mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
We were only previously doing this check when we had a typedef, because that is the scenario where we encountered this issue. This patch moves the check closer to where we would actually instantiate the template, so that these cases can be stopped in more situations.
10995 lines
429 KiB
C++
10995 lines
429 KiB
C++
//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements support for importing Clang declarations into Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CFTypeInfo.h"
|
|
#include "CXXMethodBridging.h"
|
|
#include "ClangDerivedConformances.h"
|
|
#include "ImporterImpl.h"
|
|
#include "SwiftDeclSynthesizer.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/AvailabilityInference.h"
|
|
#include "swift/AST/Builtins.h"
|
|
#include "swift/AST/ClangModuleLoader.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticsClangImporter.h"
|
|
#include "swift/AST/DiagnosticsSema.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/LifetimeDependence.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/NameLookupRequests.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/AST/TypeCheckRequests.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/PrettyStackTrace.h"
|
|
#include "swift/Basic/SourceLoc.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/Basic/StringExtras.h"
|
|
#include "swift/Basic/Version.h"
|
|
#include "swift/ClangImporter/ClangImporter.h"
|
|
#include "swift/ClangImporter/ClangImporterRequests.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
#include "swift/Parse/ParseDeclName.h"
|
|
#include "swift/Strings.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjCCommon.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "Clang module importer"
|
|
|
|
STATISTIC(NumTotalImportedEntities, "# of imported clang entities");
|
|
STATISTIC(NumFactoryMethodsAsInitializers,
|
|
"# of factory methods mapped to initializers");
|
|
|
|
using namespace swift;
|
|
using namespace importer;
|
|
|
|
namespace swift {
|
|
namespace inferred_attributes {
|
|
enum {
|
|
requires_stored_property_inits = 0x01
|
|
};
|
|
} // end namespace inferred_attributes
|
|
} // end namespace swift
|
|
|
|
namespace {
|
|
|
|
struct AccessorInfo {
|
|
AbstractStorageDecl *Storage;
|
|
AccessorKind Kind;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static bool isInSystemModule(const DeclContext *D) {
|
|
return cast<ClangModuleUnit>(D->getModuleScopeContext())->isSystemModule();
|
|
}
|
|
|
|
static FuncDecl *
|
|
createFuncOrAccessor(ClangImporter::Implementation &impl, SourceLoc funcLoc,
|
|
std::optional<AccessorInfo> accessorInfo, DeclName name,
|
|
SourceLoc nameLoc, GenericParamList *genericParams,
|
|
ParameterList *bodyParams, Type resultTy, bool async,
|
|
bool throws, DeclContext *dc, ClangNode clangNode) {
|
|
FuncDecl *decl;
|
|
if (accessorInfo) {
|
|
decl = AccessorDecl::create(
|
|
impl.SwiftContext, funcLoc,
|
|
/*accessorKeywordLoc*/ SourceLoc(), accessorInfo->Kind,
|
|
accessorInfo->Storage, async, /*AsyncLoc=*/SourceLoc(),
|
|
throws, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
|
|
bodyParams, resultTy, dc, clangNode);
|
|
} else {
|
|
decl = FuncDecl::createImported(impl.SwiftContext, funcLoc, name, nameLoc,
|
|
async, throws, /*thrownType=*/Type(),
|
|
bodyParams, resultTy,
|
|
genericParams, dc, clangNode);
|
|
}
|
|
impl.importSwiftAttrAttributes(decl);
|
|
|
|
return decl;
|
|
}
|
|
|
|
void ClangImporter::Implementation::makeComputed(AbstractStorageDecl *storage,
|
|
AccessorDecl *getter,
|
|
AccessorDecl *setter) {
|
|
assert(getter);
|
|
// The synthesized computed property can either use a `get` or an
|
|
// `unsafeAddress` accessor.
|
|
auto isAddress = getter->getAccessorKind() == AccessorKind::Address;
|
|
storage->getASTContext().evaluator.cacheOutput(HasStorageRequest{storage}, false);
|
|
if (setter) {
|
|
if (isAddress)
|
|
assert(setter->getAccessorKind() == AccessorKind::MutableAddress);
|
|
storage->setImplInfo(
|
|
isAddress ? StorageImplInfo(ReadImplKind::Address,
|
|
WriteImplKind::MutableAddress,
|
|
ReadWriteImplKind::MutableAddress)
|
|
: StorageImplInfo::getMutableComputed());
|
|
storage->setAccessors(SourceLoc(), {getter, setter}, SourceLoc());
|
|
} else {
|
|
storage->setImplInfo(isAddress ? StorageImplInfo(ReadImplKind::Address)
|
|
: StorageImplInfo::getImmutableComputed());
|
|
storage->setAccessors(SourceLoc(), {getter}, SourceLoc());
|
|
}
|
|
}
|
|
|
|
bool importer::recordHasReferenceSemantics(
|
|
const clang::RecordDecl *decl,
|
|
ClangImporter::Implementation *importerImpl) {
|
|
// At this point decl might not be fully imported into Swift yet, which
|
|
// means we might not have asked Clang to generate its implicit members, such
|
|
// as copy or move constructors. This would cause CxxRecordSemanticsRequest to
|
|
// return MissingLifetimeOperation if the type is not a foreign reference
|
|
// type. Note that this doesn't affect the correctness of this function, since
|
|
// those implicit members aren't required for foreign reference types.
