mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1810 lines
67 KiB
C++
1810 lines
67 KiB
C++
//===--- ConstraintSystem.cpp - Constraint-based Type Checking ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the constraint-based type checker, anchored by the
|
|
// \c ConstraintSystem class, which provides type checking and type
|
|
// inference for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintSystem.h"
|
|
#include "ConstraintGraph.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Format.h"
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
#define DEBUG_TYPE "ConstraintSystem"
|
|
|
|
ExpressionTimer::~ExpressionTimer() {
|
|
auto elapsed = getElapsedProcessTimeInFractionalSeconds();
|
|
unsigned elapsedMS = static_cast<unsigned>(elapsed * 1000);
|
|
|
|
if (ShouldDump) {
|
|
// Round up to the nearest 100th of a millisecond.
|
|
llvm::errs() << llvm::format("%0.2f", ceil(elapsed * 100000) / 100)
|
|
<< "ms\t";
|
|
E->getLoc().print(llvm::errs(), Context.SourceMgr);
|
|
llvm::errs() << "\n";
|
|
}
|
|
|
|
if (WarnLimit != 0 && elapsedMS >= WarnLimit && E->getLoc().isValid())
|
|
Context.Diags.diagnose(E->getLoc(), diag::debug_long_expression,
|
|
elapsedMS, WarnLimit)
|
|
.highlight(E->getSourceRange());
|
|
}
|
|
|
|
ConstraintSystem::ConstraintSystem(TypeChecker &tc, DeclContext *dc,
|
|
ConstraintSystemOptions options)
|
|
: TC(tc), DC(dc), Options(options),
|
|
Arena(tc.Context, Allocator),
|
|
CG(*new ConstraintGraph(*this))
|
|
{
|
|
assert(DC && "context required");
|
|
}
|
|
|
|
ConstraintSystem::~ConstraintSystem() {
|
|
delete &CG;
|
|
}
|
|
|
|
void ConstraintSystem::incrementScopeCounter() {
|
|
SWIFT_FUNC_STAT;
|
|
CountScopes++;
|
|
// FIXME: (transitional) increment the redundant "always-on" counter.
|
|
if (TC.Context.Stats)
|
|
TC.Context.Stats->getFrontendCounters().NumConstraintScopes++;
|
|
}
|
|
|
|
bool ConstraintSystem::hasFreeTypeVariables() {
|
|
// Look for any free type variables.
|
|
for (auto tv : TypeVariables) {
|
|
if (!tv->getImpl().hasRepresentativeOrFixed()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ConstraintSystem::addTypeVariable(TypeVariableType *typeVar) {
|
|
TypeVariables.push_back(typeVar);
|
|
|
|
// Notify the constraint graph.
|
|
(void)CG[typeVar];
|
|
}
|
|
|
|
void ConstraintSystem::mergeEquivalenceClasses(TypeVariableType *typeVar1,
|
|
TypeVariableType *typeVar2,
|
|
bool updateWorkList) {
|
|
assert(typeVar1 == getRepresentative(typeVar1) &&
|
|
"typeVar1 is not the representative");
|
|
assert(typeVar2 == getRepresentative(typeVar2) &&
|
|
"typeVar2 is not the representative");
|
|
assert(typeVar1 != typeVar2 && "cannot merge type with itself");
|
|
typeVar1->getImpl().mergeEquivalenceClasses(typeVar2, getSavedBindings());
|
|
|
|
// Merge nodes in the constraint graph.
|
|
CG.mergeNodes(typeVar1, typeVar2);
|
|
|
|
if (updateWorkList) {
|
|
addTypeVariableConstraintsToWorkList(typeVar1);
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given type variables occurs in the given type.
|
|
bool ConstraintSystem::typeVarOccursInType(TypeVariableType *typeVar,
|
|
Type type,
|
|
bool *involvesOtherTypeVariables) {
|
|
SmallVector<TypeVariableType *, 4> typeVars;
|
|
type->getTypeVariables(typeVars);
|
|
bool result = false;
|
|
for (auto referencedTypeVar : typeVars) {
|
|
if (referencedTypeVar == typeVar) {
|
|
result = true;
|
|
if (!involvesOtherTypeVariables || *involvesOtherTypeVariables)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (involvesOtherTypeVariables)
|
|
*involvesOtherTypeVariables = true;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ConstraintSystem::assignFixedType(TypeVariableType *typeVar, Type type,
|
|
bool updateState) {
|
|
assert(!type->hasError() &&
|
|
"Should not be assigning a type involving ErrorType!");
|
|
|
|
typeVar->getImpl().assignFixedType(type, getSavedBindings());
|
|
|
|
if (!updateState)
|
|
return;
|
|
|
|
if (!type->isTypeVariableOrMember()) {
|
|
// If this type variable represents a literal, check whether we picked the
|
|
// default literal type. First, find the corresponding protocol.
|
|
ProtocolDecl *literalProtocol = nullptr;
|
|
// If we have the constraint graph, we can check all type variables in
|
|
// the equivalence class. This is the More Correct path.
|
|
// FIXME: Eliminate the less-correct path.
|
|
auto typeVarRep = getRepresentative(typeVar);
|
|
for (auto tv : CG[typeVarRep].getEquivalenceClass()) {
|
|
auto locator = tv->getImpl().getLocator();
|
|
if (!locator || !locator->getPath().empty())
|
|
continue;
|
|
|
|
auto anchor = locator->getAnchor();
|
|
if (!anchor)
|
|
continue;
|
|
|
|
literalProtocol = TC.getLiteralProtocol(anchor);
|
|
if (literalProtocol)
|
|
break;
|
|
}
|
|
|
|
// If the protocol has a default type, check it.
|
|
if (literalProtocol) {
|
|
if (auto defaultType = TC.getDefaultType(literalProtocol, DC)) {
|
|
// Check whether the nominal types match. This makes sure that we
|
|
// properly handle Array vs. Array<T>.
|
|
if (defaultType->getAnyNominal() != type->getAnyNominal())
|
|
increaseScore(SK_NonDefaultLiteral);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Notify the constraint graph.
|
|
CG.bindTypeVariable(typeVar, type);
|
|
addTypeVariableConstraintsToWorkList(typeVar);
|
|
}
|
|
|
|
void ConstraintSystem::setMustBeMaterializableRecursive(Type type)
|
|
{
|
|
assert(type->isMaterializable() &&
|
|
"argument to setMustBeMaterializableRecursive may not be inherently "
|
|
"non-materializable");
|
|
type = getFixedTypeRecursive(type, /*wantRValue=*/false);
|
|
type = type->lookThroughAllAnyOptionalTypes();
|
|
|
|
if (auto typeVar = type->getAs<TypeVariableType>()) {
|
|
typeVar->getImpl().setMustBeMaterializable(getSavedBindings());
|
|
} else if (auto *tupleTy = type->getAs<TupleType>()) {
|
|
for (auto elt : tupleTy->getElementTypes()) {
|
|
setMustBeMaterializableRecursive(elt);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addTypeVariableConstraintsToWorkList(
|
|
TypeVariableType *typeVar) {
|
|
// Gather the constraints affected by a change to this type variable.
|
|
SmallVector<Constraint *, 8> constraints;
|
|
CG.gatherConstraints(typeVar, constraints,
|
|
ConstraintGraph::GatheringKind::AllMentions);
|
|
|
|
// Add any constraints that aren't already active to the worklist.
|
|
for (auto constraint : constraints) {
|
|
if (!constraint->isActive()) {
|
|
ActiveConstraints.splice(ActiveConstraints.end(),
|
|
InactiveConstraints, constraint);
|
|
constraint->setActive(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Retrieve a dynamic result signature for the given declaration.
|
|
static std::tuple<char, ObjCSelector, CanType>
|
|
getDynamicResultSignature(ValueDecl *decl) {
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(decl)) {
|
|
// Handle functions.
|
|
auto type = func->getMethodInterfaceType();
|
|
return std::make_tuple(func->isStatic(), func->getObjCSelector(),
|
|
type->getCanonicalType());
|
|
}
|
|
|
|
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
|
|
// Handle properties and subscripts, anchored by the getter's selector.
|
|
return std::make_tuple(asd->isStatic(), asd->getObjCGetterSelector(),
|
|
asd->getInterfaceType()->getCanonicalType());
|
|
}
|
|
|
|
llvm_unreachable("Not a valid @objc member");
|
|
}
|
|
|
|
LookupResult &ConstraintSystem::lookupMember(Type base, DeclName name) {
|
|
// Check whether we've already performed this lookup.
|
|
auto knownMember = MemberLookups.find({base, name});
|
|
if (knownMember != MemberLookups.end())
|
|
return *knownMember->second;
|
|
|
|
// Lookup the member.
|
|
NameLookupOptions lookupOptions = defaultMemberLookupOptions;
|
|
if (isa<AbstractFunctionDecl>(DC))
|
|
lookupOptions |= NameLookupFlags::KnownPrivate;
|
|
|
|
MemberLookups[{base, name}] = None;
|
|
auto lookup = TC.lookupMember(DC, base, name, lookupOptions);
|
|
auto &result = MemberLookups[{base, name}];
|
|
result = std::move(lookup);
|
|
|
|
// If we aren't performing dynamic lookup, we're done.
|
|
if (!*result || !base->isAnyObject())
|
|
return *result;
|
|
|
|
// We are performing dynamic lookup. Filter out redundant results early.
