructOrUnion())
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
members.push_back(member);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
// Add the struct decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// FIXME: We could import specializations, but perhaps only as unnamed
// structural types.
return nullptr;
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto &context = Impl.SwiftContext;
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
switch (Impl.classifyEnum(clangEnum)) {
case EnumKind::Constants: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// FIXME: These should be able to end up in a record, but Swift
// can't represent that now.
auto clangDC = clangEnum->getDeclContext();
while (!clangDC->isFileContext())
clangDC = clangDC->getParent();
// The context where the constant will be introduced.
auto dc = Impl.importDeclContext(clangDC);
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!type)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
// Create the global constant.
auto result = Impl.createConstant(name, dc, type,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Coerce);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Options: {
// The enumeration was mapped to a struct containining the integral
// type. Create a constant with that struct type.
// FIXME: These should be able to end up in a record, but Swift
// can't represent that now.
auto clangDC = clangEnum->getDeclContext();
while (!clangDC->isFileContext())
clangDC = clangDC->getParent();
auto dc = Impl.importDeclContext(clangDC);
if (!dc)
return nullptr;
// Import the enumeration type.
auto enumType = Impl.importType(
Impl.getClangASTContext().getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!enumType)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
// Create the global constant.
auto result = Impl.createConstant(name, dc, enumType,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Union: {
// The enumeration was mapped to a Swift union. Create an element of
// that union.
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
auto element
= new (context) UnionElementDecl(SourceLoc(), SourceLoc(),
name, TypeLoc(),
SourceLoc(), TypeLoc(),
dc);
// Give the union element the appropriate type.
auto theUnion = cast<UnionDecl>(dc);
auto argTy = MetaTypeType::get(theUnion->getDeclaredType(), context);
element->overwriteType(FunctionType::get(argTy,
theUnion->getDeclaredType(),
context));
Impl.ImportedDecls[decl->getCanonicalDecl()] = element;
return element;
}
}
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
// Check whether the context of any of the fields in the chain is a
// union. If so, don't import this field.
for (auto f = decl->chain_begin(), fEnd = decl->chain_end(); f != fEnd;
++f) {
if (auto record = dyn_cast<clang::RecordDecl>((*f)->getDeclContext())) {
if (record->isUnion())
return nullptr;
}
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Map this indirect field to a Swift variable.
return new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocStart()),
name, type, dc);
}
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
decl = decl->getMostRecentDecl();
if (!decl->hasPrototype()) {
// We can't import a function without a prototype.
return nullptr;
}
// FIXME: We can't IRgen inline functions, so don't import them.
if (decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>()) {
return nullptr;
}
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Import the function type. If we have parameters, make sure their names
// get into the resulting function type.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
Type type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns, bodyPatterns);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
auto loc = Impl.importSourceLoc(decl->getLocation());
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// FIXME: Poor location info.
auto funcExpr = FuncExpr::create(Impl.SwiftContext, loc,
argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
funcExpr->setType(type);
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = new (Impl.SwiftContext) FuncDecl(SourceLoc(), loc,
name, nameLoc,
/*GenericParams=*/0,
type, funcExpr,
dc);
setVarDeclContexts(argPatterns, funcExpr);
setVarDeclContexts(bodyPatterns, funcExpr);
return result;
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// FIXME: Import C++ member functions as methods.
return nullptr;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
// Fields are imported as variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto result = new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().IBOutlet = true;
// FIXME: Handle IBOutletCollection.
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// FIXME: Deal with fact that a property and an ivar can have the same
// name.
return VisitFieldDecl(decl);
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// FIXME: Swift does not have static variables in structs/classes yet.
if (decl->getDeclContext()->isRecord())
return nullptr;
// Variables are imported as... variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
return new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// Using declarations are not imported.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Using shadow declarations are not imported; rather, name lookup just
// looks through them.
return nullptr;
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
return VisitObjCMethodDecl(decl, dc);
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl, DeclContext *dc) {
auto loc = Impl.importSourceLoc(decl->getLocStart());
// The name of the method is the first part of the selector.
auto name
= Impl.importName(decl->getSelector().getIdentifierInfoForSlot(0));
if (name.empty())
return nullptr;
assert(dc->getDeclaredTypeOfContext() && "Method in non-type context?");
// Add the implicit 'this' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto thisTy = getThisTypeForContext(dc);
if (decl->isClassMethod())
thisTy = MetaTypeType::get(thisTy, Impl.SwiftContext);
auto thisName = Impl.SwiftContext.getIdentifier("this");
auto thisVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), thisName,
thisTy,
Impl.firstClangModule);
Pattern *thisPat = new (Impl.SwiftContext) NamedPattern(thisVar);
thisPat->setType(thisVar->getType());
thisPat
= new (Impl.SwiftContext) TypedPattern(thisPat,
TypeLoc::withoutLoc(thisTy));
thisPat->setType(thisVar->getType());
argPatterns.push_back(thisPat);
bodyPatterns.push_back(thisPat);
// Import the type that this method will have.
auto type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns,
bodyPatterns,
decl->getSelector());
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
// Add the 'this' parameter to the function type.
type = FunctionType::get(thisTy, type, Impl.SwiftContext);
// FIXME: Related result type?
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto funcExpr = FuncExpr::create(Impl.SwiftContext, loc,
argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
funcExpr->setType(type);
auto result = new (Impl.SwiftContext) FuncDecl(SourceLoc(), loc,
name, nameLoc,
/*GenericParams=*/0,
type, funcExpr, dc);
setVarDeclContexts(argPatterns, funcExpr);
setVarDeclContexts(bodyPatterns, funcExpr);
// Mark this as an Objective-C method.
result->getMutableAttrs().ObjC = true;
result->setIsObjC(true);
// Mark class methods as static.
if (decl->isClassMethod())
result->setStatic();
// If this method overrides another method, mark it as such.
