Files
swift-mirror/lib/AST/Module.cpp
Slava Pestov 6cbb494ad2 AST: Give all ValueDecls an interface type
Previously, getInterfaceType() would return getType() if no
interface type was set. Instead, always set an interface type
explicitly.

Eventually we want to remove getType() altogether, and this
brings us one step closer to this goal.

Note that ParamDecls are excempt from this treatment, because
they don't have a proper interface type yet. Cleaning this up
requires more effort.
2016-11-29 03:05:25 -07:00

1611 lines
54 KiB
C++

//===--- Module.cpp - Swift Language Module Implementation ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Module.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTScope.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ReferencedNameTracker.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PrintOptions.h"
#include "swift/Basic/SourceManager.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Builtin Module Name lookup
//===----------------------------------------------------------------------===//
class BuiltinUnit::LookupCache {
/// The cache of identifiers we've already looked up. We use a
/// single hashtable for both types and values as a minor
/// optimization; this prevents us from having both a builtin type
/// and a builtin value with the same name, but that's okay.
llvm::DenseMap<Identifier, ValueDecl*> Cache;
public:
void lookupValue(Identifier Name, NLKind LookupKind, const BuiltinUnit &M,
SmallVectorImpl<ValueDecl*> &Result);
};
BuiltinUnit::LookupCache &BuiltinUnit::getCache() const {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (!Cache)
const_cast<BuiltinUnit *>(this)->Cache = llvm::make_unique<LookupCache>();
return *Cache;
}
void BuiltinUnit::LookupCache::lookupValue(
Identifier Name, NLKind LookupKind, const BuiltinUnit &M,
SmallVectorImpl<ValueDecl*> &Result) {
// Only qualified lookup ever finds anything in the builtin module.
if (LookupKind != NLKind::QualifiedLookup) return;
ValueDecl *&Entry = Cache[Name];
ASTContext &Ctx = M.getParentModule()->getASTContext();
if (!Entry) {
if (Type Ty = getBuiltinType(Ctx, Name.str())) {
auto *TAD = new (Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(),
TypeLoc::withoutLoc(Ty),
/*genericparams*/nullptr,
const_cast<BuiltinUnit*>(&M));
TAD->computeType();
TAD->setInterfaceType(TAD->getType());
TAD->setAccessibility(Accessibility::Public);
Entry = TAD;
}
}
if (!Entry)
Entry = getBuiltinValueDecl(Ctx, Name);
if (Entry)
Result.push_back(Entry);
}
// Out-of-line because std::unique_ptr wants LookupCache to be complete.
BuiltinUnit::BuiltinUnit(ModuleDecl &M)
: FileUnit(FileUnitKind::Builtin, M) {
M.getASTContext().addDestructorCleanup(*this);
}
//===----------------------------------------------------------------------===//
// Normal Module Name Lookup
//===----------------------------------------------------------------------===//
class SourceFile::LookupCache {
/// A lookup map for value decls. When declarations are added they are added
/// under all variants of the name they can be found under.
class DeclMap {
llvm::DenseMap<DeclName, TinyPtrVector<ValueDecl*>> Members;
public:
void add(ValueDecl *VD) {
if (!VD->hasName()) return;
VD->getFullName().addToLookupTable(Members, VD);
}
void clear() {
Members.shrink_and_clear();
}
decltype(Members)::const_iterator begin() const { return Members.begin(); }
decltype(Members)::const_iterator end() const { return Members.end(); }
decltype(Members)::const_iterator find(DeclName Name) const {
return Members.find(Name);
}
};
DeclMap TopLevelValues;
DeclMap ClassMembers;
bool MemberCachePopulated = false;
template<typename Range>
void doPopulateCache(Range decls, bool onlyOperators);
void addToMemberCache(DeclRange decls);
void populateMemberCache(const SourceFile &SF);
public:
typedef ModuleDecl::AccessPathTy AccessPathTy;
LookupCache(const SourceFile &SF);
/// Throw away as much memory as possible.
void invalidate();
void lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind, SmallVectorImpl<ValueDecl*> &Result);
void lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind);
void lookupClassMembers(AccessPathTy AccessPath,
VisibleDeclConsumer &consumer,
const SourceFile &SF);
void lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results,
const SourceFile &SF);
SmallVector<ValueDecl *, 0> AllVisibleValues;
};
using SourceLookupCache = SourceFile::LookupCache;
SourceLookupCache &SourceFile::getCache() const {
if (!Cache) {
const_cast<SourceFile *>(this)->Cache =
llvm::make_unique<SourceLookupCache>(*this);
}
return *Cache;
}
template<typename Range>
void SourceLookupCache::doPopulateCache(Range decls,
bool onlyOperators) {
for (Decl *D : decls) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
if (onlyOperators ? VD->getName().isOperator() : VD->hasName()) {
// Cache the value under both its compound name and its full name.
TopLevelValues.add(VD);
}
if (NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D))
doPopulateCache(NTD->getMembers(), true);
if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D))
doPopulateCache(ED->getMembers(), true);
}
}
void SourceLookupCache::populateMemberCache(const SourceFile &SF) {
for (const Decl *D : SF.Decls) {
if (const NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D)) {
addToMemberCache(NTD->getMembers());
} else if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D)) {
addToMemberCache(ED->getMembers());
}
}
MemberCachePopulated = true;
}
void SourceLookupCache::addToMemberCache(DeclRange decls) {
for (Decl *D : decls) {
auto VD = dyn_cast<ValueDecl>(D);
if (!VD)
continue;
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
assert(!VD->canBeAccessedByDynamicLookup() &&
"inner types cannot be accessed by dynamic lookup");
addToMemberCache(NTD->getMembers());
} else if (VD->canBeAccessedByDynamicLookup()) {
ClassMembers.add(VD);
}
}
}
/// Populate our cache on the first name lookup.