|
|
llvm::DenseSet<std::tuple<char, ObjCSelector, CanType>> known;
|
|
result->filter([&](LookupResultEntry entry) -> bool {
|
|
auto *decl = entry.getValueDecl();
|
|
|
|
if (decl->isInvalid())
|
|
return false;
|
|
|
|
return known.insert(getDynamicResultSignature(decl)).second;
|
|
});
|
|
|
|
return *result;
|
|
}
|
|
|
|
ArrayRef<Type> ConstraintSystem::
|
|
getAlternativeLiteralTypes(KnownProtocolKind kind) {
|
|
unsigned index;
|
|
|
|
switch (kind) {
|
|
#define PROTOCOL_WITH_NAME(Id, Name) \
|
|
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
|
|
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name)
|
|
#include "swift/AST/KnownProtocols.def"
|
|
|
|
case KnownProtocolKind::ExpressibleByArrayLiteral: index = 0; break;
|
|
case KnownProtocolKind::ExpressibleByDictionaryLiteral:index = 1; break;
|
|
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral: index = 2;
|
|
break;
|
|
case KnownProtocolKind::ExpressibleByFloatLiteral: index = 3; break;
|
|
case KnownProtocolKind::ExpressibleByIntegerLiteral: index = 4; break;
|
|
case KnownProtocolKind::ExpressibleByStringInterpolation: index = 5; break;
|
|
case KnownProtocolKind::ExpressibleByStringLiteral: index = 6; break;
|
|
case KnownProtocolKind::ExpressibleByNilLiteral: index = 7; break;
|
|
case KnownProtocolKind::ExpressibleByBooleanLiteral: index = 8; break;
|
|
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral: index = 9; break;
|
|
case KnownProtocolKind::ExpressibleByColorLiteral: index = 10; break;
|
|
case KnownProtocolKind::ExpressibleByImageLiteral: index = 11; break;
|
|
case KnownProtocolKind::ExpressibleByFileReferenceLiteral: index = 12; break;
|
|
}
|
|
static_assert(NumAlternativeLiteralTypes == 13, "Wrong # of literal types");
|
|
|
|
// If we already looked for alternative literal types, return those results.
|
|
if (AlternativeLiteralTypes[index])
|
|
return *AlternativeLiteralTypes[index];
|
|
|
|
SmallVector<Type, 4> types;
|
|
|
|
// Some literal kinds are related.
|
|
switch (kind) {
|
|
#define PROTOCOL_WITH_NAME(Id, Name) \
|
|
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
|
|
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name)
|
|
#include "swift/AST/KnownProtocols.def"
|
|
|
|
case KnownProtocolKind::ExpressibleByArrayLiteral:
|
|
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
|
|
break;
|
|
|
|
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral:
|
|
case KnownProtocolKind::ExpressibleByStringInterpolation:
|
|
case KnownProtocolKind::ExpressibleByStringLiteral:
|
|
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral:
|
|
break;
|
|
|
|
case KnownProtocolKind::ExpressibleByIntegerLiteral:
|
|
// Integer literals can be treated as floating point literals.
|
|
if (auto floatProto = TC.Context.getProtocol(
|
|
KnownProtocolKind::ExpressibleByFloatLiteral)) {
|
|
if (auto defaultType = TC.getDefaultType(floatProto, DC)) {
|
|
types.push_back(defaultType);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case KnownProtocolKind::ExpressibleByFloatLiteral:
|
|
break;
|
|
|
|
case KnownProtocolKind::ExpressibleByNilLiteral:
|
|
case KnownProtocolKind::ExpressibleByBooleanLiteral:
|
|
break;
|
|
case KnownProtocolKind::ExpressibleByColorLiteral:
|
|
case KnownProtocolKind::ExpressibleByImageLiteral:
|
|
case KnownProtocolKind::ExpressibleByFileReferenceLiteral:
|
|
break;
|
|
}
|
|
|
|
AlternativeLiteralTypes[index] = allocateCopy(types);
|
|
return *AlternativeLiteralTypes[index];
|
|
}
|
|
|
|
ConstraintLocator *ConstraintSystem::getConstraintLocator(
|
|
Expr *anchor,
|
|
ArrayRef<ConstraintLocator::PathElement> path,
|
|
unsigned summaryFlags) {
|
|
assert(summaryFlags == ConstraintLocator::getSummaryFlagsForPath(path));
|
|
|
|
// Check whether a locator with this anchor + path already exists.
|
|
llvm::FoldingSetNodeID id;
|
|
ConstraintLocator::Profile(id, anchor, path);
|
|
void *insertPos = nullptr;
|
|
auto locator = ConstraintLocators.FindNodeOrInsertPos(id, insertPos);
|
|
if (locator)
|
|
return locator;
|
|
|
|
// Allocate a new locator and add it to the set.
|
|
locator = ConstraintLocator::create(getAllocator(), anchor, path,
|
|
summaryFlags);
|
|
ConstraintLocators.InsertNode(locator, insertPos);
|
|
return locator;
|
|
}
|
|
|
|
ConstraintLocator *ConstraintSystem::getConstraintLocator(
|
|
const ConstraintLocatorBuilder &builder) {
|
|
// If the builder has an empty path, just extract its base locator.
|
|
if (builder.hasEmptyPath()) {
|
|
return builder.getBaseLocator();
|
|
}
|
|
|
|
// We have to build a new locator. Extract the paths from the builder.
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
Expr *anchor = builder.getLocatorParts(path);
|
|
return getConstraintLocator(anchor, path, builder.getSummaryFlags());
|
|
}
|
|
|
|
Type ConstraintSystem::openUnboundGenericType(UnboundGenericType *unbound,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements) {
|
|
auto unboundDecl = unbound->getDecl();
|
|
if (unboundDecl->isInvalid())
|
|
return ErrorType::get(getASTContext());
|
|
|
|
// If the unbound decl hasn't been validated yet, we have a circular
|
|
// dependency that isn't being diagnosed properly.
|
|
if (!unboundDecl->getGenericSignature()) {
|
|
TC.diagnose(unboundDecl, diag::circular_reference);
|
|
return ErrorType::get(unbound);
|
|
}
|
|
|
|
auto parentTy = unbound->getParent();
|
|
if (parentTy) {
|
|
parentTy = openUnboundGenericType(parentTy, locator);
|
|
unbound = UnboundGenericType::get(unboundDecl, parentTy,
|
|
getASTContext());
|
|
}
|
|
|
|
// Open up the generic type.
|
|
openGeneric(unboundDecl->getInnermostDeclContext(),
|
|
unboundDecl->getDeclContext(),
|
|
unboundDecl->getGenericSignature(),
|
|
/*skipProtocolSelfConstraint=*/false,
|
|
locator,
|
|
replacements);
|
|
|
|
if (parentTy) {
|
|
auto subs = parentTy->getContextSubstitutions(
|
|
unboundDecl->getDeclContext());
|
|
for (auto pair : subs) {
|
|
auto found = replacements.find(
|
|
cast<GenericTypeParamType>(pair.first));
|
|
assert(found != replacements.end() &&
|
|
"Missing generic parameter?");
|
|
addConstraint(ConstraintKind::Equal, found->second, pair.second,
|
|
locator);
|
|
}
|
|
}
|
|
|
|
// Map the generic parameters to their corresponding type variables.
|
|
llvm::SmallVector<TypeLoc, 4> arguments;
|
|
for (auto gp : unboundDecl->getInnermostGenericParamTypes()) {
|
|
auto found = replacements.find(
|
|
cast<GenericTypeParamType>(gp->getCanonicalType()));
|
|
assert(found != replacements.end() &&
|
|
"Missing generic parameter?");
|
|
arguments.push_back(TypeLoc::withoutLoc(found->second));
|
|
}
|
|
|
|
// FIXME: For some reason we can end up with unbound->getDecl()
|
|
// pointing at a generic TypeAliasDecl here. If we find a way to
|
|
// handle generic TypeAliases elsewhere, this can just become a
|
|
// call to BoundGenericType::get().
|
|
return TC.applyUnboundGenericArguments(
|
|
unbound, unboundDecl,
|
|
SourceLoc(), DC, arguments,
|
|
/*options*/TypeResolutionOptions(),
|
|
/*resolver*/nullptr,
|
|
/*unsatisfiedDependency*/nullptr);
|
|
}
|
|
|
|
Type ConstraintSystem::openUnboundGenericType(
|
|
Type type,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(!type->hasTypeParameter());
|
|
|
|
if (!type->hasUnboundGenericType())
|
|
return type;
|
|
|
|
return type.transform([&](Type type) -> Type {
|
|
if (auto unbound = type->getAs<UnboundGenericType>()) {
|
|
OpenedTypeMap replacements;
|
|
return openUnboundGenericType(unbound, locator, replacements);
|
|
}
|
|
|
|
return type;
|
|
});
|
|
}
|
|
|
|
Type ConstraintSystem::openType(Type type, OpenedTypeMap &replacements) {
|
|
assert(!type->hasUnboundGenericType());
|
|
|
|
if (!type->hasTypeParameter())
|
|
return type;
|
|
|
|
return type.transform([&](Type type) -> Type {
|
|
assert(!type->is<GenericFunctionType>());
|
|
|
|
// Replace a generic type parameter with its corresponding type variable.
