Files
swift-mirror/lib/Sema/DerivedConformances.cpp
Allan Shortlidge 6d22433d0f AST/SILGen: Use @_alwaysEmitIntoClient diagnostic helper in unavailable code.
The `_diagnoseUnavailableCodeReached()` function was introduced in the Swift
5.9 standard library and employs `@backDeployed` to support compilation of
binaries that target OS releases aligned with earlier Swift releases.
Unfortunately, though, this backdeployment strategy doesn't work well for some
unusual build environments. Specifically, in some configurations code may be
built with a compiler from a recent Swift toolchain and then linked against the
dylibs in an older toolchain. When linking against the older dylibs, the
`_diagnoseUnavailableCodeReached()` function does not exist but the
`@backDeployed` thunks emitted into the binary reference that function and
therefore linking fails.

The idea of building with one toolchain and then linking to the dylibs in a
different, older toolchain is extremely dubious. However, it exists and for now
we need to support it. This PR introduces an alternative
`_diagnoseUnavailableCodeReached()` function that is annotated with
`@_alwaysEmitIntoClient`. Calls to the AEIC variant are now emitted by the
compiler when the deployment target is before Swift 5.9.

Once these unusual build environments upgrade and start linking against a Swift
5.9 toolchain or later we can revert all of this.

Resolves rdar://119046537
2023-12-19 16:26:56 -08:00

1013 lines
39 KiB
C++

//===--- DerivedConformances.cpp - Derived conformance utilities ----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypeCheckConcurrency.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangModule.h"
#include "DerivedConformances.h"
using namespace swift;
enum NonconformingMemberKind { AssociatedValue, StoredProperty };
DerivedConformance::DerivedConformance(ASTContext &ctx, Decl *conformanceDecl,
NominalTypeDecl *nominal,
ProtocolDecl *protocol)
: Context(ctx), ConformanceDecl(conformanceDecl), Nominal(nominal),
Protocol(protocol) {
assert(getConformanceContext()->getSelfNominalTypeDecl() == nominal);
}
DeclContext *DerivedConformance::getConformanceContext() const {
return cast<DeclContext>(ConformanceDecl);
}
ModuleDecl *DerivedConformance::getParentModule() const {
return cast<DeclContext>(ConformanceDecl)->getParentModule();
}
void DerivedConformance::addMembersToConformanceContext(
ArrayRef<Decl *> children) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
for (auto child : children)
IDC->addMember(child);
}
void DerivedConformance::addMemberToConformanceContext(
Decl *member, Decl *hint) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
IDC->addMember(member, hint, /*insertAtHead=*/false);
}
void DerivedConformance::addMemberToConformanceContext(
Decl *member, bool insertAtHead) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
IDC->addMember(member, /*hint=*/nullptr, insertAtHead);
}
Type DerivedConformance::getProtocolType() const {
return Protocol->getDeclaredInterfaceType();
}
bool DerivedConformance::derivesProtocolConformance(DeclContext *DC,
NominalTypeDecl *Nominal,
ProtocolDecl *Protocol) {
const auto derivableKind = Protocol->getKnownDerivableProtocolKind();
if (!derivableKind)
return false;
// When the necessary requirements are met, the conformance to OptionSet
// is serendipitously derived via memberwise initializer synthesis.
if (*derivableKind == KnownDerivableProtocolKind::OptionSet) {
return false;
}
if (*derivableKind == KnownDerivableProtocolKind::Hashable) {
// We can always complete a partial Hashable implementation, and we can
// synthesize a full Hashable implementation for structs and enums with
// Hashable components.
return canDeriveHashable(Nominal);
}
if (*derivableKind == KnownDerivableProtocolKind::Actor)
return canDeriveActor(DC, Nominal);
if (*derivableKind == KnownDerivableProtocolKind::Identifiable)
return canDeriveIdentifiable(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::DistributedActor)
return canDeriveDistributedActor(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::DistributedActorSystem)
return canDeriveDistributedActorSystem(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::AdditiveArithmetic)
return canDeriveAdditiveArithmetic(Nominal, DC);
// Eagerly return true here. Actual synthesis conditions are checked in
// `DerivedConformance::deriveDifferentiable`: they are complicated and depend
// on the requirement being derived.
if (*derivableKind == KnownDerivableProtocolKind::Differentiable)
return true;
if (*derivableKind == KnownDerivableProtocolKind::Encodable) {
return canDeriveEncodable(Nominal);
}
if (*derivableKind == KnownDerivableProtocolKind::Decodable) {
return canDeriveDecodable(Nominal);
}
if (auto *enumDecl = dyn_cast<EnumDecl>(Nominal)) {
switch (*derivableKind) {
// The presence of a raw type is an explicit declaration that
// the compiler should derive a RawRepresentable conformance.
case KnownDerivableProtocolKind::RawRepresentable:
return canDeriveRawRepresentable(DC, Nominal);
// Enums without associated values can implicitly derive Equatable
// conformance.
case KnownDerivableProtocolKind::Equatable:
return canDeriveEquatable(DC, Nominal);
case KnownDerivableProtocolKind::Comparable:
return !enumDecl->hasPotentiallyUnavailableCaseValue()
&& canDeriveComparable(DC, enumDecl);
// "Simple" enums without availability attributes can explicitly derive
// a CaseIterable conformance.
