Files
swift-mirror/lib/Syntax/SyntaxParsingContext.cpp
Xi Ge 71af76a87e libSyntax: optionally emit diagnostics for unknown expressions and declarations. (#13973)
With more syntax nodes being specialized, we'd like this
straight-forward way to pinpoint unknown entities. This diagnostics
is only issued in -emit-syntax frontend action and swift-syntax-test
invocation.
2018-01-16 16:14:57 -08:00

347 lines
11 KiB
C++

//===--- SyntaxParsingContext.cpp - Syntax Tree Parsing Support------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Syntax/SyntaxParsingContext.h"
#include "swift/AST/Module.h"
#include "swift/Basic/Defer.h"
#include "swift/Parse/Parser.h"
#include "swift/Parse/Token.h"
#include "swift/Syntax/RawSyntax.h"
#include "swift/Syntax/RawTokenSyntax.h"
#include "swift/Syntax/References.h"
#include "swift/Syntax/Syntax.h"
#include "swift/Syntax/SyntaxFactory.h"
#include "swift/Syntax/SyntaxVisitor.h"
#include "swift/Syntax/TokenKinds.h"
#include "swift/Syntax/TokenSyntax.h"
#include "swift/Syntax/Trivia.h"
using namespace swift;
using namespace swift::syntax;
namespace {
static RC<RawSyntax> makeUnknownSyntax(SyntaxKind Kind,
ArrayRef<RC<RawSyntax>> Parts) {
assert(isUnknownKind(Kind));
RawSyntax::LayoutList Layout(Parts);
return RawSyntax::make(Kind, Layout, SourcePresence::Present);
}
RC<RawSyntax> createSyntaxAs(SyntaxKind Kind, ArrayRef<RC<RawSyntax>> Parts) {
// Convert RawSyntax to Syntax for SyntaxFactory.
llvm::SmallVector<Syntax, 8> Scratch;
std::transform(Parts.begin(), Parts.end(), std::back_inserter(Scratch),
[](const RC<RawSyntax> &Raw) { return make<Syntax>(Raw); });
// Try to create the node of the given syntax.
if (auto Node = SyntaxFactory::createSyntax(Kind, Scratch))
return Node->getRaw();
// Fallback to unknown syntax for the category.
return makeUnknownSyntax(getUnknownKind(Kind), Parts);
}
}// End of anonymous namespace
SyntaxParsingContext::SyntaxParsingContext(SyntaxParsingContext *&CtxtHolder,
SourceFile &SF,
DiagnosticEngine &Diags,
SourceManager &SourceMgr,
unsigned BufferID)
: RootDataOrParent(new RootContextData(SF, Diags, SourceMgr, BufferID)),
CtxtHolder(CtxtHolder), Storage(getRootData().Storage), Offset(0),
Mode(AccumulationMode::Root), Enabled(SF.shouldKeepSyntaxInfo()) {
CtxtHolder = this;
}
/// Add RawSyntax to the parts.
void SyntaxParsingContext::addRawSyntax(RC<RawSyntax> Raw) {
Storage.emplace_back(Raw);
}
SyntaxParsingContext *SyntaxParsingContext::getRoot() {
auto Curr = this;
while (!Curr->isRoot())
Curr = Curr->getParent();
return Curr;
}
/// Add Token with Trivia to the parts.
void SyntaxParsingContext::addToken(Token &Tok, Trivia &LeadingTrivia,
Trivia &TrailingTrivia) {
if (!Enabled)
return;
addRawSyntax(RawTokenSyntax::make(Tok.getKind(), Tok.getText(),
SourcePresence::Present, LeadingTrivia,
TrailingTrivia));
}
/// Add Syntax to the parts.
void SyntaxParsingContext::addSyntax(Syntax Node) {
if (!Enabled)
return;
addRawSyntax(Node.getRaw());
}
void SyntaxParsingContext::createNodeInPlace(SyntaxKind Kind, size_t N) {
if (N == 0) {
Storage.push_back(createSyntaxAs(Kind, {}));
return;
}
auto I = Storage.end() - N;
*I = createSyntaxAs(Kind, getParts().take_back(N));
// Remove consumed parts.