SourceLookupCache::LookupCache(const SourceFile &SF) {
doPopulateCache(llvm::makeArrayRef(SF.Decls), false);
}
void SourceLookupCache::lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) {
// If this import is specific to some named type or decl ("import Swift.int")
// then filter out any lookups that don't match.
if (!ModuleDecl::matchesAccessPath(AccessPath, Name))
return;
auto I = TopLevelValues.find(Name);
if (I == TopLevelValues.end()) return;
Result.reserve(I->second.size());
for (ValueDecl *Elt : I->second)
Result.push_back(Elt);
}
void SourceLookupCache::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
if (!AccessPath.empty()) {
auto I = TopLevelValues.find(AccessPath.front().first);
if (I == TopLevelValues.end()) return;
for (auto vd : I->second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
return;
}
for (auto &tlv : TopLevelValues) {
for (ValueDecl *vd : tlv.second) {
// Declarations are added under their full and simple names. Skip the
// entry for the simple name so that we report each declaration once.
if (tlv.first.isSimpleName() && !vd->getFullName().isSimpleName())
continue;
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
}
}
}
void SourceLookupCache::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
const SourceFile &SF) {
if (!MemberCachePopulated)
populateMemberCache(SF);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!accessPath.empty()) {
for (auto &member : ClassMembers) {
// Non-simple names are also stored under their simple name, so make
// sure to only report them once.
if (!member.first.isSimpleName())
continue;
for (ValueDecl *vd : member.second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
return;
}
for (auto &member : ClassMembers) {
// Non-simple names are also stored under their simple name, so make sure to
// only report them once.
if (!member.first.isSimpleName())
continue;
for (ValueDecl *vd : member.second)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
void SourceLookupCache::lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results,
const SourceFile &SF) {
if (!MemberCachePopulated)
populateMemberCache(SF);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
auto iter = ClassMembers.find(name);
if (iter == ClassMembers.end())
return;
if (!accessPath.empty()) {
for (ValueDecl *vd : iter->second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
results.push_back(vd);
}
return;
}
results.append(iter->second.begin(), iter->second.end());
}
void SourceLookupCache::invalidate() {
TopLevelValues.clear();
ClassMembers.clear();
MemberCachePopulated = false;
// std::move AllVisibleValues into a temporary to destroy its contents.
using SameSizeSmallVector = decltype(AllVisibleValues);
(void)SameSizeSmallVector{std::move(AllVisibleValues)};
}
//===----------------------------------------------------------------------===//
// Module Implementation
//===----------------------------------------------------------------------===//
ModuleDecl::ModuleDecl(Identifier name, ASTContext &ctx)
: TypeDecl(DeclKind::Module, &ctx, name, SourceLoc(), { }),
DeclContext(DeclContextKind::Module, nullptr),
Flags({0, 0, 0}), DSOHandle(nullptr) {
ctx.addDestructorCleanup(*this);
setImplicit();
setType(ModuleType::get(this));
setInterfaceType(ModuleType::get(this));
setAccessibility(Accessibility::Public);
}
void Module::addFile(FileUnit &newFile) {
// Require Main and REPL files to be the first file added.
assert(Files.empty() ||
!isa<SourceFile>(newFile) ||
cast<SourceFile>(newFile).Kind == SourceFileKind::Library ||
cast<SourceFile>(newFile).Kind == SourceFileKind::SIL);
Files.push_back(&newFile);
}
void Module::removeFile(FileUnit &existingFile) {
// Do a reverse search; usually the file to be deleted will be at the end.
std::reverse_iterator<decltype(Files)::iterator> I(Files.end()),
E(Files.begin());
I = std::find(I, E, &existingFile);
assert(I != E);
// Adjust for the std::reverse_iterator offset.
++I;
Files.erase(I.base());
}
#define FORWARD(name, args) \
for (const FileUnit *file : getFiles()) \
file->name args;
void Module::lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) const {
FORWARD(lookupValue, (AccessPath, Name, LookupKind, Result));
}
TypeDecl * Module::lookupLocalType(StringRef MangledName) const {
for (auto file : getFiles()) {
auto TD = file->lookupLocalType(MangledName);
if (TD)
return TD;
}
return nullptr;
}
void Module::lookupMember(SmallVectorImpl<ValueDecl*> &results,
DeclContext *container, DeclName name,
Identifier privateDiscriminator) const {
size_t oldSize = results.size();
bool alreadyInPrivateContext = false;
switch (container->getContextKind()) {
case DeclContextKind::SerializedLocal:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
llvm_unreachable("This context does not support lookup.");
case DeclContextKind::FileUnit:
llvm_unreachable("Use FileUnit::lookupValue instead.");
case DeclContextKind::ExtensionDecl:
llvm_unreachable("Use ExtensionDecl::lookupDirect instead.");
case DeclContextKind::Module: {
assert(container == this);
this->lookupValue({}, name, NLKind::QualifiedLookup, results);
break;
}
case DeclContextKind::GenericTypeDecl: {
auto nominal = dyn_cast<NominalTypeDecl>(container);
if (!nominal) break;
auto lookupResults = nominal->lookupDirect(name);
// Filter out declarations from other modules.
std::copy_if(lookupResults.begin(), lookupResults.end(),
std::back_inserter(results),
[this](const ValueDecl *VD) -> bool {
return VD->getModuleContext() == this;
});
auto AS = nominal->getFormalAccessScope();
if (AS.isPrivate() || AS.isFileScope())
alreadyInPrivateContext = true;
break;
}
}
// Filter by private-discriminator, or filter out private decls if there isn't
// one...unless we're already in a private context, in which case everything
// is private and a discriminator is unnecessary.
if (alreadyInPrivateContext) {
assert(privateDiscriminator.empty() && "unnecessary private-discriminator");
// Don't remove anything; everything here is private anyway.