//
// FIXME: Lift the availability restriction.
case KnownDerivableProtocolKind::CaseIterable:
return !enumDecl->hasPotentiallyUnavailableCaseValue()
&& enumDecl->hasOnlyCasesWithoutAssociatedValues();
// @objc enums can explicitly derive their _BridgedNSError conformance.
case KnownDerivableProtocolKind::BridgedNSError:
return enumDecl->isObjC() && enumDecl->hasCases()
&& enumDecl->hasOnlyCasesWithoutAssociatedValues();
// Enums without associated values and enums with a raw type of String
// or Int can explicitly derive CodingKey conformance.
case KnownDerivableProtocolKind::CodingKey: {
Type rawType = enumDecl->getRawType();
if (rawType) {
return rawType->isString() || rawType->isInt();
}
// hasOnlyCasesWithoutAssociatedValues will return true for empty enums;
// empty enums are allowed to conform as well.
return enumDecl->hasOnlyCasesWithoutAssociatedValues();
}
default:
return false;
}
} else if (isa<StructDecl>(Nominal)) {
switch (*derivableKind) {
case KnownDerivableProtocolKind::Equatable:
// Structs can explicitly derive Equatable conformance.
return canDeriveEquatable(DC, Nominal);
default:
return false;
}
}
return false;
}
SmallVector<VarDecl *, 3>
DerivedConformance::storedPropertiesNotConformingToProtocol(
DeclContext *DC, StructDecl *theStruct, ProtocolDecl *protocol) {
auto storedProperties = theStruct->getStoredProperties();
SmallVector<VarDecl *, 3> nonconformingProperties;
for (auto propertyDecl : storedProperties) {
if (!propertyDecl->isUserAccessible())
continue;
auto type = propertyDecl->getValueInterfaceType();
if (!type)
nonconformingProperties.push_back(propertyDecl);
if (!TypeChecker::conformsToProtocol(DC->mapTypeIntoContext(type), protocol,
DC->getParentModule())) {
nonconformingProperties.push_back(propertyDecl);
}
}
return nonconformingProperties;
}
void DerivedConformance::tryDiagnoseFailedDerivation(DeclContext *DC,
NominalTypeDecl *nominal,
ProtocolDecl *protocol) {
auto knownProtocol = protocol->getKnownProtocolKind();
if (!knownProtocol)
return;
if (*knownProtocol == KnownProtocolKind::Equatable) {
tryDiagnoseFailedEquatableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::Hashable) {
tryDiagnoseFailedHashableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::Comparable) {
tryDiagnoseFailedComparableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::DistributedActor) {
tryDiagnoseFailedDistributedActorDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::DistributedActorSystem) {
tryDiagnoseFailedDistributedActorSystemDerivation(DC, nominal);
}
}
void DerivedConformance::diagnoseAnyNonConformingMemberTypes(
DeclContext *DC, NominalTypeDecl *nominal, ProtocolDecl *protocol) {
ASTContext &ctx = DC->getASTContext();
if (auto *enumDecl = dyn_cast<EnumDecl>(nominal)) {
auto nonconformingAssociatedTypes =
associatedValuesNotConformingToProtocol(DC, enumDecl, protocol);
for (auto *typeToDiagnose : nonconformingAssociatedTypes) {
SourceLoc reprLoc;
if (auto *repr = typeToDiagnose->getTypeRepr())
reprLoc = repr->getStartLoc();
ctx.Diags.diagnose(
reprLoc, diag::missing_member_type_conformance_prevents_synthesis,
NonconformingMemberKind::AssociatedValue,
typeToDiagnose->getInterfaceType(),
protocol->getDeclaredInterfaceType(),
nominal->getDeclaredInterfaceType());
}
}
if (auto *structDecl = dyn_cast<StructDecl>(nominal)) {
auto nonconformingStoredProperties =
storedPropertiesNotConformingToProtocol(DC, structDecl, protocol);
for (auto *propertyToDiagnose : nonconformingStoredProperties) {
ctx.Diags.diagnose(
propertyToDiagnose->getLoc(),
diag::missing_member_type_conformance_prevents_synthesis,
NonconformingMemberKind::StoredProperty,
propertyToDiagnose->getInterfaceType(),
protocol->getDeclaredInterfaceType(),
nominal->getDeclaredInterfaceType());
}
}
}
void DerivedConformance::diagnoseIfSynthesisUnsupportedForDecl(
NominalTypeDecl *nominal, ProtocolDecl *protocol) {
auto shouldDiagnose = false;
if (protocol->isSpecificProtocol(KnownProtocolKind::Equatable) ||
protocol->isSpecificProtocol(KnownProtocolKind::Hashable)) {
shouldDiagnose = isa<ClassDecl>(nominal);
}
if (protocol->isSpecificProtocol(KnownProtocolKind::Comparable)) {
shouldDiagnose = !isa<EnumDecl>(nominal);
}
if (shouldDiagnose) {
auto &ctx = nominal->getASTContext();
ctx.Diags.diagnose(
nominal->getLoc(), diag::automatic_protocol_synthesis_unsupported,
protocol->getName().str(), nominal->getDescriptiveKind());
}
}
ValueDecl *DerivedConformance::getDerivableRequirement(NominalTypeDecl *nominal,
ValueDecl *requirement) {
// Note: whenever you update this function, also update
// TypeChecker::deriveProtocolRequirement.
