mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The old analysis pass doesn't take into account profile data, nor does it consider post-dominance. It primarily dealt with _fastPath/_slowPath. A block that is dominated by a cold block is itself cold. That's true whether it's forwards or backwards dominance. We can also consider a call to any `Never` returning function as a cold-exit, though the block(s) leading up to that call may be executed frequently because of concurrency. For now, I'm ignoring the concurrency case and assuming it's cold. To make use of this "no return" prediction, use the `-enable-noreturn-prediction` flag, which is currently off by default.
1103 lines
40 KiB
C++
1103 lines
40 KiB
C++
//===--- COWArrayOpt.cpp - Optimize Copy-On-Write Array Checks ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Optimize CoW array access by hoisting uniqueness checks.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "cowarray-opts"
|
|
|
|
#include "ArrayOpt.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/CFG.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/LoopInfo.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/BasicBlockBits.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
|
|
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
// Do the two values \p A and \p B reference the same 'array' after potentially
|
|
// looking through a load. To identify a common array address this functions
|
|
// strips struct projections until it hits \p ArrayAddress.
|
|
bool areArraysEqual(RCIdentityFunctionInfo *RCIA, SILValue A, SILValue B,
|
|
SILValue ArrayAddress) {
|
|
A = RCIA->getRCIdentityRoot(A);
|
|
B = RCIA->getRCIdentityRoot(B);
|
|
if (A == B)
|
|
return true;
|
|
// We have stripped off struct_extracts. Remove the load to look at the
|
|
// address we are loading from.
|
|
if (auto *ALoad = dyn_cast<LoadInst>(A))
|
|
A = ALoad->getOperand();
|
|
if (auto *BLoad = dyn_cast<LoadInst>(B))
|
|
B = BLoad->getOperand();
|
|
// Strip off struct_extract_refs until we hit array address.
|
|
if (ArrayAddress) {
|
|
StructElementAddrInst *SEAI = nullptr;
|
|
while (A != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(A)))
|
|
A = SEAI->getOperand();
|
|
while (B != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(B)))
|
|
B = SEAI->getOperand();
|
|
}
|
|
return A == B;
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// Optimize Copy-On-Write array checks based on high-level semantics.
|
|
///
|
|
/// Performs an analysis on all Array users to ensure they do not interfere
|
|
/// with make_mutable hoisting. Ultimately, the only thing that can interfere
|
|
/// with make_mutable is a retain of the array. To ensure no retains occur
|
|
/// within the loop, it is necessary to check that the array does not escape on
|
|
/// any path reaching the loop, and that it is not directly retained within the
|
|
/// loop itself.
|
|
///
|
|
/// In some cases, a retain does exist within the loop, but is balanced by a
|
|
/// release or call to @owned. The analysis must determine whether any array
|
|
/// mutation can occur between the retain and release. To accomplish this it
|
|
/// relies on knowledge of all array operations within the loop. If the array
|
|
/// escapes in some way that cannot be tracked, the analysis must fail.
|
|
///
|
|
/// TODO: Handle this pattern:
|
|
/// retain(array)
|
|
/// call(array)
|
|
/// release(array)
|
|
/// Whenever the call is readonly, has balanced retain/release for the array,
|
|
/// and does not capture the array. Under these conditions, the call can neither
|
|
/// mutate the array nor save an alias for later mutation.
|
|
///
|
|
/// TODO: Completely eliminate make_mutable calls if all operations that the
|
|
/// guard are already guarded by either "init" or "mutate_unknown".
|
|
class COWArrayOpt {
|
|
typedef StructUseCollector::UserList UserList;
|
|
typedef StructUseCollector::UserOperList UserOperList;
|
|
|
|
RCIdentityFunctionInfo *RCIA;
|
|
SILFunction *Function;
|
|
SILLoop *Loop;
|
|
std::optional<SmallVector<SILBasicBlock *, 8>> LoopExitingBlocks;
|
|
SILBasicBlock *Preheader;
|
|
DominanceInfo *DomTree;
|
|
bool HasChanged = false;
|
|
|
|
// Keep track of cold blocks.
|
|
ColdBlockInfo ColdBlocks;
|
|
|
|
// Cache of the analysis whether a loop is safe wrt.std::make_unique hoisting by
|
|
// looking at the operations (no uniquely identified objects).
|
|
std::pair<bool, bool> CachedSafeLoop;
|
|
|
|
// Set of all blocks that may reach the loop, not including loop blocks.
|
|
BasicBlockSet ReachingBlocks;
|
|
|
|
bool reachingBlocksComputed = false;
|
|
|
|
/// Transient per-Array user set.
|
|
///
|
|
/// Track all known array users with the exception of struct_extract users
|
|
/// (checkSafeArrayElementUse prohibits struct_extract users from mutating the
|
|
/// array). During analysis of retains/releases within the loop body, the
|
|
/// users in this set are assumed to cover all possible mutating operations on
|
|
/// the array. If the array escaped through an unknown use, the analysis must
|
|
/// abort earlier.