if (N != 1)
Storage.erase(I + 1, Storage.end());
}
void SyntaxParsingContext::createNodeInPlace(SyntaxKind Kind) {
assert(isTopOfContextStack());
if (!Enabled)
return;
switch (Kind) {
case SyntaxKind::SuperRefExpr:
case SyntaxKind::OptionalChainingExpr:
case SyntaxKind::ForcedValueExpr:
case SyntaxKind::PostfixUnaryExpr:
case SyntaxKind::TernaryExpr: {
auto Pair = SyntaxFactory::countChildren(Kind);
assert(Pair.first == Pair.second);
createNodeInPlace(Kind, Pair.first);
break;
}
case SyntaxKind::MemberAccessExpr:
case SyntaxKind::ImplicitMemberExpr:
case SyntaxKind::SimpleTypeIdentifier:
case SyntaxKind::MemberTypeIdentifier:
case SyntaxKind::FunctionCallExpr:
case SyntaxKind::SubscriptExpr:
case SyntaxKind::ExprList: {
createNodeInPlace(Kind, getParts().size());
break;
}
default:
llvm_unreachable("Unrecognized node kind.");
}
}
void SyntaxParsingContext::collectNodesInPlace(SyntaxKind ColletionKind) {
assert(isCollectionKind(ColletionKind));
assert(isTopOfContextStack());
if (!Enabled)
return;
auto Parts = getParts();
auto Count = 0;
for (auto I = Parts.rbegin(), End = Parts.rend(); I != End; ++I) {
if (!SyntaxFactory::canServeAsCollectionMember(ColletionKind,
make<Syntax>(*I)))
break;
++Count;
}
if (Count)
createNodeInPlace(ColletionKind, Count);
}
namespace {
RC<RawSyntax> bridgeAs(SyntaxContextKind Kind, ArrayRef<RC<RawSyntax>> Parts) {
if (Parts.size() == 1) {
auto RawNode = Parts.front();
switch (Kind) {
case SyntaxContextKind::Stmt: {
if (RawNode->isStmt())
return RawNode;
else if (RawNode->isDecl())
return createSyntaxAs(SyntaxKind::DeclarationStmt, Parts);
else if (RawNode->isExpr())
return createSyntaxAs(SyntaxKind::ExpressionStmt, Parts);
else
return makeUnknownSyntax(SyntaxKind::UnknownStmt, Parts);
break;
}
case SyntaxContextKind::Decl:
if (!RawNode->isDecl())
return makeUnknownSyntax(SyntaxKind::UnknownDecl, Parts);
break;
case SyntaxContextKind::Expr:
if (!RawNode->isExpr())
return makeUnknownSyntax(SyntaxKind::UnknownExpr, Parts);
break;
case SyntaxContextKind::Type:
if (!RawNode->isType())
return makeUnknownSyntax(SyntaxKind::UnknownType, Parts);
break;
case SyntaxContextKind::Pattern:
if (!RawNode->isPattern())
return makeUnknownSyntax(SyntaxKind::UnknownPattern, Parts);
break;
case SyntaxContextKind::Syntax:
// We don't need to coerce in this case.
break;
}
return RawNode;
} else {
SyntaxKind UnknownKind;
switch (Kind) {
case SyntaxContextKind::Stmt:
UnknownKind = SyntaxKind::UnknownStmt;
break;
case SyntaxContextKind::Decl:
UnknownKind = SyntaxKind::UnknownDecl;
break;
case SyntaxContextKind::Expr:
UnknownKind = SyntaxKind::UnknownExpr;
break;
case SyntaxContextKind::Type:
UnknownKind = SyntaxKind::UnknownType;
break;
case SyntaxContextKind::Pattern:
UnknownKind = SyntaxKind::UnknownPattern;
break;
case SyntaxContextKind::Syntax:
UnknownKind = SyntaxKind::Unknown;
break;
}
return makeUnknownSyntax(UnknownKind, Parts);
}
}
/// This verifier traverses a syntax node to emit proper diagnostics.