ASTContext &ctx = nominal->getASTContext();
const auto name = requirement->getName();
// Local function that retrieves the requirement with the same name as
// the provided requirement, but within the given known protocol.
auto getRequirement = [&](KnownProtocolKind kind) -> ValueDecl * {
// Dig out the protocol.
auto proto = ctx.getProtocol(kind);
if (!proto) return nullptr;
auto conformance = nominal->getParentModule()->lookupConformance(
nominal->getDeclaredInterfaceType(), proto);
if (conformance) {
auto DC = conformance.getConcrete()->getDeclContext();
// Check whether this nominal type derives conformances to the protocol.
if (!DerivedConformance::derivesProtocolConformance(DC, nominal, proto))
return nullptr;
}
// Retrieve the requirement.
return proto->getSingleRequirement(name);
};
// Properties.
if (isa<VarDecl>(requirement)) {
// RawRepresentable.rawValue
if (name.isSimpleName(ctx.Id_rawValue))
return getRequirement(KnownProtocolKind::RawRepresentable);
// Hashable.hashValue
if (name.isSimpleName(ctx.Id_hashValue))
return getRequirement(KnownProtocolKind::Hashable);
// CaseIterable.allValues
if (name.isSimpleName(ctx.Id_allCases))
return getRequirement(KnownProtocolKind::CaseIterable);
// _BridgedNSError._nsErrorDomain
if (name.isSimpleName(ctx.Id_nsErrorDomain))
return getRequirement(KnownProtocolKind::BridgedNSError);
// CodingKey.stringValue
if (name.isSimpleName(ctx.Id_stringValue))
return getRequirement(KnownProtocolKind::CodingKey);
// CodingKey.intValue
if (name.isSimpleName(ctx.Id_intValue))
return getRequirement(KnownProtocolKind::CodingKey);
// AdditiveArithmetic.zero
if (name.isSimpleName(ctx.Id_zero))
return getRequirement(KnownProtocolKind::AdditiveArithmetic);
// Actor.unownedExecutor
if (name.isSimpleName(ctx.Id_unownedExecutor)) {
if (nominal->isDistributedActor()) {
return getRequirement(KnownProtocolKind::DistributedActor);
} else {
return getRequirement(KnownProtocolKind::Actor);
}
}
// DistributedActor.id
if (name.isSimpleName(ctx.Id_id))
return getRequirement(KnownProtocolKind::DistributedActor);
// DistributedActor.actorSystem
if (name.isSimpleName(ctx.Id_actorSystem))
return getRequirement(KnownProtocolKind::DistributedActor);
return nullptr;
}
// Functions.