|
|
SmallPtrSet<SILInstruction*, 8> ArrayUserSet;
|
|
|
|
/// Array loads which can be hoisted because a make_mutable of that array
|
|
/// was hoisted previously.
|
|
/// This is important to handle the two dimensional array case.
|
|
SmallPtrSet<LoadInst *, 4> HoistableLoads;
|
|
|
|
// When matching retains to releases we must not match the same release twice.
|
|
//
|
|
// For example we could have:
|
|
// retain %a // id %1
|
|
// retain %a // id %2
|
|
// release %a // id %3
|
|
// When we match %1 with %3, we can't match %3 again when we look for a
|
|
// matching release for %2.
|
|
// The set refers to operands instead of instructions because an apply could
|
|
// have several operands with release semantics.
|
|
SmallPtrSet<Operand*, 8> MatchedReleases;
|
|
|
|
// The address of the array passed to the current make_mutable we are
|
|
// analyzing.
|
|
SILValue CurrentArrayAddr;
|
|
public:
|
|
COWArrayOpt(RCIdentityFunctionInfo *RCIA, SILLoop *L, DominanceAnalysis *DA,
|
|
PostDominanceAnalysis *PDA)
|
|
: RCIA(RCIA), Function(L->getHeader()->getParent()), Loop(L),
|
|
Preheader(L->getLoopPreheader()), DomTree(DA->get(Function)),
|
|
ColdBlocks(DA, PDA), CachedSafeLoop(false, false), ReachingBlocks(Function) {
|
|
ColdBlocks.analyze(Function);
|
|
}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
bool checkUniqueArrayContainer(SILValue ArrayContainer);
|
|
BasicBlockSet &getReachingBlocks();
|
|
bool isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray = true);
|
|
bool checkSafeArrayAddressUses(UserList &AddressUsers);
|
|
bool checkSafeArrayValueUses(UserList &ArrayValueUsers);
|
|
bool checkSafeArrayElementUse(SILInstruction *UseInst, SILValue ArrayVal);
|
|
bool checkSafeElementValueUses(UserOperList &ElementValueUsers);
|
|
bool hoistMakeMutable(ArraySemanticsCall MakeMutable, bool dominatesExits);
|
|
bool dominatesExitingBlocks(SILBasicBlock *BB);
|
|
void hoistAddressProjections(Operand &ArrayOp);
|
|
bool hasLoopOnlyDestructorSafeArrayOperations();
|
|
SILValue getArrayAddressBase(SILValue V);
|
|
|
|
/// \return true if the \p inst releases the value retained by \p retainInst
|
|
bool isMatchingRelease(SILInstruction *inst, SILInstruction *retainInst);
|
|
|
|
static bool isRetain(SILInstruction *inst) {
|
|
if (auto *load = dyn_cast<LoadInst>(inst)) {
|
|
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy)
|
|
return true;
|
|
}
|
|
return isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst) ||
|
|
isa<CopyValueInst>(inst);
|
|
}
|
|
static bool isRelease(SILInstruction *inst) {
|
|
return isa<ReleaseValueInst>(inst) || isa<StrongReleaseInst>(inst) ||
|
|
isa<DestroyValueInst>(inst);
|
|
}
|
|
static SILValue getRetainedValue(SILInstruction *inst) {
|
|
assert(isRetain(inst));
|
|
if (isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst))
|
|
return inst->getOperand(0);
|
|
return cast<SingleValueInstruction>(inst);
|
|
}
|
|
|
|
ArrayRef<SILBasicBlock *> getLoopExitingBlocks() const {
|
|
if (!LoopExitingBlocks) {
|
|
auto *self = const_cast<COWArrayOpt *>(this);
|
|
self->LoopExitingBlocks.emplace();
|
|
Loop->getExitingBlocks(*self->LoopExitingBlocks);
|
|
}
|
|
return *LoopExitingBlocks;
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool COWArrayOpt::isMatchingRelease(SILInstruction *inst,
|
|
SILInstruction *retainInst) {
|
|
// Before we can match a release with a retain we need to check that we have
|
|
// not already matched the release with a retain we processed earlier.
|
|
// We don't want to match the release with both retains in the example below.
|
|
//
|
|
// retain %a <--|
|
|
// retain %a | Match. <-| Don't match.
|
|
// release %a <--| <-|
|
|
//
|
|
if (isRelease(inst)) {
|
|
if (!MatchedReleases.count(&inst->getOperandRef(0))) {
|
|
if (areArraysEqual(RCIA, inst->getOperand(0),
|
|
getRetainedValue(retainInst), CurrentArrayAddr)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *inst);
|
|
MatchedReleases.insert(&inst->getOperandRef(0));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " not a matching release " << *inst);
|
|
return false;
|
|
}
|
|
|
|
/// \return true of the given container is known to be a unique copy of the
|
|
/// array with no aliases. Cases we check:
|
|
///
|
|
/// (1) An @inout argument.
|
|
///
|
|
/// (2) A local variable, which may be copied from a by-val argument,
|
|
/// initialized directly, or copied from a function return value. We don't
|
|
/// need to check how it is initialized here, because that will show up as a
|
|
/// store to the local's address. checkSafeArrayAddressUses will check that the
|
|
/// store is a simple initialization outside the loop.