// FIXME: We'll eventually have to deal with having multiple overrides
// in Swift.
if (auto thisClassTy = thisTy->getAs<ClassType>()) {
if (auto superTy = thisClassTy->getDecl()->getSuperclass()) {
auto superDecl = superTy->castTo<ClassType>()->getDecl();
if (auto superObjCClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
superDecl->getClangDecl())) {
if (auto superObjCMethod = superObjCClass->lookupMethod(
decl->getSelector(),
decl->isInstanceMethod())) {
// We found a method that we've overridden. Import it.
FuncDecl *superMethod = nullptr;
if (isa<clang::ObjCProtocolDecl>(
superObjCMethod->getDeclContext())) {
superMethod = cast_or_null<FuncDecl>(
Impl.importMirroredDecl(superObjCMethod,
superDecl));
} else {
superMethod = cast_or_null<FuncDecl>(
Impl.importDecl(superObjCMethod));
}
if (superMethod) {
// FIXME: Proper type checking here!
result->setOverriddenDecl(superMethod);
}
}
}
}
}
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>())
result->getMutableAttrs().IBAction = true;
return result;
}
private:
/// \brief Given an imported method, try to import it as some kind of
/// special declaration, e.g., a constructor or subscript.
Decl *importSpecialMethod(Decl *decl, DeclContext *dc) {
// Only consider Objective-C methods...
auto objcMethod
= dyn_cast_or_null<clang::ObjCMethodDecl>(decl->getClangDecl());
if (!objcMethod)
return nullptr;
switch (objcMethod->getMethodFamily()) {
case clang::OMF_None:
// Check for one of the subscripting selectors.
if (objcMethod->isInstanceMethod() &&
(objcMethod->getSelector() == Impl.objectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.objectForKeyedSubscript ||
objcMethod->getSelector() == Impl.setObjectForKeyedSubscript))
return importSubscript(decl, objcMethod, dc);
return nullptr;
case clang::OMF_init:
// An init instance method can be a constructor.
if (objcMethod->isInstanceMethod())
return importConstructor(decl, objcMethod, dc);
return nullptr;
case clang::OMF_new:
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
// None of these methods have special consideration.
return nullptr;
}
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling the 'new' syntax, e.g.,
///
/// \code
/// new NSArray(1024) // in objc: [[NSArray alloc] initWithCapacity:1024]
/// \endcode
ConstructorDecl *importConstructor(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
// Figure out the type of the container.
auto containerTy = dc->getDeclaredTypeOfContext();
assert(containerTy && "Method in non-type context?");
// Make sure that NSObject is a supertype of the container.
// FIXME: This is a hack because we don't have a suitable 'top' type for
// Objective-C classes.
auto checkTy = containerTy;
do {
auto classDecl = checkTy->getClassOrBoundGenericClass();
if (!classDecl) {
return nullptr;
}
if (classDecl->getName().str() == "NSObject")
break;
checkTy = classDecl->getSuperclass();
if (!checkTy)
return nullptr;
} while (true);
// Only methods in the 'init' family can become constructors.
FuncDecl *alloc = nullptr;
switch (objcMethod->getMethodFamily()) {
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_None:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
case clang::OMF_new:
llvm_unreachable("Caller did not filter non-constructor methods");
case clang::OMF_init: {
// FIXME: Ignore no-argument 'init' methods other than 'init' itself
// for now. Swift can't support more than one no-argument constructor.
if (objcMethod->param_size() == 0 &&
objcMethod->getSelector().getNameForSlot(0) != "init")
return nullptr;
// Make sure we have a usable 'alloc' method. Otherwise, we can't
// build this constructor anyway.
const clang::ObjCInterfaceDecl *interface;
if (isa<clang::ObjCProtocolDecl>(objcMethod->getDeclContext())) {
// For a protocol method, look into the context in which we'll be
// mirroring the method to find 'alloc'.
// FIXME: Part of the mirroring hack.
auto classDecl = containerTy->getClassOrBoundGenericClass();
if (!classDecl)
return nullptr;
interface = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
classDecl->getClangDecl());
} else {
// For non-protocol methods, just look for the interface.
interface = objcMethod->getClassInterface();
}
// If we couldn't find a class, we're done.
if (!interface)
return nullptr;
// Form the Objective-C selector for alloc.
auto &clangContext = Impl.getClangASTContext();
auto allocId = &clangContext.Idents.get("alloc");
auto allocSel = clangContext.Selectors.getNullarySelector(allocId);
// Find the 'alloc' class method.
auto allocMethod = interface->lookupClassMethod(allocSel);
if (!allocMethod)
return nullptr;
// Import the 'alloc' class method.
alloc = cast_or_null<FuncDecl>(Impl.importDecl(allocMethod));
if (!alloc)
return nullptr;
break;
}
}
// FIXME: Hack.
auto loc = decl->getLoc();
auto name = Impl.SwiftContext.getIdentifier("constructor");
// Add the implicit 'this' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto thisTy = getThisTypeForContext(dc);
auto thisMetaTy = MetaTypeType::get(thisTy, Impl.SwiftContext);
auto thisName = Impl.SwiftContext.getIdentifier("this");
auto thisMetaVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), thisName,
thisMetaTy,
Impl.firstClangModule);
Pattern *thisPat = new (Impl.SwiftContext) NamedPattern(thisMetaVar);
thisPat->setType(thisMetaTy);
thisPat
= new (Impl.SwiftContext) TypedPattern(thisPat,
TypeLoc::withoutLoc(thisMetaTy));
thisPat->setType(thisMetaTy);
argPatterns.push_back(thisPat);
bodyPatterns.push_back(thisPat);
// Import the type that this method will have.
auto type = Impl.importFunctionType(objcMethod->getResultType(),
{ objcMethod->param_begin(),
objcMethod->param_size() },
objcMethod->isVariadic(),
argPatterns,
bodyPatterns,
objcMethod->getSelector(),
/*isConstructor=*/true);
assert(type && "Type has already been successfully converted?");
// A constructor returns an object of the type, not 'id'.