if (auto func = dyn_cast<FuncDecl>(requirement)) {
if (func->isOperator() && name.getBaseName() == "<")
return getRequirement(KnownProtocolKind::Comparable);
if (func->isOperator() && name.getBaseName() == "==")
return getRequirement(KnownProtocolKind::Equatable);
// AdditiveArithmetic.+
// AdditiveArithmetic.-
if (func->isOperator() && name.getArgumentNames().size() == 2 &&
(name.getBaseName() == "+" || name.getBaseName() == "-")) {
return getRequirement(KnownProtocolKind::AdditiveArithmetic);
}
// Differentiable.move(by:)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_move) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_by)
return getRequirement(KnownProtocolKind::Differentiable);
}
// Encodable.encode(to: Encoder)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_encode) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_to)
return getRequirement(KnownProtocolKind::Encodable);
}
// Hashable.hash(into: inout Hasher)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_hash) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_into)
return getRequirement(KnownProtocolKind::Hashable);
}
// static DistributedActor.resolve(id:using:)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_resolve &&
func->isStatic()) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 2 &&
argumentNames[0] == ctx.Id_id &&
argumentNames[1] == ctx.Id_using) {
return getRequirement(KnownProtocolKind::DistributedActor);
}
}
// DistributedActor.actorSystem
if (name.isCompoundName() &&
name.getBaseName() == ctx.Id_invokeHandlerOnReturn)
return getRequirement(KnownProtocolKind::DistributedActorSystem);
return nullptr;
}
// Initializers.
if (auto ctor = dyn_cast<ConstructorDecl>(requirement)) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1) {
if (argumentNames[0] == ctx.Id_rawValue)
return getRequirement(KnownProtocolKind::RawRepresentable);
// CodingKey.init?(stringValue:), CodingKey.init?(intValue:)
if (ctor->isFailable() &&
!ctor->isImplicitlyUnwrappedOptional() &&
(argumentNames[0] == ctx.Id_stringValue ||
argumentNames[0] == ctx.Id_intValue))
return getRequirement(KnownProtocolKind::CodingKey);
// Decodable.init(from: Decoder)
if (argumentNames[0] == ctx.Id_from)
return getRequirement(KnownProtocolKind::Decodable);
}
return nullptr;
}
// Associated types.
if (isa<AssociatedTypeDecl>(requirement)) {
// RawRepresentable.RawValue
if (name.isSimpleName(ctx.Id_RawValue))
return getRequirement(KnownProtocolKind::RawRepresentable);
// CaseIterable.AllCases
if (name.isSimpleName(ctx.Id_AllCases))
return getRequirement(KnownProtocolKind::CaseIterable);
// Differentiable.TangentVector
if (name.isSimpleName(ctx.Id_TangentVector))
return getRequirement(KnownProtocolKind::Differentiable);
return nullptr;
}
return nullptr;
}
DeclRefExpr *
DerivedConformance::createSelfDeclRef(AbstractFunctionDecl *fn) {
ASTContext &C = fn->getASTContext();
auto selfDecl = fn->getImplicitSelfDecl();
return new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true);
}
CallExpr *
DerivedConformance::createBuiltinCall(ASTContext &ctx,
BuiltinValueKind builtin,
ArrayRef<Type> typeArgs,
ArrayRef<ProtocolConformanceRef>
conformances,
ArrayRef<Expr *> args) {
auto name = ctx.getIdentifier(getBuiltinName(builtin));
auto decl = getBuiltinValueDecl(ctx, name);
assert(decl);
ConcreteDeclRef declRef = decl;
auto fnType = decl->getInterfaceType();
if (auto genericFnType = fnType->getAs<GenericFunctionType>()) {
auto generics = genericFnType->getGenericSignature();
auto subs = SubstitutionMap::get(generics, typeArgs, conformances);
declRef = ConcreteDeclRef(decl, subs);
fnType = genericFnType->substGenericArgs(subs);
} else {
assert(typeArgs.empty());
}
auto resultType = fnType->castTo<FunctionType>()->getResult();
Expr *ref = new (ctx) DeclRefExpr(declRef, DeclNameLoc(),
/*Implicit=*/true,
AccessSemantics::Ordinary, fnType);
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, args);
auto *call = CallExpr::createImplicit(ctx, ref, argList);
call->setType(resultType);
call->setThrows(nullptr);
return call;
}
CallExpr *DerivedConformance::createDiagnoseUnavailableCodeReachedCallExpr(
ASTContext &ctx) {
FuncDecl *diagnoseDecl = ctx.getDiagnoseUnavailableCodeReachedDecl();
auto diagnoseDeclRefExpr =
new (ctx) DeclRefExpr(diagnoseDecl, DeclNameLoc(), true);
diagnoseDeclRefExpr->setType(diagnoseDecl->getInterfaceType());
auto argList = ArgumentList::createImplicit(ctx, {});
auto callExpr = CallExpr::createImplicit(ctx, diagnoseDeclRefExpr, argList);
callExpr->setType(ctx.getNeverType());
callExpr->setThrows(nullptr);
return callExpr;
}
AccessorDecl *DerivedConformance::
addGetterToReadOnlyDerivedProperty(VarDecl *property,
Type propertyContextType) {
auto getter =
declareDerivedPropertyGetter(property, propertyContextType);
