Files
swift-mirror/lib/Sema/CSBindings.cpp
Pavel Yaskevich 72bb74aa4f [ConstraintSystem] Key path literals with completion tokens should be marked as invalid
Capability couldn't be determined for expressions like that which
means that inference should be delayed until root becomes available.

Resolves: https://github.com/apple/swift/issues/69936
2023-11-16 15:48:46 -08:00

2539 lines
89 KiB
C++

//===--- CSBindings.cpp - Constraint Solver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements selection of bindings for type variables.
//
//===----------------------------------------------------------------------===//
#include "swift/Sema/CSBindings.h"
#include "TypeChecker.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
using namespace swift;
using namespace constraints;
using namespace inference;
bool BindingSet::forClosureResult() const {
return Info.TypeVar->getImpl().isClosureResultType();
}
bool BindingSet::forGenericParameter() const {
return bool(Info.TypeVar->getImpl().getGenericParameter());
}
bool BindingSet::canBeNil() const {
auto &ctx = CS.getASTContext();
return Literals.count(
ctx.getProtocol(KnownProtocolKind::ExpressibleByNilLiteral));
}
bool BindingSet::isDirectHole() const {
// Direct holes are only allowed in "diagnostic mode".
if (!CS.shouldAttemptFixes())
return false;
return Bindings.empty() && getNumViableLiteralBindings() == 0 &&
Defaults.empty() && Info.TypeVar->getImpl().canBindToHole();
}
bool PotentialBindings::isGenericParameter() const {
auto *locator = TypeVar->getImpl().getLocator();
return locator && locator->isLastElement<LocatorPathElt::GenericParameter>();
}
bool PotentialBinding::isViableForJoin() const {
return Kind == AllowedBindingKind::Supertypes &&
!BindingType->hasLValueType() &&
!BindingType->hasUnresolvedType() &&
!BindingType->hasTypeVariable() &&
!BindingType->hasPlaceholder() &&
!BindingType->hasUnboundGenericType() &&
!hasDefaultedLiteralProtocol() &&
!isDefaultableBinding();
}
bool BindingSet::isDelayed() const {
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If first binding is a "fallback" to a protocol type,
// it means that this type variable should be delayed
// until it either gains more contextual information, or
// there are no other type variables to attempt to make
// forward progress.
if (Bindings.empty())
return true;
if (Bindings[0].BindingType->is<ProtocolType>())
return true;
}
// Since force unwrap preserves l-valueness, resulting
// type variable has to be delayed until either l-value
// binding becomes available or there are no other
// variables to attempt.
if (locator->directlyAt<ForceValueExpr>() &&
TypeVar->getImpl().canBindToLValue()) {
return llvm::none_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->is<LValueType>();
});
}
}
// Delay key path literal type binding until there is at least
// one contextual binding (or default is promoted into a binding).
if (TypeVar->getImpl().isKeyPathType() && !Defaults.empty())
return true;
if (isHole()) {
auto *locator = TypeVar->getImpl().getLocator();
assert(locator && "a hole without locator?");
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
// When inferring the type of a variable in a pattern, delay its resolution
// so that we resolve type variables inside the expression as placeholders
// instead of marking the type of the variable itself as a placeholder. This
// allows us to produce more specific errors because the type variable in
// the expression that introduced the placeholder might be diagnosable using
// fixForHole.
if (locator->isLastElement<LocatorPathElt::PatternDecl>()) {
return true;
}
// It's possible that type of member couldn't be determined,
// and if so it would be beneficial to bind member to a hole
// early to propagate that information down to arguments,
// result type of a call that references such a member.
//
// Note: This is done here instead of during binding inference,
// because it's possible that variable is marked as a "hole"
// (or that status is propagated to it) after constraints
// mentioned below are recorded.
return llvm::any_of(Info.DelayedBy, [&](Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction:
case ConstraintKind::BindOverload: {
return !ConstraintSystem::typeVarOccursInType(
TypeVar, CS.simplifyType(constraint->getSecondType()));
}
default:
return true;
}
});
}
return !Info.DelayedBy.empty();
}
bool BindingSet::involvesTypeVariables() const {
// This type variable always depends on a pack expansion variable
// which should be inferred first if possible.
if (TypeVar->getImpl().getGenericParameter() &&
TypeVar->getImpl().canBindToPack())
return true;
// This is effectively O(1) right now since bindings are re-computed
// on each step of the solver, but once bindings are computed
// incrementally it becomes more important to double-check that
// any adjacent type variables found previously are still unresolved.
return llvm::any_of(AdjacentVars, [](TypeVariableType *typeVar) {
return !typeVar->getImpl().getFixedType(/*record=*/nullptr);
});
}
bool BindingSet::isPotentiallyIncomplete() const {
// Generic parameters are always potentially incomplete.
if (Info.isGenericParameter())
return true;
// Key path literal type is incomplete until there is a
// contextual type or key path is resolved enough to infer
// capability and promote default into a binding.
if (TypeVar->getImpl().isKeyPathType())
return !Defaults.empty();
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything so let's delay considering it until everything
// else is resolved.
if (Info.AssociatedCodeCompletionToken)
return true;
auto *locator = TypeVar->getImpl().getLocator();
if (!locator)
return false;
if (locator->isLastElement<LocatorPathElt::MemberRefBase>() &&
!Bindings.empty()) {
// If the base of the unresolved member reference like `.foo`
// couldn't be resolved we'd want to bind it to a hole at the
// very last moment possible, just like generic parameters.
if (isHole())
return true;
auto &binding = Bindings.front();
// If base type of a member chain is inferred to be a protocol type,
// let's consider this binding set to be potentially incomplete since
// that's done as a last resort effort at resolving first member.
if (auto *constraint = binding.getSource()) {
if (binding.BindingType->is<ProtocolType>() &&
constraint->getKind() == ConstraintKind::ConformsTo)
return true;
}
}
if (locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// If subtyping is allowed and this is a result of an implicit member chain,
// let's delay binding it to an optional until its object type resolved too or
// it has been determined that there is no possibility to resolve it. Otherwise
// we might end up missing solutions since it's allowed to implicitly unwrap
// base type of the chain but it can't be done early - type variable
// representing chain's result type has a different l-valueness comparing
// to generic parameter of the optional.
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind != AllowedBindingKind::Subtypes)
return false;
auto objectType = binding.BindingType->getOptionalObjectType();
return objectType && objectType->isTypeVariableOrMember();
}))
return true;
}
if (isHole()) {
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
}
// If there is a `bind param` constraint associated with
// current type variable, result should be aware of that
// fact. Binding set might be incomplete until
// this constraint is resolved, because we currently don't
// look-through constraints expect to `subtype` to try and
// find related bindings.
// This only affects type variable that appears one the
// right-hand side of the `bind param` constraint and
// represents result type of the closure body, because
// left-hand side gets types from overload choices.
if (llvm::any_of(
Info.EquivalentTo,
[&](const std::pair<TypeVariableType *, Constraint *> &equivalence) {
auto *constraint = equivalence.second;
return constraint->getKind() == ConstraintKind::BindParam &&
constraint->getSecondType()->isEqual(TypeVar);
}))
return true;
return false;
}
void BindingSet::inferTransitiveProtocolRequirements(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
if (TransitiveProtocols)
return;
llvm::SmallVector<std::pair<TypeVariableType *, TypeVariableType *>, 4>
workList;
llvm::SmallPtrSet<TypeVariableType *, 4> visitedRelations;
llvm::SmallDenseMap<TypeVariableType *, SmallPtrSet<Constraint *, 4>, 4>
protocols;
auto addToWorkList = [&](TypeVariableType *parent,
TypeVariableType *typeVar) {
if (visitedRelations.insert(typeVar).second)
workList.push_back({parent, typeVar});
};
auto propagateProtocolsTo =
[&protocols](TypeVariableType *dstVar,
const ArrayRef<Constraint *> &direct,
const SmallPtrSetImpl<Constraint *> &transitive) {
auto &destination = protocols[dstVar];
if (direct.size() > 0)
destination.insert(direct.begin(), direct.end());
if (transitive.size() > 0)
destination.insert(transitive.begin(), transitive.end());
};
addToWorkList(nullptr, TypeVar);
do {
auto *currentVar = workList.back().second;
auto cachedBindings = inferredBindings.find(currentVar);
if (cachedBindings == inferredBindings.end()) {
workList.pop_back();
continue;
}
auto &bindings = cachedBindings->getSecond();
// If current variable already has transitive protocol
// conformances inferred, there is no need to look deeper
// into subtype/equivalence chain.
if (bindings.TransitiveProtocols) {
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
assert(parent);
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
*bindings.TransitiveProtocols);
continue;
}
for (const auto &entry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, entry.first);
// If current type variable is part of an equivalence
// class, make it a "representative" and let it infer
// supertypes and direct protocol requirements from
// other members and their equivalence classes.
llvm::SmallSetVector<TypeVariableType *, 4> equivalenceClass;
{
SmallVector<TypeVariableType *, 4> workList;
workList.push_back(currentVar);
do {
auto *typeVar = workList.pop_back_val();
if (!equivalenceClass.insert(typeVar))
continue;
auto bindingSet = inferredBindings.find(typeVar);
if (bindingSet == inferredBindings.end())
continue;
auto &equivalences = bindingSet->getSecond().Info.EquivalentTo;
for (const auto &eqVar : equivalences) {
workList.push_back(eqVar.first);
}
} while (!workList.empty());
}
for (const auto &memberVar : equivalenceClass) {
if (memberVar == currentVar)
continue;
auto eqBindings = inferredBindings.find(memberVar);
if (eqBindings == inferredBindings.end())
continue;
const auto &bindings = eqBindings->getSecond();
llvm::SmallPtrSet<Constraint *, 2> placeholder;
// Add any direct protocols from members of the
// equivalence class, so they could be propagated
// to all of the members.
propagateProtocolsTo(currentVar, bindings.getConformanceRequirements(),
placeholder);
// Since type variables are equal, current type variable
// becomes a subtype to any supertype found in the current
// equivalence class.
for (const auto &eqEntry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, eqEntry.first);
}
// More subtype/equivalences relations have been added.
if (workList.back().second != currentVar)
continue;
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
// At all of the protocols associated with current type variable
// are transitive to its parent, propagate them down the subtype/equivalence
// chain.
if (parent) {
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
protocols[currentVar]);
}
auto &inferredProtocols = protocols[currentVar];
llvm::SmallPtrSet<Constraint *, 4> protocolsForEquivalence;
// Equivalence class should contain both:
// - direct protocol requirements of the current type
// variable;
// - all of the transitive protocols inferred through
// the members of the equivalence class.
