Files
swift-mirror/lib/SILOptimizer/Analysis/MemoryBehavior.cpp
Andrew Trick 7145a80fa2 Fix MemBehavior calls to getAccessedAddress to avoid an assert.
Fixes <rdar://60046018> assert: (v->getType().isAddress())
in getAccessedAddress.

MemBehavior compares known memory accesses with some arbitrary value,
which may not be an address. However, we should not call utilities
that work on accessed addresses with an arbitrary value.

This assert is a result of very recent changes to gradually make
memory access utilities more type safe and introduce the concept of a
canonical accessed address. In the future, we may even have a wrapper
type for such a thing. In the SIL optimizer, there are several
different notions of what constitutes the base of a memory
access. Mismatches can lead to subtle bugs.
2020-03-13 09:30:48 -07:00

448 lines
17 KiB
C++

//===--- MemoryBehavior.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-membehavior"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// The MemoryBehavior Cache must not grow beyond this size.
// We limit the size of the MB cache to 2**14 because we want to limit the
// memory usage of this cache.
static const int MemoryBehaviorAnalysisMaxCacheSize = 16384;
//===----------------------------------------------------------------------===//
// Memory Behavior Implementation
//===----------------------------------------------------------------------===//
namespace {
using MemBehavior = SILInstruction::MemoryBehavior;
/// Visitor that determines the memory behavior of an instruction relative to a
/// specific SILValue (i.e. can the instruction cause the value to be read,
/// etc.).
///
/// TODO: Clarify what it means to return a MayHaveSideEffects result. Does this
/// mean that the instruction may release objects referenced by value 'V'?
/// Deallocate the an address contained in 'V'? Are any other code motion
/// barriers relevant here?
class MemoryBehaviorVisitor
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
EscapeAnalysis *EA;
/// The value we are attempting to discover memory behavior relative to.
SILValue V;
/// Cache either the address of the access corresponding to memory at 'V', or
/// 'V' itself if it isn't recognized as part of an access. The cached value
/// is always a valid SILValue.
SILValue cachedValueAddress;
Optional<bool> cachedIsLetValue;
/// The SILType of the value.
Optional<SILType> TypedAccessTy;
/// Should we treat instructions that increment ref counts as None instead of
/// MayHaveSideEffects.
RetainObserveKind InspectionMode;
public:
MemoryBehaviorVisitor(AliasAnalysis *AA, SideEffectAnalysis *SEA,
EscapeAnalysis *EA, SILValue V,
RetainObserveKind IgnoreRefCountIncs)
: AA(AA), SEA(SEA), EA(EA), V(V), InspectionMode(IgnoreRefCountIncs) {}
SILType getValueTBAAType() {
if (!TypedAccessTy)
TypedAccessTy = computeTBAAType(V);
return *TypedAccessTy;
}
/// If 'V' is an address projection within a formal access, return the
/// canonical address of the formal access. Otherwise, return 'V' itself,
/// which is either a reference or unknown pointer or address.
SILValue getValueAddress() {
if (!cachedValueAddress) {
cachedValueAddress = V->getType().isAddress() ? getAccessedAddress(V) : V;
}
return cachedValueAddress;
}
/// Return true if 'V's accessed address is that of a let variables.
bool isLetValue() {
if (!cachedIsLetValue) {
cachedIsLetValue =
V->getType().isAddress() && isLetAddress(getValueAddress());
}
return cachedIsLetValue.getValue();
}
// Return true is the given address (or pointer) may alias with 'V'.
bool mayAlias(SILValue opAddress) {
if (AA->isNoAlias(opAddress, V, computeTBAAType(opAddress),
getValueTBAAType())) {
LLVM_DEBUG(llvm::dbgs()
<< "No alias: access " << opAddress << " value " << V);
return false;
}
LLVM_DEBUG(llvm::dbgs()
<< "May alias: access " << opAddress << " value " << V);
return true;
}
MemBehavior visitValueBase(ValueBase *V) {
llvm_unreachable("unimplemented");
}
MemBehavior visitSILInstruction(SILInstruction *Inst) {
// If we do not have any more information, just use the general memory
// behavior implementation.
auto Behavior = Inst->getMemoryBehavior();
// If this is a regular read-write access then return the computed memory
// behavior.
if (!isLetValue())
return Behavior;
// If this is a read-only access to 'let variable'. Other side effects, such
// as releases of the object containing a 'let' property are still relevant.
switch (Behavior) {
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
case MemBehavior::MayWrite: return MemBehavior::None;
default: return Behavior;
}
}
MemBehavior visitBeginAccessInst(BeginAccessInst *beginAccess) {
switch (beginAccess->getAccessKind()) {
case SILAccessKind::Deinit:
// A [deinit] only directly reads from the object. The fact that it frees
// memory is modeled more precisely by the release operations within the
// deinit scope. Therefore, handle it like a [read] here...