property->setImplInfo(StorageImplInfo::getImmutableComputed());
property->setAccessors(SourceLoc(), {getter}, SourceLoc());
return getter;
}
AccessorDecl *
DerivedConformance::declareDerivedPropertyGetter(VarDecl *property,
Type propertyContextType) {
auto &C = property->getASTContext();
auto parentDC = property->getDeclContext();
ParameterList *params = ParameterList::createEmpty(C);
auto getterDecl = AccessorDecl::create(
C,
/*FuncLoc=*/SourceLoc(), /*AccessorKeywordLoc=*/SourceLoc(),
AccessorKind::Get, property,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
params, property->getInterfaceType(), parentDC);
getterDecl->setImplicit();
getterDecl->setIsTransparent(false);
getterDecl->copyFormalAccessFrom(property);
return getterDecl;
}
static VarDecl::Introducer
mapIntroducer(DerivedConformance::SynthesizedIntroducer intro) {
switch (intro) {
case DerivedConformance::SynthesizedIntroducer::Let:
return VarDecl::Introducer::Let;
case DerivedConformance::SynthesizedIntroducer::Var:
return VarDecl::Introducer::Var;
}
llvm_unreachable("Invalid synthesized introducer!");
}
std::pair<VarDecl *, PatternBindingDecl *>
DerivedConformance::declareDerivedProperty(SynthesizedIntroducer intro,
Identifier name,
Type propertyInterfaceType,
Type propertyContextType,
bool isStatic, bool isFinal) {
auto parentDC = getConformanceContext();
VarDecl *propDecl = new (Context) VarDecl(
/*IsStatic*/ isStatic, mapIntroducer(intro), SourceLoc(), name, parentDC);
propDecl->setImplicit();
propDecl->setSynthesized();
propDecl->copyFormalAccessFrom(Nominal, /*sourceIsParentContext*/ true);
propDecl->setInterfaceType(propertyInterfaceType);
Pattern *propPat =
NamedPattern::createImplicit(Context, propDecl, propertyContextType);
propPat = TypedPattern::createImplicit(Context, propPat, propertyContextType);
propPat->setType(propertyContextType);
auto *pbDecl = PatternBindingDecl::createImplicit(
Context, StaticSpellingKind::None, propPat, /*InitExpr*/ nullptr,
parentDC);
return {propDecl, pbDecl};
}
bool DerivedConformance::checkAndDiagnoseDisallowedContext(
ValueDecl *synthesizing) const {
// In general, conformances can't be synthesized in extensions across files;
// but we have to allow it as a special case for Equatable and Hashable on
// enums with no associated values to preserve source compatibility.
bool allowCrossfileExtensions = false;
if (Protocol->isSpecificProtocol(KnownProtocolKind::Equatable) ||
Protocol->isSpecificProtocol(KnownProtocolKind::Hashable)) {
auto ED = dyn_cast<EnumDecl>(Nominal);
allowCrossfileExtensions = ED && ED->hasOnlyCasesWithoutAssociatedValues();
}
if (!allowCrossfileExtensions &&
Nominal->getModuleScopeContext() !=
getConformanceContext()->getModuleScopeContext()) {
ConformanceDecl->diagnose(diag::cannot_synthesize_in_crossfile_extension,
Nominal, synthesizing->getName(),
getProtocolType());
Nominal->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
// In editor mode, try to insert a stub.
if (Context.LangOpts.DiagnosticsEditorMode) {
auto Extension = cast<ExtensionDecl>(getConformanceContext());
auto FixitLocation = Extension->getBraces().Start;
llvm::SmallString<128> Text;
{
llvm::raw_svector_ostream SS(Text);
swift::printRequirementStub(synthesizing, Nominal,
Nominal->getDeclaredType(),
Extension->getStartLoc(), SS);
if (!Text.empty()) {
ConformanceDecl->diagnose(diag::missing_witnesses_general)
.fixItInsertAfter(FixitLocation, Text.str());
}
}
}
return true;
}
// A non-final class can't have a protocol-witnesses initializer in an
// extension.
if (auto CD = dyn_cast<ClassDecl>(Nominal)) {
if (!CD->isSemanticallyFinal() && isa<ConstructorDecl>(synthesizing) &&
isa<ExtensionDecl>(ConformanceDecl)) {
ConformanceDecl->diagnose(
diag::cannot_synthesize_init_in_extension_of_nonfinal,
getProtocolType(), synthesizing->getName());
return true;
}
}
if (auto ED = dyn_cast<EnumDecl>(Nominal)) {
if (ED->getAllCases().empty() &&
(Protocol->isSpecificProtocol(KnownProtocolKind::Encodable) ||
Protocol->isSpecificProtocol(KnownProtocolKind::Decodable))) {
ED->diagnose(diag::codable_synthesis_empty_enum_not_supported,
getProtocolType(), Nominal->getBaseIdentifier());
return false;
}
}
return false;
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns `guardReturnValue`.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
/// \p guardReturnValue The expression to return if the two sides are not equal
GuardStmt *DerivedConformance::returnIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr,
Expr *guardReturnValue) {
SmallVector<StmtConditionElement, 1> conditions;
SmallVector<ASTNode, 1> statements;
auto returnStmt = new (C) ReturnStmt(SourceLoc(), guardReturnValue);
statements.push_back(returnStmt);
// Next, generate the condition being checked.