} else if (privateDiscriminator.empty()) {
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
[](const ValueDecl *VD) -> bool {
return VD->getFormalAccess() <= Accessibility::FilePrivate;
});
results.erase(newEnd, results.end());
} else {
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
[=](const ValueDecl *VD) -> bool {
if (VD->getFormalAccess() > Accessibility::FilePrivate)
return true;
auto enclosingFile =
cast<FileUnit>(VD->getDeclContext()->getModuleScopeContext());
auto discriminator = enclosingFile->getDiscriminatorForPrivateValue(VD);
return discriminator != privateDiscriminator;
});
results.erase(newEnd, results.end());
}
}
void Module::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
FORWARD(lookupObjCMethods, (selector, results));
}
void BuiltinUnit::lookupValue(Module::AccessPathTy accessPath, DeclName name,
NLKind lookupKind,
SmallVectorImpl<ValueDecl*> &result) const {
getCache().lookupValue(name.getBaseName(), lookupKind, *this, result);
}
void BuiltinUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// No @objc methods in the Builtin module.
}
void SourceFile::lookupValue(Module::AccessPathTy accessPath, DeclName name,
NLKind lookupKind,
SmallVectorImpl<ValueDecl*> &result) const {
getCache().lookupValue(accessPath, name, lookupKind, result);
}
void Module::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
FORWARD(lookupVisibleDecls, (AccessPath, Consumer, LookupKind));
}
void SourceFile::lookupVisibleDecls(Module::AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
getCache().lookupVisibleDecls(AccessPath, Consumer, LookupKind);
}
void Module::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
FORWARD(lookupClassMembers, (accessPath, consumer));
}
void SourceFile::lookupClassMembers(Module::AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
getCache().lookupClassMembers(accessPath, consumer, *this);
}
void Module::lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
FORWARD(lookupClassMember, (accessPath, name, results));
}
void SourceFile::lookupClassMember(Module::AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
getCache().lookupClassMember(accessPath, name, results, *this);
}
void SourceFile::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Make sure this table is complete, somehow.
auto known = ObjCMethods.find(selector);
if (known == ObjCMethods.end()) return;
results.append(known->second.begin(), known->second.end());
}
void Module::getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &Results) const {
FORWARD(getLocalTypeDecls, (Results));
}
void Module::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
FORWARD(getTopLevelDecls, (Results));
}
void SourceFile::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
Results.append(Decls.begin(), Decls.end());
}
void SourceFile::getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &Results) const {
Results.append(LocalTypeDecls.begin(), LocalTypeDecls.end());
}
void Module::getDisplayDecls(SmallVectorImpl<Decl*> &Results) const {
// FIXME: Should this do extra access control filtering?
FORWARD(getDisplayDecls, (Results));
}
ArrayRef<Substitution>
TypeBase::gatherAllSubstitutions(Module *module,
LazyResolver *resolver,
DeclContext *gpContext) {
// FIXME: If there is no module, infer one. This is a hack for callers that
// don't have access to the module. It will have to go away once we're
// properly differentiating bound generic types based on the protocol
// conformances visible from a given module.
if (!module)
module = getAnyNominal()->getParentModule();
// Check the context, introducing the default if needed.
if (!gpContext)
gpContext = getAnyNominal();
assert(gpContext->getAsNominalTypeOrNominalTypeExtensionContext()
== getAnyNominal() && "not a valid context");
auto *genericSig = gpContext->getGenericSignatureOfContext();
if (genericSig == nullptr)
return { };
// If we already have a cached copy of the substitutions, return them.
const ASTContext &ctx = getASTContext();
if (auto known = ctx.getSubstitutions(this, gpContext))
return *known;
// Compute the set of substitutions.
TypeSubstitutionMap substitutions;
// The type itself contains substitutions up to the innermost
// non-type context.
Type parent = this;
ArrayRef<GenericTypeParamType *> genericParams =
genericSig->getGenericParams();
unsigned lastGenericIndex = genericParams.size();
while (parent) {
if (auto boundGeneric = parent->getAs<BoundGenericType>()) {
unsigned index = lastGenericIndex - boundGeneric->getGenericArgs().size();
for (Type arg : boundGeneric->getGenericArgs()) {
auto paramTy = genericParams[index++];
substitutions[
paramTy->getCanonicalType()->castTo<GenericTypeParamType>()] = arg;
}
lastGenericIndex -= boundGeneric->getGenericArgs().size();
parent = boundGeneric->getParent();
continue;
}
if (auto nominal = parent->getAs<NominalType>()) {
parent = nominal->getParent();
continue;
}
llvm_unreachable("Not a nominal or bound generic type");
}
// Add forwarding substitutions from the outer context if we have
// a type nested inside a generic function.
auto *parentDC = gpContext;
while (parentDC->isTypeContext())
parentDC = parentDC->getParent();
if (auto *outerEnv = parentDC->getGenericEnvironmentOfContext()) {
for (auto gp : outerEnv->getGenericParams()) {
auto result = substitutions.insert(
{gp->getCanonicalType()->castTo<GenericTypeParamType>(),
outerEnv->mapTypeIntoContext(gp)});
assert(result.second);
}
}
auto lookupConformanceFn =
[&](CanType original, Type replacement, ProtocolType *protoType)
-> ProtocolConformanceRef {
auto *proto = protoType->getDecl();
// If the type is a type variable or is dependent, just fill in empty
// conformances.
if (replacement->isTypeVariableOrMember() ||
replacement->isTypeParameter())
return ProtocolConformanceRef(proto);
// Otherwise, find the conformance.
