mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
When minimizing a generic signature, we only care about loops where the basepoint is a generic parameter symbol. When minimizing protocol requirement signatures in a connected component, we only care about loops where the basepoint is a protocol symbol or associated type symbol whose protocol is part of the connected component. All other loops can be discarded since they do not encode redundancies that are relevant to us.
713 lines
21 KiB
C++
713 lines
21 KiB
C++
//===--- RewriteSystem.cpp - Generics with term rewriting -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "RewriteContext.h"
|
|
#include "RewriteSystem.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// If this is a rule of the form T.[p] => T where [p] is a property symbol,
|
|
/// returns the symbol. Otherwise, returns None.
|
|
///
|
|
/// Note that this is meant to be used with a simplified rewrite system,
|
|
/// where the right hand sides of rules are canonical, since this also means
|
|
/// that T is canonical.
|
|
Optional<Symbol> Rule::isPropertyRule() const {
|
|
auto property = LHS.back();
|
|
|
|
if (!property.isProperty())
|
|
return None;
|
|
|
|
if (LHS.size() - 1 != RHS.size())
|
|
return None;
|
|
|
|
if (!std::equal(RHS.begin(), RHS.end(), LHS.begin()))
|
|
return None;
|
|
|
|
return property;
|
|
}
|
|
|
|
/// If this is a rule of the form T.[P] => T where [P] is a protocol symbol,
|
|
/// return the protocol P, otherwise return nullptr.
|
|
const ProtocolDecl *Rule::isProtocolConformanceRule() const {
|
|
if (auto property = isPropertyRule()) {
|
|
if (property->getKind() == Symbol::Kind::Protocol)
|
|
return property->getProtocol();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// If this is a rule of the form T.[concrete: C : P] => T where
|
|
/// [concrete: C : P] is a concrete conformance symbol, return the protocol P,
|
|
/// otherwise return nullptr.
|
|
const ProtocolDecl *Rule::isAnyConformanceRule() const {
|
|
if (auto property = isPropertyRule()) {
|
|
switch (property->getKind()) {
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::Protocol:
|
|
return property->getProtocol();
|
|
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
return nullptr;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::AssociatedType:
|
|
case Symbol::Kind::GenericParam:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Bad symbol kind");
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// If this is a rule of the form [P].[P] => [P] where [P] is a protocol
|
|
/// symbol, return true, otherwise return false.
|
|
bool Rule::isIdentityConformanceRule() const {
|
|
return (LHS.size() == 2 &&
|
|
RHS.size() == 1 &&
|
|
LHS[0] == RHS[0] &&
|
|
LHS[0] == LHS[1] &&
|
|
LHS[0].getKind() == Symbol::Kind::Protocol);
|
|
}
|
|
|
|
/// If this is a rule of the form [P].[Q] => [P] where [P] and [Q] are
|
|
/// protocol symbols, return true, otherwise return false.
|
|
bool Rule::isProtocolRefinementRule() const {
|
|
if (LHS.size() == 2 &&
|
|
RHS.size() == 1 &&
|
|
LHS[0] == RHS[0] &&
|
|
LHS[0].getKind() == Symbol::Kind::Protocol &&
|
|
(LHS[1].getKind() == Symbol::Kind::Protocol ||
|
|
LHS[1].getKind() == Symbol::Kind::ConcreteConformance) &&
|
|
LHS[0] != LHS[1]) {
|
|
|
|
// A protocol refinement rule must be from a directly-stated
|
|
// inheritance clause entry. It can only become redundant if it is
|
|
// written in terms of other protocol refinement rules; otherwise, it
|
|
// must appear in the protocol's requirement signature.
|
|
//
|
|
// See RewriteSystem::isValidRefinementPath() for an explanation.
|
|
auto *proto = LHS[0].getProtocol();
|
|
auto *otherProto = LHS[1].getProtocol();
|
|
|
|
auto inherited = proto->getInheritedProtocols();
|
|
return (std::find(inherited.begin(), inherited.end(), otherProto)
|
|
!= inherited.end());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns the length of the left hand side.