// lhs == rhs
auto cmpFuncExpr = new (C) UnresolvedDeclRefExpr(
DeclNameRef(C.Id_EqualsOperator), DeclRefKind::BinaryOperator,
DeclNameLoc());
auto *cmpExpr = BinaryExpr::create(C, lhsExpr, cmpFuncExpr, rhsExpr,
/*implicit*/ true);
conditions.emplace_back(cmpExpr);
// Build and return the complete guard statement.
// guard lhs == rhs else { return lhs < rhs }
auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc());
return new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conditions), body);
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns `false`.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
GuardStmt *DerivedConformance::returnFalseIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr) {
// return false
auto falseExpr = new (C) BooleanLiteralExpr(false, SourceLoc(), true);
return returnIfNotEqualGuard(C, lhsExpr, rhsExpr, falseExpr);
}
/// Returns a generated guard statement that checks whether the given expr is true.
/// If it is false, the else block for the guard returns `nil`.
/// \p C The AST context.
/// \p testExpr The expression that should be tested.
/// \p baseType The wrapped type of the to-be-returned Optional<Wrapped>.
GuardStmt *DerivedConformance::returnNilIfFalseGuardTypeChecked(ASTContext &C,
Expr *testExpr,
Type optionalWrappedType) {
auto nilExpr = new (C) NilLiteralExpr(SourceLoc(), /*implicit=*/true);
nilExpr->setType(optionalWrappedType->wrapInOptionalType());
SmallVector<StmtConditionElement, 1> conditions;
SmallVector<ASTNode, 1> statements;
auto returnStmt = new (C) ReturnStmt(SourceLoc(), nilExpr);
statements.push_back(returnStmt);
// Next, generate the condition being checked.
conditions.emplace_back(testExpr);
// Build and return the complete guard statement.
// guard lhs == rhs else { return lhs < rhs }
auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc());
return new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conditions), body);
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns lhs < rhs.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
GuardStmt *DerivedConformance::returnComparisonIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr) {
// return lhs < rhs
auto ltFuncExpr = new (C) UnresolvedDeclRefExpr(
DeclNameRef(C.Id_LessThanOperator), DeclRefKind::BinaryOperator,
DeclNameLoc());
auto *ltExpr = BinaryExpr::create(C, lhsExpr, ltFuncExpr, rhsExpr,
/*implicit*/ true);
return returnIfNotEqualGuard(C, lhsExpr, rhsExpr, ltExpr);
}
/// Build a type-checked integer literal.
static IntegerLiteralExpr *buildIntegerLiteral(ASTContext &C, unsigned index) {
Type intType = C.getIntType();
auto literal = IntegerLiteralExpr::createFromUnsigned(C, index, SourceLoc());
literal->setType(intType);
literal->setBuiltinInitializer(C.getIntBuiltinInitDecl(C.getIntDecl()));
return literal;
}
/// Create AST statements which convert from an enum to an Int with a switch.
/// \p stmts The generated statements are appended to this vector.
/// \p parentDC Either an extension or the enum itself.
/// \p enumDecl The enum declaration.
/// \p enumVarDecl The enum input variable.
/// \p funcDecl The parent function.
/// \p indexName The name of the output variable.
/// \return A DeclRefExpr of the output variable (of type Int).