// This is effectively implementing related-result-type semantics.
// FIXME: Perhaps actually check whether the routine has a related result
// type?
type = FunctionType::get(type->castTo<FunctionType>()->getInput(),
thisTy, Impl.SwiftContext);
// Add the 'this' parameter to the function types.
Type allocType = FunctionType::get(thisMetaTy, type, Impl.SwiftContext);
Type initType = FunctionType::get(thisTy, type, Impl.SwiftContext);
VarDecl *thisVar = new (Impl.SwiftContext) VarDecl(SourceLoc(),
thisName, thisTy, dc);
// Create the actual constructor.
// FIXME: Losing body patterns here.
auto result = new (Impl.SwiftContext) ConstructorDecl(name, loc,
argPatterns.back(),
thisVar,
/*GenericParams=*/0,
dc);
result->setType(allocType);
result->setInitializerType(initType);
thisVar->setDeclContext(result);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
// Create the call to alloc that allocates 'this'.
{
// FIXME: Use the 'this' of metaclass type rather than a metatype
// expression.
Expr* initExpr = new (Impl.SwiftContext) MetatypeExpr(nullptr, loc,
thisMetaTy);
// For an 'init' method, we need to call alloc first.
Expr *allocRef
= new (Impl.SwiftContext) DeclRefExpr(alloc, loc,
alloc->getTypeOfReference());
auto allocCall = new (Impl.SwiftContext) DotSyntaxCallExpr(allocRef,
loc,
initExpr);
auto emptyTuple
= new (Impl.SwiftContext) TupleExpr(loc, {}, nullptr, loc,
/*hasTrailingClosure=*/false);
initExpr = new (Impl.SwiftContext) CallExpr(allocCall, emptyTuple);
// Cast the result of the alloc call to the (metatype) 'this'.
// FIXME: instancetype should make this unnecessary.
auto cast = new (Impl.SwiftContext) UnconditionalCheckedCastExpr(
initExpr,
SourceLoc(),
SourceLoc(),
TypeLoc::withoutLoc(thisTy));
cast->setCastKind(CheckedCastKind::Downcast);
initExpr = cast;
result->setAllocThisExpr(initExpr);
}
// Create the body of the constructor, which will call the
// corresponding init method.
Expr *initExpr
= new (Impl.SwiftContext) DeclRefExpr(thisVar, loc,
thisVar->getTypeOfReference());
// Form a reference to the actual method.
auto func = cast<FuncDecl>(decl);
auto funcRef
= new (Impl.SwiftContext) DeclRefExpr(func, loc,
func->getTypeOfReference());
initExpr = new (Impl.SwiftContext) DotSyntaxCallExpr(funcRef, loc,
initExpr);
// Form the call arguments.
SmallVector<Expr *, 2> callArgs;
auto tuple = dyn_cast<TuplePattern>(argPatterns[1]);
if (!tuple) {
// FIXME: We don't want this to be the case. We should always ensure
// that the body has names, even if the interface does not.
return nullptr;
}
for (auto elt : tuple->getFields()) {
auto named = dyn_cast<NamedPattern>(
elt.getPattern()->getSemanticsProvidingPattern());
if (!named) {
// FIXME: We don't want this to be the case. Can we fake up names
// in the body parameters so this doesn't happen?
return nullptr;
}
// Create a reference to this parameter.
Expr *ref = new (Impl.SwiftContext) DeclRefExpr(named->getDecl(),
loc,
named->getType());
// If the parameter is [byref], take its address.
if (named->getDecl()->getType()->is<LValueType>())
ref = new (Impl.SwiftContext) AddressOfExpr(loc, ref,
ref->getType());
callArgs.push_back(ref);
}
// Form the method call.
Expr *callArg;
if (callArgs.size() == 1) {
callArg = callArgs[0];
} else {
auto callArgsCopy = Impl.SwiftContext.AllocateCopy(callArgs);
callArg
= new (Impl.SwiftContext) TupleExpr(loc, callArgsCopy,
nullptr, loc,
/*hasTrailingClosure=*/false);
}
initExpr = new (Impl.SwiftContext) CallExpr(initExpr, callArg);
// Cast the result of the alloc call to the (metatype) 'this'.
// FIXME: instancetype should make this unnecessary.
auto cast = new (Impl.SwiftContext) UnconditionalCheckedCastExpr(
initExpr,
SourceLoc(),
SourceLoc(),
TypeLoc::withoutLoc(thisTy));
cast->setCastKind(CheckedCastKind::Downcast);
initExpr = cast;
// Form the assignment statement.
auto refThis
= new (Impl.SwiftContext) DeclRefExpr(thisVar, loc,
thisVar->getTypeOfReference());
auto assign = new (Impl.SwiftContext) AssignExpr(refThis, loc, initExpr);
// Set the body of the constructor.
result->setBody(BraceStmt::create(Impl.SwiftContext, loc,
BraceStmt::ExprStmtOrDecl(assign),
loc));
// Inform the context that we have external definitions.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
/// \brief Retrieve the single variable described in the given pattern.