|
|
bool COWArrayOpt::checkUniqueArrayContainer(SILValue ArrayContainer) {
|
|
if (auto *Arg = dyn_cast<SILArgument>(ArrayContainer)) {
|
|
// Check that the argument is passed as an inout type. This means there are
|
|
// no aliases accessible within this function scope.
|
|
auto Params = Function->getLoweredFunctionType()->getParameters();
|
|
ArrayRef<SILArgument *> FunctionArgs = Function->begin()->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size();
|
|
ArgIdx != ArgEnd; ++ArgIdx) {
|
|
if (FunctionArgs[ArgIdx] != Arg)
|
|
continue;
|
|
|
|
if (!Params[ArgIdx].isIndirectInOut()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an inout argument!\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else if (isa<AllocStackInst>(ArrayContainer))
|
|
return true;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(ArrayContainer)) {
|
|
// A load of another array, which follows a make_mutable, also guarantees
|
|
// a unique container. This is the case if the current array is an element
|
|
// of the outer array in nested arrays.
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return true;
|
|
}
|
|
|
|
// TODO: we should also take advantage of access markers to identify
|
|
// unique arrays.
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an argument or local variable!\n");
|
|
return false;
|
|
}
|
|
|
|
/// Lazily compute blocks that may reach the loop.
|
|
BasicBlockSet &COWArrayOpt::getReachingBlocks() {
|
|
if (!reachingBlocksComputed) {
|
|
SmallVector<SILBasicBlock*, 8> Worklist;
|
|
ReachingBlocks.insert(Preheader);
|
|
Worklist.push_back(Preheader);
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
|
|
if (ReachingBlocks.insert(*PI))
|
|
Worklist.push_back(*PI);
|
|
}
|
|
}
|
|
reachingBlocksComputed = true;
|
|
}
|
|
return ReachingBlocks;
|
|
}
|
|
|
|
|
|
/// \return true if the instruction is a call to a non-mutating array semantic
|
|
/// function.
|
|
static bool isNonMutatingArraySemanticCall(SILInstruction *Inst) {
|
|
ArraySemanticsCall Call(Inst);
|
|
if (!Call)
|
|
return false;
|
|
|
|
switch (Call.getKind()) {
|
|
case ArrayCallKind::kNone:
|
|
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
|
|
case ArrayCallKind::kCheckSubscript:
|
|
case ArrayCallKind::kCheckIndex:
|
|
case ArrayCallKind::kGetCount:
|
|
case ArrayCallKind::kGetCapacity:
|
|
case ArrayCallKind::kGetElement:
|
|
case ArrayCallKind::kGetElementAddress:
|
|
case ArrayCallKind::kEndMutation:
|
|
case ArrayCallKind::kCopyIntoVector:
|
|
return true;
|
|
case ArrayCallKind::kMakeMutable:
|
|
case ArrayCallKind::kMutateUnknown:
|
|
case ArrayCallKind::kReserveCapacityForAppend:
|
|
case ArrayCallKind::kWithUnsafeMutableBufferPointer:
|
|
case ArrayCallKind::kArrayInit:
|
|
case ArrayCallKind::kArrayInitEmpty:
|
|
case ArrayCallKind::kArrayUninitialized:
|
|
case ArrayCallKind::kArrayUninitializedIntrinsic:
|
|
case ArrayCallKind::kArrayFinalizeIntrinsic:
|
|
case ArrayCallKind::kAppendContentsOf:
|
|
case ArrayCallKind::kAppendElement:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ArrayCallKind in switch.");
|
|
}
|
|
|
|
/// \return true if the given retain instruction is followed by a release on the
|
|
/// same object prior to any potential mutating operation.
|
|
bool COWArrayOpt::isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray) {
|
|
// If a retain is found outside the loop ignore it. Otherwise, it must
|
|
// have a matching @owned call.
|
|
if (!Loop->contains(RetainInst))
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Looking at retain " << *RetainInst);
|
|
|
|
// Walk forward looking for a release of ArrayLoad or element of
|
|
// ArrayUserSet. Note that ArrayUserSet does not included uses of elements
|
|
// within the Array. Consequently, checkSafeArrayElementUse must prove that
|
|
// no uses of the Array value, or projections of it can lead to mutation
|
|
// (element uses may only be retained/released).
|
|
for (auto II = std::next(SILBasicBlock::iterator(RetainInst)),
|
|
IE = RetainInst->getParent()->end(); II != IE; ++II) {
|
|
if (isMatchingRelease(&*II, RetainInst))
|
|
return true;
|
|
|
|
if (isRetain(&*II))
|
|
continue;
|
|
|
|
// A side effect free instruction cannot mutate the array.
|
|
if (!II->mayHaveSideEffects())
|
|
continue;
|
|
|
|
// Non mutating array calls are safe.
