Files
swift-mirror/lib/SIL/SILPrinter.cpp
Joe Groff 71379f5bad SILGen: Explicitly mark uninitialized locals with mark_uninitialized, and have DI only consider mark_uninitialized storage.
Have SILGen mark all variables bound from pattern bindings without initializers (and *only* ones without initializers) with mark_uninitialized [var] pseudo instructions. On the DI end, *only* consider mark_uninitialized instructions for DI analysis. This has many benefits:

- DI doesn't waste time analyzing locals that are trivially initialized in the original source code.
- DI doesn't try to mangle canonical SIL that has been inlined from transparent functions, which may have been optimized into a form DI isn't written to understand.

While we're here, fix an issue with DCE where it would try to kill unused MarkUninitialized instructions. Although MarkUninitialized has no side effects, it still is semantically important to raw SIL, and can't be killed.

Chris did most of the work here; I just finished updating tests and fixing bugs.

Swift SVN r13247
2014-01-31 22:50:21 +00:00

1369 lines
41 KiB
C++

//===--- SILPrinter.cpp - Pretty-printing of SIL Code ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the logic to pretty-print SIL, Instructions, etc.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Demangle.h"
#include "swift/Basic/QuotedString.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILVTable.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/Types.h"
#include "swift/Basic/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/FormattedStream.h"
using namespace swift;
using namespace Demangle;
struct ID {
enum ID_Kind {
SILBasicBlock, SILUndef, SSAValue
} Kind;
unsigned Number;
int ResultNumber;
};
enum SILColorKind {
SC_Type,
};
namespace {
/// RAII based coloring of SIL output.
class SILColor {
raw_ostream &OS;
enum raw_ostream::Colors Color;
public:
#define DEF_COL(NAME, RAW) case NAME: Color = raw_ostream::RAW; break;
explicit SILColor(raw_ostream &OS, SILColorKind K) : OS(OS) {
if (!OS.has_colors())
return;
switch (K) {
DEF_COL(SC_Type, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
explicit SILColor(raw_ostream &OS, ID::ID_Kind K) : OS(OS) {
if (!OS.has_colors())
return;
switch (K) {
DEF_COL(ID::SILUndef, RED)
DEF_COL(ID::SILBasicBlock, GREEN)
DEF_COL(ID::SSAValue, MAGENTA)
}
OS.resetColor();
OS.changeColor(Color);
}
~SILColor() {
if (!OS.has_colors())
return;
// FIXME: instead of resetColor(), we can look into
// capturing the current active color and restoring it.
OS.resetColor();
}
#undef DEF_COL
};
}
static raw_ostream &operator<<(raw_ostream &OS, ID i) {
SILColor C(OS, i.Kind);
switch (i.Kind) {
case ID::SILUndef: OS << "undef"; return OS;
case ID::SILBasicBlock: OS << "bb"; break;
case ID::SSAValue: OS << '%'; break;
}
OS << i.Number;
if (i.ResultNumber != -1)
OS << '#' << i.ResultNumber;
return OS;
}
/// IDAndType - Used when a client wants to print something like "%0 : $Int".
struct IDAndType {
ID id;
SILType Ty;
};
static raw_ostream &operator<<(raw_ostream &OS, IDAndType i) {
SILColor C(OS, SC_Type);
return OS << i.id << " : " << i.Ty;
}
/// Return the fully qualified dotted path for DeclContext.
static void printFullContext(const DeclContext *Context, raw_ostream &Buffer) {
if (!Context)
return;
switch (Context->getContextKind()) {
case DeclContextKind::Module:
if (Context == cast<Module>(Context)->Ctx.TheBuiltinModule)
Buffer << cast<Module>(Context)->Name << ".";
return;
case DeclContextKind::FileUnit:
// Ignore the file; just print the module.
printFullContext(Context->getParent(), Buffer);
return;
case DeclContextKind::Initializer:
// FIXME
Buffer << "<initializer>";
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME
Buffer << "<anonymous function>";
return;
case DeclContextKind::NominalTypeDecl: {
const NominalTypeDecl *Nominal = cast<NominalTypeDecl>(Context);
printFullContext(Nominal->getDeclContext(), Buffer);
Buffer << Nominal->getName() << ".";
return;
}
case DeclContextKind::ExtensionDecl: {
Type Ty = cast<ExtensionDecl>(Context)->getExtendedType();
TypeBase *Base = Ty->getCanonicalType().getPointer();
const NominalTypeDecl *ExtNominal = 0;
switch (Base->getKind()) {
default:
llvm_unreachable("unhandled context kind in SILPrint!");
case TypeKind::Enum:
ExtNominal = cast<EnumType>(Base)->getDecl();
break;
case TypeKind::Struct:
ExtNominal = cast<StructType>(Base)->getDecl();
break;
case TypeKind::Class:
ExtNominal = cast<ClassType>(Base)->getDecl();
break;
case TypeKind::BoundGenericEnum:
ExtNominal = cast<BoundGenericEnumType>(Base)->getDecl();
break;
case TypeKind::BoundGenericStruct:
ExtNominal = cast<BoundGenericStructType>(Base)->getDecl();
break;
case TypeKind::BoundGenericClass:
ExtNominal = cast<BoundGenericClassType>(Base)->getDecl();
break;
}
printFullContext(ExtNominal->getDeclContext(), Buffer);
Buffer << ExtNominal->getName() << ".";
return;
}
case DeclContextKind::TopLevelCodeDecl:
llvm_unreachable("unhandled context kind in SILPrint!");
case DeclContextKind::AbstractFunctionDecl:
// FIXME
Buffer << "<abstract function>";
return;
}
llvm_unreachable("bad decl context");
}
/// SILDeclRef uses sigil "#" and prints the fully qualified dotted path.