|
|
if (auto genericParam = type->getAs<GenericTypeParamType>()) {
|
|
auto known = replacements.find(
|
|
cast<GenericTypeParamType>(genericParam->getCanonicalType()));
|
|
assert(known != replacements.end());
|
|
return known->second;
|
|
}
|
|
|
|
return type;
|
|
});
|
|
}
|
|
|
|
/// Remove argument labels from the function type.
|
|
static Type removeArgumentLabels(Type type, unsigned numArgumentLabels) {
|
|
// If there is nothing to remove, don't.
|
|
if (numArgumentLabels == 0) return type;
|
|
|
|
auto fnType = type->getAs<FunctionType>();
|
|
|
|
// Drop argument labels from the input type.
|
|
Type inputType = fnType->getInput();
|
|
if (auto tupleTy = dyn_cast<TupleType>(inputType.getPointer())) {
|
|
SmallVector<TupleTypeElt, 4> elements;
|
|
elements.reserve(tupleTy->getNumElements());
|
|
for (const auto &elt : tupleTy->getElements()) {
|
|
elements.push_back(elt.getWithoutName());
|
|
}
|
|
inputType = TupleType::get(elements, type->getASTContext());
|
|
}
|
|
|
|
return FunctionType::get(inputType,
|
|
removeArgumentLabels(fnType->getResult(),
|
|
numArgumentLabels - 1),
|
|
fnType->getExtInfo());
|
|
}
|
|
|
|
Type ConstraintSystem::openFunctionType(
|
|
AnyFunctionType *funcType,
|
|
unsigned numArgumentLabelsToRemove,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements,
|
|
DeclContext *innerDC,
|
|
DeclContext *outerDC,
|
|
bool skipProtocolSelfConstraint) {
|
|
Type type;
|
|
|
|
if (auto *genericFn = funcType->getAs<GenericFunctionType>()) {
|
|
// Open up the generic parameters and requirements.
|
|
openGeneric(innerDC,
|
|
outerDC,
|
|
genericFn->getGenericSignature(),
|
|
skipProtocolSelfConstraint,
|
|
locator,
|
|
replacements);
|
|
|
|
// Transform the input and output types.
|
|
auto inputTy = openType(genericFn->getInput(), replacements);
|
|
auto resultTy = openType(genericFn->getResult(), replacements);
|
|
|
|
// Build the resulting (non-generic) function type.
|
|
funcType = FunctionType::get(inputTy, resultTy,
|
|
FunctionType::ExtInfo().
|
|
withThrows(genericFn->throws()));
|
|
}
|
|
|
|
return removeArgumentLabels(funcType, numArgumentLabelsToRemove);
|
|
}
|
|
|
|
Optional<Type> ConstraintSystem::isArrayType(Type type) {
|
|
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
|
|
if (boundStruct->getDecl() == type->getASTContext().getArrayDecl())
|
|
return boundStruct->getGenericArgs()[0];
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<std::pair<Type, Type>> ConstraintSystem::isDictionaryType(Type type) {
|
|
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
|
|
if (boundStruct->getDecl() == type->getASTContext().getDictionaryDecl()) {
|
|
auto genericArgs = boundStruct->getGenericArgs();
|
|
return std::make_pair(genericArgs[0], genericArgs[1]);
|
|
}
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<Type> ConstraintSystem::isSetType(Type type) {
|
|
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
|
|
if (boundStruct->getDecl() == type->getASTContext().getSetDecl())
|
|
return boundStruct->getGenericArgs()[0];
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
bool ConstraintSystem::isAnyHashableType(Type type) {
|
|
if (auto tv = type->getAs<TypeVariableType>()) {
|
|
auto fixedType = getFixedType(tv);
|
|
return fixedType && isAnyHashableType(fixedType);
|
|
}
|
|
|
|
if (auto st = type->getAs<StructType>()) {
|
|
return st->getDecl() == TC.Context.getAnyHashableDecl();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Type ConstraintSystem::getFixedTypeRecursive(Type type,
|
|
TypeMatchOptions &flags,
|
|
bool wantRValue,
|
|
bool retainParens) {
|
|
|
|
if (wantRValue)
|
|
type = type->getRValueType();
|
|
|
|
if (retainParens) {
|
|
if (auto parenTy = dyn_cast<ParenType>(type.getPointer())) {
|
|
type = getFixedTypeRecursive(parenTy->getUnderlyingType(), flags,
|
|
wantRValue, retainParens);
|
|
return ParenType::get(getASTContext(), type);
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
if (auto depMemType = type->getAs<DependentMemberType>()) {
|
|
if (!depMemType->getBase()->isTypeVariableOrMember()) return type;
|
|
|
|
// FIXME: Perform a more limited simplification?
|
|
Type newType = simplifyType(type);
|
|
if (newType.getPointer() == type.getPointer()) return type;
|
|
|
|
if (wantRValue)
|
|
newType = newType->getRValueType();
|
|
|
|
type = newType;
|
|
|
|
// Once we've simplified a dependent member type, we need to generate a
|
|
// new constraint.
|
|
flags |= TMF_GenerateConstraints;
|
|
continue;
|
|
}
|
|
|
|
if (auto typeVar = type->getAs<TypeVariableType>()) {
|
|
if (auto fixed = getFixedType(typeVar)) {
|
|
if (wantRValue)
|
|
fixed = fixed->getRValueType();
|
|
|
|
type = fixed;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/// Does a var or subscript produce an l-value?
|
|
///
|
|
/// \param baseType - the type of the base on which this object
|
|
/// is being accessed; must be null if and only if this is not
|
|
/// a type member
|
|
static bool doesStorageProduceLValue(TypeChecker &TC,
|
|
AbstractStorageDecl *storage,
|
|
Type baseType, DeclContext *useDC,
|
|
const DeclRefExpr *base = nullptr) {
|
|
// Unsettable storage decls always produce rvalues.
|
|
if (!storage->isSettable(useDC, base))
|
|
return false;
|
|
|
|
if (TC.Context.LangOpts.EnableAccessControl &&
|
|
!storage->isSetterAccessibleFrom(useDC))
|
|
return false;
|
|
|
|
// If there is no base, or if the base isn't being used, it is settable.
|
|
// This is only possible for vars.
|
|
if (auto var = dyn_cast<VarDecl>(storage)) {
|
|
if (!baseType || var->isStatic())
|
|
return true;
|
|
}
|
|
|
|
// If the base is an lvalue, then a reference produces an lvalue.
|
|
if (baseType->is<LValueType>())
|
|
return true;
|
|
|
|
// Stored properties of reference types produce lvalues.
|
|
if (baseType->hasReferenceSemantics() && storage->hasStorage())
|
|
return true;
|
|
|
|
// So the base is an rvalue type. The only way an accessor can
|
|
// produce an lvalue is if we have a property where both the
|
|
// getter and setter are nonmutating.
|
|
return !storage->hasStorage() &&
|
|
!storage->isGetterMutating() &&
|
|
storage->isSetterNonMutating();
|
|
}
|
|
|
|
Type TypeChecker::getUnopenedTypeOfReference(VarDecl *value, Type baseType,
|
|
DeclContext *UseDC,
|
|
const DeclRefExpr *base,
|
|
bool wantInterfaceType) {
|
|
validateDecl(value);
|
|
if (value->isInvalid())
|
|
return ErrorType::get(Context);
|
|
|
|
Type requestedType = (wantInterfaceType
|
|
? value->getInterfaceType()
|
|
: value->getType());
|
|
|
|
requestedType = requestedType->getWithoutSpecifierType()
|
|
->getReferenceStorageReferent();
|
|
|
|
// If we're dealing with contextual types, and we referenced this type from
|
|
// a different context, map the type.
|
|
if (!wantInterfaceType && requestedType->hasArchetype()) {
|
|
auto valueDC = value->getDeclContext();
|
|
if (valueDC != UseDC) {
|
|
Type mapped = valueDC->mapTypeOutOfContext(requestedType);
|
|
requestedType = UseDC->mapTypeIntoContext(mapped);
|
|
}
|
|
}
|
|
|
|
// Qualify storage declarations with an lvalue when appropriate.
|
|
// Otherwise, they yield rvalues (and the access must be a load).
|
|
if (doesStorageProduceLValue(*this, value, baseType, UseDC, base)) {
|
|
return LValueType::get(requestedType);
|
|
}
|
|
|
|
return requestedType;
|
|
}
|
|
|
|
void ConstraintSystem::recordOpenedTypes(
|
|
ConstraintLocatorBuilder locator,
|
|
const OpenedTypeMap &replacements) {
|
|
if (replacements.empty())
|
|
return;
|
|
|
|
// If the last path element is an archetype or associated type, ignore it.
|
|
SmallVector<LocatorPathElt, 2> pathElts;
|
|
Expr *anchor = locator.getLocatorParts(pathElts);
|
|
if (!pathElts.empty() &&
|
|
(pathElts.back().getKind() == ConstraintLocator::Archetype ||
|
|
pathElts.back().getKind() == ConstraintLocator::AssociatedType))
|
|
return;
|
|
|
|
// If the locator is empty, ignore it.