|
|
unsigned Rule::getDepth() const {
|
|
auto result = LHS.size();
|
|
|
|
if (LHS.back().hasSubstitutions()) {
|
|
for (auto substitution : LHS.back().getSubstitutions()) {
|
|
result = std::max(result, substitution.size());
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Linear order on rules; compares LHS followed by RHS.
|
|
int Rule::compare(const Rule &other, RewriteContext &ctx) const {
|
|
int compare = LHS.compare(other.LHS, ctx);
|
|
if (compare != 0)
|
|
return compare;
|
|
|
|
return RHS.compare(other.RHS, ctx);
|
|
}
|
|
|
|
void Rule::dump(llvm::raw_ostream &out) const {
|
|
out << LHS << " => " << RHS;
|
|
if (Permanent)
|
|
out << " [permanent]";
|
|
if (Explicit)
|
|
out << " [explicit]";
|
|
if (Simplified)
|
|
out << " [simplified]";
|
|
if (Redundant)
|
|
out << " [redundant]";
|
|
if (Conflicting)
|
|
out << "[conflicting]";
|
|
}
|
|
|
|
RewriteSystem::RewriteSystem(RewriteContext &ctx)
|
|
: Context(ctx), Debug(ctx.getDebugOptions()) {
|
|
Initialized = 0;
|
|
Complete = 0;
|
|
Minimized = 0;
|
|
RecordLoops = 0;
|
|
}
|
|
|
|
RewriteSystem::~RewriteSystem() {
|
|
Trie.updateHistograms(Context.RuleTrieHistogram,
|
|
Context.RuleTrieRootHistogram);
|
|
}
|
|
|
|
void RewriteSystem::initialize(
|
|
bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
|
|
assert(!Initialized);
|
|
Initialized = 1;
|
|
|
|
RecordLoops = recordLoops;
|
|
Protos = protos;
|
|
|
|
for (const auto &rule : permanentRules)
|
|
addPermanentRule(rule.first, rule.second);
|
|
|
|
for (const auto &rule : requirementRules)
|
|
addExplicitRule(rule.first, rule.second);
|
|
}
|
|
|
|
/// Reduce a term by applying all rewrite rules until fixed point.
|
|
///
|
|
/// If \p path is non-null, records the series of rewrite steps taken.
|
|
bool RewriteSystem::simplify(MutableTerm &term, RewritePath *path) const {
|
|
bool changed = false;
|
|
|
|
MutableTerm original;
|
|
RewritePath subpath;
|
|
|
|
bool debug = false;
|
|
if (Debug.contains(DebugFlags::Simplify)) {
|
|
original = term;
|
|
debug = true;
|
|
}
|
|
|
|
while (true) {
|
|
bool tryAgain = false;
|
|
|
|
auto from = term.begin();
|
|
auto end = term.end();
|
|
while (from < end) {
|
|
auto ruleID = Trie.find(from, end);
|
|
if (ruleID) {
|
|
const auto &rule = getRule(*ruleID);
|
|
|
|
auto to = from + rule.getLHS().size();
|
|
assert(std::equal(from, to, rule.getLHS().begin()));
|
|
|
|
unsigned startOffset = (unsigned)(from - term.begin());
|
|
unsigned endOffset = term.size() - rule.getLHS().size() - startOffset;
|
|
|
|
term.rewriteSubTerm(from, to, rule.getRHS());
|
|
|
|
if (path || debug) {
|
|
subpath.add(RewriteStep::forRewriteRule(startOffset, endOffset, *ruleID,
|
|
/*inverse=*/false));
|
|
}
|
|
|
|
changed = true;
|
|
tryAgain = true;
|
|
break;
|
|
}
|
|
|
|
++from;
|
|
}
|
|
|
|
if (!tryAgain)
|
|
break;
|
|
}
|
|
|
|
if (debug) {
|
|
if (changed) {
|
|
llvm::dbgs() << "= Simplified " << original << " to " << term << " via ";
|
|
subpath.dump(llvm::dbgs(), original, *this);
|
|
llvm::dbgs() << "\n";
|
|
} else {
|
|
llvm::dbgs() << "= Irreducible term: " << term << "\n";
|
|
}
|
|
}
|
|
|
|
if (path != nullptr) {
|
|
assert(changed != subpath.empty());
|
|
path->append(subpath);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/// Simplify terms appearing in the substitutions of the last symbol of \p term,
|
|
/// which must be a superclass or concrete type symbol.