LLVM_FALLTHROUGH;
case SILAccessKind::Read:
if (!mayAlias(beginAccess->getSource()))
return MemBehavior::None;
return MemBehavior::MayRead;
case SILAccessKind::Modify:
if (isLetValue()) {
assert(stripAccessMarkers(beginAccess) != getValueAddress()
&& "let modification not allowed");
return MemBehavior::None;
}
// [modify] has a special case for ignoring 'let's, but otherwise is
// identical to an [init]...
LLVM_FALLTHROUGH;
case SILAccessKind::Init:
if (!mayAlias(beginAccess->getSource()))
return MemBehavior::None;
return MemBehavior::MayWrite;
}
}
MemBehavior visitEndAccessInst(EndAccessInst *endAccess) {
return visitBeginAccessInst(endAccess->getBeginAccess());
}
MemBehavior visitLoadInst(LoadInst *LI);
MemBehavior visitStoreInst(StoreInst *SI);
MemBehavior visitApplyInst(ApplyInst *AI);
MemBehavior visitTryApplyInst(TryApplyInst *AI);
MemBehavior visitBuiltinInst(BuiltinInst *BI);
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
MemBehavior visitSetDeallocatingInst(SetDeallocatingInst *BI);
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
MemBehavior visit##Name##ReleaseInst(Name##ReleaseInst *BI);
#include "swift/AST/ReferenceStorage.def"
// Instructions which are none if our SILValue does not alias one of its
// arguments. If we cannot prove such a thing, return the relevant memory
// behavior.
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
for (Operand & Op : I->getAllOperands()) { \
if (mayAlias(Op.get())) \
return I->getMemoryBehavior(); \
} \
return MemBehavior::None; \
}
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
OPERANDALIAS_MEMBEHAVIOR_INST(ClassifyBridgeObjectInst)
OPERANDALIAS_MEMBEHAVIOR_INST(ValueToBridgeObjectInst)
#undef OPERANDALIAS_MEMBEHAVIOR_INST
// Override simple behaviors where MayHaveSideEffects is too general and
// encompasses other behavior that is not read/write/ref count decrement
// behavior we care about.
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
#undef SIMPLE_MEMBEHAVIOR_INST
// If we are asked to treat ref count increments as being inert, return None
// for these.
//
// FIXME: Once we separate the notion of ref counts from reading/writing
// memory this will be unnecessary.
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
if (InspectionMode == RetainObserveKind::IgnoreRetains) \
return MemBehavior::None; \
return I->getMemoryBehavior(); \
}
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
#define UNCHECKED_REF_STORAGE(Name, ...) \
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainValueInst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainInst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetain##Name##Inst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
#include "swift/AST/ReferenceStorage.def"
#undef REFCOUNTINC_MEMBEHAVIOR_INST
};
} // end anonymous namespace
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
if (!mayAlias(LI->getOperand()))
return MemBehavior::None;
LLVM_DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
"pointer. Returning may read.\n");
return MemBehavior::MayRead;
}
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
// No store besides the initialization of a "let"-variable
// can have any effect on the value of this "let" variable.
if (isLetValue()
&& (getAccessedAddress(SI->getDest()) != getValueAddress())) {
return MemBehavior::None;
}
// If the store dest cannot alias the pointer in question, then the
// specified value cannot be modified by the store.
if (!mayAlias(SI->getDest()))
return MemBehavior::None;
// Otherwise, a store just writes.
LLVM_DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
"Returning MayWrite.\n");
return MemBehavior::MayWrite;
}
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
// If our callee is not a builtin, be conservative and return may have side
// effects.
if (!BI) {
return MemBehavior::MayHaveSideEffects;
}
// If the builtin is read none, it does not read or write memory.
if (!BI->mayReadOrWriteMemory()) {
LLVM_DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
" None.\n");
return MemBehavior::None;
}
// If the builtin is side effect free, then it can only read memory.
if (!BI->mayHaveSideEffects()) {
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
"Returning MayRead.\n");
return MemBehavior::MayRead;
}
// FIXME: If the value (or any other values from the instruction that the
// value comes from) that we are tracking does not escape and we don't alias
// any of the arguments of the apply inst, we should be ok.
// Otherwise be conservative and return that we may have side effects.
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
"Returning MayHaveSideEffects.\n");
return MemBehavior::MayHaveSideEffects;
}
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
MemBehavior Behavior = MemBehavior::MayHaveSideEffects;
// Ask escape analysis.
if (!EA->canEscapeTo(V, AI))
Behavior = MemBehavior::None;
// Otherwise be conservative and return that we may have side effects.