|
|
if (!anchor && pathElts.empty())
|
|
return;
|
|
|
|
ConstraintLocator *locatorPtr = getConstraintLocator(locator);
|
|
assert(locatorPtr && "No locator for opened types?");
|
|
assert(std::find_if(OpenedTypes.begin(), OpenedTypes.end(),
|
|
[&](const std::pair<ConstraintLocator *,
|
|
ArrayRef<OpenedType>> &entry) {
|
|
return entry.first == locatorPtr;
|
|
}) == OpenedTypes.end() &&
|
|
"already registered opened types for this locator");
|
|
|
|
OpenedType* openedTypes
|
|
= Allocator.Allocate<OpenedType>(replacements.size());
|
|
std::copy(replacements.begin(), replacements.end(), openedTypes);
|
|
OpenedTypes.push_back({ locatorPtr,
|
|
llvm::makeArrayRef(openedTypes,
|
|
replacements.size()) });
|
|
}
|
|
|
|
/// Determine how many levels of argument labels should be removed from the
|
|
/// function type when referencing the given declaration.
|
|
static unsigned getNumRemovedArgumentLabels(TypeChecker &TC, ValueDecl *decl,
|
|
bool isCurriedInstanceReference,
|
|
FunctionRefKind functionRefKind) {
|
|
unsigned numParameterLists = 0;
|
|
|
|
// Enum element with associated value has to be treated
|
|
// as regular function value and all of the labels have to be
|
|
// stripped from its parameters.
|
|
//
|
|
// enum E {
|
|
// case foo(a: Int)
|
|
// }
|
|
// let bar: [Int] = []
|
|
// bar.map(E.foo)
|
|
//
|
|
// `E.foo` has to act as a regular function type passed as a value.
|
|
if (!TC.getLangOpts().isSwiftVersion3()) {
|
|
if (auto *EED = dyn_cast<EnumElementDecl>(decl)) {
|
|
numParameterLists = EED->hasAssociatedValues() ? 2 : 1;
|
|
}
|
|
}
|
|
|
|
// Only applicable to functions. Nothing else should have argument labels in
|
|
// the type.
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
|
|
numParameterLists = func->getNumParameterLists();
|
|
|
|
if (numParameterLists == 0)
|
|
return 0;
|
|
|
|
switch (functionRefKind) {
|
|
case FunctionRefKind::Unapplied:
|
|
case FunctionRefKind::Compound:
|
|
// Always remove argument labels from unapplied references and references
|
|
// that use a compound name.
|
|
return numParameterLists;
|
|
|
|
case FunctionRefKind::SingleApply:
|
|
// If we have fewer than two parameter lists, leave the labels.
|
|
if (numParameterLists < 2)
|
|
return 0;
|
|
|
|
// If this is a curried reference to an instance method, where 'self' is
|
|
// being applied, e.g., "ClassName.instanceMethod(self)", remove the
|
|
// argument labels from the resulting function type. The 'self' parameter is
|
|
// always unlabeled, so this operation is a no-op for the actual application.
|
|
return isCurriedInstanceReference ? numParameterLists : 1;
|
|
|
|
case FunctionRefKind::DoubleApply:
|
|
// Never remove argument labels from a double application.
|
|
return 0;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled FunctionRefKind in switch.");
|
|
}
|
|
|
|
std::pair<Type, Type>
|
|
ConstraintSystem::getTypeOfReference(ValueDecl *value,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocatorBuilder locator,
|
|
const DeclRefExpr *base) {
|
|
if (value->getDeclContext()->isTypeContext() && isa<FuncDecl>(value)) {
|
|
// Unqualified lookup can find operator names within nominal types.
|
|
auto func = cast<FuncDecl>(value);
|
|
assert(func->isOperator() && "Lookup should only find operators");
|
|
|
|
OpenedTypeMap replacements;
|
|
|
|
auto openedType = openFunctionType(
|
|
func->getInterfaceType()->castTo<AnyFunctionType>(),
|
|
/*numArgumentLabelsToRemove=*/0,
|
|
locator, replacements,
|
|
func->getInnermostDeclContext(),
|
|
func->getDeclContext(),
|
|
/*skipProtocolSelfConstraint=*/false);
|
|
auto openedFnType = openedType->castTo<FunctionType>();
|
|
|
|
// If we opened up any type variables, record the replacements.
|
|
recordOpenedTypes(locator, replacements);
|
|
|
|
// If this is a method whose result type is dynamic Self, replace
|
|
// DynamicSelf with the actual object type.
|
|
if (!func->getDeclContext()->getAsProtocolOrProtocolExtensionContext()) {
|
|
if (func->hasDynamicSelf()) {
|
|
Type selfTy = openedFnType->getInput()->getRValueInstanceType();
|
|
openedType = openedType->replaceCovariantResultType(
|
|
selfTy,
|
|
func->getNumParameterLists());
|
|
openedFnType = openedType->castTo<FunctionType>();
|
|
}
|
|
} else {
|
|
openedType = openedType->eraseDynamicSelfType();
|
|
openedFnType = openedType->castTo<FunctionType>();
|
|
}
|
|
|
|
// The reference implicitly binds 'self'.
|
|
return { openedType, openedFnType->getResult() };
|
|
}
|
|
|
|
// Unqualified reference to a local or global function.
|
|
if (auto funcDecl = dyn_cast<AbstractFunctionDecl>(value)) {
|
|
OpenedTypeMap replacements;
|
|
|
|
auto funcType = funcDecl->getInterfaceType()->castTo<AnyFunctionType>();
|
|
auto openedType =
|
|
openFunctionType(
|
|
funcType,
|
|
getNumRemovedArgumentLabels(TC, funcDecl,
|
|
/*isCurriedInstanceReference=*/false,
|
|
functionRefKind),
|
|
locator, replacements,
|
|
funcDecl->getInnermostDeclContext(),
|
|
funcDecl->getDeclContext(),
|
|
/*skipProtocolSelfConstraint=*/false);
|
|
|
|
// If we opened up any type variables, record the replacements.
|
|
recordOpenedTypes(locator, replacements);
|
|
|
|
return { openedType, openedType };
|
|
}
|
|
|
|
// Unqualified reference to a type.
|
|
if (auto typeDecl = dyn_cast<TypeDecl>(value)) {
|
|
// Resolve the reference to this type declaration in our current context.
|
|
auto type = TC.resolveTypeInContext(typeDecl, nullptr, DC,
|
|
TR_InExpression,
|
|
/*isSpecialized=*/false);
|
|
|
|
// Open the type.
|
|
type = openUnboundGenericType(type, locator);
|
|
|
|
// Module types are not wrapped in metatypes.
|
|
if (type->is<ModuleType>())
|
|
return { type, type };
|
|
|
|
// If it's a value reference, refer to the metatype.
|
|
type = MetatypeType::get(type);
|
|
return { type, type };
|
|
}
|
|
|
|
// Only remaining case: unqualified reference to a property.
|
|
auto *varDecl = cast<VarDecl>(value);
|
|
|
|
// Determine the type of the value, opening up that type if necessary.
|
|
bool wantInterfaceType = !varDecl->getDeclContext()->isLocalContext();
|
|
Type valueType = TC.getUnopenedTypeOfReference(varDecl, Type(), DC, base,
|
|
wantInterfaceType);
|
|
|
|
assert(!valueType->hasUnboundGenericType() &&
|
|
!valueType->hasTypeParameter());
|
|
|
|
// If this is a let-param whose type is a type variable, this is an untyped
|
|
// closure param that may be bound to an inout type later. References to the
|
|
// param should have lvalue type instead. Express the relationship with a new
|
|
// constraint.
|
|
if (auto *param = dyn_cast<ParamDecl>(varDecl)) {
|
|
if (param->isLet() && valueType->is<TypeVariableType>()) {
|
|
Type paramType = valueType;
|
|
valueType = createTypeVariable(getConstraintLocator(locator),
|
|
TVO_CanBindToLValue |
|
|
TVO_CanBindToInOut);
|
|
addConstraint(ConstraintKind::BindParam, paramType, valueType,
|
|
getConstraintLocator(locator));
|
|
}
|
|
}
|
|
|
|
return { valueType, valueType };
|
|
}
|
|
|
|
/// Bind type variables for archetypes that are determined from
|
|
/// context.
|
|
///
|
|
/// For example, if we are opening a generic function type
|
|
/// nested inside another function, we must bind the outer
|
|
/// generic parameters to context archetypes, because the
|
|
/// nested function can "capture" these outer generic parameters.
|
|
///
|
|
/// Another case where this comes up is if a generic type is
|
|
/// nested inside a function. We don't support codegen for this
|
|
/// yet, but again we need to bind any outer generic parameters
|
|
/// to context archetypes, because they're not free.
|
|
///
|
|
/// A final case we have to handle, even though it is invalid, is
|
|
/// when a type is nested inside another protocol. We bind the
|
|
/// protocol type variable for the protocol Self to its archetype
|
|
/// in protocol context. This of course makes no sense, but we
|
|
/// can't leave the type variable dangling, because then we crash
|
|
/// later.
|
|
///
|
|
/// If we ever do want to allow nominal types to be nested inside
|
|
/// protocols, the key is to set their declared type to a
|
|
/// NominalType whose parent is the 'Self' generic parameter, and
|
|
/// not the ProtocolType. Then, within a conforming type context,
|
|
/// we can 'reparent' the NominalType to that concrete type, and
|
|
/// resolve references to associated types inside that NominalType
|
|
/// relative to this concrete 'Self' type.
|
|
///
|
|
/// Also, of course IRGen would have to know to store the 'Self'
|
|
/// metadata as an extra hidden generic parameter in the metadata
|
|
/// of such a type, etc.