|
|
bool RewriteSystem::simplifySubstitutions(Symbol &symbol,
|
|
RewritePath *path) const {
|
|
assert(symbol.hasSubstitutions());
|
|
|
|
auto substitutions = symbol.getSubstitutions();
|
|
if (substitutions.empty())
|
|
return false;
|
|
|
|
// Save the original rewrite path length so that we can reset if if we don't
|
|
// find anything to simplify.
|
|
unsigned oldSize = (path ? path->size() : 0);
|
|
|
|
if (path) {
|
|
// The term is on the A stack. Push all substitutions onto the A stack.
|
|
path->add(RewriteStep::forDecompose(substitutions.size(), /*inverse=*/false));
|
|
|
|
// Move all substitutions but the first one to the B stack.
|
|
for (unsigned i = 1; i < substitutions.size(); ++i)
|
|
path->add(RewriteStep::forShift(/*inverse=*/false));
|
|
}
|
|
|
|
// Simplify and collect substitutions.
|
|
SmallVector<Term, 2> newSubstitutions;
|
|
newSubstitutions.reserve(substitutions.size());
|
|
|
|
bool first = true;
|
|
bool anyChanged = false;
|
|
for (auto substitution : substitutions) {
|
|
// Move the next substitution from the B stack to the A stack.
|
|
if (!first && path)
|
|
path->add(RewriteStep::forShift(/*inverse=*/true));
|
|
first = false;
|
|
|
|
// The current substitution is at the top of the A stack; simplify it.
|
|
MutableTerm mutTerm(substitution);
|
|
anyChanged |= simplify(mutTerm, path);
|
|
|
|
// Record the new substitution.
|
|
newSubstitutions.push_back(Term::get(mutTerm, Context));
|
|
}
|
|
|
|
// All simplified substitutions are now on the A stack. Collect them to
|
|
// produce the new term.
|
|
if (path)
|
|
path->add(RewriteStep::forDecompose(substitutions.size(), /*inverse=*/true));
|
|
|
|
// If nothing changed, we don't have to rebuild the symbol.
|
|
if (!anyChanged) {
|
|
if (path) {
|
|
// The rewrite path should consist of a Decompose, followed by a number
|
|
// of Shifts, followed by a Compose.
|
|
#ifndef NDEBUG
|
|
for (auto iter = path->begin() + oldSize; iter < path->end(); ++iter) {
|
|
assert(iter->Kind == RewriteStep::Shift ||
|
|
iter->Kind == RewriteStep::Decompose);
|
|
}
|
|
#endif
|
|
|
|
path->resize(oldSize);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Build the new symbol with simplified substitutions.
|
|
symbol = symbol.withConcreteSubstitutions(newSubstitutions, Context);
|
|
return true;
|
|
}
|
|
|
|
/// Adds a rewrite rule, returning true if the new rule was non-trivial.
|
|
///
|
|
/// If both sides simplify to the same term, the rule is trivial and discarded,
|
|
/// and this method returns false.
|
|
///
|
|
/// If \p path is non-null, the new rule is derived from existing rules in the
|
|
/// rewrite system; the path records a series of rewrite steps which transform
|
|
/// \p lhs to \p rhs.
|
|
bool RewriteSystem::addRule(MutableTerm lhs, MutableTerm rhs,
|
|
const RewritePath *path) {
|
|
// FIXME:
|
|
// assert(!Complete || path != nullptr &&
|
|
// "Rules added by completion must have a path");
|
|
|
|
assert(!lhs.empty());
|
|
assert(!rhs.empty());
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "# Adding rule " << lhs << " == " << rhs << "\n\n";
|
|
}
|
|
|
|
// Now simplify both sides as much as possible with the rules we have so far.
|
|
//
|
|
// This avoids unnecessary work in the completion algorithm.
|
|
RewritePath lhsPath;
|
|
RewritePath rhsPath;
|
|
|
|
simplify(lhs, &lhsPath);
|
|
simplify(rhs, &rhsPath);
|
|
|
|
RewritePath loop;
|
|
if (path) {
|
|
// Produce a path from the simplified lhs to the simplified rhs.