{
auto directRequirements = bindings.getConformanceRequirements();
protocolsForEquivalence.insert(directRequirements.begin(),
directRequirements.end());
protocolsForEquivalence.insert(inferredProtocols.begin(),
inferredProtocols.end());
}
// Propagate inferred protocols to all of the members of the
// equivalence class.
for (const auto &equivalence : bindings.Info.EquivalentTo) {
auto eqBindings = inferredBindings.find(equivalence.first);
if (eqBindings != inferredBindings.end()) {
auto &bindings = eqBindings->getSecond();
bindings.TransitiveProtocols.emplace(protocolsForEquivalence.begin(),
protocolsForEquivalence.end());
}
}
// Update the bindings associated with current type variable,
// to avoid repeating this inference process.
bindings.TransitiveProtocols.emplace(inferredProtocols.begin(),
inferredProtocols.end());
} while (!workList.empty());
}
void BindingSet::inferTransitiveBindings(
const llvm::SmallDenseMap<TypeVariableType *, BindingSet>
&inferredBindings) {
using BindingKind = AllowedBindingKind;
// If the current type variable represents a key path root type
// let's try to transitively infer its type through bindings of
// a key path type.
if (TypeVar->getImpl().isKeyPathRoot()) {
auto *locator = TypeVar->getImpl().getLocator();
if (auto *keyPathTy =
CS.getType(locator->getAnchor())->getAs<TypeVariableType>()) {
auto keyPathBindings = inferredBindings.find(keyPathTy);
if (keyPathBindings != inferredBindings.end()) {
auto &bindings = keyPathBindings->getSecond();
for (auto &binding : bindings.Bindings) {
auto bindingTy = binding.BindingType->lookThroughAllOptionalTypes();
Type inferredRootTy;
if (isKnownKeyPathType(bindingTy)) {
// AnyKeyPath doesn't have a root type.
if (bindingTy->isAnyKeyPath())
continue;
auto *BGT = bindingTy->castTo<BoundGenericType>();
inferredRootTy = BGT->getGenericArgs()[0];
} else if (auto *fnType = bindingTy->getAs<FunctionType>()) {
if (fnType->getNumParams() == 1)
inferredRootTy = fnType->getParams()[0].getParameterType();
}
if (inferredRootTy && !inferredRootTy->isTypeVariableOrMember())
addBinding(
binding.withSameSource(inferredRootTy, BindingKind::Exact));
}
}
}
}
for (const auto &entry : Info.SupertypeOf) {
auto relatedBindings = inferredBindings.find(entry.first);
if (relatedBindings == inferredBindings.end())
continue;
auto &bindings = relatedBindings->getSecond();
// FIXME: This is a workaround necessary because solver doesn't filter
// bindings based on protocol requirements placed on a type variable.
//
// Forward propagate (subtype -> supertype) only literal conformance
// requirements since that helps solver to infer more types at
// parameter positions.
//
// \code
// func foo<T: ExpressibleByStringLiteral>(_: String, _: T) -> T {
// fatalError()
// }
//
// func bar(_: Any?) {}
//
// func test() {
// bar(foo("", ""))
// }
// \endcode
//
// If one of the literal arguments doesn't propagate its
// `ExpressibleByStringLiteral` conformance, we'd end up picking
// `T` with only one type `Any?` which is incorrect.
for (const auto &literal : bindings.Literals)
addLiteralRequirement(literal.second.getSource());
// Infer transitive defaults.
for (const auto &def : bindings.Defaults) {
if (def.getSecond()->getKind() == ConstraintKind::FallbackType)
continue;
addDefault(def.second);
}
// TODO: We shouldn't need this in the future.
if (entry.second->getKind() != ConstraintKind::Subtype)
continue;
for (auto &binding : bindings.Bindings) {
// We need the binding kind for the potential binding to
// either be Exact or Supertypes in order for it to make sense
// to add Supertype bindings based on the relationship between
// our type variables.
if (binding.Kind != BindingKind::Exact &&
binding.Kind != BindingKind::Supertypes)
continue;
auto type = binding.BindingType;
if (type->isPlaceholder())
continue;
if (ConstraintSystem::typeVarOccursInType(TypeVar, type))
continue;
addBinding(binding.withSameSource(type, BindingKind::Supertypes));
}
}
}
static BoundGenericType *getKeyPathType(ASTContext &ctx,
KeyPathCapability capability,
Type rootType, Type valueType) {
switch (capability) {
case KeyPathCapability::ReadOnly:
return BoundGenericType::get(ctx.getKeyPathDecl(), /*parent=*/Type(),
{rootType, valueType});
case KeyPathCapability::Writable:
return BoundGenericType::get(ctx.getWritableKeyPathDecl(),
/*parent=*/Type(), {rootType, valueType});
case KeyPathCapability::ReferenceWritable:
return BoundGenericType::get(ctx.getReferenceWritableKeyPathDecl(),
/*parent=*/Type(), {rootType, valueType});
}
}
void BindingSet::finalize(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
inferTransitiveBindings(inferredBindings);
determineLiteralCoverage();
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If this is a base of an unresolved member chain, as a last
// resort effort let's infer base to be a protocol type based
// on contextual conformance requirements.
//
// This allows us to find solutions in cases like this:
//
// \code
// func foo<T: P>(_: T) {}
// foo(.bar) <- `.bar` should be a static member of `P`.
// \endcode
if (!hasViableBindings()) {
inferTransitiveProtocolRequirements(inferredBindings);
if (TransitiveProtocols.has_value()) {
for (auto *constraint : *TransitiveProtocols) {
Type protocolTy = constraint->getSecondType();
// The Copyable protocol can't have members, yet will be a
// constraint of basically all type variables, so don't suggest it.
//
// NOTE: worth considering for all marker protocols, but keep in
// mind that you're allowed to extend them with members!
if (auto p = protocolTy->getAs<ProtocolType>()) {
if (ProtocolDecl *decl = p->getDecl())
if (decl->isSpecificProtocol(KnownProtocolKind::Copyable))
continue;
}
addBinding({protocolTy, AllowedBindingKind::Exact, constraint});
}
}
}
}
if (TypeVar->getImpl().isKeyPathType()) {
auto &ctx = CS.getASTContext();
auto *keyPathLoc = TypeVar->getImpl().getLocator();
auto *keyPath = castToExpr<KeyPathExpr>(keyPathLoc->getAnchor());
bool isValid;
llvm::Optional<KeyPathCapability> capability;
std::tie(isValid, capability) = CS.inferKeyPathLiteralCapability(TypeVar);
// Key path literal is not yet sufficiently resolved.
if (isValid && !capability)
return;
// If the key path is sufficiently resolved we can add inferred binding
// to the set.
SmallSetVector<PotentialBinding, 4> updatedBindings;
for (const auto &binding : Bindings) {
auto bindingTy = binding.BindingType->lookThroughAllOptionalTypes();
assert(isKnownKeyPathType(bindingTy) || bindingTy->is<FunctionType>());
// Functions don't have capability so we can simply add them.
if (bindingTy->is<FunctionType>())
updatedBindings.insert(binding);
}
// Note that even though key path literal maybe be invalid it's
// still the best course of action to use contextual function type
// bindings because they allow to propagate type information from
// the key path into the context, so key path bindings are addded
// only if there is absolutely no other choice.
if (updatedBindings.empty()) {
auto rootTy = CS.getKeyPathRootType(keyPath);
// A valid key path literal.
if (capability) {
// Note that the binding is formed using root & value
// type variables produced during constraint generation
// because at this point root is already known (otherwise
// inference wouldn't been able to determine key path's
// capability) and we always want to infer value from
// the key path and match it to a contextual type to produce
// better diagnostics.
auto keyPathTy = getKeyPathType(ctx, *capability, rootTy,
CS.getKeyPathValueType(keyPath));
updatedBindings.insert(
{keyPathTy, AllowedBindingKind::Exact, keyPathLoc});
} else if (CS.shouldAttemptFixes()) {
auto fixedRootTy = CS.getFixedType(rootTy);
// If key path is structurally correct and has a resolved root
// type, let's promote the fallback type into a binding because
// root would have been inferred from explicit type already and
// it's benefitial for diagnostics to assign a non-placeholder
// type to key path literal to propagate root/value to the context.