class SyntaxVerifier: public SyntaxVisitor {
SourceFileSyntax Root;
RootContextData &RootData;
template<class T>
SourceLoc getSourceLoc(T Node) {
return RootData.SourceMgr.getLocForOffset(RootData.BufferID,
Node.getAbsolutePosition(Root).getOffset());
}
public:
SyntaxVerifier(SourceFileSyntax Root, RootContextData &RootData) :
Root(Root), RootData(RootData) {}
void visit(UnknownDeclSyntax Node) override {
RootData.Diags.diagnose(getSourceLoc(Node), diag::unknown_syntax_entity,
"declaration");
visitChildren(Node);
}
void visit(UnknownExprSyntax Node) override {
RootData.Diags.diagnose(getSourceLoc(Node), diag::unknown_syntax_entity,
"expression");
visitChildren(Node);
}
void verify(Syntax Node) {
Node.accept(*this);
}
};
void finalizeSourceFile(RootContextData &RootData,
ArrayRef<RC<RawSyntax>> Parts) {
SourceFile &SF = RootData.SF;
std::vector<DeclSyntax> AllTopLevel;
llvm::Optional<TokenSyntax> EOFToken;
if (SF.hasSyntaxRoot()) {
EOFToken.emplace(SF.getSyntaxRoot().getEOFToken());
for (auto It : SF.getSyntaxRoot().getTopLevelDecls()) {
AllTopLevel.push_back(It);
}
}
if (Parts.back()->isToken() &&
cast<RawTokenSyntax>(Parts.back())->is(tok::eof)) {
EOFToken.emplace(make<TokenSyntax>(Parts.back()));
Parts = Parts.drop_back();
}
for (auto RawNode : Parts) {
if (RawNode->Kind != SyntaxKind::StmtList)
// FIXME: Skip for now.
continue;
AllTopLevel.push_back(
SyntaxFactory::makeTopLevelCodeDecl(make<StmtListSyntax>(RawNode)));
}
SF.setSyntaxRoot(SyntaxFactory::makeSourceFile(
SyntaxFactory::makeDeclList(AllTopLevel),
EOFToken.hasValue() ? *EOFToken
: TokenSyntax::missingToken(tok::eof, "")));
if (SF.getASTContext().LangOpts.VerifySyntaxTree) {
// Verify the added nodes if specified.
SyntaxVerifier Verifier(SF.getSyntaxRoot(), RootData);
for (auto RawNode: Parts) {
Verifier.verify(make<Syntax>(RawNode));
}
}
}
} // End of anonymous namespace
SyntaxParsingContext::~SyntaxParsingContext() {
assert(isTopOfContextStack() && "destructed in wrong order");
SWIFT_DEFER {
// Pop this context from the stack.
if (!isRoot())
CtxtHolder = getParent();
else
delete RootDataOrParent.get<RootContextData*>();
};
if (!Enabled)
return;
switch (Mode) {
// Create specified Syntax node from the parts and add it to the parent.
case AccumulationMode::CreateSyntax:
assert(!isRoot());
createNodeInPlace(SynKind, Storage.size() - Offset);
break;
// Ensure the result is specified Syntax category and add it to the parent.
case AccumulationMode::CoerceKind: {
assert(!isRoot());
if (Storage.size() == Offset) {
Storage.push_back(bridgeAs(CtxtKind, {}));
} else {
auto I = Storage.begin() + Offset;
*I = bridgeAs(CtxtKind, getParts());
// Remove used parts.
if (Storage.size() > Offset + 1)
Storage.erase(Storage.begin() + (Offset + 1), Storage.end());
}
break;
}
// Do nothing.
case AccumulationMode::Transparent:
assert(!isRoot());
break;
// Remove all parts in this context.
case AccumulationMode::Discard:
Storage.resize(Offset);
break;
// Accumulate parsed toplevel syntax onto the SourceFile.
case AccumulationMode::Root:
assert(isRoot() && "AccumulationMode::Root is only for root context");
finalizeSourceFile(getRootData(), getParts());
break;
// Never.
case AccumulationMode::NotSet:
assert(!Enabled && "Cleanup mode must be specified before destruction");
break;
}
}