|
|
static void bindArchetypesFromContext(
|
|
ConstraintSystem &cs,
|
|
DeclContext *outerDC,
|
|
ConstraintLocator *locatorPtr,
|
|
const OpenedTypeMap &replacements) {
|
|
|
|
auto *genericEnv = cs.DC->getGenericEnvironmentOfContext();
|
|
|
|
for (const auto *parentDC = outerDC;
|
|
!parentDC->isModuleScopeContext();
|
|
parentDC = parentDC->getParent()) {
|
|
if (parentDC->isTypeContext() &&
|
|
(parentDC == outerDC ||
|
|
!parentDC->getAsProtocolOrProtocolExtensionContext()))
|
|
continue;
|
|
|
|
auto *genericSig = parentDC->getGenericSignatureOfContext();
|
|
if (!genericSig)
|
|
break;
|
|
|
|
for (auto *paramTy : genericSig->getGenericParams()) {
|
|
auto found = replacements.find(cast<GenericTypeParamType>(
|
|
paramTy->getCanonicalType()));
|
|
|
|
// We might not have a type variable for this generic parameter
|
|
// because either we're opening up an UnboundGenericType,
|
|
// in which case we only want to infer the innermost generic
|
|
// parameters, or because this generic parameter was constrained
|
|
// away into a concrete type.
|
|
if (found != replacements.end()) {
|
|
auto typeVar = found->second;
|
|
auto contextTy = genericEnv->mapTypeIntoContext(paramTy);
|
|
cs.addConstraint(ConstraintKind::Bind, typeVar, contextTy,
|
|
locatorPtr);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::openGeneric(
|
|
DeclContext *innerDC,
|
|
DeclContext *outerDC,
|
|
GenericSignature *sig,
|
|
bool skipProtocolSelfConstraint,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements) {
|
|
if (sig == nullptr)
|
|
return;
|
|
|
|
auto locatorPtr = getConstraintLocator(locator);
|
|
auto *genericEnv = innerDC->getGenericEnvironmentOfContext();
|
|
|
|
// Create the type variables for the generic parameters.
|
|
for (auto gp : sig->getGenericParams()) {
|
|
auto contextTy = genericEnv->mapTypeIntoContext(gp);
|
|
if (auto *archetype = contextTy->getAs<ArchetypeType>())
|
|
locatorPtr = getConstraintLocator(
|
|
locator.withPathElement(LocatorPathElt(archetype)));
|
|
|
|
auto typeVar = createTypeVariable(locatorPtr,
|
|
TVO_PrefersSubtypeBinding);
|
|
auto result = replacements.insert(
|
|
std::make_pair(cast<GenericTypeParamType>(gp->getCanonicalType()),
|
|
typeVar));
|
|
assert(result.second);
|
|
(void) result;
|
|
}
|
|
|
|
// Remember that any new constraints generated by opening this generic are
|
|
// due to the opening.
|
|
locatorPtr = getConstraintLocator(
|
|
locator.withPathElement(ConstraintLocator::OpenedGeneric));
|
|
|
|
bindArchetypesFromContext(*this, outerDC, locatorPtr, replacements);
|
|
|
|
// Add the requirements as constraints.
|
|
for (auto req : sig->getRequirements()) {
|
|
switch (req.getKind()) {
|
|
case RequirementKind::Conformance: {
|
|
auto subjectTy = openType(req.getFirstType(), replacements);
|
|
auto proto = req.getSecondType()->castTo<ProtocolType>();
|
|
auto protoDecl = proto->getDecl();
|
|
|
|
// Determine whether this is the protocol 'Self' constraint we should
|
|
// skip.
|
|
if (skipProtocolSelfConstraint &&
|
|
protoDecl == outerDC &&
|
|
protoDecl->getSelfInterfaceType()->isEqual(req.getFirstType()))
|
|
break;
|
|
|
|
addConstraint(ConstraintKind::ConformsTo, subjectTy, proto,
|
|
locatorPtr);
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::Layout: {
|
|
auto subjectTy = openType(req.getFirstType(), replacements);
|
|
auto layoutConstraint = req.getLayoutConstraint();
|
|
|
|
if (layoutConstraint->isClass())
|
|
addConstraint(ConstraintKind::ConformsTo, subjectTy,
|
|
TC.Context.getAnyObjectType(),
|
|
locatorPtr);
|
|
|
|
// Nothing else can appear outside of @_specialize yet, and Sema
|
|
// doesn't know how to check.
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::Superclass: {
|
|
auto subjectTy = openType(req.getFirstType(), replacements);
|
|
auto boundTy = openType(req.getSecondType(), replacements);
|
|
addConstraint(ConstraintKind::Subtype, subjectTy, boundTy, locatorPtr);
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::SameType: {
|
|
auto firstTy = openType(req.getFirstType(), replacements);
|
|
auto secondTy = openType(req.getSecondType(), replacements);
|
|
addConstraint(ConstraintKind::Bind, firstTy, secondTy, locatorPtr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add the constraint on the type used for the 'Self' type for a member
|
|
/// reference.
|
|
///
|
|
/// \param cs The constraint system.
|
|
///
|
|
/// \param objectTy The type of the object that we're using to access the
|
|
/// member.
|
|
///
|
|
/// \param selfTy The instance type of the context in which the member is
|
|
/// declared.
|
|
static void addSelfConstraint(ConstraintSystem &cs, Type objectTy, Type selfTy,
|
|
ConstraintLocatorBuilder locator){
|
|
assert(!selfTy->is<ProtocolType>());
|
|
|
|
// Otherwise, use a subtype constraint for classes to cope with inheritance.
|
|
if (selfTy->getClassOrBoundGenericClass()) {
|
|
cs.addConstraint(ConstraintKind::Subtype, objectTy, selfTy,
|
|
cs.getConstraintLocator(locator));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the types must be equivalent.
|
|
cs.addConstraint(ConstraintKind::Equal, objectTy, selfTy,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
|
|
/// Determine whether the given locator is for a witness or requirement.
|
|
static bool isRequirementOrWitness(const ConstraintLocatorBuilder &locator) {
|
|
if (auto last = locator.last()) {
|
|
return last->getKind() == ConstraintLocator::Requirement ||
|
|
last->getKind() == ConstraintLocator::Witness;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::pair<Type, Type>
|
|
ConstraintSystem::getTypeOfMemberReference(
|
|
Type baseTy, ValueDecl *value, DeclContext *useDC,
|
|
bool isDynamicResult,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocatorBuilder locator,
|
|
const DeclRefExpr *base,
|
|
OpenedTypeMap *replacementsPtr) {
|
|
// Figure out the instance type used for the base.
|
|
Type baseObjTy = getFixedTypeRecursive(baseTy, /*wantRValue=*/true);
|
|
bool isInstance = true;
|
|
if (auto baseMeta = baseObjTy->getAs<AnyMetatypeType>()) {
|
|
baseObjTy = baseMeta->getInstanceType();
|
|
isInstance = false;
|
|
}
|
|
|
|
// If the base is a module type, just use the type of the decl.
|
|
if (baseObjTy->is<ModuleType>()) {
|
|
return getTypeOfReference(value, functionRefKind, locator, base);
|
|
}
|
|
|
|
// Don't open existentials when accessing typealias members of
|
|
// protocols.
|
|
if (auto *alias = dyn_cast<TypeAliasDecl>(value)) {
|
|
if (baseObjTy->isExistentialType()) {
|
|
auto memberTy = alias->getDeclaredInterfaceType();
|
|
// If we end up with a protocol typealias here, it's underlying
|
|
// type must be fully concrete.
|
|
assert(!memberTy->hasTypeParameter());
|
|
auto openedType = FunctionType::get(baseObjTy, memberTy);
|
|
return { openedType, memberTy };
|
|
}
|
|
}
|
|
|
|
if (auto *typeDecl = dyn_cast<TypeDecl>(value)) {
|
|
assert(!isa<ModuleDecl>(typeDecl) && "Nested module?");
|
|
|
|
auto memberTy = TC.substMemberTypeWithBase(DC->getParentModule(),
|
|
typeDecl, baseObjTy);
|
|
|
|
// Open the type if it was a reference to a generic type.
|
|
memberTy = openUnboundGenericType(memberTy, locator);
|
|
|
|
// Wrap it in a metatype.
|
|
memberTy = MetatypeType::get(memberTy);
|
|
|
|
auto openedType = FunctionType::get(baseObjTy, memberTy);
|
|
return { openedType, memberTy };
|
|
}
|
|
|
|
// Figure out the declaration context to use when opening this type.
|
|
DeclContext *innerDC = value->getInnermostDeclContext();
|
|
DeclContext *outerDC = value->getDeclContext();
|
|
|
|
// Open the type of the generic function or member of a generic type.
|
|
Type openedType;
|
|
OpenedTypeMap localReplacements;
|
|
auto &replacements = replacementsPtr ? *replacementsPtr : localReplacements;
|
|
bool isCurriedInstanceReference = value->isInstanceMember() && !isInstance;
|
|
unsigned numRemovedArgumentLabels =
|
|
getNumRemovedArgumentLabels(TC, value, isCurriedInstanceReference,
|
|
functionRefKind);
|
|
|
|
AnyFunctionType *funcType;
|
|
|
|
if (isa<AbstractFunctionDecl>(value) ||
|
|
isa<EnumElementDecl>(value)) {
|
|
// This is the easy case.