auto conforms = module->lookupConformance(replacement, proto, resolver);
if (conforms)
return *conforms;
// FIXME: Should we ever end up here?
return ProtocolConformanceRef(proto);
};
SmallVector<Substitution, 4> result;
genericSig->getSubstitutions(*module, substitutions,
lookupConformanceFn,
result);
// Before recording substitutions, make sure we didn't end up doing it
// recursively.
if (auto known = ctx.getSubstitutions(this, gpContext))
return *known;
// Copy and record the substitutions.
auto permanentSubs = ctx.AllocateCopy(result,
hasTypeVariable()
? AllocationArena::ConstraintSolver
: AllocationArena::Permanent);
ctx.setSubstitutions(this, gpContext, permanentSubs);
return permanentSubs;
}
Optional<ProtocolConformanceRef>
Module::lookupConformance(Type type, ProtocolDecl *protocol,
LazyResolver *resolver) {
ASTContext &ctx = getASTContext();
// An archetype conforms to a protocol if the protocol is listed in the
// archetype's list of conformances, or if the archetype has a superclass
// constraint and the superclass conforms to the protocol.
if (auto archetype = type->getAs<ArchetypeType>()) {
// The archetype builder drops conformance requirements that are made
// redundant by a superclass requirement, so check for a concrete
// conformance first, since an abstract conformance might not be
// able to be resolved by a substitution that makes the archetype
// concrete.
if (auto super = archetype->getSuperclass()) {
if (auto inheritedConformance = lookupConformance(super, protocol,
resolver)) {
return ProtocolConformanceRef(
ctx.getInheritedConformance(
type,
inheritedConformance->getConcrete()));
}
}
if (protocol->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
if (archetype->requiresClass())
return ProtocolConformanceRef(protocol);
return None;
}
for (auto ap : archetype->getConformsTo()) {
if (ap == protocol || ap->inheritsFrom(protocol))
return ProtocolConformanceRef(protocol);
}
return None;
}
// An existential conforms to a protocol if the protocol is listed in the
// existential's list of conformances and the existential conforms to
// itself.
if (type->isExistentialType()) {
SmallVector<ProtocolDecl *, 4> protocols;
type->getAnyExistentialTypeProtocols(protocols);
// Due to an IRGen limitation, witness tables cannot be passed from an
// existential to an archetype parameter, so for now we restrict this to
// @objc protocols.
for (auto proto : protocols) {
if (!proto->isObjC() &&
!proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
return None;
}
// If the existential type cannot be represented or the protocol does not
// conform to itself, there's no point in looking further.
if (!protocol->existentialConformsToSelf() ||
!protocol->existentialTypeSupported(resolver))
return None;
// Special-case AnyObject, which may not be in the list of conformances.
if (protocol->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
if (type->isClassExistentialType())
return ProtocolConformanceRef(protocol);
return None;
}
// Look for this protocol within the existential's list of conformances.
for (auto proto : protocols) {
if (proto == protocol || proto->inheritsFrom(protocol))
return ProtocolConformanceRef(protocol);
}
// We didn't find our protocol in the existential's list; it doesn't
// conform.
return None;
}
// Type variables have trivial conformances.
if (type->isTypeVariableOrMember()) {
return ProtocolConformanceRef(protocol);
}
// UnresolvedType is a placeholder for an unknown type used when generating
// diagnostics. We consider it to conform to all protocols, since the
// intended type might have.
if (type->is<UnresolvedType>()) {
return ProtocolConformanceRef(
ctx.getConformance(type, protocol, protocol->getLoc(), this,
ProtocolConformanceState::Complete));
}
auto nominal = type->getAnyNominal();
// If we don't have a nominal type, there are no conformances.
if (!nominal) return None;
// Find the (unspecialized) conformance.
SmallVector<ProtocolConformance *, 2> conformances;
if (!nominal->lookupConformance(this, protocol, conformances))
return None;
// FIXME: Ambiguity resolution.
auto conformance = conformances.front();
// Rebuild inherited conformances based on the root normal conformance.
// FIXME: This is a hack to work around our inability to handle multiple
// levels of substitution through inherited conformances elsewhere in the
// compiler.
if (auto inherited = dyn_cast<InheritedProtocolConformance>(conformance)) {
// Dig out the conforming nominal type.
auto rootConformance = inherited->getRootNormalConformance();
auto conformingNominal
= rootConformance->getType()->getClassOrBoundGenericClass();
// Map up to our superclass's type.
Type superclassTy = type->getSuperclass(resolver);
while (superclassTy->getAnyNominal() != conformingNominal)
superclassTy = superclassTy->getSuperclass(resolver);
// Compute the conformance for the inherited type.
auto inheritedConformance = lookupConformance(superclassTy, protocol,
resolver);
assert(inheritedConformance &&
"We already found the inherited conformance");
// Create the inherited conformance entry.
conformance
= ctx.getInheritedConformance(type, inheritedConformance->getConcrete());
return ProtocolConformanceRef(conformance);
}
// If the type is specialized, find the conformance for the generic type.
if (type->isSpecialized()) {
// Figure out the type that's explicitly conforming to this protocol.