void SILDeclRef::print(raw_ostream &OS) const {
OS << "#";
if (isNull()) {
OS << "<null>";
return;
}
if (hasDecl()) {
printFullContext(getDecl()->getDeclContext(), OS);
OS << getDecl()->getName();
} else {
OS << "<anonymous function>";
}
switch (kind) {
case SILDeclRef::Kind::Func:
break;
case SILDeclRef::Kind::Getter:
OS << "!getter";
break;
case SILDeclRef::Kind::Setter:
OS << "!setter";
break;
case SILDeclRef::Kind::Allocator:
OS << "!allocator";
break;
case SILDeclRef::Kind::Initializer:
OS << "!initializer";
break;
case SILDeclRef::Kind::EnumElement:
OS << "!enumelt";
break;
case SILDeclRef::Kind::Destroyer:
OS << "!destroyer";
break;
case SILDeclRef::Kind::Deallocator:
OS << "!deallocator";
break;
case SILDeclRef::Kind::IVarInitializer:
OS << "!ivarinitializer";
break;
case SILDeclRef::Kind::IVarDestroyer:
OS << "!ivardestroyer";
break;
case SILDeclRef::Kind::GlobalAccessor:
OS << "!globalaccessor";
break;
case SILDeclRef::Kind::DefaultArgGenerator:
OS << "!defaultarg" << "." << defaultArgIndex;
break;
}
if (uncurryLevel != 0) {
if (kind != SILDeclRef::Kind::Func)
OS << "." << uncurryLevel;
else
OS << "!" << uncurryLevel;
}
if (isForeign) {
if (uncurryLevel != 0 || kind != SILDeclRef::Kind::Func)
OS << ".foreign";
else
OS << "!foreign";
}
}
void SILDeclRef::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
static void print(raw_ostream &OS, SILValueCategory category) {
switch (category) {
case SILValueCategory::Object: return;
case SILValueCategory::Address: OS << '*'; return;
case SILValueCategory::LocalStorage: OS << "*@local_storage "; return;
}
llvm_unreachable("bad value category!");
}
void SILType::print(raw_ostream &OS) const {
SILColor C(OS, SC_Type);
OS << '$';
// Potentially add a leading sigil for the value category.
::print(OS, getCategory());
// For the Self archetype of a protocol, print @sil_self protocol.
if (auto archetypeTy = getSwiftRValueType()->getAs<ArchetypeType>()) {
if (auto proto = archetypeTy->getSelfProtocol()) {
OS << "@sil_self ";
proto->getDeclaredType()->print(OS);
return;
}
}
// Print other types as their Swift representation.
getSwiftRValueType().print(OS);
}
void SILType::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
namespace {
/// SILPrinter class - This holds the internal implementation details of
/// printing SIL structures.
class SILPrinter : public SILVisitor<SILPrinter> {
llvm::formatted_raw_ostream OS;
SILValue subjectValue;
bool Verbose;
llvm::DenseMap<const SILBasicBlock *, unsigned> BlocksToIDMap;
llvm::DenseMap<const ValueBase*, unsigned> ValueToIDMap;
public:
SILPrinter(raw_ostream &OS, bool V = false) : OS(OS), Verbose(V) {
}
ID getID(const SILBasicBlock *B);
ID getID(SILValue V);
IDAndType getIDAndType(SILValue V) {
return { getID(V), V.getType() };
}
//===--------------------------------------------------------------------===//
// Big entrypoints.
void print(const SILFunction *F) {
interleave(*F,
[&](const SILBasicBlock &B) { print(&B); },
[&] { OS << '\n'; });
}
void print(const SILBasicBlock *BB) {
OS << getID(BB);
if (!BB->bbarg_empty()) {
OS << '(';
for (auto I = BB->bbarg_begin(), E = BB->bbarg_end(); I != E; ++I) {
if (I != BB->bbarg_begin()) OS << ", ";
OS << getIDAndType(*I);
}
OS << ')';
}
OS << ":";
if (!BB->pred_empty()) {
OS.PadToColumn(50);
OS << "// Preds:";
for (auto BBI = BB->pred_begin(), E = BB->pred_end(); BBI != E; ++BBI)
OS << ' ' << getID(*BBI);
}
OS << '\n';
for (const SILInstruction &I : *BB)
print(&I);
}
//===--------------------------------------------------------------------===//
// SILInstruction Printing Logic
void print(SILValue V) {
if (auto *FRI = dyn_cast<FunctionRefInst>(V))
OS << " // function_ref "
<< demangleSymbolAsString(FRI->getReferencedFunction()->getName())
<< "\n";
OS << " ";
// Print result.
if (V->hasValue()) {
ID Name = getID(V);
Name.ResultNumber = -1; // Don't print subresult number.