|
|
funcType = value->getInterfaceType()->castTo<AnyFunctionType>();
|
|
} else {
|
|
// For a property, build a type (Self) -> PropType.
|
|
// For a subscript, build a type (Self) -> (Indices...) -> ElementType.
|
|
//
|
|
// If the access is mutating, wrap the storage type in an lvalue type.
|
|
Type refType;
|
|
if (auto *subscript = dyn_cast<SubscriptDecl>(value)) {
|
|
auto elementTy = subscript->getElementInterfaceType();
|
|
|
|
if (doesStorageProduceLValue(TC, subscript, baseTy, useDC, base))
|
|
elementTy = LValueType::get(elementTy);
|
|
|
|
// See ConstraintSystem::resolveOverload() -- optional and dynamic
|
|
// subscripts are a special case, because the optionality is
|
|
// applied to the result type and not the type of the reference.
|
|
if (!isRequirementOrWitness(locator)) {
|
|
if (subscript->getAttrs().hasAttribute<OptionalAttr>())
|
|
elementTy = OptionalType::get(elementTy->getRValueType());
|
|
else if (isDynamicResult) {
|
|
elementTy = ImplicitlyUnwrappedOptionalType::get(
|
|
elementTy->getRValueType());
|
|
}
|
|
}
|
|
|
|
auto indicesTy = subscript->getIndicesInterfaceType();
|
|
refType = FunctionType::get(indicesTy, elementTy,
|
|
AnyFunctionType::ExtInfo());
|
|
} else {
|
|
refType = TC.getUnopenedTypeOfReference(cast<VarDecl>(value),
|
|
baseTy, useDC, base,
|
|
/*wantInterfaceType=*/true);
|
|
}
|
|
|
|
auto selfTy = outerDC->getSelfInterfaceType();
|
|
|
|
// If self is a value type and the base type is an lvalue, wrap it in an
|
|
// inout type.
|
|
if (!outerDC->getDeclaredTypeOfContext()->hasReferenceSemantics() &&
|
|
baseTy->is<LValueType>() &&
|
|
!selfTy->hasError())
|
|
selfTy = InOutType::get(selfTy);
|
|
|
|
// If the storage is generic, add a generic signature.
|
|
if (auto *sig = innerDC->getGenericSignatureOfContext()) {
|
|
funcType = GenericFunctionType::get(sig, selfTy, refType,
|
|
AnyFunctionType::ExtInfo());
|
|
} else {
|
|
funcType = FunctionType::get(selfTy, refType,
|
|
AnyFunctionType::ExtInfo());
|
|
}
|
|
}
|
|
|
|
openedType = openFunctionType(funcType, numRemovedArgumentLabels,
|
|
locator, replacements, innerDC, outerDC,
|
|
/*skipProtocolSelfConstraint=*/true);
|
|
|
|
if (!outerDC->getAsProtocolOrProtocolExtensionContext()) {
|
|
// Class methods returning Self as well as constructors get the
|
|
// result replaced with the base object type.
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(value)) {
|
|
if ((isa<FuncDecl>(func) &&
|
|
cast<FuncDecl>(func)->hasDynamicSelf()) ||
|
|
(isa<ConstructorDecl>(func) &&
|
|
!baseObjTy->getAnyOptionalObjectType())) {
|
|
openedType = openedType->replaceCovariantResultType(
|
|
baseObjTy,
|
|
func->getNumParameterLists());
|
|
}
|
|
}
|
|
} else {
|
|
// Protocol requirements returning Self have a dynamic Self return
|
|
// type. Erase the dynamic Self since it only comes into play during
|
|
// protocol conformance checking.
|
|
openedType = openedType->eraseDynamicSelfType();
|
|
}
|
|
|
|
// If we are looking at a member of an existential, open the existential.
|
|
Type baseOpenedTy = baseObjTy;
|
|
|
|
if (baseObjTy->isExistentialType()) {
|
|
ArchetypeType *openedArchetype = ArchetypeType::getOpened(baseObjTy);
|
|
OpenedExistentialTypes.push_back({ getConstraintLocator(locator),
|
|
openedArchetype });
|
|
baseOpenedTy = openedArchetype;
|
|
}
|
|
|
|
// Constrain the 'self' object type.
|
|
auto openedFnType = openedType->castTo<FunctionType>();
|
|
Type selfObjTy = openedFnType->getInput()->getRValueInstanceType();
|
|
if (outerDC->getAsProtocolOrProtocolExtensionContext()) {
|
|
// For a protocol, substitute the base object directly. We don't need a
|
|
// conformance constraint because we wouldn't have found the declaration
|
|
// if it didn't conform.
|
|
addConstraint(ConstraintKind::Equal, baseOpenedTy, selfObjTy,
|
|
getConstraintLocator(locator));
|
|
} else if (!isDynamicResult) {
|
|
addSelfConstraint(*this, baseOpenedTy, selfObjTy, locator);
|
|
}
|
|
|
|
// Compute the type of the reference.
|
|
Type type;
|
|
if (!value->isInstanceMember() || isInstance) {
|
|
// For a static member referenced through a metatype or an instance
|
|
// member referenced through an instance, strip off the 'self'.
|
|
type = openedFnType->getResult();
|
|
} else if (isDynamicResult && isa<AbstractFunctionDecl>(value)) {
|
|
// For a dynamic result referring to an instance function through
|
|
// an object of metatype type, replace the 'Self' parameter with
|
|
// a AnyObject member.
|
|
auto anyObjectTy = TC.Context.getAnyObjectType();
|
|
type = openedFnType->replaceSelfParameterType(anyObjectTy);
|
|
} else {
|
|
// For an unbound instance method reference, replace the 'Self'
|
|
// parameter with the base type.
|
|
type = openedFnType->replaceSelfParameterType(baseObjTy);
|
|
}
|
|
|
|
// When accessing protocol members with an existential base, replace
|
|
// the 'Self' type parameter with the existential type, since formally
|
|
// the access will operate on existentials and not type parameters.
|
|
if (!isDynamicResult &&
|
|
baseObjTy->isExistentialType() &&
|
|
outerDC->getAsProtocolOrProtocolExtensionContext()) {
|
|
auto selfTy = replacements[
|
|
cast<GenericTypeParamType>(outerDC->getSelfInterfaceType()
|
|
->getCanonicalType())];
|
|
type = type.transform([&](Type t) -> Type {
|
|
if (auto *selfTy = t->getAs<DynamicSelfType>())
|
|
t = selfTy->getSelfType();
|
|
if (t->is<TypeVariableType>())
|
|
if (t->isEqual(selfTy))
|
|
return baseObjTy;
|
|
if (auto *metatypeTy = t->getAs<MetatypeType>())
|
|
if (metatypeTy->getInstanceType()->isEqual(selfTy))
|
|
return ExistentialMetatypeType::get(baseObjTy);
|
|
return t;
|
|
});
|
|
}
|
|
|
|
// If we opened up any type variables, record the replacements.
|
|
recordOpenedTypes(locator, replacements);
|
|
|
|
return { openedType, type };
|
|
}
|
|
|
|
void ConstraintSystem::addOverloadSet(Type boundType,
|
|
ArrayRef<OverloadChoice> choices,
|
|
DeclContext *useDC,
|
|
ConstraintLocator *locator,
|
|
OverloadChoice *favoredChoice) {
|
|
assert(!choices.empty() && "Empty overload set");
|
|
|
|
// If there is a single choice, add the bind overload directly.
|
|
if (choices.size() == 1) {
|
|
addBindOverloadConstraint(boundType, choices.front(), locator, useDC);
|
|
return;
|
|
}
|
|
|
|
SmallVector<Constraint *, 4> overloads;
|
|
|
|
// As we do for other favored constraints, if a favored overload has been
|
|
// specified, let it be the first term in the disjunction.
|
|
if (favoredChoice) {
|
|
auto bindOverloadConstraint =
|
|
Constraint::createBindOverload(*this,
|
|
boundType,
|
|
*favoredChoice,
|
|
useDC,
|
|
locator);
|
|
|
|
assert((!favoredChoice->isDecl() ||
|
|
!favoredChoice->getDecl()->getAttrs().isUnavailable(
|
|
getASTContext())) &&
|
|
"Cannot make unavailable decl favored!");
|
|
bindOverloadConstraint->setFavored();
|
|
|
|
overloads.push_back(bindOverloadConstraint);
|
|
}
|
|
|
|
for (auto choice : choices) {
|
|
if (favoredChoice && (favoredChoice == &choice))
|
|
continue;
|
|
|
|
overloads.push_back(Constraint::createBindOverload(*this, boundType, choice,
|
|
useDC, locator));
|
|
}
|
|
|
|
addDisjunctionConstraint(overloads, locator, ForgetChoice, favoredChoice);
|
|
}
|
|
|
|
/// If we're resolving an overload set with a decl that has special type
|
|
/// checking semantics, set up the special-case type system and return true;
|
|
/// otherwise return false.
|
|
static bool
|
|
resolveOverloadForDeclWithSpecialTypeCheckingSemantics(ConstraintSystem &CS,
|
|
ConstraintLocator *locator,
|
|
Type boundType,
|
|
OverloadChoice choice,
|
|
Type &refType,
|
|
Type &openedFullType) {
|
|
assert(choice.getKind() == OverloadChoiceKind::Decl);
|
|
|
|
switch (CS.TC.getDeclTypeCheckingSemantics(choice.getDecl())) {
|
|
case DeclTypeCheckingSemantics::Normal:
|
|
return false;
|
|
|
|
case DeclTypeCheckingSemantics::TypeOf: {
|
|
// Proceed with a "DynamicType" operation. This produces an existential
|
|
// metatype from existentials, or a concrete metatype from non-
|
|
// existentials (as seen from the current abstraction level), which can't
|
|
// be expressed in the type system currently.