|
|
auto semanticsKind = evaluateOrDefault(
|
|
importerImpl->SwiftContext.evaluator,
|
|
CxxRecordSemantics({decl, importerImpl->SwiftContext, importerImpl}),
|
|
{});
|
|
return semanticsKind == CxxRecordSemanticsKind::Reference;
|
|
}
|
|
|
|
bool importer::hasImmortalAttrs(const clang::RecordDecl *decl) {
|
|
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
|
|
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
|
|
return swiftAttr->getAttribute() == "retain:immortal" ||
|
|
swiftAttr->getAttribute() == "release:immortal";
|
|
return false;
|
|
});
|
|
}
|
|
|
|
importer::ReturnOwnershipInfo::ReturnOwnershipInfo(
|
|
const clang::NamedDecl *decl) {
|
|
if (!decl->hasAttrs())
|
|
return;
|
|
|
|
for (const auto *attr : decl->getAttrs()) {
|
|
if (const auto *swiftAttr = llvm::dyn_cast<clang::SwiftAttrAttr>(attr)) {
|
|
if (swiftAttr->getAttribute() == "returns_unretained") {
|
|
hasReturnsUnretained = true;
|
|
} else if (swiftAttr->getAttribute() == "returns_retained") {
|
|
hasReturnsRetained = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool verifyNameMapping(MappedTypeNameKind NameMapping,
|
|
StringRef left, StringRef right) {
|
|
return NameMapping == MappedTypeNameKind::DoNothing || left != right;
|
|
}
|
|
#endif
|
|
|
|
/// Map a well-known C type to a swift type from the standard library.
|
|
///
|
|
/// \param IsError set to true when we know the corresponding swift type name,
|
|
/// but we could not find it. (For example, the type was not defined in the
|
|
/// standard library or the required standard library module was not imported.)
|
|
/// This should be a hard error, we don't want to map the type only sometimes.
|
|
///
|
|
/// \returns A pair of a swift type and its name that corresponds to a given
|
|
/// C type.
|
|
static std::pair<Type, StringRef>
|
|
getSwiftStdlibType(const clang::TypedefNameDecl *D,
|
|
Identifier Name,
|
|
ClangImporter::Implementation &Impl,
|
|
bool *IsError, MappedTypeNameKind &NameMapping) {
|
|
*IsError = false;
|
|
|
|
MappedCTypeKind CTypeKind;
|
|
unsigned Bitwidth;
|
|
StringRef SwiftModuleName;
|
|
bool IsSwiftModule; // True if SwiftModuleName == STDLIB_NAME.
|
|
StringRef SwiftTypeName;
|
|
bool CanBeMissing;
|
|
|
|
|
|
do {
|
|
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
|
|
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, \
|
|
CAN_BE_MISSING, C_NAME_MAPPING) \
|
|
if (Name.str() == C_TYPE_NAME) { \
|
|
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
|
|
Bitwidth = C_TYPE_BITWIDTH; \
|
|
SwiftModuleName = SWIFT_MODULE_NAME; \
|
|
IsSwiftModule = SwiftModuleName == STDLIB_NAME; \
|
|
SwiftTypeName = SWIFT_TYPE_NAME; \
|
|
CanBeMissing = CAN_BE_MISSING; \
|
|
NameMapping = MappedTypeNameKind::C_NAME_MAPPING; \
|
|
assert(verifyNameMapping(MappedTypeNameKind::C_NAME_MAPPING, \
|
|
C_TYPE_NAME, SWIFT_TYPE_NAME) && \
|
|
"MappedTypes.def: Identical names must use DoNothing"); \
|
|
break; \
|
|
}
|
|
#include "MappedTypes.def"
|
|
|
|
// We handle `BOOL` as a special case because the selection here is more
|
|
// complicated as the type alias exists on multiple platforms as different
|
|
// types. It appears in an Objective-C context where it is a `signed char`
|
|
// and appears in Windows as an `int`. Furthermore, you can actually have
|
|
// the two interoperate, which requires a further bit of logic to
|
|
// disambiguate the type aliasing behaviour. To complicate things, the two
|
|
// aliases bridge to different types - `ObjCBool` for Objective-C and
|
|
// `WindowsBool` for Windows's `BOOL` type.
|
|
if (Name.str() == "BOOL") {
|
|
auto &CASTContext = Impl.getClangASTContext();
|
|
auto &SwiftASTContext = Impl.SwiftContext;
|
|
|
|
// Default to Objective-C `BOOL`
|
|
CTypeKind = MappedCTypeKind::ObjCBool;
|
|
if (CASTContext.getTargetInfo().getTriple().isOSWindows()) {
|
|
// On Windows fall back to Windows `BOOL`
|
|
CTypeKind = MappedCTypeKind::SignedInt;
|
|
// If Objective-C interop is enabled, and we match the Objective-C
|
|
// `BOOL` type, then switch back to `ObjCBool`.