OS << Name << " = ";
}
// Print the value.
visit(V);
// Print users, or id for valueless instructions.
bool printedSlashes = false;
if (!V->hasValue()) {
OS.PadToColumn(50);
OS << "// id: " << getID(V);
printedSlashes = true;
} else if (!V->use_empty()) {
OS.PadToColumn(50);
OS << "// user";
if (std::next(V->use_begin()) != V->use_end())
OS << 's';
OS << ": ";
interleave(V->use_begin(), V->use_end(),
[&] (Operand *o) { OS << getID(o->getUser()); },
[&] { OS << ", "; });
printedSlashes = true;
}
// Print SIL location.
if (Verbose) {
if (SILInstruction *I = dyn_cast<SILInstruction>(V.getDef())) {
SILLocation L = I->getLoc();
SILModule &M = I->getModule();
if (!L.isNull()) {
if (!printedSlashes) {
OS.PadToColumn(50);
OS << "//";
}
OS << " ";
// To minimize output, only print the line and column number for
// everything but the first instruction.
L.getSourceLoc().printLineAndColumn(OS, M.getASTContext().SourceMgr);
// Print the type of location.
switch (L.getKind()) {
case SILLocation::NoneKind :
assert(L.isAutoGenerated() && "This kind shouldn't be printed.");
break;
case SILLocation::RegularKind :
break;
case SILLocation::ReturnKind :
OS << ":return"; break;
case SILLocation::ImplicitReturnKind :
OS << ":imp_return"; break;
case SILLocation::InlinedKind :
OS << ":inlined"; break;
case SILLocation::MandatoryInlinedKind :
OS << ":minlined"; break;
case SILLocation::CleanupKind :
OS << ":cleanup"; break;
case SILLocation::ArtificialUnreachableKind :
OS << ":art_unreach"; break;
case SILLocation::SILFileKind :
OS << ":sil"; break;
}
if (L.isAutoGenerated())
OS << ":auto_gen";
if (L.isInPrologue())
OS << ":in_prologue";
}
if (L.isNull()) {
if (!printedSlashes) {
OS.PadToColumn(50);
OS << "//";
}
if (L.isInTopLevel())
OS << " top_level";
else if (L.isAutoGenerated())
OS << " auto_gen";
else
OS << " no_loc";
}
}
}
OS << '\n';
}
void printInContext(SILValue V) {
subjectValue = V;
auto sortByID = [&](SILValue a, SILValue b) {
return getID(a).Number < getID(b).Number;
};
if (auto *I = dyn_cast<SILInstruction>(V)) {
auto operands = map<SmallVector<SILValue,4>>(I->getAllOperands(),
[](Operand const &o) {
return o.get();
});
std::sort(operands.begin(), operands.end(), sortByID);
for (auto &operand : operands) {
OS << " ";
print(operand);
}
}
OS << "-> ";
print(V);
auto users = map<SmallVector<SILValue,4>>(V->getUses(),
[](Operand *o) {
return o->getUser();
});
std::sort(users.begin(), users.end(), sortByID);
for (auto &user : users) {
OS << " ";
print(user);
}
}
void visitSILArgument(SILArgument *A) {
// This should really only happen during debugging.
OS << "argument of " << getID(A->getParent()) << " : ";
A->getType().print(OS);
}
void visitSILUndef(SILUndef *A) {
// This should really only happen during debugging.
OS << "undef<";
A->getType().print(OS);
OS << ">";
}
void visitAllocStackInst(AllocStackInst *AVI) {
OS << "alloc_stack " << AVI->getElementType();
if (VarDecl *vd = AVI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitAllocRefInst(AllocRefInst *ARI) {
OS << "alloc_ref ";
if (ARI->isObjC())
OS << "[objc] ";
OS << ARI->getType();
}
void visitAllocBoxInst(AllocBoxInst *ABI) {
OS << "alloc_box " << ABI->getElementType();
if (VarDecl *vd = ABI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitAllocArrayInst(AllocArrayInst *AAI) {
OS << "alloc_array " << AAI->getElementType()
<< ", " << getIDAndType(AAI->getNumElements());
}
void printSubstitutions(ArrayRef<Substitution> Subs) {
if (Subs.empty())
return;
OS << '<';
interleave(Subs,
[&](const Substitution &s) {
s.Archetype->print(OS);
OS << " = ";
s.Replacement->print(OS);
},
[&] { OS << ", "; });
OS << '>';
}
void visitApplyInst(ApplyInst *AI) {
OS << "apply ";
if (AI->isTransparent())
OS << "[transparent] ";
OS << getID(AI->getCallee());
printSubstitutions(AI->getSubstitutions());
OS << '(';
interleave(AI->getArguments(),
[&](const SILValue &arg) { OS << getID(arg); },
[&] { OS << ", "; });
OS << ") : " << AI->getCallee().getType();
}
void visitPartialApplyInst(PartialApplyInst *CI) {
OS << "partial_apply ";
OS << getID(CI->getCallee());
printSubstitutions(CI->getSubstitutions());
OS << '(';
interleave(CI->getArguments(),
[&](const SILValue &arg) { OS << getID(arg); },
[&] { OS << ", "; });
OS << ") : " << CI->getCallee().getType();
}
void visitFunctionRefInst(FunctionRefInst *FRI) {
OS << "function_ref ";
FRI->getReferencedFunction()->printName(OS);
OS << " : " << FRI->getType();
}
void visitBuiltinFunctionRefInst(BuiltinFunctionRefInst *BFI) {