Type explicitConformanceType = conformance->getType();
DeclContext *explicitConformanceDC = conformance->getDeclContext();
// If the explicit conformance is associated with a type that is different
// from the type we're checking, retrieve generic conformance.
if (!explicitConformanceType->isEqual(type)) {
// Gather the substitutions we need to map the generic conformance to
// the specialized conformance.
auto substitutions = type->gatherAllSubstitutions(this, resolver,
explicitConformanceDC);
for (auto sub : substitutions) {
if (sub.getReplacement()->hasError())
return None;
}
// Create the specialized conformance entry.
auto result = ctx.getSpecializedConformance(type, conformance,
substitutions);
return ProtocolConformanceRef(result);
}
}
// Record and return the simple conformance.
return ProtocolConformanceRef(conformance);
}
namespace {
template <typename T>
using OperatorMap = SourceFile::OperatorMap<T>;
template <typename T>
struct OperatorLookup {
static_assert(static_cast<T*>(nullptr), "Only usable with operators");
};
template <>
struct OperatorLookup<PrefixOperatorDecl> {
template <typename T>
static PrefixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<PrefixOperatorDecl>(
container.lookupOperator(name, DeclKind::PrefixOperator));
}
};
template <>
struct OperatorLookup<InfixOperatorDecl> {
template <typename T>
static InfixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<InfixOperatorDecl>(
container.lookupOperator(name, DeclKind::InfixOperator));
}
};
template <>
struct OperatorLookup<PostfixOperatorDecl> {
template <typename T>
static PostfixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<PostfixOperatorDecl>(
container.lookupOperator(name, DeclKind::PostfixOperator));
}
};
template <>
struct OperatorLookup<PrecedenceGroupDecl> {
template <typename T>
static PrecedenceGroupDecl *lookup(T &container, Identifier name) {
return container.lookupPrecedenceGroup(name);
}
};
}
/// A helper class to sneak around C++ access control rules.
class SourceFile::Impl {
public:
/// Only intended for use by lookupOperatorDeclForName.
static ArrayRef<std::pair<Module::ImportedModule, SourceFile::ImportOptions>>
getImportsForSourceFile(const SourceFile &SF) {
return SF.Imports;
}
};
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(Module *M, SourceLoc Loc, Identifier Name,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP);
template<typename OP_DECL>
using ImportedOperatorsMap = llvm::SmallDenseMap<OP_DECL*, bool, 16>;
template<typename OP_DECL>
static typename ImportedOperatorsMap<OP_DECL>::iterator
checkOperatorConflicts(const SourceFile &SF, SourceLoc loc,
ImportedOperatorsMap<OP_DECL> &importedOperators) {
// Check for conflicts.
auto i = importedOperators.begin(), end = importedOperators.end();
auto start = i;
for (++i; i != end; ++i) {
if (i->first->conflictsWith(start->first)) {
if (loc.isValid()) {
ASTContext &C = SF.getASTContext();
C.Diags.diagnose(loc, diag::ambiguous_operator_decls);
C.Diags.diagnose(start->first->getLoc(),
diag::found_this_operator_decl);
C.Diags.diagnose(i->first->getLoc(), diag::found_this_operator_decl);
}
return end;
}
}
return start;
}
template<>
typename ImportedOperatorsMap<PrecedenceGroupDecl>::iterator
checkOperatorConflicts(const SourceFile &SF, SourceLoc loc,
ImportedOperatorsMap<PrecedenceGroupDecl> &importedGroups) {
if (importedGroups.size() == 1)
return importedGroups.begin();
// Any sort of ambiguity is an error.
if (loc.isValid()) {
ASTContext &C = SF.getASTContext();
C.Diags.diagnose(loc, diag::ambiguous_precedence_groups);
for (auto &entry : importedGroups) {
C.Diags.diagnose(entry.first->getLoc(),
diag::found_this_precedence_group);
}
}
return importedGroups.end();
}
// Returns None on error, Optional(nullptr) if no operator decl found, or
// Optional(decl) if decl was found.
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(const FileUnit &File, SourceLoc Loc, Identifier Name,
bool includePrivate,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
{
switch (File.getKind()) {
case FileUnitKind::Builtin:
case FileUnitKind::Derived:
// The Builtin module declares no operators, nor do derived units.
return nullptr;
case FileUnitKind::Source:
break;
case FileUnitKind::SerializedAST:
case FileUnitKind::ClangModule:
return OperatorLookup<OP_DECL>::lookup(cast<LoadedFile>(File), Name);
}
auto &SF = cast<SourceFile>(File);
assert(SF.ASTStage >= SourceFile::NameBound);
// Look for an operator declaration in the current module.
auto found = (SF.*OP_MAP).find(Name);
if (found != (SF.*OP_MAP).end() && (includePrivate || found->second.getInt()))
return found->second.getPointer();
// Look for imported operator decls.
// Record whether they come from re-exported modules.
// FIXME: We ought to prefer operators elsewhere in this module before we
// check imports.
auto ownModule = SF.getParentModule();
ImportedOperatorsMap<OP_DECL> importedOperators;
for (auto &imported : SourceFile::Impl::getImportsForSourceFile(SF)) {
// Protect against source files that contrive to import their own modules.
if (imported.first.second == ownModule)
continue;
bool isExported =
imported.second.contains(SourceFile::ImportFlags::Exported);
if (!includePrivate && !isExported)
continue;
Optional<OP_DECL *> maybeOp
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
if (!maybeOp)
return None;
if (OP_DECL *op = *maybeOp)
importedOperators[op] |= isExported;
}
typename OperatorMap<OP_DECL *>::mapped_type result = { nullptr, true };
if (!importedOperators.empty()) {
auto start = checkOperatorConflicts(SF, Loc, importedOperators);
if (start == importedOperators.end())
return None;
result = { start->first, start->second };
}
if (includePrivate) {
// Cache the mapping so we don't need to troll imports next time.