|
|
if (isNonMutatingArraySemanticCall(&*II))
|
|
continue;
|
|
|
|
// borrows are safe
|
|
if (isa<BeginBorrowInst>(II) || isa<EndBorrowInst>(II))
|
|
continue;
|
|
|
|
if (IsUniquelyIdentifiedArray) {
|
|
// It is okay for an identified loop to have releases in between a retain
|
|
// and a release. We can end up here if we have two retains in a row and
|
|
// then a release. The second retain cannot be matched with the release
|
|
// but must be matched by a follow up instruction.
|
|
// retain %ptr
|
|
// retain %ptr
|
|
// release %ptr
|
|
// array_operation(..., @owned %ptr)
|
|
//
|
|
// This is not the case for a potentially aliased array because a release
|
|
// can cause a destructor to run. The destructor in turn can cause
|
|
// arbitrary side effects.
|
|
if (isRelease(&*II))
|
|
continue;
|
|
|
|
if (ArrayUserSet.count(&*II)) // May be an array mutation.
|
|
break;
|
|
} else {
|
|
// Not safe.
|
|
break;
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: retained in loop!\n"
|
|
<< " " << *RetainInst);
|
|
return false;
|
|
}
|
|
|
|
/// \return true if all given users of an array address are safe to hoist
|
|
/// make_mutable across.
|
|
///
|
|
/// General calls are unsafe because they may copy the array struct which in
|
|
/// turn bumps the reference count of the array storage.
|
|
///
|
|
/// The same logic currently applies to both uses of the array struct itself and
|
|
/// uses of an aggregate containing the array.
|
|
///
|
|
/// This does not apply to addresses of elements within the array. e.g. it is
|
|
/// not safe to store to an element in the array because we may be storing an
|
|
/// alias to the array storage.
|
|
bool COWArrayOpt::checkSafeArrayAddressUses(UserList &AddressUsers) {
|
|
for (auto *UseInst : AddressUsers) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Check of this escape can reach the current loop.
|
|
if (!Loop->contains(UseInst->getParent()) &&
|
|
!getReachingBlocks().contains(UseInst->getParent())) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isRetain(UseInst) && isRetainReleasedBeforeMutate(UseInst)) {
|
|
continue;
|
|
}
|
|
|
|
if (auto *LdInst = dyn_cast<LoadInst>(UseInst)) {
|
|
if (LdInst->getOwnershipQualifier() != LoadOwnershipQualifier::Copy)
|
|
continue;
|
|
}
|
|
|
|
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
|
|
// Allow a local array to be initialized outside the loop via a by-value
|
|
// argument or return value. The array value may be returned by its
|
|
// initializer or some other factory function.
|
|
if (Loop->contains(StInst->getParent())) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
|
|
<< " " << *StInst);
|
|
return false;
|
|
}
|
|
|
|
SILValue InitArray = StInst->getSrc();
|
|
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through store!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isa<DeallocStackInst>(UseInst)) {
|
|
// Handle destruction of a local array.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst)) {
|
|
continue;
|
|
}
|
|
|
|
if (UseInst->isDebugInstruction()) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
|
|
<< " " << *UseInst);
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename UserRange>
|
|
ArraySemanticsCall getEndMutationCall(const UserRange &AddressUsers) {
|
|
for (auto *UseInst : AddressUsers) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
ArraySemanticsCall ASC(AI);
|
|
if (ASC.getKind() == ArrayCallKind::kEndMutation)
|
|
return ASC;
|
|
}
|
|
}
|
|
return ArraySemanticsCall();
|
|
}
|
|
|
|
/// Returns true if this instruction is a safe array use if all of its users are
|
|
/// also safe array users.
|
|
static std::optional<SILInstructionResultArray>
|
|
isTransitiveSafeUser(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::DestructureStructInst:
|
|
case SILInstructionKind::DestructureTupleInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
case SILInstructionKind::BeginBorrowInst:
|
|
return I->getResults();
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
/// Check that the use of an Array value, the value of an aggregate containing
|
|
/// an array, or the value of an element within the array, is safe w.r.t
|
|
/// make_mutable hoisting. Retains are safe as long as they are not inside the
|
|
/// Loop.
|
|
bool COWArrayOpt::checkSafeArrayValueUses(UserList &ArrayValueUsers) {
|
|
for (auto *UseInst : ArrayValueUsers) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Is this a unary transitive safe user instruction. This means that the
|
|
/// instruction is safe only if all of its users are safe. Check this
|
|
/// recursively.
|
|
auto results = isTransitiveSafeUser(UseInst);
|
|
if (results.has_value()) {
|
|
for (auto result : results.value()) {
|
|
if (!std::all_of(result->use_begin(), result->use_end(),
|
|
[this](Operand *Op) -> bool {
|
|
return checkSafeArrayElementUse(Op->getUser(),
|
|
Op->get());
|
|
}))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (isRetain(UseInst)) {
|
|
if (isRetainReleasedBeforeMutate(UseInst))
|
|
continue;
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: found unmatched retain "
|
|
"value!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isRelease(UseInst)) {
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
continue;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe Array value use!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Given an array value, recursively check that uses of elements within the
|
|
/// array are safe.