OS << "builtin_function_ref "
<< QuotedString(BFI->getName().str()) << " : " << BFI->getType();
}
void visitGlobalAddrInst(GlobalAddrInst *GAI) {
OS << "global_addr #" << GAI->getGlobal()->getName()
<< " : " << GAI->getType();
}
void visitSILGlobalAddrInst(SILGlobalAddrInst *GAI) {
OS << "sil_global_addr ";
GAI->getReferencedGlobal()->printName(OS);
OS << " : " << GAI->getType();
}
void visitIntegerLiteralInst(IntegerLiteralInst *ILI) {
const auto &lit = ILI->getValue();
OS << "integer_literal " << ILI->getType() << ", " << lit;
}
void visitFloatLiteralInst(FloatLiteralInst *FLI) {
OS << "float_literal " << FLI->getType() << ", 0x";
APInt bits = FLI->getBits();
OS << bits.toString(16, /*Signed*/ false);
llvm::SmallString<12> decimal;
FLI->getValue().toString(decimal);
OS << " // " << decimal;
}
static StringRef getStringEncodingName(StringLiteralInst::Encoding kind) {
switch (kind) {
case StringLiteralInst::Encoding::UTF8: return "utf8 ";
case StringLiteralInst::Encoding::UTF16: return "utf16 ";
}
llvm_unreachable("bad string literal encoding");
}
void visitStringLiteralInst(StringLiteralInst *SLI) {
OS << "string_literal " << getStringEncodingName(SLI->getEncoding())
<< QuotedString(SLI->getValue());
}
void visitLoadInst(LoadInst *LI) {
OS << "load " << getIDAndType(LI->getOperand());
}
void visitStoreInst(StoreInst *SI) {
OS << "store " << getID(SI->getSrc()) << " to "
<< getIDAndType(SI->getDest());
}
void visitAssignInst(AssignInst *AI) {
OS << "assign " << getID(AI->getSrc()) << " to "
<< getIDAndType(AI->getDest());
}
void visitMarkUninitializedInst(MarkUninitializedInst *MU) {
OS << "mark_uninitialized ";
switch (MU->getKind()) {
case MarkUninitializedInst::Var: OS << "[var] "; break;
case MarkUninitializedInst::RootSelf: OS << "[rootself] "; break;
case MarkUninitializedInst::DerivedSelf: OS << "[derivedself] "; break;
case MarkUninitializedInst::DerivedSelfOnly:
OS << "[derivedselfonly] ";
break;
case MarkUninitializedInst::DelegatingSelf: OS << "[delegatingself] ";break;
}
OS << getIDAndType(MU->getOperand());
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
OS << "mark_function_escape ";
interleave(MFE->getElements(),
[&](SILValue Var) {
OS << getIDAndType(Var);
},
[&] { OS << ", "; });
}
void visitDebugValueInst(DebugValueInst *DVI) {
OS << "debug_value " << getIDAndType(DVI->getOperand());
if (VarDecl *vd = DVI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitDebugValueAddrInst(DebugValueAddrInst *DVAI) {
OS << "debug_value_addr " << getIDAndType(DVAI->getOperand());
if (VarDecl *vd = DVAI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitLoadWeakInst(LoadWeakInst *LI) {
OS << "load_weak ";
if (LI->isTake())
OS << "[take] ";
OS << getIDAndType(LI->getOperand());
}
void visitStoreWeakInst(StoreWeakInst *SI) {
OS << "store_weak " << getID(SI->getSrc()) << " to ";
if (SI->isInitializationOfDest())
OS << "[initialization] ";
OS << getIDAndType(SI->getDest());
}
void visitCopyAddrInst(CopyAddrInst *CI) {
OS << "copy_addr ";
if (CI->isTakeOfSrc())
OS << "[take] ";
OS << getID(CI->getSrc()) << " to ";
if (CI->isInitializationOfDest())
OS << "[initialization] ";
OS << getIDAndType(CI->getDest());
}
void printUncheckedConversionInst(ConversionInst *CI, SILValue operand,
StringRef name) {
OS << name << " " << getIDAndType(operand) << " to " << CI->getType();
}
StringRef getCastKindName(CheckedCastKind kind) const {
switch (kind) {
case CheckedCastKind::Unresolved:
case CheckedCastKind::Coercion:
llvm_unreachable("invalid cast kind for SIL");
case CheckedCastKind::Downcast:
return "downcast";
case CheckedCastKind::SuperToArchetype:
return "super_to_archetype";
case CheckedCastKind::ArchetypeToArchetype:
return "archetype_to_archetype";
case CheckedCastKind::ArchetypeToConcrete:
return "archetype_to_concrete";
case CheckedCastKind::ExistentialToArchetype:
return "existential_to_archetype";
case CheckedCastKind::ExistentialToConcrete:
return "existential_to_concrete";
case CheckedCastKind::ConcreteToArchetype:
return "concrete_to_archetype";
case CheckedCastKind::ConcreteToUnrelatedExistential:
return "concrete_to_unrelated_existential";
}
}
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
OS << "unconditional_checked_cast " << getCastKindName(CI->getCastKind())
<< ' ' << getIDAndType(CI->getOperand())
<< " to " << CI->getType();
}
void visitCheckedCastBranchInst(CheckedCastBranchInst *CI) {
OS << "checked_cast_br " << getCastKindName(CI->getCastKind()) << ' '
<< getIDAndType(CI->getOperand())