if (!keyPath->hasSingleInvalidComponent() &&
(keyPath->getParsedRoot() ||
(fixedRootTy && !fixedRootTy->isTypeVariableOrMember()))) {
auto fallback = llvm::find_if(Defaults, [](const auto &entry) {
return entry.second->getKind() == ConstraintKind::FallbackType;
});
assert(fallback != Defaults.end());
updatedBindings.insert(
{fallback->first, AllowedBindingKind::Exact, fallback->second});
} else {
updatedBindings.insert(PotentialBinding::forHole(
TypeVar, CS.getConstraintLocator(
keyPath, ConstraintLocator::FallbackType)));
}
}
}
Bindings = std::move(updatedBindings);
Defaults.clear();
return;
}
if (CS.shouldAttemptFixes() &&
locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// Let's see whether this chain is valid, if it isn't then to avoid
// diagnosing the same issue multiple different ways, let's infer
// result of the chain to be a hole.
auto *resultExpr =
castToExpr<UnresolvedMemberChainResultExpr>(locator->getAnchor());
auto *baseLocator = CS.getConstraintLocator(
resultExpr->getChainBase(), ConstraintLocator::UnresolvedMember);
if (CS.hasFixFor(
baseLocator,
FixKind::AllowInvalidStaticMemberRefOnProtocolMetatype)) {
CS.recordPotentialHole(TypeVar);
// Clear all of the previously collected bindings which are inferred
// from inside of a member chain.
Bindings.remove_if([](const PotentialBinding &binding) {
return binding.Kind == AllowedBindingKind::Supertypes;
});
}
}
}
}
void BindingSet::addBinding(PotentialBinding binding) {
if (Bindings.count(binding))
return;
if (!isViable(binding))
return;
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
binding.BindingType->getTypeVariables(referencedTypeVars);
// If type variable is not allowed to bind to `lvalue`,
// let's check if type of potential binding has any
// type variables, which are allowed to bind to `lvalue`,
// and postpone such type from consideration.
//
// This check is done here and not in `checkTypeOfBinding`
// because the l-valueness of the variable might change during
// solving and that would not be reflected in the graph.
if (!TypeVar->getImpl().canBindToLValue()) {
for (auto *typeVar : referencedTypeVars) {
if (typeVar->getImpl().canBindToLValue())
return;
}
}
// Since Double and CGFloat are effectively the same type due to an
// implicit conversion between them, always prefer Double over CGFloat
// when possible.
//
// Note: This optimization can't be performed for closure parameters
// because their type could be converted only at the point of
// use in the closure body.
if (!TypeVar->getImpl().isClosureParameterType()) {
auto type = binding.BindingType;
if (type->isCGFloat() &&
llvm::any_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isDouble();
}))
return;
if (type->isDouble()) {
auto inferredCGFloat =
llvm::find_if(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isCGFloat();
});
if (inferredCGFloat != Bindings.end()) {
Bindings.erase(inferredCGFloat);
Bindings.insert(inferredCGFloat->withType(type));
return;
}
}
}
// If this is a non-defaulted supertype binding,
// check whether we can combine it with another
// supertype binding by computing the 'join' of the types.
if (binding.isViableForJoin()) {
auto isAcceptableJoin = [](Type type) {
return !type->isAny() && (!type->getOptionalObjectType() ||
!type->getOptionalObjectType()->isAny());
};
SmallVector<PotentialBinding, 4> joined;
for (auto existingBinding = Bindings.begin();
existingBinding != Bindings.end();) {
if (existingBinding->isViableForJoin()) {
auto join =
Type::join(existingBinding->BindingType, binding.BindingType);
if (join && isAcceptableJoin(*join)) {
// Result of the join has to use new binding because it refers
// to the constraint that triggered the join that replaced the
// existing binding.
joined.push_back(binding.withType(*join));
// Remove existing binding from the set.
// It has to be re-introduced later, since its type has been changed.
existingBinding = Bindings.erase(existingBinding);
continue;
}
}
++existingBinding;
}
for (const auto &binding : joined)
(void)Bindings.insert(binding);
// If new binding has been joined with at least one of existing
// bindings, there is no reason to include it into the set.
if (!joined.empty())
return;
}
for (auto *adjacentVar : referencedTypeVars)
AdjacentVars.insert(adjacentVar);
(void)Bindings.insert(std::move(binding));
}
void BindingSet::determineLiteralCoverage() {
if (Literals.empty())
return;
bool allowsNil = canBeNil();
for (auto &entry : Literals) {
auto &literal = entry.second;
if (!literal.viableAsBinding())
continue;
for (auto binding = Bindings.begin(); binding != Bindings.end();
++binding) {
bool isCovered = false;
Type adjustedTy;
std::tie(isCovered, adjustedTy) =
literal.isCoveredBy(*binding, allowsNil, CS);
if (!isCovered)
continue;
literal.setCoveredBy(binding->getSource());
if (adjustedTy) {
Bindings.erase(binding);
Bindings.insert(binding->withType(adjustedTy));
}
break;
}
}
}
void BindingSet::addLiteralRequirement(Constraint *constraint) {
auto isDirectRequirement = [&](Constraint *constraint) -> bool {
if (auto *typeVar = constraint->getFirstType()->getAs<TypeVariableType>()) {
auto *repr = CS.getRepresentative(typeVar);
return repr == TypeVar;
}
return false;
};
auto *protocol = constraint->getProtocol();
// Let's try to coalesce integer and floating point literal protocols
// if they appear together because the only possible default type that
// could satisfy both requirements is `Double`.
{
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
auto *floatLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral);
if (Literals.count(floatLiteral))
return;
}
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
auto *intLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral);
Literals.erase(intLiteral);
}
}
if (Literals.count(protocol) > 0)
return;
bool isDirect = isDirectRequirement(constraint);
// Coverage is not applicable to `ExpressibleByNilLiteral` since it
// doesn't have a default type.
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByNilLiteral)) {
Literals.insert(
{protocol, LiteralRequirement(constraint,
/*DefaultType=*/Type(), isDirect)});
return;
}
// Check whether any of the existing bindings covers this literal
// protocol.
LiteralRequirement literal(
constraint, TypeChecker::getDefaultType(protocol, CS.DC), isDirect);
Literals.insert({protocol, std::move(literal)});
}
BindingSet::BindingScore BindingSet::formBindingScore(const BindingSet &b) {
// If there are no bindings available but this type
// variable represents a closure - let's consider it
// as having a single non-default binding - that would
// be a type inferred based on context.
// It's considered to be non-default for purposes of
// ranking because we'd like to prioritize resolving
// closures to gain more information from their bodies.
unsigned numBindings = b.Bindings.size() + b.getNumViableLiteralBindings();
auto numNonDefaultableBindings = numBindings > 0 ? numBindings
: b.TypeVar->getImpl().isClosureType() ? 1
: 0;
return std::make_tuple(b.isHole(), numNonDefaultableBindings == 0,
b.isDelayed(), b.isSubtypeOfExistentialType(),
b.involvesTypeVariables(),
static_cast<unsigned char>(b.getLiteralForScore()),
-numNonDefaultableBindings);
}
llvm::Optional<BindingSet> ConstraintSystem::determineBestBindings(
llvm::function_ref<void(const BindingSet &)> onCandidate) {
// Look for potential type variable bindings.
llvm::Optional<BindingSet> bestBindings;
llvm::SmallDenseMap<TypeVariableType *, BindingSet> cache;
// First, let's collect all of the possible bindings.
for (auto *typeVar : getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed()) {
cache.insert({typeVar, getBindingsFor(typeVar, /*finalize=*/false)});
}
}
// Determine whether given type variable with its set of bindings is
// viable to be attempted on the next step of the solver. If type variable
// has no "direct" bindings of any kind e.g. direct bindings to concrete
// types, default types from "defaultable" constraints or literal
// conformances, such type variable is not viable to be evaluated to be
// attempted next.
auto isViableForRanking = [this](const BindingSet &bindings) -> bool {
auto *typeVar = bindings.getTypeVariable();
// Key path root type variable is always viable because it can be
// transitively inferred from key path type during binding set
// finalization.
if (typeVar->getImpl().isKeyPathRoot())
return true;
// Type variable representing a base of unresolved member chain should
// always be considered viable for ranking since it's allow to infer
// types from transitive protocol requirements.
if (auto *locator = typeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>())
return true;
}
// If type variable is marked as a potential hole there is always going
// to be at least one binding available for it.
if (shouldAttemptFixes() && typeVar->getImpl().canBindToHole())
return true;
return bool(bindings);
};
// Now let's see if we could infer something for related type
// variables based on other bindings.
for (auto *typeVar : getTypeVariables()) {
auto cachedBindings = cache.find(typeVar);
if (cachedBindings == cache.end())
continue;
auto &bindings = cachedBindings->getSecond();
// Before attempting to infer transitive bindings let's check
// whether there are any viable "direct" bindings associated with
// current type variable, if there are none - it means that this type
// variable could only be used to transitively infer bindings for
// other type variables and can't participate in ranking.
//
// Viable bindings include - any types inferred from constraints
// associated with given type variable, any default constraints,
// or any conformance requirements to literal protocols with can
// produce a default type.
bool isViable = isViableForRanking(bindings);
bindings.finalize(cache);
if (!bindings || !isViable)
continue;
onCandidate(bindings);
// If these are the first bindings, or they are better than what
// we saw before, use them instead.
if (!bestBindings || bindings < *bestBindings)
bestBindings.emplace(bindings);
}
return bestBindings;
}
/// Find the set of type variables that are inferable from the given type.