// It's not safe to cache the non-private results because we didn't search
// private imports there, but in most non-private cases the result will
// be cached in the final lookup.
auto &mutableOpMap = const_cast<OperatorMap<OP_DECL *> &>(SF.*OP_MAP);
mutableOpMap[Name] = result;
}
if (includePrivate || result.getInt())
return result.getPointer();
return nullptr;
}
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(Module *M, SourceLoc Loc, Identifier Name,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
{
OP_DECL *result = nullptr;
for (const FileUnit *File : M->getFiles()) {
auto next = lookupOperatorDeclForName(*File, Loc, Name, false, OP_MAP);
if (!next.hasValue())
return next;
// FIXME: Diagnose ambiguity.
if (*next && result)
return None;
if (*next)
result = *next;
}
return result;
}
#define LOOKUP_OPERATOR(Kind) \
Kind##Decl * \
Module::lookup##Kind(Identifier name, SourceLoc loc) { \
auto result = lookupOperatorDeclForName(this, loc, name, \
&SourceFile::Kind##s); \
return result ? *result : nullptr; \
} \
Kind##Decl * \
SourceFile::lookup##Kind(Identifier name, bool isCascading, SourceLoc loc) { \
auto result = lookupOperatorDeclForName(*this, loc, name, true, \
&SourceFile::Kind##s); \
if (!result.hasValue()) \
return nullptr; \
if (ReferencedNames) {\
if (!result.getValue() || \
result.getValue()->getDeclContext()->getModuleScopeContext() != this) {\
ReferencedNames->addTopLevelName(name, isCascading); \
} \
} \
if (!result.getValue()) { \
result = lookupOperatorDeclForName(getParentModule(), loc, name, \
&SourceFile::Kind##s); \
} \
return result.hasValue() ? result.getValue() : nullptr; \
}
LOOKUP_OPERATOR(PrefixOperator)
LOOKUP_OPERATOR(InfixOperator)
LOOKUP_OPERATOR(PostfixOperator)
LOOKUP_OPERATOR(PrecedenceGroup)
#undef LOOKUP_OPERATOR
void Module::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
Module::ImportFilter filter) const {
FORWARD(getImportedModules, (modules, filter));
}
void
SourceFile::getImportedModules(SmallVectorImpl<Module::ImportedModule> &modules,
Module::ImportFilter filter) const {
assert(ASTStage >= Parsed || Kind == SourceFileKind::SIL);
for (auto importPair : Imports) {
switch (filter) {
case Module::ImportFilter::All:
break;
case Module::ImportFilter::Public:
if (!importPair.second.contains(ImportFlags::Exported))
continue;
break;
case Module::ImportFilter::Private:
if (importPair.second.contains(ImportFlags::Exported))
continue;
break;
}
modules.push_back(importPair.first);
}
}
void Module::getImportedModulesForLookup(
SmallVectorImpl<ImportedModule> &modules) const {
FORWARD(getImportedModulesForLookup, (modules));
}
bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
if (lhs.size() != rhs.size())
return false;
return std::equal(lhs.begin(), lhs.end(), rhs.begin(),
[](const AccessPathElem &lElem,
const AccessPathElem &rElem) {
return lElem.first == rElem.first;
});
}
StringRef Module::getModuleFilename() const {
// FIXME: Audit uses of this function and figure out how to migrate them to
// per-file names. Modules can consist of more than one file.
StringRef Result;
for (auto F : getFiles()) {
if (auto SF = dyn_cast<SourceFile>(F)) {
if (!Result.empty())
return StringRef();
Result = SF->getFilename();
continue;
}
if (auto LF = dyn_cast<LoadedFile>(F)) {
if (!Result.empty())
return StringRef();
Result = LF->getFilename();
continue;
}
return StringRef();
}
return Result;
}
bool Module::isStdlibModule() const {
return !getParent() && getName() == getASTContext().StdlibModuleName;
}
bool Module::isSwiftShimsModule() const {
return !getParent() && getName() == getASTContext().SwiftShimsModuleName;
}
bool Module::isBuiltinModule() const {
return this == getASTContext().TheBuiltinModule;
}
bool SourceFile::registerMainClass(ClassDecl *mainClass, SourceLoc diagLoc) {
if (mainClass == MainClass)
return false;
ArtificialMainKind kind = mainClass->getArtificialMainKind();
if (getParentModule()->registerEntryPointFile(this, diagLoc, kind))
return true;
MainClass = mainClass;
MainClassDiagLoc = diagLoc;
return false;
}
bool Module::registerEntryPointFile(FileUnit *file, SourceLoc diagLoc,
Optional<ArtificialMainKind> kind) {
if (!EntryPointInfo.hasEntryPoint()) {
EntryPointInfo.setEntryPointFile(file);
return false;
}
if (diagLoc.isInvalid())
return true;
assert(kind.hasValue() && "multiple entry points without attributes");
// %select indices for UI/NSApplication-related diagnostics.
enum : unsigned {
UIApplicationMainClass = 0,
NSApplicationMainClass = 1,
} mainClassDiagKind;
switch (kind.getValue()) {
case ArtificialMainKind::UIApplicationMain:
mainClassDiagKind = UIApplicationMainClass;
break;
case ArtificialMainKind::NSApplicationMain:
mainClassDiagKind = NSApplicationMainClass;
break;
}
FileUnit *existingFile = EntryPointInfo.getEntryPointFile();
const ClassDecl *existingClass = existingFile->getMainClass();
SourceLoc existingDiagLoc;
if (auto *sourceFile = dyn_cast<SourceFile>(existingFile)) {
if (existingClass) {
existingDiagLoc = sourceFile->getMainClassDiagLoc();
} else {
if (auto bufID = sourceFile->getBufferID())
existingDiagLoc = getASTContext().SourceMgr.getLocForBufferStart(*bufID);
}
}
if (existingClass) {
if (EntryPointInfo.markDiagnosedMultipleMainClasses()) {
// If we already have a main class, and we haven't diagnosed it,
// do so now.
if (existingDiagLoc.isValid()) {
getASTContext().Diags.diagnose(existingDiagLoc, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
} else {
getASTContext().Diags.diagnose(existingClass, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
}
}
// Always diagnose the new class.
getASTContext().Diags.diagnose(diagLoc, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
} else {
// We don't have an existing class, but we /do/ have a file in script mode.