<< " to " << CI->getCastType() << ", "
<< getID(CI->getSuccessBB()) << ", " << getID(CI->getFailureBB());
}
void visitConvertFunctionInst(ConvertFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "convert_function");
}
void visitUpcastInst(UpcastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "upcast");
}
void visitAddressToPointerInst(AddressToPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "address_to_pointer");
}
void visitPointerToAddressInst(PointerToAddressInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "pointer_to_address");
}
void visitRefToObjectPointerInst(RefToObjectPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_object_pointer");
}
void visitObjectPointerToRefInst(ObjectPointerToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "object_pointer_to_ref");
}
void visitRefToRawPointerInst(RefToRawPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_raw_pointer");
}
void visitRawPointerToRefInst(RawPointerToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "raw_pointer_to_ref");
}
void visitRefToUnownedInst(RefToUnownedInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_unowned");
}
void visitUnownedToRefInst(UnownedToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "unowned_to_ref");
}
void visitThinToThickFunctionInst(ThinToThickFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"thin_to_thick_function");
}
void visitBridgeToBlockInst(BridgeToBlockInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "bridge_to_block");
}
void visitArchetypeRefToSuperInst(ArchetypeRefToSuperInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"archetype_ref_to_super");
}
void visitUpcastExistentialRefInst(UpcastExistentialRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"upcast_existential_ref");
}
void visitIsNonnullInst(IsNonnullInst *I) {
OS << "is_nonnull " << getIDAndType(I->getOperand());
}
void visitCopyValueInst(CopyValueInst *I) {
OS << "copy_value " << getIDAndType(I->getOperand());
}
void visitDestroyValueInst(DestroyValueInst *I) {
OS << "destroy_value " << getIDAndType(I->getOperand());
}
void visitStructInst(StructInst *SI) {
OS << "struct " << SI->getType() << " (";
interleave(SI->getElements(),
[&](const SILValue &V) { OS << getIDAndType(V); },
[&] { OS << ", "; });
OS << ')';
}
void visitTupleInst(TupleInst *TI) {
OS << "tuple ";
// Check to see if the type of the tuple can be inferred accurately from the
// elements.
bool SimpleType = true;
for (auto &Elt : TI->getType().castTo<TupleType>()->getFields()) {
if (Elt.hasName() || Elt.isVararg() || Elt.hasInit()) {
SimpleType = false;
break;
}
}
// If the type is simple, just print the tuple elements.
if (SimpleType) {
OS << '(';
interleave(TI->getElements(),
[&](const SILValue &V){ OS << getIDAndType(V); },
[&] { OS << ", "; });
OS << ')';
} else {
// Otherwise, print the type, then each value.
OS << TI->getType() << " (";
interleave(TI->getElements(),
[&](const SILValue &V){ OS << getID(V); },
[&] { OS << ", "; });
OS << ')';
}
}
void visitEnumInst(EnumInst *UI) {
OS << "enum " << UI->getType() << ", "
<< SILDeclRef(UI->getElement(), SILDeclRef::Kind::EnumElement);
if (UI->hasOperand()) {
OS << ", " << getIDAndType(UI->getOperand());
}
}
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *UDAI) {
OS << "init_enum_data_addr "
<< getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitTakeEnumDataAddrInst(TakeEnumDataAddrInst *UDAI) {
OS << "take_enum_data_addr "
<< getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
OS << "inject_enum_addr "
<< getIDAndType(IUAI->getOperand()) << ", "
<< SILDeclRef(IUAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitTupleExtractInst(TupleExtractInst *EI) {
OS << "tuple_extract " << getIDAndType(EI->getOperand()) << ", "
<< EI->getFieldNo();
}
void visitTupleElementAddrInst(TupleElementAddrInst *EI) {
OS << "tuple_element_addr " << getIDAndType(EI->getOperand()) << ", "
<< EI->getFieldNo();
}
void visitStructExtractInst(StructExtractInst *EI) {
OS << "struct_extract " << getIDAndType(EI->getOperand()) << ", #"
<< EI->getField()->getName().get();
}
void visitStructElementAddrInst(StructElementAddrInst *EI) {
OS << "struct_element_addr " << getIDAndType(EI->getOperand()) << ", #"
<< EI->getField()->getName().get();
}
void visitRefElementAddrInst(RefElementAddrInst *EI) {
OS << "ref_element_addr " << getIDAndType(EI->getOperand()) << ", #"
<< EI->getField()->getName().get();
}
void printMethodInst(MethodInst *I, SILValue Operand, StringRef Name) {