|
|
auto input = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
auto output = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
|
|
TVO_CanBindToInOut);
|
|
|
|
auto inputArg = TupleTypeElt(input, CS.getASTContext().getIdentifier("of"));
|
|
auto inputTuple = TupleType::get(inputArg, CS.getASTContext());
|
|
|
|
CS.addConstraint(ConstraintKind::DynamicTypeOf, output, input,
|
|
CS.getConstraintLocator(locator, ConstraintLocator::RvalueAdjustment));
|
|
refType = FunctionType::get(inputTuple, output);
|
|
openedFullType = refType;
|
|
return true;
|
|
}
|
|
case DeclTypeCheckingSemantics::WithoutActuallyEscaping: {
|
|
// Proceed with a "WithoutActuallyEscaping" operation. The body closure
|
|
// receives a copy of the argument closure that is temporarily made
|
|
// @escaping.
|
|
auto noescapeClosure = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
auto escapeClosure = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
CS.addConstraint(ConstraintKind::EscapableFunctionOf,
|
|
escapeClosure, noescapeClosure,
|
|
CS.getConstraintLocator(locator, ConstraintLocator::RvalueAdjustment));
|
|
auto result = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
|
|
TVO_CanBindToInOut);
|
|
auto bodyClosure = FunctionType::get(
|
|
ParenType::get(CS.getASTContext(), escapeClosure), result,
|
|
FunctionType::ExtInfo(FunctionType::Representation::Swift,
|
|
/*autoclosure*/ false,
|
|
/*noescape*/ true,
|
|
/*throws*/ true));
|
|
TupleTypeElt argTupleElts[] = {
|
|
TupleTypeElt(noescapeClosure),
|
|
TupleTypeElt(bodyClosure, CS.getASTContext().getIdentifier("do")),
|
|
};
|
|
|
|
auto argTuple = TupleType::get(argTupleElts, CS.getASTContext());
|
|
refType = FunctionType::get(argTuple, result,
|
|
FunctionType::ExtInfo(FunctionType::Representation::Swift,
|
|
/*autoclosure*/ false,
|
|
/*noescape*/ false,
|
|
/*throws*/ true));
|
|
openedFullType = refType;
|
|
return true;
|
|
}
|
|
case DeclTypeCheckingSemantics::OpenExistential: {
|
|
// The body closure receives a freshly-opened archetype constrained by the
|
|
// existential type as its input.
|
|
auto openedTy = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
auto existentialTy = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
CS.addConstraint(ConstraintKind::OpenedExistentialOf,
|
|
openedTy, existentialTy,
|
|
CS.getConstraintLocator(locator, ConstraintLocator::RvalueAdjustment));
|
|
auto result = CS.createTypeVariable(
|
|
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
|
|
TVO_CanBindToInOut);
|
|
auto bodyClosure = FunctionType::get(
|
|
ParenType::get(CS.getASTContext(), openedTy), result,
|
|
FunctionType::ExtInfo(FunctionType::Representation::Swift,
|
|
/*autoclosure*/ false,
|
|
/*noescape*/ true,
|
|
/*throws*/ true));
|
|
TupleTypeElt argTupleElts[] = {
|
|
TupleTypeElt(existentialTy),
|
|
TupleTypeElt(bodyClosure, CS.getASTContext().getIdentifier("do")),
|
|
};
|
|
auto argTuple = TupleType::get(argTupleElts, CS.getASTContext());
|
|
refType = FunctionType::get(argTuple, result,
|
|
FunctionType::ExtInfo(FunctionType::Representation::Swift,
|
|
/*autoclosure*/ false,
|
|
/*noescape*/ false,
|
|
/*throws*/ true));
|
|
openedFullType = refType;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled DeclTypeCheckingSemantics in switch.");
|
|
}
|
|
|
|
void ConstraintSystem::resolveOverload(ConstraintLocator *locator,
|
|
Type boundType,
|
|
OverloadChoice choice,
|
|
DeclContext *useDC) {
|
|
// Determine the type to which we'll bind the overload set's type.
|
|
Type refType;
|
|
Type openedFullType;
|
|
switch (auto kind = choice.getKind()) {
|
|
case OverloadChoiceKind::Decl:
|
|
// If we refer to a top-level decl with special type-checking semantics,
|
|
// handle it now.
|
|
if (resolveOverloadForDeclWithSpecialTypeCheckingSemantics(
|
|
*this, locator, boundType, choice, refType, openedFullType))
|
|
break;
|
|
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case OverloadChoiceKind::DeclViaBridge:
|
|
case OverloadChoiceKind::DeclViaDynamic:
|
|
case OverloadChoiceKind::DeclViaUnwrappedOptional: {
|
|
bool isDynamicResult
|
|
= choice.getKind() == OverloadChoiceKind::DeclViaDynamic;
|
|
// Retrieve the type of a reference to the specific declaration choice.
|
|
if (auto baseTy = choice.getBaseType()) {
|
|
assert(!baseTy->hasTypeParameter());
|
|
|
|
auto getDotBase = [](const Expr *E) -> const DeclRefExpr * {
|
|
if (E == nullptr) return nullptr;
|
|
switch (E->getKind()) {
|
|
case ExprKind::MemberRef: {
|
|
auto Base = cast<MemberRefExpr>(E)->getBase();
|
|
return dyn_cast<const DeclRefExpr>(Base);
|
|
}
|
|
case ExprKind::UnresolvedDot: {
|
|
auto Base = cast<UnresolvedDotExpr>(E)->getBase();
|
|
return dyn_cast<const DeclRefExpr>(Base);
|
|
}
|
|
default:
|
|
return nullptr;
|
|
}
|
|
};
|
|
auto anchor = locator ? locator->getAnchor() : nullptr;
|
|
auto base = getDotBase(anchor);
|
|
std::tie(openedFullType, refType)
|
|
= getTypeOfMemberReference(baseTy, choice.getDecl(), useDC,
|
|
isDynamicResult,
|
|
choice.getFunctionRefKind(),
|
|
locator, base, nullptr);
|
|
} else {
|
|
std::tie(openedFullType, refType)
|
|
= getTypeOfReference(choice.getDecl(),
|
|
choice.getFunctionRefKind(), locator);
|
|
}
|
|
|
|
if (!isRequirementOrWitness(locator) &&
|
|
choice.getDecl()->getAttrs().hasAttribute<OptionalAttr>() &&
|
|
!isa<SubscriptDecl>(choice.getDecl())) {
|
|
// For a non-subscript declaration that is an optional
|
|
// requirement in a protocol, strip off the lvalue-ness (FIXME:
|
|
// one cannot assign to such declarations for now) and make a
|
|
// reference to that declaration be optional.
|
|
//
|
|
// Subscript declarations are handled within
|
|
// getTypeOfMemberReference(); their result types are optional.
|
|
refType = OptionalType::get(refType->getRValueType());
|
|
}
|
|
// For a non-subscript declaration found via dynamic lookup, strip
|
|
// off the lvalue-ness (FIXME: as a temporary hack. We eventually
|
|
// want this to work) and make a reference to that declaration be
|
|
// an implicitly unwrapped optional.
|
|
//
|
|
// Subscript declarations are handled within
|
|
// getTypeOfMemberReference(); their result types are unchecked
|
|
// optional.
|
|
else if (isDynamicResult && !isa<SubscriptDecl>(choice.getDecl())) {
|
|
refType = ImplicitlyUnwrappedOptionalType::get(refType->getRValueType());
|
|
}
|
|
|
|
// If the declaration is unavailable, note that in the score.
|
|
if (choice.getDecl()->getAttrs().isUnavailable(getASTContext())) {
|
|
increaseScore(SK_Unavailable);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OverloadChoiceKind::BaseType:
|
|
refType = choice.getBaseType();
|
|
break;
|
|
|
|
case OverloadChoiceKind::TupleIndex:
|
|
if (auto lvalueTy = choice.getBaseType()->getAs<LValueType>()) {
|
|
// When the base of a tuple lvalue, the member is always an lvalue.
|
|
auto tuple = lvalueTy->getObjectType()->castTo<TupleType>();
|
|
refType = tuple->getElementType(choice.getTupleIndex())->getRValueType();
|
|
refType = LValueType::get(refType);
|
|
} else {
|
|
// When the base is a tuple rvalue, the member is always an rvalue.
|
|
auto tuple = choice.getBaseType()->castTo<TupleType>();
|
|
refType = tuple->getElementType(choice.getTupleIndex())->getRValueType();
|
|
}
|
|
break;
|
|
|
|
case OverloadChoiceKind::KeyPathApplication: {
|
|
// Key path application looks like a subscript(keyPath: KeyPath<Base, T>).
|
|
// The element type is T or @lvalue T based on the key path subtype and
|
|
// the mutability of the base.
|
|
auto keyPathIndexTy = createTypeVariable(
|
|
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
auto elementTy = createTypeVariable(
|
|
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToLValue |
|
|
TVO_CanBindToInOut);
|
|
auto elementObjTy = createTypeVariable(
|
|
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
|
|
TVO_CanBindToInOut);
|
|
addConstraint(ConstraintKind::Equal, elementTy, elementObjTy, locator);
|
|
|
|
// The element result is an lvalue or rvalue based on the key path class.