///
/// \param type The type to search.
/// \param typeVars Collects the type variables that are inferable from the
/// given type. This set is not cleared, so that multiple types can be explored
/// and introduce their results into the same set.
static void
findInferableTypeVars(Type type,
SmallPtrSetImpl<TypeVariableType *> &typeVars) {
type = type->getCanonicalType();
if (!type->hasTypeVariable())
return;
class Walker : public TypeWalker {
SmallPtrSetImpl<TypeVariableType *> &typeVars;
public:
explicit Walker(SmallPtrSetImpl<TypeVariableType *> &typeVars)
: typeVars(typeVars) {}
Action walkToTypePre(Type ty) override {
if (ty->is<DependentMemberType>())
return Action::SkipChildren;
if (auto typeVar = ty->getAs<TypeVariableType>())
typeVars.insert(typeVar);
return Action::Continue;
}
};
type.walk(Walker(typeVars));
}
void PotentialBindings::addDefault(Constraint *constraint) {
Defaults.insert(constraint);
}
void BindingSet::addDefault(Constraint *constraint) {
auto defaultTy = constraint->getSecondType();
Defaults.insert({defaultTy->getCanonicalType(), constraint});
}
bool LiteralRequirement::isCoveredBy(Type type, ConstraintSystem &CS) const {
auto coversDefaultType = [](Type type, Type defaultType) -> bool {
if (!defaultType->hasUnboundGenericType())
return type->isEqual(defaultType);
// For generic literal types, check whether we already have a
// specialization of this generic within our list.
// FIXME: This assumes that, e.g., the default literal
// int/float/char/string types are never generic.
auto nominal = defaultType->getAnyNominal();
if (!nominal)
return false;
// FIXME: Check parents?
return nominal == type->getAnyNominal();
};
if (hasDefaultType() && coversDefaultType(type, getDefaultType()))
return true;
return bool(CS.lookupConformance(type, getProtocol()));
}
std::pair<bool, Type>
LiteralRequirement::isCoveredBy(const PotentialBinding &binding, bool canBeNil,
ConstraintSystem &CS) const {
auto type = binding.BindingType;
switch (binding.Kind) {
case AllowedBindingKind::Exact:
type = binding.BindingType;
break;
case AllowedBindingKind::Subtypes:
case AllowedBindingKind::Supertypes:
type = binding.BindingType->getRValueType();
break;
}
bool requiresUnwrap = false;
do {
// Conformance check on type variable would always return true,
// but type variable can't cover anything until it's bound.
if (type->isTypeVariableOrMember() || type->isPlaceholder())
return std::make_pair(false, Type());
if (isCoveredBy(type, CS)) {
return std::make_pair(true, requiresUnwrap ? type : binding.BindingType);
}
// Can't unwrap optionals if there is `ExpressibleByNilLiteral`
// conformance requirement placed on the type variable.
if (canBeNil)
return std::make_pair(false, Type());
// If this literal protocol is not a direct requirement it
// would not be possible to change optionality while inferring
// bindings for a supertype, so this hack doesn't apply.
if (!isDirectRequirement())
return std::make_pair(false, Type());
// If we're allowed to bind to subtypes, look through optionals.
// FIXME: This is really crappy special case of computing a reasonable
// result based on the given constraints.
if (binding.Kind == AllowedBindingKind::Subtypes) {
if (auto objTy = type->getOptionalObjectType()) {
requiresUnwrap = true;
type = objTy;
continue;
}
}
return std::make_pair(false, Type());
} while (true);
}
void PotentialBindings::addPotentialBinding(PotentialBinding binding) {
assert(!binding.BindingType->is<ErrorType>());
// If the type variable can't bind to an lvalue, make sure the
// type we pick isn't an lvalue.
if (!TypeVar->getImpl().canBindToLValue() &&
binding.BindingType->hasLValueType()) {
binding = binding.withType(binding.BindingType->getRValueType());
}
Bindings.push_back(std::move(binding));
}
void PotentialBindings::addLiteral(Constraint *constraint) {
Literals.insert(constraint);
}
bool BindingSet::isViable(PotentialBinding &binding) {
// Prevent against checking against the same opened nominal type
// over and over again. Doing so means redundant work in the best
// case. In the worst case, we'll produce lots of duplicate solutions
// for this constraint system, which is problematic for overload
// resolution.
auto type = binding.BindingType;
auto *NTD = type->getAnyNominal();
if (!NTD)
return true;
for (auto existing = Bindings.begin(); existing != Bindings.end();
++existing) {
auto existingType = existing->BindingType;
auto *existingNTD = existingType->getAnyNominal();
if (!existingNTD || NTD != existingNTD)
continue;
// If new type has a type variable it shouldn't
// be considered viable.
if (type->hasTypeVariable())
return false;
// If new type doesn't have any type variables,
// but existing binding does, let's replace existing
// binding with new one.
if (existingType->hasTypeVariable()) {
// First, let's remove all of the adjacent type
// variables associated with this binding.
{
SmallPtrSet<TypeVariableType *, 4> referencedVars;
existingType->getTypeVariables(referencedVars);
for (auto *var : referencedVars)
AdjacentVars.erase(var);
}
// And now let's remove the binding itself.
Bindings.erase(existing);
break;
}
}
return true;
}
bool BindingSet::favoredOverDisjunction(Constraint *disjunction) const {
if (isHole())
return false;
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind == AllowedBindingKind::Supertypes)
return false;
auto type = binding.BindingType;
if (CS.shouldAttemptFixes())
return false;
if (type->isAnyHashable() || type->isDouble() || type->isCGFloat())
return false;
{
PointerTypeKind pointerKind;
if (type->getAnyPointerElementType(pointerKind)) {
switch (pointerKind) {
case PTK_UnsafeRawPointer:
case PTK_UnsafeMutableRawPointer:
return false;
default:
break;
}
}
}
return type->is<StructType>() || type->is<EnumType>() ||
type->is<BuiltinType>();
})) {
// Result type of subscript could be l-value so we can't bind it early.
if (!TypeVar->getImpl().isSubscriptResultType() &&
llvm::none_of(Info.DelayedBy, [](const Constraint *constraint) {
return constraint->getKind() == ConstraintKind::Disjunction ||
constraint->getKind() == ConstraintKind::ValueMember;
}))
return true;
}
if (isDelayed())
return false;
// If this bindings are for a closure and there are no holes,
// it shouldn't matter whether it there are any type variables
// or not because e.g. parameter type can have type variables,
// but we still want to resolve closure body early (instead of
// attempting any disjunction) to gain additional contextual
// information.
if (TypeVar->getImpl().isClosureType()) {
auto boundType = disjunction->getNestedConstraints()[0]->getFirstType();
// If disjunction is attempting to bind a type variable, let's
// favor closure because it would add additional context, otherwise
// if it's something like a collection (where it has to pick
// between a conversion and bridging conversion) or concrete
// type let's prefer the disjunction.
//
// We are looking through optionals here because it could be
// a situation where disjunction is formed to match optionals
// either as deep equality or optional-to-optional conversion.
// Such type variables might be connected to closure as well
// e.g. when result type is optional, so it makes sense to
// open closure before attempting such disjunction.
return boundType->lookThroughAllOptionalTypes()->is<TypeVariableType>();
}
// Don't prioritize type variables that don't have any direct bindings.
if (Bindings.empty())
return false;
return !involvesTypeVariables();
}
bool BindingSet::favoredOverConjunction(Constraint *conjunction) const {
if (CS.shouldAttemptFixes() && isHole()) {
if (forClosureResult() || forGenericParameter())
return false;
}
auto *locator = conjunction->getLocator();
if (locator->directlyAt<ClosureExpr>()) {
auto *closure = castToExpr<ClosureExpr>(locator->getAnchor());
if (auto transform = CS.getAppliedResultBuilderTransform(closure)) {
// Conjunctions that represent closures with result builder transformed
// bodies could be attempted right after their resolution if they meet
// all of the following criteria:
//
// - Builder type doesn't have any unresolved generic parameters;
// - Closure doesn't have any parameters;
// - The contextual result type is either concrete or opaque type.
auto contextualType = transform->contextualType;
if (!(contextualType && contextualType->is<FunctionType>()))
return true;
auto *contextualFnType =
CS.simplifyType(contextualType)->castTo<FunctionType>();
{
auto resultType = contextualFnType->getResult();
if (resultType->hasTypeVariable()) {
auto *typeVar = resultType->getAs<TypeVariableType>();
// If contextual result type is represented by an opaque type,
// it's a strong indication that body is self-contained, otherwise
// closure might rely on external types flowing into the body for
// disambiguation of `build{Partial}Block` or `buildFinalResult`
// calls.
if (!(typeVar && typeVar->getImpl().isOpaqueType()))
return true;
}
}
// If some of the closure parameters are unresolved, the conjunction
// has to be delayed to give them a chance to be inferred.
if (llvm::any_of(contextualFnType->getParams(), [](const auto &param) {
return param.getPlainType()->hasTypeVariable();
}))
return true;
// Check whether conjunction has any unresolved type variables
// besides the variable that represents the closure.