OS << Name << " ";
if (I->isVolatile())
OS << "[volatile] ";
OS << getIDAndType(Operand) << ", ";
I->getMember().print(OS);
}
void visitClassMethodInst(ClassMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "class_method");
OS << " : " << AMI->getType();
}
void visitSuperMethodInst(SuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "super_method");
OS << " : " << AMI->getType();
}
void visitPeerMethodInst(PeerMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "peer_method");
OS << " : " << AMI->getType();
}
void visitArchetypeMethodInst(ArchetypeMethodInst *AMI) {
OS << "archetype_method ";
if (AMI->isVolatile())
OS << "[volatile] ";
AMI->getLookupType().print(OS);
OS << ", ";
AMI->getMember().print(OS);
OS << " : " << AMI->getType(0);
}
void visitProtocolMethodInst(ProtocolMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "protocol_method");
OS << " : " << AMI->getType();
}
void visitDynamicMethodInst(DynamicMethodInst *DMI) {
printMethodInst(DMI, DMI->getOperand(), "dynamic_method");
OS << " : " << DMI->getType();
}
void visitProjectExistentialInst(ProjectExistentialInst *PI) {
OS << "project_existential " << getIDAndType(PI->getOperand())
<< " to " << PI->getType();
}
void visitProjectExistentialRefInst(ProjectExistentialRefInst *PI) {
OS << "project_existential_ref " << getIDAndType(PI->getOperand())
<< " to " << PI->getType();
}
void visitInitExistentialInst(InitExistentialInst *AEI) {
OS << "init_existential " << getIDAndType(AEI->getOperand()) << ", ";
AEI->getConcreteType().print(OS);
}
void visitInitExistentialRefInst(InitExistentialRefInst *AEI) {
OS << "init_existential_ref " << getIDAndType(AEI->getOperand()) << ", ";
AEI->getType().print(OS);
}
void visitUpcastExistentialInst(UpcastExistentialInst *UEI) {
OS << "upcast_existential ";
if (UEI->isTakeOfSrc())
OS << "[take] ";
OS << getIDAndType(UEI->getSrcExistential())
<< " to " << getIDAndType(UEI->getDestExistential());
}
void visitDeinitExistentialInst(DeinitExistentialInst *DEI) {
OS << "deinit_existential " << getIDAndType(DEI->getOperand());
}
void visitClassMetatypeInst(ClassMetatypeInst *MI) {
OS << "class_metatype " << MI->getType() << ", "
<< getIDAndType(MI->getOperand());
}
void visitArchetypeMetatypeInst(ArchetypeMetatypeInst *MI) {
OS << "archetype_metatype " << MI->getType() << ", "
<< getIDAndType(MI->getOperand());
}
void visitProtocolMetatypeInst(ProtocolMetatypeInst *MI) {
OS << "protocol_metatype " << MI->getType() << ", "
<< getIDAndType(MI->getOperand());
}
void visitMetatypeInst(MetatypeInst *MI) {
OS << "metatype " << MI->getType();
}
void visitStrongRetainInst(StrongRetainInst *RI) {
OS << "strong_retain " << getIDAndType(RI->getOperand());
}
void visitStrongRetainAutoreleasedInst(StrongRetainAutoreleasedInst *RI) {
OS << "strong_retain_autoreleased " << getIDAndType(RI->getOperand());
}
void visitStrongReleaseInst(StrongReleaseInst *RI) {
OS << "strong_release " << getIDAndType(RI->getOperand());
}
void visitStrongRetainUnownedInst(StrongRetainUnownedInst *RI) {
OS << "strong_retain_unowned " << getIDAndType(RI->getOperand());
}
void visitUnownedRetainInst(UnownedRetainInst *RI) {
OS << "unowned_retain " << getIDAndType(RI->getOperand());
}
void visitUnownedReleaseInst(UnownedReleaseInst *RI) {
OS << "unowned_release " << getIDAndType(RI->getOperand());
}
void visitDeallocStackInst(DeallocStackInst *DI) {
OS << "dealloc_stack " << getIDAndType(DI->getOperand());
}
void visitDeallocRefInst(DeallocRefInst *DI) {
OS << "dealloc_ref " << getIDAndType(DI->getOperand());
}
void visitDeallocBoxInst(DeallocBoxInst *DI) {
OS << "dealloc_box " << DI->getElementType() << ", "
<< getIDAndType(DI->getOperand());
}
void visitDestroyAddrInst(DestroyAddrInst *DI) {
OS << "destroy_addr " << getIDAndType(DI->getOperand());
}
void visitCondFailInst(CondFailInst *FI) {
OS << "cond_fail " << getIDAndType(FI->getOperand());
}
void visitIndexAddrInst(IndexAddrInst *IAI) {
OS << "index_addr " << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitIndexRawPointerInst(IndexRawPointerInst *IAI) {
OS << "index_raw_pointer " << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitUnreachableInst(UnreachableInst *UI) {
OS << "unreachable";
}
void visitReturnInst(ReturnInst *RI) {
OS << "return " << getIDAndType(RI->getOperand());
}
void visitAutoreleaseReturnInst(AutoreleaseReturnInst *RI) {
OS << "autorelease_return " << getIDAndType(RI->getOperand());
}
void visitSwitchIntInst(SwitchIntInst *SII) {