|
|
///
|
|
/// Consider any potentially mutating operation unsafe. Mutation would not
|
|
/// prevent make_mutable hoisting, but it would interfere with
|
|
/// isRetainReleasedBeforeMutate. Since struct_extract users are not visited by
|
|
/// StructUseCollector, they are never added to ArrayUserSet. Thus we check here
|
|
/// that no mutating struct_extract users exist.
|
|
///
|
|
/// After the lower aggregates pass, SIL contains chains of struct_extract and
|
|
/// retain_value instructions. e.g.
|
|
/// %a = load %0 : $*Array<Int>
|
|
/// %b = struct_extract %a : $Array<Int>, #Array._buffer
|
|
/// %s = struct_extract %b : $_ArrayBuffer<Int>, #_ArrayBuffer.storage
|
|
/// retain_value %s : $Optional<Builtin.NativeObject>
|
|
///
|
|
/// SILCombine typically simplifies this by bypassing the
|
|
/// struct_extract. However, for completeness this analysis has the ability to
|
|
/// follow struct_extract users.
|
|
///
|
|
/// Since this does not recurse through multi-operand instructions, no visited
|
|
/// set is necessary.
|
|
bool COWArrayOpt::checkSafeArrayElementUse(SILInstruction *UseInst,
|
|
SILValue ArrayVal) {
|
|
if (isRetain(UseInst) && isRetainReleasedBeforeMutate(UseInst))
|
|
return true;
|
|
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
if (isRelease(UseInst))
|
|
return true;
|
|
|
|
if (isa<RefTailAddrInst>(UseInst)) {
|
|
return true;
|
|
}
|
|
|
|
// Look for a safe mark_dependence instruction use.
|
|
//
|
|
// This use looks something like:
|
|
//
|
|
// %57 = load %56 : $*Builtin.BridgeObject from Array<Int>
|
|
// %58 = unchecked_ref_cast %57 : $Builtin.BridgeObject to
|
|
// $_ContiguousArray
|
|
// %59 = unchecked_ref_cast %58 : $__ContiguousArrayStorageBase to
|
|
// $Builtin.NativeObject
|
|
// %60 = struct_extract %53 : $UnsafeMutablePointer<Int>,
|
|
// #UnsafeMutablePointer
|
|
// %61 = pointer_to_address %60 : $Builtin.RawPointer to strict $*Int
|
|
// %62 = mark_dependence %61 : $*Int on %59 : $Builtin.NativeObject
|
|
//
|
|
// The struct_extract, unchecked_ref_cast is handled below in the
|
|
// "Transitive SafeArrayElementUse" code.
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
return true;
|
|
|
|
if (isa<EndBorrowInst>(UseInst))
|
|
return true;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
return true;
|
|
|
|
// If this is an instruction which is a safe array element use if and only if
|
|
// all of its users are safe array element uses, recursively check its uses
|
|
// and return false if any of them are not transitive escape array element
|
|
// uses.
|
|
auto results = isTransitiveSafeUser(UseInst);
|
|
if (results.has_value()) {
|
|
for (auto result : results.value()) {
|
|
if (!std::all_of(result->use_begin(), result->use_end(),
|
|
[this](Operand *Op) -> bool {
|
|
return checkSafeArrayElementUse(Op->getUser(),
|
|
Op->get());
|
|
}))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Element use!\n"
|
|
<< *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Check that the use of an Array element is safe w.r.t. make_mutable hoisting.
|
|
///
|
|
/// This logic should be similar to checkSafeArrayElementUse
|
|
bool COWArrayOpt::checkSafeElementValueUses(UserOperList &ElementValueUsers) {
|
|
for (auto &Pair : ElementValueUsers) {
|
|
SILInstruction *UseInst = Pair.first;
|
|
Operand *ArrayValOper = Pair.second;
|
|
if (!checkSafeArrayElementUse(UseInst, ArrayValOper->get()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if a loop has only 'safe' array operations such that we can hoist the
|
|
/// uniqueness check even without having an 'identified' object.
|
|
///
|
|
/// 'Safe' array operations are:
|
|
/// * all array semantic functions
|
|
/// * stores to array elements
|
|
/// * any instruction that does not have side effects.
|
|
/// * any retain must be matched by a release before we hit astd::make_unique.
|
|
///
|
|
/// Note, that a release in this modus (we don't have a uniquely identified
|
|
/// object) is not safe because the destructor of what we are releasing might
|
|
/// be unsafe (creating a reference).
|
|
///
|
|
bool COWArrayOpt::hasLoopOnlyDestructorSafeArrayOperations() {
|
|
if (CachedSafeLoop.first)
|
|
return CachedSafeLoop.second;
|
|
|
|
assert(!CachedSafeLoop.second &&
|
|
"We only move to a true state below");
|
|
|
|
// We will compute the state of this loop now.
|
|
CachedSafeLoop.first = true;
|
|
|
|
// We need to cleanup the MatchedRelease on return.
|
|
auto ReturnWithCleanup = [&] (bool LoopHasSafeOperations) {
|
|
MatchedReleases.clear();
|
|
return LoopHasSafeOperations;
|
|
};
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " checking whether loop only has safe array "
|
|
"operations ...\n");
|
|
CanType SameTy;
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
for (auto &It : *BB) {
|
|
auto *Inst = &It;
|
|
LLVM_DEBUG(llvm::dbgs() << " visiting: " << *Inst);
|
|
|
|
// Semantic calls are safe.