//
// Conjunction could refer to declarations from outer context
// (i.e. a variable declared in the outer closure) or generic
// parameters of the builder type), if any of such references
// are not yet inferred the conjunction has to be delayed.
auto *closureType = CS.getType(closure)->castTo<TypeVariableType>();
return llvm::any_of(
conjunction->getTypeVariables(), [&](TypeVariableType *typeVar) {
return !(typeVar == closureType || CS.getFixedType(typeVar));
});
}
}
return true;
}
BindingSet ConstraintSystem::getBindingsFor(TypeVariableType *typeVar,
bool finalize) {
assert(typeVar->getImpl().getRepresentative(nullptr) == typeVar &&
"not a representative");
assert(!typeVar->getImpl().getFixedType(nullptr) && "has a fixed type");
BindingSet bindings{CG[typeVar].getCurrentBindings()};
if (finalize) {
llvm::SmallDenseMap<TypeVariableType *, BindingSet> cache;
bindings.finalize(cache);
}
return bindings;
}
/// Check whether the given type can be used as a binding for the given
/// type variable.
///
/// \returns the type to bind to, if the binding is okay.
static llvm::Optional<Type> checkTypeOfBinding(TypeVariableType *typeVar,
Type type) {
// If the type references the type variable, don't permit the binding.
if (type->hasTypeVariable()) {
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
type->getTypeVariables(referencedTypeVars);
if (referencedTypeVars.count(typeVar))
return llvm::None;
}
{
auto objType = type->getWithoutSpecifierType();
// If the type is a type variable itself, don't permit the binding.
if (objType->is<TypeVariableType>())
return llvm::None;
// Don't bind to a dependent member type, even if it's currently
// wrapped in any number of optionals, because binding producer
// might unwrap and try to attempt it directly later.
if (objType->lookThroughAllOptionalTypes()->is<DependentMemberType>())
return llvm::None;
}
// Okay, allow the binding (with the simplified type).
return type;
}
llvm::Optional<PotentialBinding>
PotentialBindings::inferFromRelational(Constraint *constraint) {
assert(constraint->getClassification() ==
ConstraintClassification::Relational &&
"only relational constraints handled here");
auto first = CS.simplifyType(constraint->getFirstType());
auto second = CS.simplifyType(constraint->getSecondType());
if (first->is<TypeVariableType>() && first->isEqual(second))
return llvm::None;
Type type;
AllowedBindingKind kind;
if (first->getAs<TypeVariableType>() == TypeVar) {
// Upper bound for this type variable.
type = second;
kind = AllowedBindingKind::Subtypes;
} else if (second->getAs<TypeVariableType>() == TypeVar) {
// Lower bound for this type variable.
type = first;
kind = AllowedBindingKind::Supertypes;
} else {
// If the left-hand side of a relational constraint is a
// type variable representing a closure type, let's delay
// attempting any bindings related to any type variables
// on the other side since it could only be either a closure
// parameter or a result type, and we can't get a full set
// of bindings for them until closure's body is opened.
if (auto *typeVar = first->getAs<TypeVariableType>()) {
if (typeVar->getImpl().isClosureType()) {
DelayedBy.push_back(constraint);
return llvm::None;
}
}
// Check whether both this type and another type variable are
// inferable.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(first, typeVars);
findInferableTypeVars(second, typeVars);
if (typeVars.erase(TypeVar)) {
for (auto *typeVar : typeVars)
AdjacentVars.insert({typeVar, constraint});
}
return llvm::None;
}
// Do not attempt to bind to ErrorType.
if (type->hasError())
return llvm::None;
if (TypeVar->getImpl().isKeyPathType()) {
auto objectTy = type->lookThroughAllOptionalTypes();
// If contextual type is an existential with a superclass
// constraint, let's try to infer a key path type from it.
if (kind == AllowedBindingKind::Subtypes) {
if (type->isExistentialType()) {
auto layout = type->getExistentialLayout();
if (auto superclass = layout.explicitSuperclass) {
if (isKnownKeyPathType(superclass)) {
type = superclass;
objectTy = superclass;
}
}
}
}
if (!(isKnownKeyPathType(objectTy) || objectTy->is<AnyFunctionType>()))
return llvm::None;
}
if (auto *locator = TypeVar->getImpl().getLocator()) {
// Don't allow a protocol type to get propagated from the base to the result
// type of a chain, Result should always be a concrete type which conforms
// to the protocol inferred for the base.
if (constraint->getKind() == ConstraintKind::UnresolvedMemberChainBase &&
kind == AllowedBindingKind::Subtypes && type->is<ProtocolType>())
return llvm::None;
}
// If the source of the binding is 'OptionalObject' constraint
// and type variable is on the left-hand side, that means
// that it _has_ to be of optional type, since the right-hand
// side of the constraint is object type of the optional.
if (constraint->getKind() == ConstraintKind::OptionalObject &&
kind == AllowedBindingKind::Subtypes) {
type = OptionalType::get(type);
}
// If the type we'd be binding to is a dependent member, don't try to
// resolve this type variable yet.
if (type->getWithoutSpecifierType()
->lookThroughAllOptionalTypes()
->is<DependentMemberType>()) {
llvm::SmallPtrSet<TypeVariableType *, 4> referencedVars;
type->getTypeVariables(referencedVars);
bool containsSelf = false;
for (auto *var : referencedVars) {
// Add all type variables encountered in the type except
// to the current type variable.
if (var != TypeVar) {
AdjacentVars.insert({var, constraint});
continue;
}
containsSelf = true;
}
// If inferred type doesn't contain the current type variable,
// let's mark bindings as delayed until dependent member type
// is resolved.
if (!containsSelf)
DelayedBy.push_back(constraint);
return llvm::None;
}
// If our binding choice is a function type and we're attempting
// to bind to a type variable that is the result of opening a
// generic parameter, strip the noescape bit so that we only allow
// bindings of escaping functions in this position. We do this
// because within the generic function we have no indication of
// whether the parameter is a function type and if so whether it
// should be allowed to escape. As a result we allow anything
// passed in to escape.
if (auto *fnTy = type->getAs<AnyFunctionType>()) {
// Since inference now happens during constraint generation,
// this hack should be allowed in both `Solving`
// (during non-diagnostic mode) and `ConstraintGeneration` phases.
if (isGenericParameter() &&
(!CS.shouldAttemptFixes() ||
CS.getPhase() == ConstraintSystemPhase::ConstraintGeneration)) {
type = fnTy->withExtInfo(fnTy->getExtInfo().withNoEscape(false));
}
}
// Check whether we can perform this binding.
if (auto boundType = checkTypeOfBinding(TypeVar, type)) {
type = *boundType;
} else {
auto *bindingTypeVar = type->getRValueType()->getAs<TypeVariableType>();
if (!bindingTypeVar)
return llvm::None;
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything, so let's note that fact in the potential
// bindings and use it when forming a hole if there are no other bindings
// available.
if (auto *locator = bindingTypeVar->getImpl().getLocator()) {
if (locator->directlyAt<CodeCompletionExpr>())
AssociatedCodeCompletionToken = locator->getAnchor();
}
switch (constraint->getKind()) {
case ConstraintKind::Subtype:
case ConstraintKind::SubclassOf:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion: {
if (kind == AllowedBindingKind::Subtypes) {
SubtypeOf.insert({bindingTypeVar, constraint});
} else {
assert(kind == AllowedBindingKind::Supertypes);
SupertypeOf.insert({bindingTypeVar, constraint});
}
AdjacentVars.insert({bindingTypeVar, constraint});
break;
}
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::Equal: {
EquivalentTo.insert({bindingTypeVar, constraint});
AdjacentVars.insert({bindingTypeVar, constraint});
break;
}
case ConstraintKind::UnresolvedMemberChainBase: {
EquivalentTo.insert({bindingTypeVar, constraint});
// Don't record adjacency between base and result types,
// this is just an auxiliary constraint to enforce ordering.
break;
}
default:
break;
}
return llvm::None;
}
// Make sure we aren't trying to equate type variables with different
// lvalue-binding rules.
if (auto otherTypeVar = type->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() !=
otherTypeVar->getImpl().canBindToLValue())
return llvm::None;
}
if (type->is<InOutType>() && !TypeVar->getImpl().canBindToInOut())
type = LValueType::get(type->getInOutObjectType());
if (type->is<LValueType>() && !TypeVar->getImpl().canBindToLValue())
type = type->getRValueType();
// BindParam constraints are not reflexive and must be treated specially.
if (constraint->getKind() == ConstraintKind::BindParam) {
if (kind == AllowedBindingKind::Subtypes) {
if (auto *lvt = type->getAs<LValueType>()) {
type = InOutType::get(lvt->getObjectType());
}
} else if (kind == AllowedBindingKind::Supertypes) {
if (auto *iot = type->getAs<InOutType>()) {
type = LValueType::get(iot->getObjectType());
}
}
kind = AllowedBindingKind::Exact;
}
return PotentialBinding{type, kind, constraint};
}
/// Retrieve the set of potential type bindings for the given
/// representative type variable, along with flags indicating whether
/// those types should be opened.
void PotentialBindings::infer(Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::OptionalObject: {
// Inference through optional object is allowed if
// one of the types is resolved or "optional" type variable
// cannot be bound to l-value, otherwise there is a
// risk of binding "optional" to an optional type (inferred from
// the "object") and discovering an l-value binding for it later.