OS << "switch_int " << getIDAndType(SII->getOperand());
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
APInt value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
OS << ", case " << value << ": " << getID(dest);
}
if (SII->hasDefault())
OS << ", default " << getID(SII->getDefaultBB());
}
void printSwitchEnumInst(SwitchEnumInstBase *SOI) {
OS << getIDAndType(SOI->getOperand());
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
OS << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << getID(dest);
}
if (SOI->hasDefault())
OS << ", default " << getID(SOI->getDefaultBB());
}
void visitSwitchEnumInst(SwitchEnumInst *SOI) {
OS << "switch_enum ";
printSwitchEnumInst(SOI);
}
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *SOI){
OS << "switch_enum_addr ";
printSwitchEnumInst(SOI);
}
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
OS << "dynamic_method_br " << getIDAndType(DMBI->getOperand()) << ", ";
DMBI->getMember().print(OS);
OS << ", " << getID(DMBI->getHasMethodBB()) << ", "
<< getID(DMBI->getNoMethodBB());
}
void printBranchArgs(OperandValueArrayRef args) {
if (args.empty()) return;
OS << '(';
interleave(args,
[&](SILValue v) { OS << getIDAndType(v); },
[&] { OS << ", "; });
OS << ')';
}
void visitBranchInst(BranchInst *UBI) {
OS << "br " << getID(UBI->getDestBB());
printBranchArgs(UBI->getArgs());
}
void visitCondBranchInst(CondBranchInst *CBI) {
OS << "cond_br " << getID(CBI->getCondition()) << ", "
<< getID(CBI->getTrueBB());
printBranchArgs(CBI->getTrueArgs());
OS << ", " << getID(CBI->getFalseBB());
printBranchArgs(CBI->getFalseArgs());
}
};
} // end anonymous namespace
ID SILPrinter::getID(const SILBasicBlock *Block) {
// Lazily initialize the Blocks-to-IDs mapping.
if (BlocksToIDMap.empty()) {
unsigned idx = 0;
for (const SILBasicBlock &B : *Block->getParent())
BlocksToIDMap[&B] = idx++;
}
ID R = { ID::SILBasicBlock, BlocksToIDMap[Block], -1 };
return R;
}
ID SILPrinter::getID(SILValue V) {
if (isa<SILUndef>(V))
return { ID::SILUndef, 0, 0 };
// Lazily initialize the instruction -> ID mapping.
if (ValueToIDMap.empty()) {
const SILBasicBlock *ParentBB;
if (const SILInstruction *I = dyn_cast<SILInstruction>(V))
ParentBB = I->getParent();
else
ParentBB = cast<SILArgument>(V)->getParent();
// Keep the values in ValueToIDMap with a +1 bias so that lookups will get
// 0 for invalid numbers.
unsigned idx = 0;
for (auto &BB : *ParentBB->getParent()) {
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
ValueToIDMap[*I] = ++idx;
for (auto &I : BB) {
ValueToIDMap[&I] = ++idx;
}
}
}
int ResultNumber = -1;
if (V.getDef()->getTypes().size() > 1)
ResultNumber = V.getResultNumber();
ID R = { ID::SSAValue, ValueToIDMap[V.getDef()]-1, ResultNumber };
return R;
}
void SILBasicBlock::printAsOperand(raw_ostream &OS, bool PrintType) {
OS << SILPrinter(OS).getID(this);
}
//===----------------------------------------------------------------------===//
// Printing for SILInstruction, SILBasicBlock, SILFunction, and SILModule
//===----------------------------------------------------------------------===//
void SILValue::dump() const {
print(llvm::errs());
}
void SILValue::print(raw_ostream &OS) const {
SILPrinter(OS).print(*this);
}
void ValueBase::dump() const {
print(llvm::errs());
}
void ValueBase::print(raw_ostream &OS) const {
SILPrinter(OS).print(this);
}
/// Pretty-print the SILBasicBlock to errs.
void SILBasicBlock::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILBasicBlock to the designated stream.
void SILBasicBlock::print(raw_ostream &OS) const {
SILPrinter(OS).print(this);
}
/// Pretty-print the SILFunction to errs.
void SILFunction::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
// This is out of line so the debugger can find it.
void SILFunction::dump() const {
dump(false);
}
static StringRef getLinkageString(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return "public ";
case SILLinkage::Hidden: return "hidden ";
case SILLinkage::Shared: return "shared ";
case SILLinkage::Private: return "private ";
case SILLinkage::PublicExternal: return "public_external ";
case SILLinkage::HiddenExternal: return "hidden_external ";
}
llvm_unreachable("bad linkage");
}
static void printLinkage(llvm::raw_ostream &OS, SILLinkage linkage,
bool isDefinition) {
if ((isDefinition && linkage == SILLinkage::DefaultForDefinition) ||
(!isDefinition && linkage == SILLinkage::DefaultForDeclaration))
return;
OS << getLinkageString(linkage);
}
/// Pretty-print the SILFunction to the designated stream.