LLVM_DEBUG(llvm::dbgs() << " Found tryapply, returning " << Behavior <<'\n');
return Behavior;
}
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
FunctionSideEffects ApplyEffects;
SEA->getCalleeEffects(ApplyEffects, AI);
MemBehavior Behavior = MemBehavior::None;
// We can ignore mayTrap().
bool any_in_guaranteed_params = false;
for (auto op : enumerate(AI->getArgumentOperands())) {
if (op.value().get() == V &&
AI->getSubstCalleeConv().getSILArgumentConvention(op.index()) == swift::SILArgumentConvention::Indirect_In_Guaranteed) {
any_in_guaranteed_params = true;
break;
}
}
if (any_in_guaranteed_params) {
// one the parameters in the function call is @in_guaranteed of V, ie. the
// callee isn't allowed to modify it.
Behavior = MemBehavior::MayRead;
} else if (ApplyEffects.mayReadRC() ||
(InspectionMode == RetainObserveKind::ObserveRetains &&
ApplyEffects.mayAllocObjects())) {
Behavior = MemBehavior::MayHaveSideEffects;
} else {
auto &GlobalEffects = ApplyEffects.getGlobalEffects();
Behavior = GlobalEffects.getMemBehavior(InspectionMode);
// Check all parameter effects.
for (unsigned Idx = 0, End = AI->getNumArguments();
Idx < End && Behavior < MemBehavior::MayHaveSideEffects; ++Idx) {
auto &ArgEffect = ApplyEffects.getParameterEffects()[Idx];
auto ArgBehavior = ArgEffect.getMemBehavior(InspectionMode);
if (ArgEffect.mayRelease()) {
Behavior = MemBehavior::MayHaveSideEffects;
break;
}
auto NewBehavior = combineMemoryBehavior(Behavior, ArgBehavior);
if (NewBehavior != Behavior) {
SILValue Arg = AI->getArgument(Idx);
// We only consider the argument effects if the argument aliases V.
if (!Arg->getType().isAddress() || mayAlias(Arg))
Behavior = NewBehavior;
}
}
}
if (Behavior > MemBehavior::None) {
if (Behavior > MemBehavior::MayRead && isLetValue())
Behavior = MemBehavior::MayRead;
// Ask escape analysis.
if (!EA->canEscapeTo(V, AI))
Behavior = MemBehavior::None;
}
LLVM_DEBUG(llvm::dbgs() << " Found apply, returning " << Behavior << '\n');
return Behavior;
}
MemBehavior
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
if (!EA->canEscapeTo(V, SI))
return MemBehavior::None;
return MemBehavior::MayHaveSideEffects;
}
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
MemBehavior \
MemoryBehaviorVisitor::visit##Name##ReleaseInst(Name##ReleaseInst *SI) { \
if (!EA->canEscapeTo(V, SI)) \
return MemBehavior::None; \
return MemBehavior::MayHaveSideEffects; \
}
#include "swift/AST/ReferenceStorage.def"
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
if (!EA->canEscapeTo(V, SI))
return MemBehavior::None;
return MemBehavior::MayHaveSideEffects;
}
MemBehavior MemoryBehaviorVisitor::visitSetDeallocatingInst(SetDeallocatingInst *SDI) {
return MemBehavior::None;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
MemBehavior
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V,
RetainObserveKind InspectionMode) {
MemBehaviorKeyTy Key = toMemoryBehaviorKey(Inst, V, InspectionMode);
// Check if we've already computed this result.
auto It = MemoryBehaviorCache.find(Key);
if (It != MemoryBehaviorCache.end()) {
return It->second;
}
// Flush the cache if the size of the cache is too large.
if (MemoryBehaviorCache.size() > MemoryBehaviorAnalysisMaxCacheSize) {
MemoryBehaviorCache.clear();
MemoryBehaviorNodeToIndex.clear();
// Key is no longer valid as we cleared the MemoryBehaviorNodeToIndex.
Key = toMemoryBehaviorKey(Inst, V, InspectionMode);
}
// Calculate the aliasing result and store it in the cache.
auto Result = computeMemoryBehaviorInner(Inst, V, InspectionMode);
MemoryBehaviorCache[Key] = Result;
return Result;
}
MemBehavior
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V,
RetainObserveKind InspectionMode) {
LLVM_DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
<< *V);
assert(SEA && "SideEffectsAnalysis must be initialized!");
return MemoryBehaviorVisitor(this, SEA, EA, V, InspectionMode).visit(Inst);
}
MemBehaviorKeyTy AliasAnalysis::toMemoryBehaviorKey(SILInstruction *V1,
SILValue V2,
RetainObserveKind M) {
size_t idx1 =
MemoryBehaviorNodeToIndex.getIndex(V1->getRepresentativeSILNodeInObject());
assert(idx1 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
size_t idx2 = MemoryBehaviorNodeToIndex.getIndex(
V2->getRepresentativeSILNodeInObject());
assert(idx2 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
return {idx1, idx2, M};
}