|
|
ArraySemanticsCall Sem(Inst);
|
|
if (Sem && Sem.hasSelf()) {
|
|
auto Kind = Sem.getKind();
|
|
// Safe because they create new arrays.
|
|
if (Kind == ArrayCallKind::kArrayInit ||
|
|
Kind == ArrayCallKind::kArrayInitEmpty ||
|
|
Kind == ArrayCallKind::kArrayUninitialized ||
|
|
Kind == ArrayCallKind::kArrayUninitializedIntrinsic)
|
|
continue;
|
|
// All array types must be the same. This is a stronger guaranteed than
|
|
// we actually need. The requirement is that we can't create another
|
|
// reference to the array by performing an array operation: for example,
|
|
// storing or appending one array into a two-dimensional array.
|
|
// Checking
|
|
// that all types are the same make guarantees that this cannot happen.
|
|
if (SameTy.isNull()) {
|
|
SameTy = Sem.getSelf()->getType().getASTType();
|
|
continue;
|
|
}
|
|
|
|
if (Sem.getSelf()->getType().getASTType() != SameTy) {
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) mismatching array types\n");
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Safe array semantics operation.
|
|
continue;
|
|
}
|
|
|
|
// Stores to array elements.
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) store with [assign]" << *SI);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
if (isAddressOfArrayElement(SI->getDest()))
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown store " << *SI);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Instructions without side effects are safe.
|
|
if (!Inst->mayHaveSideEffects())
|
|
continue;
|
|
if (isa<CondFailInst>(Inst))
|
|
continue;
|
|
if (isa<AllocationInst>(Inst) || isa<DeallocStackInst>(Inst))
|
|
continue;
|
|
|
|
if (isRetain(Inst) && isRetainReleasedBeforeMutate(Inst, false)) {
|
|
continue;
|
|
}
|
|
|
|
// If the instruction is a matched release we can ignore it.
|
|
if (isRelease(Inst)) {
|
|
if (MatchedReleases.count(&Inst->getOperandRef(0)))
|
|
continue;
|
|
}
|
|
|
|
// Ignore fix_lifetime. It cannot increment ref counts.
|
|
if (isa<FixLifetimeInst>(Inst))
|
|
continue;
|
|
|
|
// Ignore begin_borrow/end_borrow, they do not effect ref counts
|
|
if (isa<BeginBorrowInst>(Inst) || isa<EndBorrowInst>(Inst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown operation " << *Inst);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (YES)\n");
|
|
CachedSafeLoop.second = true;
|
|
return ReturnWithCleanup(true);
|
|
}
|
|
|
|
/// Return the underlying Array address after stripping off all address
|
|
/// projections. Returns an invalid SILValue if the array base does not dominate
|
|
/// the loop.
|
|
// TODO: Support begin_borrow here
|
|
SILValue COWArrayOpt::getArrayAddressBase(SILValue V) {
|
|
while (true) {
|
|
V = stripSinglePredecessorArgs(V);
|
|
if (auto *RefCast = dyn_cast<UncheckedRefCastInst>(V)) {
|
|
V = RefCast->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *SE = dyn_cast<StructExtractInst>(V)) {
|
|
V = SE->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
|
|
// index_addr is the only projection which has a second operand: the index.
|
|
// Check if the index is loop invariant.
|
|
SILBasicBlock *IndexBlock = IA->getIndex()->getParentBlock();
|
|
if (IndexBlock && !DomTree->dominates(IndexBlock, Preheader))
|
|
return SILValue();
|
|
V = IA->getBase();
|
|
continue;
|
|
}
|
|
if (!Projection::isAddressProjection(V))
|
|
break;
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
if (Inst->getNumOperands() > 1)
|
|
break;
|
|
V = Inst->getOperand(0);
|
|
}
|
|
if (auto *LI = dyn_cast<LoadInst>(V)) {
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return V;
|
|
}
|
|
SILBasicBlock *ArrayAddrBaseBB = V->getParentBlock();
|
|
if (ArrayAddrBaseBB && !DomTree->dominates(ArrayAddrBaseBB, Preheader))
|
|
return SILValue();
|
|
|
|
return V;
|
|
}
|
|
|
|
/// Hoist the address projection rooted in \p Op to \p InsertBefore.
|
|
/// Requires the projected value to dominate the insertion point.
|
|
///
|
|
/// Will look through single basic block predecessor arguments.
|
|
// TODO: Support hoisting of begin_borrow and create end_borrow at appropriate
|
|
// lifetime endpoints
|
|
void COWArrayOpt::hoistAddressProjections(Operand &ArrayOp) {
|
|
SILValue V = ArrayOp.get();
|
|
SILInstruction *Prev = nullptr;
|
|
SILInstruction *InsertPt = Preheader->getTerminator();
|
|
while (true) {
|
|
SILValue Incoming = stripSinglePredecessorArgs(V);
|
|
|
|
// Forward the incoming arg from a single predecessor.