void SILFunction::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbolAsString(getName()) << '\n';
OS << "sil ";
printLinkage(OS, getLinkage(), isDefinition());
if (isTransparent())
OS << "[transparent] ";
printName(OS);
OS << " : " << SILType::getPrimitiveObjectType(LoweredType);
if (!isExternalDeclaration()) {
OS << " {\n";
SILPrinter(OS, Verbose).print(this);
OS << "}";
}
OS << "\n\n";
}
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void SILFunction::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print a global variable to the designated stream.
void SILGlobalVariable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbolAsString(getName()) << '\n';
OS << "sil_global ";
printLinkage(OS, getLinkage(), isDefinition());
printName(OS);
OS << " : " << LoweredType;
OS << "\n\n";
}
void SILGlobalVariable::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
void SILGlobalVariable::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print the SILModule to errs.
void SILModule::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILModule to the designated stream.
void SILModule::print(llvm::raw_ostream &OS, bool Verbose,
Module *M) const {
OS << "sil_stage ";
switch (Stage) {
case SILStage::Raw:
OS << "raw";
break;
case SILStage::Canonical:
OS << "canonical";
break;
}
OS << "\n\nimport Builtin\nimport swift\n\n";
// Print the declarations and types from the origin module.
// FIXME: What about multi-file modules?
if (M && M->getFiles().size() == 1) {
// Compute the list of emitted functions, whose AST Decls we do not need to
// print.
llvm::DenseSet<const Decl*> emittedFunctions;
for (const SILFunction &f : *this)
if (f.hasLocation())
emittedFunctions.insert(f.getLocation().getAsASTNode<Decl>());
PrintOptions Options;
Options.FunctionDefinitions = false;
Options.TypeDefinitions = true;
Options.VarInitializers = true;
Options.SkipImplicit = true;
// FIXME: Use some kind of visitor interface here.
SmallVector<Decl *, 32> topLevelDecls;
M->getFiles().front()->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if ((isa<ValueDecl>(D) || isa<OperatorDecl>(D)) &&
!emittedFunctions.count(D) &&
!D->isImplicit()) {
D->print(OS, Options);
OS << "\n\n";
}
}
}
for (const SILGlobalVariable &g : getSILGlobals())
g.print(OS, Verbose);
for (const SILFunction &f : *this)
f.print(OS, Verbose);
for (const SILVTable &vt : getVTables())
vt.print(OS, Verbose);
for (const SILWitnessTable &wt : getWitnessTables())
wt.print(OS, Verbose);
OS << "\n\n";
}
void ValueBase::dumpInContext() const {
printInContext(llvm::errs());
}
void ValueBase::printInContext(llvm::raw_ostream &OS) const {
SILPrinter(OS).printInContext(this);
}
void SILVTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_vtable " << getClass()->getName() << " {\n";
for (auto &entry : getEntries()) {
OS << " ";
entry.first.print(OS);
OS << ": " << entry.second->getName()
<< "\t// " << demangleSymbolAsString(entry.second->getName()) << "\n";
}
OS << "}\n\n";
}
void SILVTable::dump() const {
print(llvm::errs());
}
void SILWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_witness_table ";
getConformance()->printName(OS);
OS << " {\n";
for (auto &witness : getEntries()) {
OS << " ";
switch (witness.getKind()) {
case Invalid:
llvm_unreachable("invalid witness?!");
case Method: {
// method #declref: @function
auto &methodWitness = witness.getMethodWitness();
OS << "method ";
methodWitness.Requirement.print(OS);
OS << ": ";
methodWitness.Witness->printName(OS);
break;
}
case AssociatedType: {
// FIXME: implement parsing associated_type.
OS << "// ";
// associated_type AssociatedTypeName: ConformingType
auto &assocWitness = witness.getAssociatedTypeWitness();
OS << "associated_type ";
OS << assocWitness.Requirement->getName() << ": ";
assocWitness.Witness->print(OS);
break;
}
case AssociatedTypeProtocol: {
// FIXME: implement parsing associated_type_protocol.
OS << "// ";
// associated_type_protocol (AssociatedTypeName: Protocol): <conformance>
auto &assocProtoWitness = witness.getAssociatedTypeProtocolWitness();
OS << "associated_type_protocol ("
<< assocProtoWitness.Requirement->getName() << ": "
<< assocProtoWitness.Protocol->getName() << "): ";
if (assocProtoWitness.Witness)
assocProtoWitness.Witness->printName(OS);
else
OS << "dependent";
break;
}
case BaseProtocol: {
// FIXME: implement parsing base_protocol.
OS << "// ";
// base_protocol Protocol: <conformance>
auto &baseProtoWitness = witness.getBaseProtocolWitness();
OS << "base_protocol "
<< baseProtoWitness.Requirement->getName() << ": ";
baseProtoWitness.Witness->printName(OS);
}
}
OS << '\n';
}
OS << "}\n\n";
}
void SILWitnessTable::dump() const {
print(llvm::errs());
}