auto optionalType = constraint->getFirstType();
if (auto *optionalVar = optionalType->getAs<TypeVariableType>()) {
if (optionalVar->getImpl().canBindToLValue()) {
auto objectType =
constraint->getSecondType()->lookThroughAllOptionalTypes();
if (objectType->isTypeVariableOrMember())
return;
}
}
LLVM_FALLTHROUGH;
}
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::SubclassOf:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::UnresolvedMemberChainBase: {
auto binding = inferFromRelational(constraint);
if (!binding)
break;
addPotentialBinding(*binding);
break;
}
case ConstraintKind::KeyPathApplication: {
// If this variable is in the application projected result type, delay
// binding until we've bound other type variables in the key-path
// application constraint. This ensures we try to bind the key path type
// first, which can allow us to discover additional bindings for the result
// type.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(CS.simplifyType(constraint->getThirdType()),
typeVars);
if (typeVars.count(TypeVar)) {
DelayedBy.push_back(constraint);
}
break;
}
case ConstraintKind::BridgingConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::SyntacticElement:
case ConstraintKind::Conjunction:
case ConstraintKind::BindTupleOfFunctionParams:
case ConstraintKind::ShapeOf:
case ConstraintKind::ExplicitGenericArguments:
case ConstraintKind::PackElementOf:
case ConstraintKind::SameShape:
case ConstraintKind::MaterializePackExpansion:
// Constraints from which we can't do anything.
break;
// For now let's avoid inferring protocol requirements from
// this constraint, but in the future we could do that to
// to filter bindings.
case ConstraintKind::TransitivelyConformsTo:
break;
case ConstraintKind::DynamicTypeOf: {
// Direct binding of the left-hand side could result
// in `DynamicTypeOf` failure if right-hand side is
// bound (because 'Bind' requires equal types to
// succeed), or left is bound to Any which is not an
// [existential] metatype.
auto dynamicType = constraint->getFirstType();
if (auto *tv = dynamicType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
// This is right-hand side, let's continue.
break;
}
case ConstraintKind::Defaultable:
case ConstraintKind::FallbackType:
// Do these in a separate pass.
if (CS.getFixedTypeRecursive(constraint->getFirstType(), true)
->getAs<TypeVariableType>() == TypeVar) {
addDefault(constraint);
}
break;
case ConstraintKind::Disjunction:
// If there is additional context available via disjunction
// associated with closure literal (e.g. coercion to some other
// type) let's delay resolving the closure until the disjunction
// is attempted.
DelayedBy.push_back(constraint);
break;
case ConstraintKind::ConformsTo:
case ConstraintKind::SelfObjectOfProtocol: {
auto protocolTy = constraint->getSecondType();
if (protocolTy->is<ProtocolType>())
Protocols.push_back(constraint);
break;
}
case ConstraintKind::LiteralConformsTo: {
// Record constraint where protocol requirement originated
// this is useful to use for the binding later.
addLiteral(constraint);
break;
}
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction: {
auto overloadTy = constraint->getSecondType();
// If current type variable represents an overload set
// being applied to the arguments, it can't be delayed
// by application constraints, because it doesn't
// depend on argument/result types being resolved first.
if (overloadTy->isEqual(TypeVar))
break;
LLVM_FALLTHROUGH;
}
case ConstraintKind::BindOverload: {
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueWitness:
case ConstraintKind::PropertyWrapper: {
// If current type variable represents a member type of some reference,
// it would be bound once member is resolved either to a actual member
// type or to a hole if member couldn't be found.
auto memberTy = constraint->getSecondType()->castTo<TypeVariableType>();
if (memberTy->getImpl().hasRepresentativeOrFixed()) {
if (auto type = memberTy->getImpl().getFixedType(/*record=*/nullptr)) {
// It's possible that member has been bound to some other type variable
// instead of merged with it because it's wrapped in an l-value type.
if (type->getWithoutSpecifierType()->isEqual(TypeVar)) {
DelayedBy.push_back(constraint);
break;
}
} else {
memberTy = memberTy->getImpl().getRepresentative(/*record=*/nullptr);
}
}
if (memberTy == TypeVar)
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::OneWayEqual:
case ConstraintKind::OneWayBindParam: {
// Don't produce any bindings if this type variable is on the left-hand
// side of a one-way binding.
auto firstType = constraint->getFirstType();
if (auto *tv = firstType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
break;
}
}
}
void PotentialBindings::retract(Constraint *constraint) {
Bindings.erase(
llvm::remove_if(Bindings,
[&constraint](const PotentialBinding &binding) {
return binding.getSource() == constraint;
}),
Bindings.end());
auto isMatchingConstraint = [&constraint](Constraint *existing) {
return existing == constraint;
};
auto hasMatchingSource =
[&constraint](
const std::pair<TypeVariableType *, Constraint *> &adjacency) {
return adjacency.second == constraint;
};
switch (constraint->getKind()) {
case ConstraintKind::ConformsTo:
case ConstraintKind::SelfObjectOfProtocol:
Protocols.erase(llvm::remove_if(Protocols, isMatchingConstraint),
Protocols.end());
break;
case ConstraintKind::LiteralConformsTo:
Literals.erase(constraint);
break;
case ConstraintKind::Defaultable:
case ConstraintKind::FallbackType: {
Defaults.erase(constraint);
break;
}
default:
break;
}
{
llvm::SmallPtrSet<TypeVariableType *, 2> unviable;
for (const auto &adjacent : AdjacentVars) {
if (adjacent.second == constraint)
unviable.insert(adjacent.first);
}
for (auto *adjacentVar : unviable)
AdjacentVars.erase(std::make_pair(adjacentVar, constraint));
}
DelayedBy.erase(llvm::remove_if(DelayedBy, isMatchingConstraint),
DelayedBy.end());
SubtypeOf.remove_if(hasMatchingSource);
SupertypeOf.remove_if(hasMatchingSource);
EquivalentTo.remove_if(hasMatchingSource);
}
void BindingSet::forEachLiteralRequirement(
llvm::function_ref<void(KnownProtocolKind)> callback) const {
for (const auto &literal : Literals) {
auto *protocol = literal.first;
const auto &info = literal.second;
// Only uncovered defaultable literal protocols participate.
if (!info.viableAsBinding())
continue;
if (auto protocolKind = protocol->getKnownProtocolKind())
callback(*protocolKind);
}
}
LiteralBindingKind BindingSet::getLiteralForScore() const {
LiteralBindingKind kind = LiteralBindingKind::None;
forEachLiteralRequirement([&](KnownProtocolKind protocolKind) {
switch (protocolKind) {
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
case KnownProtocolKind::ExpressibleByArrayLiteral:
case KnownProtocolKind::ExpressibleByStringInterpolation:
kind = LiteralBindingKind::Collection;
break;
case KnownProtocolKind::ExpressibleByFloatLiteral:
kind = LiteralBindingKind::Float;
break;
default:
if (kind != LiteralBindingKind::Collection)
kind = LiteralBindingKind::Atom;
break;
}
});
return kind;
}
unsigned BindingSet::getNumViableLiteralBindings() const {
return llvm::count_if(Literals, [&](const auto &literal) {
return literal.second.viableAsBinding();
});
}
/// Return string for atomic literal kinds (integer, string, & boolean) for
/// printing in debug output.
static std::string getAtomLiteralAsString(ExprKind EK) {
#define ENTRY(Kind, String) \
case ExprKind::Kind: \
return String
switch (EK) {
ENTRY(IntegerLiteral, "integer");
ENTRY(StringLiteral, "string");
ENTRY(BooleanLiteral, "boolean");
ENTRY(NilLiteral, "nil");
default:
return "";
}
#undef ENTRY
}
/// Return string for collection literal kinds (interpolated string, array,
/// dictionary) for printing in debug output.