|
|
|
|
// (1) First, apply lhsPath in reverse to produce the original lhs.
|
|
lhsPath.invert();
|
|
loop.append(lhsPath);
|
|
|
|
// (2) Now, apply the path from the original lhs to the original rhs
|
|
// given to us by the completion procedure.
|
|
loop.append(*path);
|
|
|
|
// (3) Finally, apply rhsPath to produce the simplified rhs, which
|
|
// is the same as the simplified lhs.
|
|
loop.append(rhsPath);
|
|
}
|
|
|
|
// If the left hand side and right hand side are already equivalent, we're
|
|
// done.
|
|
int result = lhs.compare(rhs, Context);
|
|
if (result == 0) {
|
|
// If this rule is a consequence of existing rules, add a homotopy
|
|
// generator.
|
|
if (path) {
|
|
// We already have a loop, since the simplified lhs is identical to the
|
|
// simplified rhs.
|
|
recordRewriteLoop(lhs, loop);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Recorded trivial loop at " << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), lhs, *this);
|
|
llvm::dbgs() << "\n\n";
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Orient the two terms so that the left hand side is greater than the
|
|
// right hand side.
|
|
if (result < 0) {
|
|
std::swap(lhs, rhs);
|
|
loop.invert();
|
|
}
|
|
|
|
assert(lhs.compare(rhs, Context) > 0);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Simplified and oriented rule " << lhs << " => " << rhs << "\n\n";
|
|
}
|
|
|
|
unsigned newRuleID = Rules.size();
|
|
|
|
auto uniquedLHS = Term::get(lhs, Context);
|
|
auto uniquedRHS = Term::get(rhs, Context);
|
|
Rules.emplace_back(uniquedLHS, uniquedRHS);
|
|
|
|
if (path) {
|
|
// We have a rewrite path from the simplified lhs to the simplified rhs;
|
|
// add a rewrite step applying the new rule in reverse to close the loop.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
newRuleID, /*inverse=*/true));
|
|
recordRewriteLoop(lhs, loop);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Recorded non-trivial loop at " << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), lhs, *this);
|
|
llvm::dbgs() << "\n\n";
|
|
}
|
|
}
|
|
|
|
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
|
|
if (oldRuleID) {
|
|
llvm::errs() << "Duplicate rewrite rule!\n";
|
|
const auto &oldRule = getRule(*oldRuleID);
|
|
llvm::errs() << "Old rule #" << *oldRuleID << ": ";
|
|
oldRule.dump(llvm::errs());
|
|
llvm::errs() << "\nTrying to replay what happened when I simplified this term:\n";
|
|
Debug |= DebugFlags::Simplify;
|
|
MutableTerm term = lhs;
|
|
simplify(lhs);
|
|
|
|
dump(llvm::errs());
|
|
abort();
|
|
}
|
|
|
|
checkMergedAssociatedType(uniquedLHS, uniquedRHS);
|
|
|
|
// Tell the caller that we added a new rule.
|
|
return true;
|
|
}
|
|
|
|
/// Add a new rule, marking it permanent.
|
|
bool RewriteSystem::addPermanentRule(MutableTerm lhs, MutableTerm rhs) {
|
|
bool added = addRule(std::move(lhs), std::move(rhs));
|
|
if (added)
|
|
Rules.back().markPermanent();
|
|
|
|
return added;
|
|
}
|
|
|
|
/// Add a new rule, marking it explicit.
|
|
bool RewriteSystem::addExplicitRule(MutableTerm lhs, MutableTerm rhs) {
|
|
bool added = addRule(std::move(lhs), std::move(rhs));
|
|
if (added)
|
|
Rules.back().markExplicit();
|
|
|
|
return added;
|
|
}
|
|
|
|
/// Delete any rules whose left hand sides can be reduced by other rules.
|
|
///
|
|
/// Must be run after the completion procedure, since the deletion of
|
|
/// rules is only valid to perform if the rewrite system is confluent.