// Diagnose that.
if (EntryPointInfo.markDiagnosedMainClassWithScript()) {
getASTContext().Diags.diagnose(diagLoc, diag::attr_ApplicationMain_with_script,
mainClassDiagKind);
if (existingDiagLoc.isValid()) {
getASTContext().Diags.diagnose(existingDiagLoc,
diag::attr_ApplicationMain_script_here);
}
}
}
return true;
}
bool Module::isSystemModule() const {
if (isStdlibModule())
return true;
for (auto F : getFiles()) {
if (auto LF = dyn_cast<LoadedFile>(F))
return LF->isSystemModule();
}
return false;
}
template<bool respectVisibility, typename Callback>
static bool forAllImportedModules(Module *topLevel,
Module::AccessPathTy thisPath,
bool includePrivateTopLevelImports,
const Callback &fn) {
using ImportedModule = Module::ImportedModule;
using AccessPathTy = Module::AccessPathTy;
llvm::SmallSet<ImportedModule, 32, Module::OrderImportedModules> visited;
SmallVector<ImportedModule, 32> stack;
// Even if we're processing the top-level module like any other, we may
// still want to include non-exported modules.
Module::ImportFilter filter = respectVisibility ? Module::ImportFilter::Public
: Module::ImportFilter::All;
Module::ImportFilter topLevelFilter =
includePrivateTopLevelImports ? Module::ImportFilter::All : filter;
topLevel->getImportedModules(stack, topLevelFilter);
// Make sure the top-level module is first; we want pre-order-ish traversal.
AccessPathTy overridingPath;
if (respectVisibility)
overridingPath = thisPath;
stack.push_back(ImportedModule(overridingPath, topLevel));
while (!stack.empty()) {
auto next = stack.pop_back_val();
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
if (next.first.empty() || !respectVisibility)
next.first = overridingPath;
else if (!overridingPath.empty() &&
!Module::isSameAccessPath(next.first, overridingPath)) {
// If we ever allow importing non-top-level decls, it's possible the rule
// above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
}
if (!visited.insert(next).second)
continue;
if (!fn(next))
return false;
if (respectVisibility)
next.second->getImportedModulesForLookup(stack);
else
next.second->getImportedModules(stack, filter);
}
return true;
}
bool Module::forAllVisibleModules(AccessPathTy thisPath,
bool includePrivateTopLevelImports,
llvm::function_ref<bool(ImportedModule)> fn) {
return forAllImportedModules<true>(this, thisPath,
includePrivateTopLevelImports, fn);
}
bool FileUnit::forAllVisibleModules(
llvm::function_ref<bool(Module::ImportedModule)> fn) {
if (!getParentModule()->forAllVisibleModules(Module::AccessPathTy(), fn))
return false;
if (auto SF = dyn_cast<SourceFile>(this)) {
// Handle privately visible modules as well.
// FIXME: Should this apply to all FileUnits?
SmallVector<Module::ImportedModule, 4> imports;
SF->getImportedModules(imports, Module::ImportFilter::Private);
for (auto importPair : imports)
if (!importPair.second->forAllVisibleModules(importPair.first, fn))
return false;
}
return true;
}
void Module::collectLinkLibraries(LinkLibraryCallback callback) {
// FIXME: The proper way to do this depends on the decls used.
FORWARD(collectLinkLibraries, (callback));
}
void
SourceFile::collectLinkLibraries(Module::LinkLibraryCallback callback) const {
for (auto importPair : Imports)
importPair.first.second->collectLinkLibraries(callback);
}
bool Module::walk(ASTWalker &Walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(Walker.Parent, this);
for (auto SF : getFiles())
if (SF->walk(Walker))
return true;
return false;
}
const clang::Module *Module::findUnderlyingClangModule() {
for (auto *FU : getFiles()) {
if (auto *Mod = FU->getUnderlyingClangModule())
return Mod;
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// SourceFile Implementation
//===----------------------------------------------------------------------===//
void SourceFile::print(raw_ostream &OS, const PrintOptions &PO) {
StreamPrinter Printer(OS);
print(Printer, PO);
}
void SourceFile::print(ASTPrinter &Printer, const PrintOptions &PO) {
std::set<DeclKind> MajorDeclKinds = {DeclKind::Class, DeclKind::Enum,
DeclKind::Extension, DeclKind::Protocol, DeclKind::Struct};
for (auto decl : Decls) {
if (!decl->shouldPrintInContext(PO))
continue;
// For a major decl, we print an empty line before it.
if (MajorDeclKinds.find(decl->getKind()) != MajorDeclKinds.end())
Printer << "\n";
if (decl->print(Printer, PO))
Printer << "\n";
}
}
void SourceFile::addImports(
ArrayRef<std::pair<Module::ImportedModule, ImportOptions>> IM) {
using ImportPair = std::pair<Module::ImportedModule, ImportOptions>;
if (IM.empty())
return;
ASTContext &ctx = getASTContext();
auto newBuf =
ctx.AllocateUninitialized<ImportPair>(Imports.size() + IM.size());
auto iter = newBuf.begin();
iter = std::uninitialized_copy(Imports.begin(), Imports.end(), iter);
iter = std::uninitialized_copy(IM.begin(), IM.end(), iter);
assert(iter == newBuf.end());
Imports = newBuf;
}
bool SourceFile::hasTestableImport(const swift::Module *module) const {
using ImportPair = std::pair<Module::ImportedModule, ImportOptions>;
return std::any_of(Imports.begin(), Imports.end(),
[module](ImportPair importPair) -> bool {
return importPair.first.second == module &&
importPair.second.contains(ImportFlags::Testable);
});
}
void SourceFile::clearLookupCache() {
if (!Cache)
return;
// Abandon any current cache. We'll rebuild it on demand.