static std::string getCollectionLiteralAsString(KnownProtocolKind KPK) {
#define ENTRY(Kind, String) \
case KnownProtocolKind::Kind: \
return String
switch (KPK) {
ENTRY(ExpressibleByDictionaryLiteral, "dictionary");
ENTRY(ExpressibleByArrayLiteral, "array");
ENTRY(ExpressibleByStringInterpolation, "interpolated string");
default:
return "";
}
#undef ENTRY
}
void BindingSet::dump(llvm::raw_ostream &out, unsigned indent) const {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
if (auto typeVar = getTypeVariable()) {
typeVar->getImpl().print(out);
out << " ";
}
std::vector<std::string> attributes;
if (isDirectHole())
attributes.push_back("hole");
if (isPotentiallyIncomplete())
attributes.push_back("potentially_incomplete");
if (isDelayed())
attributes.push_back("delayed");
if (isSubtypeOfExistentialType())
attributes.push_back("subtype_of_existential");
if (!attributes.empty()) {
out << "[attributes: ";
interleave(attributes, out, ", ");
}
auto literalKind = getLiteralForScore();
if (literalKind != LiteralBindingKind::None) {
if (!attributes.empty()) {
out << ", ";
} else {
out << "[attributes: ";
}
out << "[literal: ";
switch (literalKind) {
case LiteralBindingKind::Atom: {
if (auto atomKind = TypeVar->getImpl().getAtomicLiteralKind()) {
out << getAtomLiteralAsString(*atomKind);
}
break;
}
case LiteralBindingKind::Collection: {
std::vector<std::string> collectionLiterals;
forEachLiteralRequirement([&](KnownProtocolKind protocolKind) {
collectionLiterals.push_back(
getCollectionLiteralAsString(protocolKind));
});
interleave(collectionLiterals, out, ", ");
break;
}
case LiteralBindingKind::Float:
case LiteralBindingKind::None:
out << getLiteralBindingKind(literalKind).str();
break;
}
if (attributes.empty()) {
out << "]] ";
} else {
out << "]";
}
}
if (!attributes.empty())
out << "] ";
if (involvesTypeVariables()) {
out << "[involves_type_vars: ";
interleave(AdjacentVars,
[&](const auto *typeVar) { out << typeVar->getString(PO); },
[&out]() { out << ", "; });
out << "] ";
}
auto numDefaultable = getNumViableDefaultableBindings();
if (numDefaultable > 0)
out << "[#defaultable_bindings: " << numDefaultable << "] ";
struct PrintableBinding {
private:
enum class BindingKind { Exact, Subtypes, Supertypes, Literal };
BindingKind Kind;
Type BindingType;
PrintableBinding(BindingKind kind, Type bindingType)
: Kind(kind), BindingType(bindingType) {}
public:
static PrintableBinding supertypesOf(Type binding) {
return PrintableBinding{BindingKind::Supertypes, binding};
}
static PrintableBinding subtypesOf(Type binding) {
return PrintableBinding{BindingKind::Subtypes, binding};
}
static PrintableBinding exact(Type binding) {
return PrintableBinding{BindingKind::Exact, binding};
}
static PrintableBinding literalDefaultType(Type binding) {
return PrintableBinding{BindingKind::Literal, binding};
}
void print(llvm::raw_ostream &out, const PrintOptions &PO,
unsigned indent = 0) const {
switch (Kind) {
case BindingKind::Exact:
break;
case BindingKind::Subtypes:
out << "(subtypes of) ";
break;
case BindingKind::Supertypes:
out << "(supertypes of) ";
break;
case BindingKind::Literal:
out << "(default type of literal) ";
break;
}
BindingType.print(out, PO);
}
};
out << "[with possible bindings: ";
SmallVector<PrintableBinding, 2> potentialBindings;
for (const auto &binding : Bindings) {
switch (binding.Kind) {
case AllowedBindingKind::Exact:
potentialBindings.push_back(PrintableBinding::exact(binding.BindingType));
break;
case AllowedBindingKind::Supertypes:
potentialBindings.push_back(
PrintableBinding::supertypesOf(binding.BindingType));
break;
case AllowedBindingKind::Subtypes:
potentialBindings.push_back(
PrintableBinding::subtypesOf(binding.BindingType));
break;
}
}
for (const auto &literal : Literals) {
if (literal.second.viableAsBinding()) {
potentialBindings.push_back(PrintableBinding::literalDefaultType(
literal.second.getDefaultType()));
}
}
if (potentialBindings.empty()) {
out << "<empty>";
} else {
interleave(
potentialBindings,
[&](const PrintableBinding &binding) { binding.print(out, PO); },
[&] { out << ", "; });
}
out << "]";
if (!Defaults.empty()) {
out << " [defaults: ";
interleave(
Defaults,
[&](const auto &entry) {
auto *constraint = entry.second;
auto defaultBinding =
PrintableBinding::exact(constraint->getSecondType());
defaultBinding.print(out, PO);
},
[&] { out << ", "; });
out << "]";
}
}
// Given a possibly-Optional type, return the direct superclass of the
// (underlying) type wrapped in the same number of optional levels as
// type.
static Type getOptionalSuperclass(Type type) {
int optionalLevels = 0;
while (auto underlying = type->getOptionalObjectType()) {
++optionalLevels;
type = underlying;
}
if (!type->mayHaveSuperclass())
return Type();
auto superclass = type->getSuperclass();
if (!superclass)
return Type();
while (optionalLevels--)
superclass = OptionalType::get(superclass);
return superclass;
}
/// Enumerates all of the 'direct' supertypes of the given type.
///
/// The direct supertype S of a type T is a supertype of T (e.g., T < S)
/// such that there is no type U where T < U and U < S.
static SmallVector<Type, 4> enumerateDirectSupertypes(Type type) {
SmallVector<Type, 4> result;
if (type->is<InOutType>() || type->is<LValueType>()) {
type = type->getWithoutSpecifierType();
result.push_back(type);
}
if (auto superclass = getOptionalSuperclass(type)) {
// FIXME: Can also weaken to the set of protocol constraints, but only
// if there are any protocols that the type conforms to but the superclass
// does not.
result.push_back(superclass);
}
// FIXME: lots of other cases to consider!
return result;
}
bool TypeVarBindingProducer::computeNext() {
SmallVector<Binding, 4> newBindings;
auto addNewBinding = [&](Binding binding) {
auto type = binding.BindingType;
// If we've already tried this binding, move on.
if (!BoundTypes.insert(type.getPointer()).second)
return;
if (!ExploredTypes.insert(type->getCanonicalType()).second)
return;
newBindings.push_back(std::move(binding));
};
// Let's attempt only directly inferrable bindings for
// a type variable representing a closure type because
// such type variables are handled specially and only
// bound to a type inferred from their expression, having
// contextual bindings is just a trigger for that to
// happen.
if (TypeVar->getImpl().isClosureType())
return false;
for (auto &binding : Bindings) {
const auto type = binding.BindingType;
assert(!type->hasError());
// If we have a protocol with a default type, look for alternative
// types to the default.
if (NumTries == 0 && binding.hasDefaultedLiteralProtocol()) {
auto knownKind =
*(binding.getDefaultedLiteralProtocol()->getKnownProtocolKind());
SmallVector<Type, 2> scratch;
for (auto altType : CS.getAlternativeLiteralTypes(knownKind, scratch)) {
addNewBinding(binding.withSameSource(altType, BindingKind::Subtypes));
}
}
if (getLocator()->directlyAt<ForceValueExpr>() &&
TypeVar->getImpl().canBindToLValue() &&
!binding.BindingType->is<LValueType>()) {
// Result of force unwrap is always connected to its base
// optional type via `OptionalObject` constraint which
// preserves l-valueness, so in case where object type got
// inferred before optional type (because it got the
// type from context e.g. parameter type of a function call),
// we need to test type with and without l-value after
// delaying bindings for as long as possible.
addNewBinding(binding.withType(LValueType::get(binding.BindingType)));
}
// There is a tailored fix for optional key path root references,
// let's not create ambiguity by attempting unwrap when it's
// not allowed.
if (binding.Kind != BindingKind::Subtypes &&
getLocator()->isKeyPathRoot() && type->getOptionalObjectType())
continue;
// Allow solving for T even for a binding kind where that's invalid
// if fixes are allowed, because that gives us the opportunity to
// match T? values to the T binding by adding an unwrap fix.
if (binding.Kind == BindingKind::Subtypes || CS.shouldAttemptFixes()) {
// If we were unsuccessful solving for T?, try solving for T.
if (auto objTy = type->getOptionalObjectType()) {
// If T is a type variable, only attempt this if both the
// type variable we are trying bindings for, and the type
// variable we will attempt to bind, both have the same
// polarity with respect to being able to bind lvalues.
if (auto otherTypeVar = objTy->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() ==
otherTypeVar->getImpl().canBindToLValue()) {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
} else {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
}
}
auto srcLocator = binding.getLocator();
if (srcLocator &&
(srcLocator->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
srcLocator->isLastElement<LocatorPathElt::AutoclosureResult>()) &&
!type->hasTypeVariable() && type->isKnownStdlibCollectionType()) {
// If the type binding comes from the argument conversion, let's
// instead of binding collection types directly, try to bind
// using temporary type variables substituted for element
// types, that's going to ensure that subtype relationship is
// always preserved.
auto *BGT = type->castTo<BoundGenericType>();
auto dstLocator = TypeVar->getImpl().getLocator();
auto newType =
CS.openUnboundGenericType(BGT->getDecl(), BGT->getParent(),
dstLocator, /*isTypeResolution=*/false)
->reconstituteSugar(/*recursive=*/false);
addNewBinding(binding.withType(newType));
}
if (binding.Kind == BindingKind::Supertypes) {
// If this is a type variable representing closure result,
// which is on the right-side of some relational constraint
// let's have it try `Void` as well because there is an
// implicit conversion `() -> T` to `() -> Void` and this
// helps to avoid creating a thunk to support it.
if (getLocator()->isLastElement<LocatorPathElt::ClosureResult>() &&
binding.Kind == AllowedBindingKind::Supertypes) {
auto voidType = CS.getASTContext().TheEmptyTupleType;
addNewBinding(binding.withSameSource(voidType, BindingKind::Exact));
}
for (auto supertype : enumerateDirectSupertypes(type)) {
// If we're not allowed to try this binding, skip it.
if (auto simplifiedSuper = checkTypeOfBinding(TypeVar, supertype)) {
auto supertype = *simplifiedSuper;
// A key path type cannot be bound to type-erased key path variants.
if (TypeVar->getImpl().isKeyPathType() &&
(supertype->isPartialKeyPath() || supertype->isAnyKeyPath()))
continue;
addNewBinding(binding.withType(supertype));
}
}
}
}
if (newBindings.empty()) {
// If key path type had contextual types, let's not attempt fallback.
if (TypeVar->getImpl().isKeyPathType() && !ExploredTypes.empty())
return false;
// Add defaultable constraints (if any).
for (auto *constraint : DelayedDefaults) {
if (constraint->getKind() == ConstraintKind::FallbackType) {
// If there are no other possible bindings for this variable
// let's default it to the fallback type, otherwise we should
// only attempt contextual types.
if (!ExploredTypes.empty())
continue;
}
addNewBinding(getDefaultBinding(constraint));
}
// Drop all of the default since we have converted them into bindings.