|
|
void RewriteSystem::simplifyLeftHandSides() {
|
|
assert(Complete);
|
|
|
|
for (unsigned ruleID = 0, e = Rules.size(); ruleID < e; ++ruleID) {
|
|
auto &rule = getRule(ruleID);
|
|
if (rule.isSimplified())
|
|
continue;
|
|
|
|
// First, see if the left hand side of this rule can be reduced using
|
|
// some other rule.
|
|
auto lhs = rule.getLHS();
|
|
auto begin = lhs.begin();
|
|
auto end = lhs.end();
|
|
while (begin < end) {
|
|
if (auto otherRuleID = Trie.find(begin++, end)) {
|
|
// A rule does not obsolete itself.
|
|
if (*otherRuleID == ruleID)
|
|
continue;
|
|
|
|
// Ignore other deleted rules.
|
|
if (getRule(*otherRuleID).isSimplified())
|
|
continue;
|
|
|
|
if (Debug.contains(DebugFlags::Completion)) {
|
|
const auto &otherRule = getRule(*otherRuleID);
|
|
llvm::dbgs() << "$ Deleting rule " << rule << " because "
|
|
<< "its left hand side contains " << otherRule
|
|
<< "\n";
|
|
}
|
|
|
|
rule.markSimplified();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Reduce the right hand sides of all remaining rules as much as
|
|
/// possible.
|
|
///
|
|
/// Must be run after the completion procedure, since the deletion of
|
|
/// rules is only valid to perform if the rewrite system is confluent.
|
|
void RewriteSystem::simplifyRightHandSidesAndSubstitutions() {
|
|
assert(Complete);
|
|
|
|
for (unsigned ruleID = 0, e = Rules.size(); ruleID < e; ++ruleID) {
|
|
auto &rule = getRule(ruleID);
|
|
if (rule.isSimplified())
|
|
continue;
|
|
|
|
// Now, try to reduce the right hand side.
|
|
RewritePath rhsPath;
|
|
MutableTerm rhs(rule.getRHS());
|
|
if (!simplify(rhs, &rhsPath))
|
|
continue;
|
|
|
|
auto lhs = rule.getLHS();
|
|
|
|
// We're adding a new rule, so the old rule won't apply anymore.
|
|
rule.markSimplified();
|
|
|
|
unsigned newRuleID = Rules.size();
|
|
|
|
// Add a new rule with the simplified right hand side.
|
|
Rules.emplace_back(lhs, Term::get(rhs, Context));
|
|
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
|
|
assert(oldRuleID == ruleID);
|
|
(void) oldRuleID;
|
|
|
|
// Produce a loop at the original lhs.
|
|
RewritePath loop;
|
|
|
|
// (1) First, apply the original rule to produce the original rhs.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
ruleID, /*inverse=*/false));
|
|
|
|
// (2) Next, apply rhsPath to produce the simplified rhs.
|
|
loop.append(rhsPath);
|
|
|
|
// (3) Finally, apply the new rule in reverse to produce the original lhs.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
newRuleID, /*inverse=*/true));
|
|
|
|
if (Debug.contains(DebugFlags::Completion)) {
|
|
llvm::dbgs() << "$ Right hand side simplification recorded a loop at ";
|
|
llvm::dbgs() << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), MutableTerm(lhs), *this);
|
|
}
|
|
|
|
recordRewriteLoop(MutableTerm(lhs), loop);
|
|
}
|
|
|
|
// Finally try to simplify substitutions in superclass, concrete type and
|
|
// concrete conformance symbols.
|
|
for (unsigned ruleID = 0, e = Rules.size(); ruleID < e; ++ruleID) {
|
|
auto &rule = getRule(ruleID);
|
|
if (rule.isSimplified())
|
|
continue;
|
|
|
|
auto lhs = rule.getLHS();
|
|
auto symbol = lhs.back();
|
|
if (!symbol.hasSubstitutions())
|
|
continue;
|
|
|
|
RewritePath path;
|
|
|
|
// (1) First, apply the original rule to produce the original lhs.
|
|
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
ruleID, /*inverse=*/true));
|
|
|
|
// (2) Now, simplify the substitutions to get the new lhs.
|
|
if (!simplifySubstitutions(symbol, &path))
|
|
continue;
|
|
|
|
// We're either going to add a new rule or record an identity, so
|
|
// mark the old rule as simplified.