///
/// This routine assumes that the pattern is something very simple
/// like (x : type) or (x).
VarDecl *getSingleVar(Pattern *pattern) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto tuple = dyn_cast<TuplePattern>(pattern)) {
pattern = tuple->getFields()[0].getPattern()
->getSemanticsProvidingPattern();
}
return cast<NamedPattern>(pattern)->getDecl();
}
/// \brief Add the implicit 'this' pattern to the given list of patterns.
///
/// \param thisTy The type of the 'this' parameter.
///
/// \param args The set of arguments
VarDecl *addImplicitThisParameter(Type thisTy,
SmallVectorImpl<Pattern *> &args) {
auto thisName = Impl.SwiftContext.getIdentifier("this");
auto thisVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), thisName,
thisTy,
Impl.firstClangModule);
Pattern *thisPat = new (Impl.SwiftContext) NamedPattern(thisVar);
thisPat->setType(thisVar->getType());
thisPat = new (Impl.SwiftContext) TypedPattern(
thisPat,
TypeLoc::withoutLoc(thisTy));
thisPat->setType(thisVar->getType());
args.push_back(thisPat);
return thisVar;
}
/// \brief Build a thunk for an Objective-C getter.
///
/// \param getter The Objective-C getter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript getter. Null
/// indicates that we're generating a getter thunk for a property getter.
///
/// \returns The getter thunk.
FuncDecl *buildGetterThunk(FuncDecl *getter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = getter->getLoc();
// Figure out the element type, by looking through 'this' and the normal
// parameters.
auto elementTy
= getter->getType()->castTo<FunctionType>()->getResult()
->castTo<FunctionType>()->getResult();
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'this'
auto thisVar = addImplicitThisParameter(dc->getDeclaredTypeOfContext(),
getterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
getterArgs.push_back(pat);
}
// empty tuple
getterArgs.push_back(TuplePattern::create(context, loc, { }, loc));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = elementTy;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(),
getterType,
context);
}
// Create the getter body.
auto funcExpr = FuncExpr::create(context, getter->getLoc(),
getterArgs,
getterArgs,
TypeLoc::withoutLoc(elementTy),
getter->getDeclContext());
funcExpr->setType(getterType);
setVarDeclContexts(getterArgs, funcExpr);
// Create the getter thunk.
auto thunk = new (context) FuncDecl(SourceLoc(), getter->getLoc(),
Identifier(), SourceLoc(), nullptr,
getterType, funcExpr,
getter->getDeclContext());
// Create the body of the thunk, which calls the Objective-C getter.
auto thisRef = new (context) DeclRefExpr(thisVar, loc,
thisVar->getTypeOfReference());
auto getterRef
= new (context) DeclRefExpr(getter, loc,
getter->getTypeOfReference());
// First, bind 'this' to the method.
Expr *call = new (context) DotSyntaxCallExpr(getterRef, loc, thisRef);
// Call the method itself.
if (indices) {
// For a subscript, pass the index.
auto indexVar = getSingleVar(getterArgs[1]);
auto indexRef
= new (context) DeclRefExpr(indexVar, loc,
indexVar->getTypeOfReference());
call = new (context) CallExpr(call, indexRef);
} else {
// For a property, call with no arguments.
auto emptyTuple = new (context) TupleExpr(loc, { }, nullptr, loc,
/*hasTrailingClosure=*/false);
call = new (context) CallExpr(call, emptyTuple);
}
// Create the return statement.
auto ret = new (context) ReturnStmt(loc, call);
// Finally, set the body.
funcExpr->setBody(BraceStmt::create(context, loc,
BraceStmt::ExprStmtOrDecl(ret),
loc));
// Register this thunk as an external definition.
Impl.SwiftContext.addedExternalDecl(thunk);
return thunk;
}
/// \brief Build a thunk for an Objective-C setter.
///
/// \param setter The Objective-C setter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript setter. Null
/// indicates that we're generating a setter thunk for a property setter.
///
/// \returns The getter thunk.
FuncDecl *buildSetterThunk(FuncDecl *setter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = setter->getLoc();
auto tuple = cast<TuplePattern>(
setter->getBody()->getBodyParamPatterns()[1]);
// Objective-C subscript setters are imported with a function type
// such as:
//
// (this) -> (value, index) -> ()
//
// while Swift subscript setters are curried as
//
// (this) -> (index)(value) -> ()
//
// Build a setter thunk with the latter signature that maps to the
// former.
//
// Property setters are similar, but don't have indices.
// Form the argument patterns.
SmallVector<Pattern *, 3> setterArgs;
// 'this'
auto thisVar = addImplicitThisParameter(dc->getDeclaredTypeOfContext(),
setterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
setterArgs.push_back(pat);
}
// value
auto valuePattern = tuple->getFields()[0].getPattern()->clone(context);
setterArgs.push_back(TuplePattern::create(context, loc,
TuplePatternElt(valuePattern),
loc));
setterArgs.back()->setType(
TupleType::get(TupleTypeElt(valuePattern->getType(),
valuePattern->getBoundName()),
context));
// Form the type of the setter.
auto setterType = TupleType::getEmpty(context);
for (auto it = setterArgs.rbegin(), itEnd = setterArgs.rend();
it != itEnd; ++it) {
setterType = FunctionType::get((*it)->getType(),
setterType,
context);
}
// Create the setter body.
auto funcExpr = FuncExpr::create(context, setter->getLoc(),
setterArgs,
setterArgs,
TypeLoc::withoutLoc(TupleType::getEmpty(context)),
setter->getDeclContext());
funcExpr->setType(setterType);
setVarDeclContexts(setterArgs, funcExpr);
// Create the setter thunk.
auto thunk = new (context) FuncDecl(SourceLoc(), setter->getLoc(),
Identifier(), SourceLoc(), nullptr,
setterType, funcExpr, dc);
// Create the body of the thunk, which calls the Objective-C setter.
auto valueVar = getSingleVar(setterArgs.back());
auto thisRef = new (context) DeclRefExpr(thisVar, loc,
thisVar->getTypeOfReference());
auto valueRef
= new (context) DeclRefExpr(valueVar, loc,
valueVar->getTypeOfReference());
auto setterRef
= new (context) DeclRefExpr(setter, loc,
setter->getTypeOfReference());
// First, bind 'this' to the method.