|
|
if (V != Incoming) {
|
|
if (V == ArrayOp.get()) {
|
|
// If we are the operand itself set the operand to the incoming
|
|
// argument.
|
|
ArrayOp.set(Incoming);
|
|
V = Incoming;
|
|
} else {
|
|
// Otherwise, set the previous projections operand to the incoming
|
|
// argument.
|
|
assert(Prev && "Must have seen a projection");
|
|
Prev->setOperand(0, Incoming);
|
|
V = Incoming;
|
|
}
|
|
}
|
|
|
|
switch (V->getKind()) {
|
|
case ValueKind::LoadInst:
|
|
case ValueKind::StructElementAddrInst:
|
|
case ValueKind::TupleElementAddrInst:
|
|
case ValueKind::RefElementAddrInst:
|
|
case ValueKind::RefTailAddrInst:
|
|
case ValueKind::UncheckedRefCastInst:
|
|
case ValueKind::StructExtractInst:
|
|
case ValueKind::IndexAddrInst:
|
|
case ValueKind::UncheckedTakeEnumDataAddrInst: {
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
// We are done once the current projection dominates the insert point.
|
|
if (DomTree->dominates(Inst->getParent(), Preheader))
|
|
return;
|
|
|
|
assert(!isa<LoadInst>(V) || HoistableLoads.count(cast<LoadInst>(V)) != 0);
|
|
|
|
// Move the current projection and memorize it for the next iteration.
|
|
Prev = Inst;
|
|
Inst->moveBefore(InsertPt);
|
|
InsertPt = Inst;
|
|
V = Inst->getOperand(0);
|
|
continue;
|
|
}
|
|
default:
|
|
assert(DomTree->dominates(V->getParentBlock(), Preheader) &&
|
|
"The projected value must dominate the insertion point");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check if this call to "make_mutable" is hoistable, and copy it, along with
|
|
/// the corresponding end_mutation call, to the loop pre-header.
|
|
///
|
|
/// The original make_mutable/end_mutation calls remain in the loop, because
|
|
/// removing them would violate the COW representation rules.
|
|
/// Having those calls in the pre-header will then enable COWOpts (after
|
|
/// inlining) to constant fold the uniqueness check of the begin_cow_mutation
|
|
/// in the loop.
|
|
bool COWArrayOpt::hoistMakeMutable(ArraySemanticsCall MakeMutable,
|
|
bool dominatesExits) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking mutable array: " <<CurrentArrayAddr);
|
|
|
|
// We can hoist address projections (even if they are only conditionally
|
|
// executed).
|
|
SILValue ArrayAddrBase = getArrayAddressBase(CurrentArrayAddr);
|
|
if (!ArrayAddrBase) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: does not dominate loop!\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<int, 4> AccessPath;
|
|
SILValue ArrayContainer =
|
|
StructUseCollector::getAccessPath(CurrentArrayAddr, AccessPath);
|
|
bool arrayContainerIsUnique = checkUniqueArrayContainer(ArrayContainer);
|
|
|
|
StructUseCollector StructUses;
|
|
|
|
// Check whether we can hoist make_mutable based on the operations that are
|
|
// in the loop.
|
|
//
|
|
// Hoisting make_mutable releases the original array storage. If an alias of
|
|
// that storage is accessed on any path reachable from the loop header that
|
|
// doesn't already pass through the make_mutable, then hoisting is
|
|
// illegal. hasLoopOnlyDestructorSafeArrayOperations checks that the array
|
|
// storage is not accessed within the loop. However, this does not include
|
|
// paths exiting the loop. Rather than analyzing code outside the loop, simply
|
|
// check that the original make_mutable dominates all exits. The test
|
|
// SILOptimizer/cowarray_opt.sil: dont_hoist_if_executed_conditionally shows
|
|
// the problem.
|
|
if (hasLoopOnlyDestructorSafeArrayOperations() && dominatesExits) {
|
|
// Done. We can hoist the make_mutable.
|
|
// We still need the array uses later to check if we can add loads to
|
|
// HoistableLoads.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
} else {
|
|
// There are some unsafe operations in the loop. If the array is uniquely
|
|
// identifiable and not escaping, then we are good if all the array uses
|
|
// are safe.
|
|
if (!arrayContainerIsUnique) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: is not unique!\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the Array is not retained with this loop and it's address does
|
|
// not escape within this function.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
for (auto *Oper : StructUses.Visited)
|
|
ArrayUserSet.insert(Oper->getUser());
|
|
|
|
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
|
|
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
|
|
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
|
|
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
|
|
!StructUses.ElementAddressUsers.empty())
|
|
return false;
|
|
}
|
|
|
|
auto ArrayUsers = llvm::map_range(MakeMutable.getSelf()->getUses(),
|
|
ValueBase::UseToUser());
|
|
|
|
// There should be a call to end_mutation. Find it so that we can copy it to
|
|
// the pre-header.
|
|
ArraySemanticsCall EndMutation = getEndMutationCall(ArrayUsers);
|
|
if (!EndMutation) {
|
|
EndMutation = getEndMutationCall(StructUses.StructAddressUsers);
|
|
if (!EndMutation)
|
|
return false;
|
|
}
|
|
|
|
// Hoist the make_mutable.