DeclRefExpr *DerivedConformance::convertEnumToIndex(SmallVectorImpl<ASTNode> &stmts,
DeclContext *parentDC,
EnumDecl *enumDecl,
VarDecl *enumVarDecl,
AbstractFunctionDecl *funcDecl,
const char *indexName) {
ASTContext &C = enumDecl->getASTContext();
Type enumType = enumVarDecl->getTypeInContext();
Type intType = C.getIntType();
auto indexVar = new (C) VarDecl(/*IsStatic*/false, VarDecl::Introducer::Var,
SourceLoc(), C.getIdentifier(indexName),
funcDecl);
indexVar->setInterfaceType(intType);
indexVar->setImplicit();
// generate: var indexVar
Pattern *indexPat = NamedPattern::createImplicit(C, indexVar, intType);
indexPat = TypedPattern::createImplicit(C, indexPat, intType);
indexPat->setType(intType);
auto *indexBind = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, indexPat, /*InitExpr*/ nullptr, funcDecl);
unsigned index = 0;
SmallVector<ASTNode, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
if (auto *unavailableElementCase =
DerivedConformance::unavailableEnumElementCaseStmt(enumType, elt,
funcDecl)) {
cases.push_back(unavailableElementCase);
continue;
}
// generate: case .<Case>:
auto pat = new (C)
EnumElementPattern(TypeExpr::createImplicit(enumType, C), SourceLoc(),
DeclNameLoc(), DeclNameRef(), elt, nullptr,
/*DC*/ funcDecl);
pat->setImplicit();
pat->setType(enumType);
auto labelItem = CaseLabelItem(pat);
// generate: indexVar = <index>
auto indexExpr = buildIntegerLiteral(C, index++);
auto indexRef = new (C) DeclRefExpr(indexVar, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::Ordinary,
LValueType::get(intType));
auto assignExpr = new (C) AssignExpr(indexRef, SourceLoc(),
indexExpr, /*implicit*/ true);
assignExpr->setType(TupleType::getEmpty(C));
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(assignExpr),
SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
labelItem, SourceLoc(), SourceLoc(), body,
/*case body vardecls*/ llvm::None));
}
// generate: switch enumVar { }
auto enumRef = new (C) DeclRefExpr(enumVarDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::Ordinary,
enumVarDecl->getTypeInContext());
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), enumRef, cases, C);
stmts.push_back(indexBind);
stmts.push_back(switchStmt);
return new (C) DeclRefExpr(indexVar, DeclNameLoc(), /*implicit*/ true,
AccessSemantics::Ordinary, intType);
}
/// Returns the ParamDecl for each associated value of the given enum whose type
/// does not conform to a protocol
/// \p theEnum The enum whose elements and associated values should be checked.
/// \p protocol The protocol being requested.
/// \return The ParamDecl of each associated value whose type does not conform.
SmallVector<ParamDecl *, 4>
DerivedConformance::associatedValuesNotConformingToProtocol(
DeclContext *DC, EnumDecl *theEnum, ProtocolDecl *protocol) {
SmallVector<ParamDecl *, 4> nonconformingAssociatedValues;
for (auto elt : theEnum->getAllElements()) {
auto PL = elt->getParameterList();
if (!PL)
continue;
for (auto param : *PL) {
auto type = param->getInterfaceType();
if (TypeChecker::conformsToProtocol(DC->mapTypeIntoContext(type),
protocol, DC->getParentModule())
.isInvalid()) {
nonconformingAssociatedValues.push_back(param);
}
}
}
return nonconformingAssociatedValues;
}
/// Returns true if, for every element of the given enum, it either has no
/// associated values or all of them conform to a protocol.
/// \p theEnum The enum whose elements and associated values should be checked.
/// \p protocol The protocol being requested.
/// \return True if all associated values of all elements of the enum conform.
bool DerivedConformance::allAssociatedValuesConformToProtocol(DeclContext *DC,
EnumDecl *theEnum,
ProtocolDecl *protocol) {
return associatedValuesNotConformingToProtocol(DC, theEnum, protocol).empty();
}
/// Returns the pattern used to match and bind the associated values (if any) of
/// an enum case.
/// \p enumElementDecl The enum element to match.
/// \p varPrefix The prefix character for variable names (e.g., a0, a1, ...).
/// \p varContext The context into which payload variables should be declared.
/// \p boundVars The array to which the pattern's variables will be appended.
/// \p useLabels If the argument has a label, use it instead of the generated
/// name.
Pattern *DerivedConformance::enumElementPayloadSubpattern(
EnumElementDecl *enumElementDecl, char varPrefix, DeclContext *varContext,
SmallVectorImpl<VarDecl *> &boundVars, bool useLabels) {
auto parentDC = enumElementDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
// No arguments, so no subpattern to match.