Expr *call = new (context) DotSyntaxCallExpr(setterRef, loc, thisRef);
// Next, call the Objective-C setter.
Expr *callArgs;
if (indices) {
// For subscript setters, we have both value and index.
auto indexVar = getSingleVar(setterArgs[1]);
auto indexRef
= new (context) DeclRefExpr(indexVar, loc,
indexVar->getTypeOfReference());
Expr *callArgsArray[2] = { valueRef, indexRef };
callArgs
= new (context) TupleExpr(loc,
context.AllocateCopy(
MutableArrayRef<Expr*>(callArgsArray)),
nullptr, loc,
/*hasTrailingClosure=*/false);
} else {
callArgs = valueRef;
}
call = new (context) CallExpr(call, callArgs);
// Finally, set the body.
funcExpr->setBody(BraceStmt::create(context, loc,
BraceStmt::ExprStmtOrDecl(call),
loc));
// Register this thunk as an external definition.
Impl.SwiftContext.addedExternalDecl(thunk);
return thunk;
}
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
// Make sure we have a usable 'alloc' method. Otherwise, we can't
// build this constructor anyway.
// FIXME: Can we do this for protocol methods as well? Do we want to?
auto interface = objcMethod->getClassInterface();
if (!interface)
return nullptr;
FuncDecl *getter = nullptr, *setter = nullptr;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = interface->lookupInstanceMethod(
Impl.setObjectAtIndexedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
}
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript){
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = interface->lookupInstanceMethod(
Impl.objectAtIndexedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = interface->lookupInstanceMethod(
Impl.setObjectForKeyedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
}
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = interface->lookupInstanceMethod(
Impl.objectForKeyedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (Impl.Subscripts[{getter, setter}])
return nullptr;
// Compute the element type, looking through the implicit 'this'
// parameter and the normal function parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Check the form of the getter.
FuncDecl *getterThunk = nullptr;
Pattern *getterIndices = nullptr;
auto &context = Impl.SwiftContext;
// Find the getter indices and make sure they match.
{
auto tuple = dyn_cast<TuplePattern>(
getter->getBody()->getArgParamPatterns()[1]);
if (tuple && tuple->getFields().size() != 1)
return nullptr;
getterIndices = tuple->getFields()[0].getPattern();
}
// Check the form of the setter.
FuncDecl *setterThunk = nullptr;
Pattern *setterIndices = nullptr;
if (setter) {
auto tuple = dyn_cast<TuplePattern>(
setter->getBody()->getBodyParamPatterns()[1]);
if (!tuple)
return nullptr;
if (tuple->getFields().size() != 2)
return nullptr;
// The setter must accept elements of the same type as the getter
// returns.
// FIXME: Adjust C++ references?
auto setterElementTy = tuple->getFields()[0].getPattern()->getType();
if (!elementTy->isEqual(setterElementTy))
return nullptr;
setterIndices = tuple->getFields()[1].getPattern();
}
if (getter && getterIndices)
getterThunk = buildGetterThunk(getter, dc, getterIndices);
if (setter && setterIndices)
setterThunk = buildSetterThunk(setter, dc, setterIndices);
// Build the subscript declaration.
auto argPatterns
= getterThunk->getBody()->getArgParamPatterns()[1]->clone(context);
auto name = context.getIdentifier("__subscript");
auto subscript
= new (context) SubscriptDecl(name, decl->getLoc(), argPatterns,
decl->getLoc(),
TypeLoc::withoutLoc(elementTy),
SourceRange(), getterThunk, setterThunk,
dc);
setVarDeclContexts(argPatterns, subscript->getDeclContext());
subscript->setType(FunctionType::get(subscript->getIndices()->getType(),
subscript->getElementType(),
context));
getterThunk->makeGetter(subscript);
if (setterThunk)
setterThunk->makeSetter(subscript);
// Determine whether this subscript operation overrides another subscript
// operation.
// FIXME: This ends up looking in the superclass for entirely bogus
// reasons. Fix it.
auto containerTy = dc->getDeclaredTypeInContext();
SmallVector<ValueDecl *, 2> lookup;
Impl.firstClangModule->lookupQualified(containerTy, name,
NL_QualifiedDefault, lookup);
Type unlabeledIndices;
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
// Compute the type of indices for our own subscript operation, lazily.
if (!unlabeledIndices) {
unlabeledIndices = subscript->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
}
// Compute the type of indices for the subscript we found.
auto parentUnlabeledIndices = parentSub->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
continue;
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
if (auto parentGetter = parentSub->getGetter()) {
if (getterThunk)
getterThunk->setOverriddenDecl(parentGetter);
}
if (auto parentSetter = parentSub->getSetter()) {
if (setterThunk)
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
return subscript;
}
public:
/// \brief Retrieve the type of 'this' for the given context.
Type getThisTypeForContext(DeclContext *dc) {
// For a protocol, the type is 'This'.
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
return proto->getThis()->getDeclaredType();
}
return dc->getDeclaredTypeOfContext();
}
// Import the given Objective-C protocol list and return a context-allocated
// ArrayRef that can be passed to the declaration.