|
|
rule.markSimplified();
|
|
|
|
MutableTerm newLHS(lhs.begin(), lhs.end() - 1);
|
|
newLHS.add(symbol);
|
|
|
|
// Invert the path to get a path from the new lhs to the old rhs.
|
|
path.invert();
|
|
|
|
addRule(newLHS, MutableTerm(rule.getRHS()), &path);
|
|
}
|
|
}
|
|
|
|
/// When minimizing a generic signature, we only care about loops where the
|
|
/// basepoint is a generic parameter symbol.
|
|
///
|
|
/// When minimizing protocol requirement signatures, we only care about loops
|
|
/// where the basepoint is a protocol symbol or associated type symbol whose
|
|
/// protocol is part of the connected component.
|
|
///
|
|
/// All other loops can be discarded since they do not encode redundancies
|
|
/// that are relevant to us.
|
|
bool RewriteSystem::isInMinimizationDomain(
|
|
ArrayRef<const ProtocolDecl *> protos) const {
|
|
assert(protos.size() <= 1);
|
|
|
|
if (protos.empty() && Protos.empty())
|
|
return true;
|
|
|
|
if (std::find(Protos.begin(), Protos.end(), protos[0]) != Protos.end())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void RewriteSystem::recordRewriteLoop(MutableTerm basepoint,
|
|
RewritePath path) {
|
|
if (!RecordLoops)
|
|
return;
|
|
|
|
// Ignore the rewrite rule if it is not part of our minimization domain.
|
|
if (!isInMinimizationDomain(basepoint.getRootProtocols()))
|
|
return;
|
|
|
|
Loops.emplace_back(basepoint, path);
|
|
}
|
|
|
|
void RewriteSystem::verifyRewriteRules(ValidityPolicy policy) const {
|
|
#ifndef NDEBUG
|
|
|
|
#define ASSERT_RULE(expr) \
|
|
if (!(expr)) { \
|
|
llvm::errs() << "&&& Malformed rewrite rule: " << rule << "\n"; \
|
|
llvm::errs() << "&&& " << #expr << "\n\n"; \
|
|
dump(llvm::errs()); \
|
|
assert(expr); \
|
|
}
|
|
|
|
for (const auto &rule : Rules) {
|
|
if (rule.isSimplified() || rule.isPermanent())
|
|
continue;
|
|
|
|
const auto &lhs = rule.getLHS();
|
|
const auto &rhs = rule.getRHS();
|
|
|
|
for (unsigned index : indices(lhs)) {
|
|
auto symbol = lhs[index];
|
|
|
|
if (index != lhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
|
|
ASSERT_RULE(!symbol.hasSubstitutions());
|
|
}
|
|
|
|
if (index != 0) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
|
|
}
|
|
|
|
if (index != 0 && index != lhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
|
|
}
|
|
}
|
|
|
|
for (unsigned index : indices(rhs)) {
|
|
auto symbol = rhs[index];
|
|
|
|
// This is only true if the input requirements were valid.
|
|
if (policy == DisallowInvalidRequirements) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
|
|
} else {
|
|
// FIXME: Assert that we diagnosed an error
|
|
}
|
|
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
|
|
ASSERT_RULE(!symbol.hasSubstitutions());
|
|
|
|
if (index != 0) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
|
|
}
|
|
}
|
|
|
|
auto lhsDomain = lhs.getRootProtocols();
|
|
auto rhsDomain = rhs.getRootProtocols();
|
|
|
|
ASSERT_RULE(lhsDomain == rhsDomain);
|
|
}
|
|
|
|
#undef ASSERT_RULE
|
|
#endif
|
|
}
|
|
|
|
void RewriteSystem::dump(llvm::raw_ostream &out) const {
|
|
out << "Rewrite system: {\n";
|
|
for (const auto &rule : Rules) {
|
|
out << "- " << rule << "\n";
|
|
}
|
|
out << "}\n";
|
|
out << "Rewrite loops: {\n";
|
|
for (const auto &loop : Loops) {
|
|
if (loop.isDeleted())
|
|
continue;
|
|
|
|
out << "- ";
|
|
loop.dump(out, *this);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|