DelayedDefaults.clear();
}
if (newBindings.empty())
return false;
Index = 0;
++NumTries;
Bindings = std::move(newBindings);
return true;
}
llvm::Optional<std::pair<ConstraintFix *, unsigned>>
TypeVariableBinding::fixForHole(ConstraintSystem &cs) const {
auto *dstLocator = TypeVar->getImpl().getLocator();
auto *srcLocator = Binding.getLocator();
// FIXME: This check could be turned into an assert once
// all code completion kinds are ported to use
// `TypeChecker::typeCheckForCodeCompletion` API.
if (cs.isForCodeCompletion()) {
// If the hole is originated from code completion expression
// let's not try to fix this, anything connected to a
// code completion is allowed to be a hole because presence
// of a code completion token makes constraint system
// under-constrained due to e.g. lack of expressions on the
// right-hand side of the token, which are required for a
// regular type-check.
if (dstLocator->directlyAt<CodeCompletionExpr>() ||
srcLocator->directlyAt<CodeCompletionExpr>())
return llvm::None;
}
unsigned defaultImpact = 1;
if (auto *GP = TypeVar->getImpl().getGenericParameter()) {
// If it is representative for a key path root, let's emit a more
// specific diagnostic.
auto *keyPathRoot =
cs.isRepresentativeFor(TypeVar, ConstraintLocator::KeyPathRoot);
if (keyPathRoot) {
ConstraintFix *fix = SpecifyKeyPathRootType::create(
cs, keyPathRoot->getImpl().getLocator());
return std::make_pair(fix, defaultImpact);
} else {
auto path = dstLocator->getPath();
// Drop `generic parameter` locator element so that all missing
// generic parameters related to the same path can be coalesced later.
ConstraintFix *fix = DefaultGenericArgument::create(
cs, GP,
cs.getConstraintLocator(dstLocator->getAnchor(), path.drop_back()));
return std::make_pair(fix, defaultImpact);
}
}
if (TypeVar->getImpl().isClosureParameterType()) {
ConstraintFix *fix = SpecifyClosureParameterType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (TypeVar->getImpl().isClosureResultType()) {
auto *closure = castToExpr<ClosureExpr>(dstLocator->getAnchor());
// If the whole body is being ignored due to a pre-check failure,
// let's not record a fix about result type since there is
// just not enough context to infer it without a body.
auto *closureLoc = cs.getConstraintLocator(closure);
if (cs.hasFixFor(closureLoc, FixKind::IgnoreInvalidResultBuilderBody) ||
cs.hasFixFor(closureLoc, FixKind::IgnoreResultBuilderWithReturnStmts))
return llvm::None;
ConstraintFix *fix = SpecifyClosureReturnType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->directlyAt<ObjectLiteralExpr>()) {
ConstraintFix *fix = SpecifyObjectLiteralTypeImport::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->isKeyPathRoot()) {
// If we recorded an invalid key path fix, let's skip this specify root
// type fix because it wouldn't produce a useful diagnostic.
auto *kpLocator = cs.getConstraintLocator(srcLocator->getAnchor());
if (cs.hasFixFor(kpLocator, FixKind::AllowKeyPathWithoutComponents))
return llvm::None;
// If key path has any invalid component, let's just skip fix because the
// invalid component would be already diagnosed.
auto keyPath = castToExpr<KeyPathExpr>(srcLocator->getAnchor());
if (llvm::any_of(keyPath->getComponents(),
[](KeyPathExpr::Component component) {
return !component.isValid();
}))
return llvm::None;
ConstraintFix *fix = SpecifyKeyPathRootType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->isLastElement<LocatorPathElt::PlaceholderType>()) {
// When a 'nil' has a placeholder as contextual type there is not enough
// information to resolve it, so let's record a specify contextual type for
// nil fix.
if (isExpr<NilLiteralExpr>(srcLocator->getAnchor())) {
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)10);
}
ConstraintFix *fix = SpecifyTypeForPlaceholder::create(cs, srcLocator);
return std::make_pair(fix, defaultImpact);
}
if (dstLocator->directlyAt<NilLiteralExpr>()) {
// This is a dramatic event, it means that there is absolutely
// no contextual information to resolve type of `nil`.
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)10);
}
if (auto pattern = dstLocator->getPatternMatch()) {
if (dstLocator->isLastElement<LocatorPathElt::PatternDecl>()) {
// If this is the pattern in a for loop, and we have a mismatch of the
// element type, then we don't have any useful contextual information
// for the pattern, and can just bind to a hole without needing to penalize
// the solution further.
auto *seqLoc = cs.getConstraintLocator(
dstLocator->getAnchor(), ConstraintLocator::SequenceElementType);
if (cs.hasFixFor(seqLoc,
FixKind::IgnoreCollectionElementContextualMismatch)) {
return llvm::None;
}
// Not being able to infer the type of a variable in a pattern binding
// decl is more dramatic than anything that could happen inside the
// expression because we want to preferrably point the diagnostic to a
// part of the expression that caused us to be unable to infer the
// variable's type.
ConstraintFix *fix =
IgnoreUnresolvedPatternVar::create(cs, pattern.get(), dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)100);
}
}
if (srcLocator->isLastElement<LocatorPathElt::MemberRefBase>()) {
auto *baseExpr = castToExpr<UnresolvedMemberExpr>(srcLocator->getAnchor());
ConstraintFix *fix = SpecifyBaseTypeForContextualMember::create(
cs, baseExpr->getName(), srcLocator);
return std::make_pair(fix, defaultImpact);
}
return llvm::None;
}
bool TypeVariableBinding::attempt(ConstraintSystem &cs) const {
auto type = Binding.BindingType;
auto *srcLocator = Binding.getLocator();
auto *dstLocator = TypeVar->getImpl().getLocator();
if (Binding.hasDefaultedLiteralProtocol()) {
type = cs.replaceInferableTypesWithTypeVars(type, dstLocator);
type = type->reconstituteSugar(/*recursive=*/false);
}
// If type variable has been marked as a possible hole due to
// e.g. reference to a missing member. Let's propagate that
// information to the object type of the optional type it's
// about to be bound to.
//
// In some situations like pattern bindings e.g. `if let x = base?.member`
// - if `member` doesn't exist, `x` cannot be determined either, which
// leaves `OptionalEvaluationExpr` representing outer type of `base?.member`
// without any contextual information, so even though `x` would get
// bound to result type of the chain, underlying type variable wouldn't
// be resolved, so we need to propagate holes up the conversion chain.
// Also propagate in code completion mode because in some cases code
// completion relies on type variable being a potential hole.
if (TypeVar->getImpl().canBindToHole()) {
if (srcLocator->directlyAt<OptionalEvaluationExpr>() ||
cs.isForCodeCompletion()) {
if (auto objectTy = type->getOptionalObjectType()) {
if (auto *typeVar = objectTy->getAs<TypeVariableType>()) {
cs.recordPotentialHole(typeVar);
}
}
}
}
ConstraintSystem::TypeMatchOptions options;
options |= ConstraintSystem::TMF_GenerateConstraints;
options |= ConstraintSystem::TMF_BindingTypeVariable;
auto result =
cs.matchTypes(TypeVar, type, ConstraintKind::Bind, options, srcLocator);
if (result.isFailure()) {
if (cs.isDebugMode()) {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
llvm::errs().indent(cs.solverState->getCurrentIndent())
<< "(failed to establish binding " << TypeVar->getString(PO)
<< " := " << type->getString(PO) << ")\n";
}
return false;
}
auto reportHole = [&]() {
if (cs.isForCodeCompletion()) {
// Don't penalize solutions with unresolved generics.
if (TypeVar->getImpl().getGenericParameter())
return false;
// Don't penalize solutions if we couldn't determine the type of the code
// completion token. We still want to examine the surrounding types in
// that case.
if (TypeVar->getImpl().isCodeCompletionToken())
return false;
// Don't penalize solutions with holes due to missing arguments after the
// code completion position.
auto argLoc = srcLocator->findLast<LocatorPathElt::SynthesizedArgument>();
if (argLoc && argLoc->isAfterCodeCompletionLoc())
return false;
// Don't penalize solutions that have holes for ignored arguments.
if (cs.hasArgumentsIgnoredForCodeCompletion()) {
// Avoid simplifying the locator if the constraint system didn't ignore
// any arguments.
auto argExpr = simplifyLocatorToAnchor(TypeVar->getImpl().getLocator());
if (cs.isArgumentIgnoredForCodeCompletion(argExpr.dyn_cast<Expr *>())) {
return false;
}
}
}
// Reflect in the score that this type variable couldn't be
// resolved and had to be bound to a placeholder "hole" type.
cs.increaseScore(SK_Hole, srcLocator);
if (auto fix = fixForHole(cs)) {
if (cs.recordFix(/*fix=*/fix->first, /*impact=*/fix->second))
return true;
}
return false;
};
// If this was from a defaultable binding note that.
if (Binding.isDefaultableBinding()) {
cs.DefaultedConstraints.insert(srcLocator);
// Fail if hole reporting fails.
if (type->isPlaceholder() && reportHole())
return false;
}
if (cs.simplify())
return false;
// If all of the re-activated constraints where simplified,
// let's notify binding inference about the fact that type
// variable has been bound successfully.
{
auto &CG = cs.getConstraintGraph();
CG[TypeVar].introduceToInference(type);
}
return true;
}