MutableArrayRef<ProtocolDecl *>
importObjCProtocols(const clang::ObjCProtocolList &clangProtocols) {
if (clangProtocols.empty())
return { };
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = cast_or_null<ProtocolDecl>(Impl.importDecl(*cp))) {
if (knownProtocols.insert(proto))
protocols.push_back(proto);
}
}
// FIXME: We should be synthesizing protocol conformances as well.
return Impl.SwiftContext.AllocateCopy(protocols);
}
/// \brief Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now.
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols,
SmallVectorImpl<Decl *> &members) {
for (auto proto : protocols) {
for (auto member : proto->getMembers()) {
if (auto func = dyn_cast<FuncDecl>(member)) {
if (auto objcMethod = dyn_cast_or_null<clang::ObjCMethodDecl>(
func->getClangDecl())) {
if (!decl->getMethod(objcMethod->getSelector(),
objcMethod->isInstanceMethod())) {
if (auto imported = Impl.importMirroredDecl(objcMethod, dc)) {
members.push_back(imported);
// Import any special methods based on this member.
if (auto special = importSpecialMethod(imported, dc)) {
members.push_back(special);
}
}
}
}
}
}
}
}
/// \brief Determine whether the given Objective-C class has an instance or
/// class method with the given selector directly declared (i.e., not in
/// a superclass or protocol).
static bool hasMethodShallow(const clang::Selector sel, bool isInstance,
const clang::ObjCInterfaceDecl *objcClass) {
if (objcClass->getMethod(sel, isInstance))
return true;
for (auto cat = objcClass->visible_categories_begin(),
catEnd = objcClass->visible_categories_end();
cat != catEnd;
++cat) {
if ((*cat)->getMethod(sel, isInstance))
return true;
}
return false;
}
/// \brief Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
///
/// FIXME: Does it make sense to have inherited constructors as a real
/// Swift feature?
void importInheritedConstructors(const clang::ObjCInterfaceDecl *objcClass,
DeclContext *dc,
SmallVectorImpl<Decl *> &members) {
// FIXME: Would like a more robust way to ensure that we aren't creating
// duplicates.
llvm::SmallSet<clang::Selector, 16> knownSelectors;
auto inheritConstructors = [&](const clang::ObjCContainerDecl *container) {
for (auto meth = container->meth_begin(),
methEnd = container->meth_end();
meth != methEnd; ++meth) {
if ((*meth)->getMethodFamily() == clang::OMF_init &&
(*meth)->isInstanceMethod() &&
!hasMethodShallow((*meth)->getSelector(),
(*meth)->isInstanceMethod(),
objcClass) &&
knownSelectors.insert((*meth)->getSelector())) {
if (auto imported = Impl.importDecl(*meth)) {
if (auto special = importConstructor(imported, *meth, dc)) {
members.push_back(special);
}
}
}
}
};
for (auto curObjCClass = objcClass; curObjCClass;
curObjCClass = curObjCClass->getSuperClass()) {
inheritConstructors(curObjCClass);
for (auto cat = curObjCClass->visible_categories_begin(),
catEnd = curObjCClass->visible_categories_end();
cat != catEnd;
++cat) {
inheritConstructors(*cat);
}
}
}
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// Objective-C categories and extensions map to Swift extensions.
// Find the Swift class being extended.
auto objcClass
= cast_or_null<ClassDecl>(Impl.importDecl(decl->getClassInterface()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the extension declaration and record it.
auto loc = Impl.importSourceLoc(decl->getLocStart());
auto result
= new (Impl.SwiftContext)
ExtensionDecl(loc,
TypeLoc::withoutLoc(objcClass->getDeclaredType()),
{ },
dc);
objcClass->addExtension(result);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setProtocols(importObjCProtocols(decl->getReferencedProtocols()));
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (auto property = objcMethod->findPropertyDecl())
if (Impl.importDecl(
const_cast<clang::ObjCPropertyDecl *>(property)))
continue;
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, result)) {
members.push_back(special);
}
}
members.push_back(member);
}
// Import mirrored declarations for protocols to which this category
// or extension conforms.
// FIXME: This is a short-term hack.
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
return result;
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
// FIXME: Figure out how to deal with incomplete protocols, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Append "Proto" to protocol names.
auto name = Impl.importName(decl->getDeclName(), "Proto");
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the protocol declaration and record it.
auto result = new (Impl.SwiftContext)
ProtocolDecl(dc,
Impl.importSourceLoc(decl->getLocStart()),
Impl.importSourceLoc(decl->getLocation()),
name,
{ });
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setCircularityCheck(CircularityCheck::Checked);
// Import protocols this protocol conforms to.
result->setProtocols(importObjCProtocols(decl->getReferencedProtocols()));
// Note that this is an Objective-C and class protocol.
result->getMutableAttrs().ObjC = true;
result->getMutableAttrs().ClassProtocol = true;
result->setIsObjC(true);
// Add the implicit 'This' associated type.
// FIXME: Mark as 'implicit'.
auto thisId = Impl.SwiftContext.getIdentifier("This");
auto thisDecl = new (Impl.SwiftContext) TypeAliasDecl(SourceLoc(), thisId,
SourceLoc(), TypeLoc(),
result,
MutableArrayRef<TypeLoc>());
auto thisArchetype = ArchetypeType::getNew(Impl.SwiftContext, nullptr,
thisId,
Type(result->getDeclaredType()),
Type());
thisDecl->getUnderlyingTypeLoc() = TypeLoc::withoutLoc(thisArchetype);
Decl *thisDeclDecl = thisDecl;
result->setMembers(MutableArrayRef<Decl *>(&thisDeclDecl, 1),
SourceRange());
// Import each of the members.