|
|
addKeyPathApplicationConstraint(
|
|
keyPathIndexTy, choice.getBaseType(), elementTy, locator);
|
|
|
|
TupleTypeElt indexTupleElts[] = {
|
|
TupleTypeElt(keyPathIndexTy, getASTContext().Id_keyPath),
|
|
};
|
|
auto indexTuple = TupleType::get(indexTupleElts, getASTContext());
|
|
auto subscriptTy = FunctionType::get(indexTuple, elementTy);
|
|
auto fullTy = FunctionType::get(choice.getBaseType(), subscriptTy);
|
|
openedFullType = fullTy;
|
|
refType = subscriptTy;
|
|
|
|
// Increase the score so that actual subscripts get preference.
|
|
increaseScore(SK_KeyPathSubscript);
|
|
}
|
|
}
|
|
assert(!refType->hasTypeParameter() && "Cannot have a dependent type here");
|
|
|
|
// If we're binding to an init member, the 'throws' need to line up between
|
|
// the bound and reference types.
|
|
if (choice.isDecl()) {
|
|
auto decl = choice.getDecl();
|
|
if (auto CD = dyn_cast<ConstructorDecl>(decl)) {
|
|
auto boundFunctionType = boundType->getAs<AnyFunctionType>();
|
|
|
|
if (boundFunctionType &&
|
|
CD->hasThrows() != boundFunctionType->throws()) {
|
|
boundType = FunctionType::get(boundFunctionType->getInput(),
|
|
boundFunctionType->getResult(),
|
|
boundFunctionType->getExtInfo().
|
|
withThrows());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the type binding constraint.
|
|
addConstraint(ConstraintKind::Bind, boundType, refType, locator);
|
|
|
|
// Note that we have resolved this overload.
|
|
resolvedOverloadSets
|
|
= new (*this) ResolvedOverloadSetListItem{resolvedOverloadSets,
|
|
boundType,
|
|
choice,
|
|
locator,
|
|
openedFullType,
|
|
refType};
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState ? solverState->depth * 2 : 2)
|
|
<< "(overload set choice binding "
|
|
<< boundType->getString() << " := "
|
|
<< refType->getString() << ")\n";
|
|
}
|
|
}
|
|
|
|
/// Given that we're accessing a member of an ImplicitlyUnwrappedOptional<T>, is
|
|
/// the DC one of the special cases where we should not instead look at T?
|
|
static bool isPrivilegedAccessToImplicitlyUnwrappedOptional(DeclContext *DC,
|
|
NominalTypeDecl *D) {
|
|
assert(D == DC->getASTContext().getImplicitlyUnwrappedOptionalDecl());
|
|
|
|
// Walk up through the chain of current contexts.
|
|
for (; ; DC = DC->getParent()) {
|
|
assert(DC && "ran out of contexts before finding a module scope?");
|
|
|
|
// Look through local contexts.
|
|
if (DC->isLocalContext()) {
|
|
continue;
|
|
|
|
// If we're in a type context that's defining or extending
|
|
// ImplicitlyUnwrappedOptional<T>, we're privileged.
|
|
} else if (DC->isTypeContext()) {
|
|
if (DC->getAsNominalTypeOrNominalTypeExtensionContext() == D)
|
|
return true;
|
|
|
|
// Otherwise, we're privileged if we're within the same file that
|
|
// defines ImplicitlyUnwrappedOptional<T>.
|
|
} else {
|
|
assert(DC->isModuleScopeContext());
|
|
return (DC == D->getModuleScopeContext());
|
|
}
|
|
}
|
|
}
|
|
|
|
Type ConstraintSystem::lookThroughImplicitlyUnwrappedOptionalType(Type type) {
|
|
if (auto boundTy = type->getAs<BoundGenericEnumType>()) {
|
|
auto boundDecl = boundTy->getDecl();
|
|
if (boundDecl == TC.Context.getImplicitlyUnwrappedOptionalDecl() &&
|
|
!isPrivilegedAccessToImplicitlyUnwrappedOptional(DC, boundDecl))
|
|
return boundTy->getGenericArgs()[0];
|
|
}
|
|
return Type();
|
|
}
|
|
|
|
template <typename Fn>
|
|
Type simplifyTypeImpl(ConstraintSystem &cs, Type type, Fn getFixedTypeFn) {
|
|
return type.transform([&](Type type) -> Type {
|
|
if (auto tvt = dyn_cast<TypeVariableType>(type.getPointer()))
|
|
return getFixedTypeFn(tvt);
|
|
|
|
// If this is a dependent member type for which we end up simplifying
|
|
// the base to a non-type-variable, perform lookup.
|
|
if (auto depMemTy = dyn_cast<DependentMemberType>(type.getPointer())) {
|
|
// Simplify the base.
|
|
Type newBase = simplifyTypeImpl(cs, depMemTy->getBase(), getFixedTypeFn);
|
|
|
|
// If nothing changed, we're done.
|
|
if (newBase.getPointer() == depMemTy->getBase().getPointer())
|
|
return type;
|
|
|
|
// Dependent member types should only be created for associated types.
|
|
auto assocType = depMemTy->getAssocType();
|
|
assert(depMemTy->getAssocType() && "Expected associated type!");
|
|
|
|
// FIXME: It's kind of weird in general that we have to look
|
|
// through lvalue, inout and IUO types here
|
|
Type lookupBaseType = newBase->getWithoutSpecifierType();
|
|
|
|
auto *module = cs.DC->getParentModule();
|
|
|
|
// "Force" the IUO for substitution purposes. We can end up in
|
|
// this situation if we use the results of overload resolution
|
|
// as a generic type and the overload resolution resulted in an
|
|
// IUO-typed entity.
|
|
while (auto objectType =
|
|
lookupBaseType->getImplicitlyUnwrappedOptionalObjectType()) {
|
|
// If we're accessing a type member of the IUO itself,
|
|
// stop here. Ugh...
|
|
if (module->lookupConformance(lookupBaseType,
|
|
assocType->getProtocol(),
|
|
&cs.getTypeChecker())) {
|
|
break;
|
|
}
|
|
|
|
lookupBaseType = objectType;
|
|
}
|
|
|
|
if (lookupBaseType->mayHaveMembers()) {
|
|
auto subs = lookupBaseType->getContextSubstitutionMap(
|
|
cs.DC->getParentModule(),
|
|
assocType->getDeclContext());
|
|
auto result = assocType->getDeclaredInterfaceType().subst(subs);
|
|
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
return DependentMemberType::get(lookupBaseType, assocType);
|
|
}
|
|
|
|
return type;
|
|
});
|
|
}
|
|
|
|
Type ConstraintSystem::simplifyType(Type type) {
|
|
if (!type->hasTypeVariable())
|
|
return type;
|
|
|
|
// Map type variables down to the fixed types of their representatives.
|
|
return simplifyTypeImpl(
|
|
*this, type,
|
|
[&](TypeVariableType *tvt) -> Type {
|
|
tvt = getRepresentative(tvt);
|
|
if (auto fixed = getFixedType(tvt)) {
|
|
return simplifyType(fixed);
|
|
}
|
|
|
|
return tvt;
|
|
});
|
|
}
|
|
|
|
Type Solution::simplifyType(Type type) const {
|
|
if (!type->hasTypeVariable())
|
|
return type;
|
|
|
|
// Map type variables to fixed types from bindings.
|
|
return simplifyTypeImpl(
|
|
getConstraintSystem(), type,
|
|
[&](TypeVariableType *tvt) -> Type {
|
|
auto known = typeBindings.find(tvt);
|
|
assert(known != typeBindings.end());
|
|
return known->second;
|
|
});
|
|
}
|
|
|
|
size_t Solution::getTotalMemory() const {
|
|
return sizeof(*this) + typeBindings.getMemorySize() +
|
|
overloadChoices.getMemorySize() +
|
|
ConstraintRestrictions.getMemorySize() +
|
|
llvm::capacity_in_bytes(Fixes) + DisjunctionChoices.getMemorySize() +
|
|
OpenedTypes.getMemorySize() + OpenedExistentialTypes.getMemorySize() +
|
|
(DefaultedConstraints.size() * sizeof(void *)) +
|
|
llvm::capacity_in_bytes(Conformances);
|
|
}
|
|
|
|
DeclName OverloadChoice::getName() const {
|
|
switch (getKind()) {
|
|
case OverloadChoiceKind::Decl:
|
|
case OverloadChoiceKind::DeclViaDynamic:
|
|
case OverloadChoiceKind::DeclViaBridge:
|
|
case OverloadChoiceKind::DeclViaUnwrappedOptional:
|
|
return getDecl()->getFullName();
|
|
|
|
case OverloadChoiceKind::KeyPathApplication: {
|
|
// TODO: This should probably produce subscript(keyPath:), but we
|
|
// don't currently pre-filter subscript overload sets by argument
|
|
// keywords, so "subscript" is still the name that keypath subscripts
|
|
// are looked up by.
|
|
return DeclBaseName::createSubscript();
|
|
}
|
|
case OverloadChoiceKind::BaseType:
|
|
case OverloadChoiceKind::TupleIndex:
|
|
llvm_unreachable("no name!");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled OverloadChoiceKind in switch.");
|
|
}
|