Cache->invalidate();
Cache.reset();
}
void
SourceFile::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const {
SmallVectorImpl<ValueDecl*> &cached = getCache().AllVisibleValues;
cached = std::move(globals);
}
const SmallVectorImpl<ValueDecl *> &
SourceFile::getCachedVisibleDecls() const {
return getCache().AllVisibleValues;
}
static void performAutoImport(SourceFile &SF,
SourceFile::ImplicitModuleImportKind modImpKind) {
if (SF.Kind == SourceFileKind::SIL)
assert(modImpKind == SourceFile::ImplicitModuleImportKind::None);
ASTContext &Ctx = SF.getASTContext();
Module *M = nullptr;
switch (modImpKind) {
case SourceFile::ImplicitModuleImportKind::None:
return;
case SourceFile::ImplicitModuleImportKind::Builtin:
M = Ctx.TheBuiltinModule;
break;
case SourceFile::ImplicitModuleImportKind::Stdlib:
M = Ctx.getStdlibModule(true);
break;
}
assert(M && "unable to auto-import module");
// FIXME: These will be the same for most source files, but we copy them
// over and over again.
auto Imports =
std::make_pair(Module::ImportedModule({}, M), SourceFile::ImportOptions());
SF.addImports(Imports);
}
SourceFile::SourceFile(Module &M, SourceFileKind K,
Optional<unsigned> bufferID,
ImplicitModuleImportKind ModImpKind)
: FileUnit(FileUnitKind::Source, M),
BufferID(bufferID ? *bufferID : -1), Kind(K) {
M.getASTContext().addDestructorCleanup(*this);
performAutoImport(*this, ModImpKind);
if (isScriptMode()) {
bool problem = M.registerEntryPointFile(this, SourceLoc(), None);
assert(!problem && "multiple main files?");
(void)problem;
}
}
SourceFile::~SourceFile() {}
bool FileUnit::walk(ASTWalker &walker) {
SmallVector<Decl *, 64> Decls;
getTopLevelDecls(Decls);
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
getParentModule());
for (Decl *D : Decls) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into decl", D);
#endif
if (D->walk(walker))
return true;
}
return false;
}
bool SourceFile::walk(ASTWalker &walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
getParentModule());
for (Decl *D : Decls) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into decl", D);
#endif
if (D->walk(walker))
return true;
}
return false;
}
StringRef SourceFile::getFilename() const {
if (BufferID == -1)
return "";
SourceManager &SM = getASTContext().SourceMgr;
return SM.getIdentifierForBuffer(BufferID);
}
ASTScope &SourceFile::getScope() {
if (!Scope) Scope = ASTScope::createRoot(this);
return *Scope;
}
Identifier
SourceFile::getDiscriminatorForPrivateValue(const ValueDecl *D) const {
assert(D->getDeclContext()->getModuleScopeContext() == this);
if (!PrivateDiscriminator.empty())
return PrivateDiscriminator;
StringRef name = getFilename();
if (name.empty()) {
assert(1 == count_if(getParentModule()->getFiles(),
[](const FileUnit *FU) -> bool {
return isa<SourceFile>(FU) &&
cast<SourceFile>(FU)->getFilename().empty();
}) &&
"can't promise uniqueness if multiple source files are nameless");
// We still need a discriminator, so keep going.
}
// Use a hash of the basename of the source file as our discriminator.
// This keeps us from leaking information about the original filename
// while still providing uniqueness. Using the basename makes the
// discriminator invariant across source checkout locations.
// FIXME: Use a faster hash here? We don't need security, just uniqueness.
llvm::MD5 hash;
hash.update(getParentModule()->getName().str());
hash.update(llvm::sys::path::filename(name));
llvm::MD5::MD5Result result;
hash.final(result);
// Make sure the whole thing is a valid identifier.
SmallString<33> buffer{"_"};
// Write the hash as a hex string.
// FIXME: This should go into llvm/ADT/StringExtras.h.
// FIXME: And there are more compact ways to encode a 16-byte value.
buffer.reserve(buffer.size() + 2*llvm::array_lengthof(result));
for (uint8_t byte : result) {
buffer.push_back(llvm::hexdigit(byte >> 4, /*lowercase=*/false));
buffer.push_back(llvm::hexdigit(byte & 0xF, /*lowercase=*/false));
}
PrivateDiscriminator = getASTContext().getIdentifier(buffer);
return PrivateDiscriminator;
}
TypeRefinementContext *SourceFile::getTypeRefinementContext() {
return TRC;
}
void SourceFile::setTypeRefinementContext(TypeRefinementContext *Root) {
TRC = Root;
}
//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//
void FileUnit::anchor() {}
void *FileUnit::operator new(size_t Bytes, ASTContext &C, unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef LoadedFile::getFilename() const {
return "";
}
static const clang::Module *
getClangModule(llvm::PointerUnion<const Module *, const void *> Union) {
return static_cast<const clang::Module *>(Union.get<const void *>());
}
StringRef ModuleEntity::getName() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const Module*>())
return SwiftMod->getName().str();
return getClangModule(Mod)->Name;
}
std::string ModuleEntity::getFullName() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const Module*>())
return SwiftMod->getName().str();
return getClangModule(Mod)->getFullModuleName();
}
bool ModuleEntity::isSystemModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const Module*>())
return SwiftMod->isSystemModule();
return getClangModule(Mod)->IsSystem;
}
bool ModuleEntity::isBuiltinModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const Module*>())
return SwiftMod->isBuiltinModule();
return false;
}
const ModuleDecl* ModuleEntity::getAsSwiftModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const Module*>())
return SwiftMod;
return nullptr;
}