SmallVector<Decl *, 4> members;
members.push_back(thisDecl);
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
// FIXME: Failure to import a non-optional requirement from a protocol
// seems like a serious problem, because we can't actually prove
// conformance to the protocol. Somehow mark this as an incomplete
// protocol, or drop it entirely (?).
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (auto property = objcMethod->findPropertyDecl())
if (Impl.importDecl(
const_cast<clang::ObjCPropertyDecl *>(property)))
continue;
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, result)) {
members.push_back(special);
}
}
members.push_back(member);
}
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the class declaration and record it.
auto result = new (Impl.SwiftContext)
ClassDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setCircularityCheck(CircularityCheck::Checked);
// If this Objective-C class has a supertype, import it.
if (auto objcSuper = decl->getSuperClass()) {
auto super = cast_or_null<ClassDecl>(Impl.importDecl(objcSuper));
if (!super)
return nullptr;
result->setSuperclass(super->getDeclaredType());
}
// Import protocols this class conforms to.
result->setProtocols(importObjCProtocols(decl->getReferencedProtocols()));
// Note that this is an Objective-C class.
result->getMutableAttrs().ObjC = true;
result->setIsObjC(true);
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (auto property = objcMethod->findPropertyDecl())
if (Impl.importDecl(
const_cast<clang::ObjCPropertyDecl *>(property)))
continue;
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, result)) {
members.push_back(special);
}
}
members.push_back(member);
}
// Import inherited constructors.
importInheritedConstructors(decl, result, members);
// Import mirrored declarations for protocols to which this class
// conforms.
// FIXME: This is a short-term hack.
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
/// \brief Given an untyped collection and an element type,
/// produce the typed collection (if possible) or return the collection
/// itself (if there is no known corresponding typed collection).
Type getTypedCollection(Type collectionTy, Type elementTy) {
auto classTy = collectionTy->getAs<ClassType>();
if (!classTy) {
return collectionTy;
}
// Map known collections to their typed equivalents.
// FIXME: This is very hacky.
typedef std::pair<StringRef, StringRef> StringRefPair;
StringRefPair typedCollection
= llvm::StringSwitch<StringRefPair>(classTy->getDecl()->getName().str())
.Case("NSArray", StringRefPair("Foundation", "NSTypedArray"))
.Default(StringRefPair(StringRef(), StringRef()));
if (typedCollection.first.empty()) {
return collectionTy;
}
// Form the specialization.
if (auto typed = Impl.getNamedSwiftTypeSpecialization(
Impl.getNamedModule(typedCollection.first),
typedCollection.second,
elementTy)) {
return typed;
}
return collectionTy;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
// Properties are imported as variables.
// FIXME: For now, don't import properties in protocols, because IRGen
// can't handle the thunks we generate.
if (isa<clang::ObjCProtocolDecl>(decl->getDeclContext()))
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
auto containerTy = dc->getDeclaredTypeInContext();
VarDecl *overridden = nullptr;
SmallVector<ValueDecl *, 2> lookup;
Impl.firstClangModule->lookupQualified(containerTy, name,
NL_QualifiedDefault, lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result))
return nullptr;
if (auto var = dyn_cast<VarDecl>(result))
overridden = var;
}
auto type = Impl.importType(decl->getType(), ImportTypeKind::Property);
if (!type)
return nullptr;
// Look for an iboutletcollection attribute, which provides additional
// typing information for known containers.
if (auto collectionAttr = decl->getAttr<clang::IBOutletCollectionAttr>()){
if (auto elementType = Impl.importType(collectionAttr->getInterface(),
ImportTypeKind::Normal)){
type = getTypedCollection(type, elementType);
}
}
// Import the getter.
auto getter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getGetterMethodDecl()));
if (!getter && decl->getGetterMethodDecl())
return nullptr;
// Import the setter, if there is one.
auto setter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getSetterMethodDecl()));
if (!setter && decl->getSetterMethodDecl())
return nullptr;
auto result = new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Build thunks.
FuncDecl *getterThunk = buildGetterThunk(getter, dc, nullptr);
getterThunk->makeGetter(result);
FuncDecl *setterThunk = nullptr;
if (setter) {
setterThunk = buildSetterThunk(setter, dc, nullptr);
setterThunk->makeSetter(result);
}
// Turn this into a property.
// FIXME: Fake locations for '{' and '}'?
result->setProperty(Impl.SwiftContext, SourceLoc(),
getterThunk, setterThunk,
SourceLoc());
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().IBOutlet = true;
// FIXME: Handle IBOutletCollection.
if (overridden) {
result->setOverriddenDecl(overridden);
}
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Like C++ using declarations, name lookup simply looks through
// Objective-C compatibility aliases. They are not imported directly.
return nullptr;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitClassScopeFunctionSpecializationDecl(
const clang::ClassScopeFunctionSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
}
/// \brief Classify the given Clang enumeration to describe how it
EnumKind ClangImporter::Implementation::classifyEnum(const clang::EnumDecl *decl) {
Identifier name;
if (decl->getDeclName())
name = importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name = importName(decl->getTypedefNameForAnonDecl()->getDeclName());
// Anonymous enumerations simply get mapped to constants of the
// underlying type of the enum, because there is no way to conjure up a
// name for the Swift type.
if (name.empty())
return EnumKind::Constants;
// FIXME: For now, Options is the only usable answer, because unions
// are broken in IRgen.