|
|
LLVM_DEBUG(llvm::dbgs() << " Hoisting make_mutable: " << *MakeMutable);
|
|
|
|
hoistAddressProjections(MakeMutable.getSelfOperand());
|
|
|
|
assert(MakeMutable.canHoist(Preheader->getTerminator(), DomTree) &&
|
|
"Should be able to hoist make_mutable");
|
|
|
|
// Copy the make_mutable and end_mutation calls to the pre-header.
|
|
TermInst *insertionPoint = Preheader->getTerminator();
|
|
ApplyInst *hoistedMM = MakeMutable.copyTo(insertionPoint, DomTree);
|
|
ApplyInst *EMInst = EndMutation;
|
|
ApplyInst *hoistedEM = cast<ApplyInst>(EMInst->clone(insertionPoint));
|
|
hoistedEM->setArgument(0, hoistedMM->getArgument(0));
|
|
placeFuncRef(hoistedEM, DomTree);
|
|
|
|
// Register array loads. This is needed for hoisting make_mutable calls of
|
|
// inner arrays in the two-dimensional case.
|
|
if (arrayContainerIsUnique &&
|
|
StructUses.hasOnlyAddressUses((ApplyInst *)MakeMutable, EMInst)) {
|
|
for (auto use : MakeMutable.getSelf()->getUses()) {
|
|
if (auto *LI = dyn_cast<LoadInst>(use->getUser())) {
|
|
// TODO: Support HoistableLoads for OSSA
|
|
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Unqualified)
|
|
HoistableLoads.insert(LI);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool COWArrayOpt::dominatesExitingBlocks(SILBasicBlock *BB) {
|
|
for (SILBasicBlock *Exiting : getLoopExitingBlocks()) {
|
|
if (!DomTree->dominates(BB, Exiting))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool COWArrayOpt::run() {
|
|
LLVM_DEBUG(llvm::dbgs() << " Array Opts in Loop " << *Loop);
|
|
|
|
Preheader = Loop->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Loop: No Preheader!\n");
|
|
return false;
|
|
}
|
|
|
|
// Map an array to a hoisted make_mutable call for the current loop. An array
|
|
// is only mapped to a call once the analysis has determined that no
|
|
// make_mutable calls are required within the loop body for that array.
|
|
llvm::SmallDenseMap<SILValue, ApplyInst*> ArrayMakeMutableMap;
|
|
|
|
llvm::SmallVector<ArraySemanticsCall, 8> makeMutableCalls;
|
|
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
if (ColdBlocks.isCold(BB))
|
|
continue;
|
|
|
|
// Instructions are getting moved around. To not mess with iterator
|
|
// invalidation, first collect all calls, and then do the transformation.
|
|
for (SILInstruction &I : *BB) {
|
|
ArraySemanticsCall MakeMutableCall(&I, "array.make_mutable");
|
|
if (MakeMutableCall)
|
|
makeMutableCalls.push_back(MakeMutableCall);
|
|
}
|
|
|
|
bool dominatesExits = dominatesExitingBlocks(BB);
|
|
for (ArraySemanticsCall MakeMutableCall : makeMutableCalls) {
|
|
CurrentArrayAddr = MakeMutableCall.getSelf();
|
|
auto HoistedCallEntry = ArrayMakeMutableMap.find(CurrentArrayAddr);
|
|
if (HoistedCallEntry == ArrayMakeMutableMap.end()) {
|
|
if (hoistMakeMutable(MakeMutableCall, dominatesExits)) {
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = MakeMutableCall;
|
|
HasChanged = true;
|
|
} else {
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HasChanged;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class COWArrayOptPass : public SILFunctionTransform {
|
|
void run() override {
|
|
LLVM_DEBUG(llvm::dbgs() << "COW Array Opts in Func "
|
|
<< getFunction()->getName() << "\n");
|
|
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
auto *PDA = PM->getAnalysis<PostDominanceAnalysis>();
|
|
auto *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
auto *RCIA =
|
|
PM->getAnalysis<RCIdentityAnalysis>()->get(getFunction());
|
|
SILLoopInfo *LI = LA->get(getFunction());
|
|
if (LI->empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Function: No loops.\n");
|
|
return;
|
|
}
|
|
|
|
// Create a flat list of loops in loop-tree postorder (bottom-up).
|
|
llvm::SmallVector<SILLoop *, 16> Loops;
|
|
std::function<void (SILLoop*)> pushChildren = [&](SILLoop *L) {
|
|
for (auto *SubLoop : *L)
|
|
pushChildren(SubLoop);
|
|
Loops.push_back(L);
|
|
};
|
|
for (auto *L : *LI)
|
|
pushChildren(L);
|
|
|
|
bool HasChanged = false;
|
|
for (auto *L : Loops)
|
|
HasChanged |= COWArrayOpt(RCIA, L, DA, PDA).run();
|
|
|
|
if (HasChanged)
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createCOWArrayOpts() {
|
|
return new COWArrayOptPass();
|
|
}
|