if (!enumElementDecl->hasAssociatedValues())
return nullptr;
auto argumentType = enumElementDecl->getArgumentInterfaceType();
if (auto tupleType = argumentType->getAs<TupleType>()) {
// Either multiple (labeled or unlabeled) arguments, or one labeled
// argument. Return a tuple pattern that matches the enum element in arity,
// types, and labels. For example:
// case a(x: Int) => (x: let a0)
// case b(Int, String) => (let a0, let a1)
SmallVector<TuplePatternElt, 4> elementPatterns;
int index = 0;
for (auto tupleElement : tupleType->getElements()) {
VarDecl *payloadVar;
if (useLabels && tupleElement.hasName()) {
payloadVar =
new (C) VarDecl(/*IsStatic*/ false, VarDecl::Introducer::Let,
SourceLoc(), tupleElement.getName(), varContext);
payloadVar->setInterfaceType(tupleElement.getType());
} else {
payloadVar = indexedVarDecl(varPrefix, index++, tupleElement.getType(),
varContext);
}
boundVars.push_back(payloadVar);
auto namedPattern = new (C) NamedPattern(payloadVar);
namedPattern->setImplicit();
auto letPattern = BindingPattern::createImplicit(
C, VarDecl::Introducer::Let, namedPattern);
elementPatterns.push_back(TuplePatternElt(tupleElement.getName(),
SourceLoc(), letPattern));
}
auto pat = TuplePattern::createImplicit(C, elementPatterns);
pat->setImplicit();
return pat;
}
// Otherwise, a one-argument unlabeled payload. Return a paren pattern whose
// underlying type is the same as the payload. For example:
// case a(Int) => (let a0)
auto underlyingType = argumentType->getWithoutParens();
auto payloadVar = indexedVarDecl(varPrefix, 0, underlyingType, varContext);
boundVars.push_back(payloadVar);
auto namedPattern = new (C) NamedPattern(payloadVar);
namedPattern->setImplicit();
auto letPattern = new (C)
BindingPattern(SourceLoc(), VarDecl::Introducer::Let, namedPattern);
return ParenPattern::createImplicit(C, letPattern);
}
CaseStmt *DerivedConformance::unavailableEnumElementCaseStmt(
Type enumType, EnumElementDecl *elt, DeclContext *parentDC,
unsigned subPatternCount) {
assert(subPatternCount > 0);
ASTContext &C = parentDC->getASTContext();
auto availableAttr = elt->getAttrs().getUnavailable(C);
if (!availableAttr)
return nullptr;
if (!availableAttr->isUnconditionallyUnavailable())
return nullptr;
auto createElementPattern = [&]() -> EnumElementPattern * {
// .<elt>
EnumElementPattern *eltPattern = new (C) EnumElementPattern(
TypeExpr::createImplicit(enumType, C), SourceLoc(), DeclNameLoc(),
DeclNameRef(elt->getBaseIdentifier()), elt, nullptr, /*DC*/ parentDC);
eltPattern->setImplicit();
eltPattern->setType(enumType);
return eltPattern;
};
Pattern *labelItemPattern;
if (subPatternCount > 1) {
SmallVector<TuplePatternElt, 2> tuplePatternElts;
for (unsigned i = 0; i < subPatternCount; i++) {
tuplePatternElts.push_back(TuplePatternElt(createElementPattern()));
}
// (.<elt>, ..., .<elt>)
auto caseTuplePattern = TuplePattern::createImplicit(C, tuplePatternElts);
caseTuplePattern->setImplicit();
labelItemPattern = caseTuplePattern;
} else {
labelItemPattern = createElementPattern();
}
auto labelItem = CaseLabelItem(labelItemPattern);
auto *callExpr =
DerivedConformance::createDiagnoseUnavailableCodeReachedCallExpr(C);
auto body = BraceStmt::create(C, SourceLoc(), {callExpr}, SourceLoc());
return CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(), labelItem,
SourceLoc(), SourceLoc(), body, {},
/*implicit*/ true);
}
/// Creates a named variable based on a prefix character and a numeric index.
/// \p prefixChar The prefix character for the variable's name.
/// \p index The numeric index to append to the variable's name.
/// \p type The type of the variable.
/// \p varContext The context of the variable.
/// \return A VarDecl named with the prefix and number.
VarDecl *DerivedConformance::indexedVarDecl(char prefixChar, int index, Type type,
DeclContext *varContext) {
ASTContext &C = varContext->getASTContext();
llvm::SmallString<8> indexVal;
indexVal.append(1, prefixChar);
APInt(32, index).toString(indexVal, 10, /*signed*/ false);
auto indexStr = C.AllocateCopy(indexVal);
auto indexStrRef = StringRef(indexStr.data(), indexStr.size());
auto varDecl = new (C) VarDecl(/*IsStatic*/false, VarDecl::Introducer::Let,
SourceLoc(), C.getIdentifier(indexStrRef),
varContext);
varDecl->setInterfaceType(type);
return varDecl;
}
bool swift::memberwiseAccessorsRequireActorIsolation(NominalTypeDecl *nominal) {
if (!getActorIsolation(nominal).isActorIsolated())
return false;
for (auto property : nominal->getStoredProperties()) {
if (!property->isUserAccessible())
continue;
if (!property->isLet())
return true;
}
return false;
}