return EnumKind::Options;
}
Decl *ClangImporter::Implementation::importDecl(const clang::NamedDecl *decl) {
if (!decl)
return nullptr;
auto known = ImportedDecls.find(decl->getCanonicalDecl());
if (known != ImportedDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
auto result = converter.Visit(decl);
auto canon = decl->getCanonicalDecl();
// Note that the decl was imported from Clang. Don't mark stdlib decls as
// imported.
if (result && result->getDeclContext() != getSwiftModule()) {
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(canon);
}
if (result || !converter.hadForwardDeclaration())
ImportedDecls[canon] = result;
return result;
}
Decl *
ClangImporter::Implementation::importMirroredDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc) {
if (!decl)
return nullptr;
auto known = ImportedProtocolDecls.find({decl->getCanonicalDecl(), dc});
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
auto result = converter.VisitObjCMethodDecl(decl, dc);
auto canon = decl->getCanonicalDecl();
if (result) {
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(canon);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[{canon, dc}] = result;
return result;
}
DeclContext *
ClangImporter::Implementation::importDeclContext(const clang::DeclContext *dc) {
// FIXME: Should map to the module we want to import into (?).
if (dc->isTranslationUnit())
return firstClangModule;
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
auto swiftDecl = importDecl(decl);
if (!swiftDecl)
return nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(const clang::Decl *D) {
const clang::DeclContext *DC = D->getDeclContext();
if (DC->isTranslationUnit())
if (auto *M = getClangModuleForDecl(D))
return M;
return importDeclContext(DC);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type,
const clang::APValue &value,
ConstantConvertKind convertKind) {
auto &context = SwiftContext;
auto var = new (context) VarDecl(SourceLoc(), name, type, dc);
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// empty tuple
getterArgs.push_back(TuplePattern::create(context, SourceLoc(), { },
SourceLoc()));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = type;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(),
getterType,
context);
}
// Create the getter body.
auto funcExpr = FuncExpr::create(context, SourceLoc(),
getterArgs,
getterArgs,
TypeLoc::withoutLoc(type),
dc);
funcExpr->setType(getterType);
setVarDeclContexts(getterArgs, funcExpr);
// Create the getter function declaration.
auto func = new (context) FuncDecl(SourceLoc(), SourceLoc(),
Identifier(), SourceLoc(), nullptr,
getterType, funcExpr, dc);
// Create the integer literal value.
// FIXME: Handle other kinds of values.
Expr *expr = nullptr;
switch (value.getKind()) {
case clang::APValue::AddrLabelDiff:
case clang::APValue::Array:
case clang::APValue::ComplexFloat:
case clang::APValue::ComplexInt:
case clang::APValue::LValue:
case clang::APValue::MemberPointer:
case clang::APValue::Struct:
case clang::APValue::Uninitialized:
case clang::APValue::Union:
case clang::APValue::Vector:
llvm_unreachable("Unhandled APValue kind");
case clang::APValue::Float:
case clang::APValue::Int: {
// Print the value.
llvm::SmallString<16> printedValue;
if (value.getKind() == clang::APValue::Int) {
value.getInt().toString(printedValue);
} else {
value.getFloat().toString(printedValue);
}
// If this was a negative number, record that and strip off the '-'.
// FIXME: This is hideous!
// FIXME: Actually make the negation work.
bool isNegative = printedValue[0] == '-';
if (isNegative)
printedValue.erase(printedValue.begin());
// Create the expression node.
StringRef printedValueCopy(context.AllocateCopy(printedValue).data(),
printedValue.size());
if (value.getKind() == clang::APValue::Int) {
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc());
} else {
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc());
}
if (!isNegative)
break;
// If it was a negative number, negate the integer literal.
auto minus = context.getIdentifier("-");
UnqualifiedLookup lookup(minus, getSwiftModule());
if (!lookup.isSuccess())
return nullptr;
Expr* minusRef;
SmallVector<ValueDecl *, 4> found;
for (auto &result : lookup.Results) {
if (!result.hasValueDecl())
continue;
if (!isa<FuncDecl>(result.getValueDecl()))
continue;
found.push_back(result.getValueDecl());
}
if (found.empty())
return nullptr;
if (found.size() == 1) {
minusRef = new (context) DeclRefExpr(found[0],
SourceLoc(),
found[0]->getTypeOfReference());
} else {
auto foundCopy = context.AllocateCopy(found);
minusRef = new (context) OverloadedDeclRefExpr(
foundCopy, SourceLoc());
}
expr = new (context) PrefixUnaryExpr(minusRef, expr);
break;
}
}
// If we need a conversion, add one now.
switch (convertKind) {
case ConstantConvertKind::None:
break;
case ConstantConvertKind::Construction: {
auto typeRef = new (context) MetatypeExpr(nullptr, SourceLoc(),
MetaTypeType::get(type, context));
expr = new (context) CallExpr(typeRef, expr);
break;
}
case ConstantConvertKind::Coerce:
expr = new (context) CoerceExpr(expr, SourceLoc(),
TypeLoc::withoutLoc(type));
break;
case ConstantConvertKind::Downcast: {
auto cast = new (context) UnconditionalCheckedCastExpr(expr,
SourceLoc(),
SourceLoc(),
TypeLoc::withoutLoc(type));
cast->setCastKind(CheckedCastKind::Downcast);
expr = cast;
break;
}
}
// Create the return statement.
auto ret = new (context) ReturnStmt(SourceLoc(), expr);
// Finally, set the body.
funcExpr->setBody(BraceStmt::create(context, SourceLoc(),
BraceStmt::ExprStmtOrDecl(ret),
SourceLoc()));
// Write the function up as the getter.
func->makeGetter(var);
var->setProperty(context, SourceLoc(), func, nullptr, SourceLoc());
// Register this thunk as an external definition.
SwiftContext.addedExternalDecl(func);
return var;
}