|
|
if (SwiftASTContext.LangOpts.EnableObjCInterop &&
|
|
CASTContext.hasSameType(D->getUnderlyingType(),
|
|
CASTContext.ObjCBuiltinBoolTy))
|
|
CTypeKind = MappedCTypeKind::ObjCBool;
|
|
}
|
|
|
|
if (CTypeKind == MappedCTypeKind::ObjCBool) {
|
|
Bitwidth = 8;
|
|
SwiftModuleName = StringRef("ObjectiveC");
|
|
IsSwiftModule = false;
|
|
SwiftTypeName = "ObjCBool";
|
|
NameMapping = MappedTypeNameKind::DoNothing;
|
|
CanBeMissing = false;
|
|
assert(verifyNameMapping(MappedTypeNameKind::DoNothing,
|
|
"BOOL", "ObjCBool") &&
|
|
"MappedTypes.def: Identical names must use DoNothing");
|
|
} else {
|
|
assert(CTypeKind == MappedCTypeKind::SignedInt &&
|
|
"expected Windows `BOOL` desugared to `int`");
|
|
Bitwidth = 32;
|
|
SwiftModuleName = StringRef("WinSDK");
|
|
IsSwiftModule = false;
|
|
SwiftTypeName = "WindowsBool";
|
|
NameMapping = MappedTypeNameKind::DoNothing;
|
|
CanBeMissing = true;
|
|
assert(verifyNameMapping(MappedTypeNameKind::DoNothing,
|
|
"BOOL", "WindowsBool") &&
|
|
"MappedTypes.def: Identical names must use DoNothing");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// We did not find this type, thus it is not mapped.
|
|
return std::make_pair(Type(), "");
|
|
} while (0);
|
|
|
|
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
|
|
|
|
auto ClangType = D->getUnderlyingType();
|
|
|
|
// If the C type does not have the expected size, don't import it as a stdlib
|
|
// type.
|
|
unsigned ClangTypeSize = ClangCtx.getTypeSize(ClangType);
|
|
if (Bitwidth != 0 && Bitwidth != ClangTypeSize)
|
|
return std::make_pair(Type(), "");
|
|
|
|
// Check other expected properties of the C type.
|
|
switch(CTypeKind) {
|
|
case MappedCTypeKind::UnsignedInt:
|
|
if (!ClangType->isUnsignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::SignedInt:
|
|
if (!ClangType->isSignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::UnsignedWord:
|
|
if (ClangTypeSize != 64 && ClangTypeSize != 32 && ClangTypeSize != 16)
|
|
return std::make_pair(Type(), "");
|
|
if (!ClangType->isUnsignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::SignedWord:
|
|
if (ClangTypeSize != 64 && ClangTypeSize != 32 && ClangTypeSize != 16)
|
|
return std::make_pair(Type(), "");
|
|
if (!ClangType->isSignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatIEEEsingle:
|
|
case MappedCTypeKind::FloatIEEEdouble:
|
|
case MappedCTypeKind::FloatX87DoubleExtended: {
|
|
if (!ClangType->isFloatingType())
|
|
return std::make_pair(Type(), "");
|
|
|
|
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
|
|
switch(CTypeKind) {
|
|
case MappedCTypeKind::FloatIEEEsingle:
|
|
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
|
|
if (&Sem != &APFloat::IEEEsingle())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatIEEEdouble:
|
|
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
|
|
if (&Sem != &APFloat::IEEEdouble())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatX87DoubleExtended:
|
|
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
|
|
if (&Sem != &APFloat::x87DoubleExtended())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("should see only floating point types here");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MappedCTypeKind::VaList:
|
|
switch (ClangCtx.getTargetInfo().getBuiltinVaListKind()) {
|
|
case clang::TargetInfo::CharPtrBuiltinVaList:
|
|
case clang::TargetInfo::VoidPtrBuiltinVaList:
|
|
case clang::TargetInfo::PowerABIBuiltinVaList:
|
|
case clang::TargetInfo::AAPCSABIBuiltinVaList:
|
|
case clang::TargetInfo::HexagonBuiltinVaList:
|
|
assert(ClangCtx.getTypeSize(ClangCtx.VoidPtrTy) == ClangTypeSize &&
|
|
"expected va_list type to be sizeof(void *)");
|
|
break;
|
|
case clang::TargetInfo::AArch64ABIBuiltinVaList:
|
|
break;
|
|
case clang::TargetInfo::PNaClABIBuiltinVaList:
|
|
case clang::TargetInfo::SystemZBuiltinVaList:
|
|
case clang::TargetInfo::X86_64ABIBuiltinVaList:
|
|
case clang::TargetInfo::XtensaABIBuiltinVaList:
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCBool:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
|
|
!(ClangCtx.getBOOLDecl() &&
|
|
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCSel:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCSelRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCId:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCIdRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCClass:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCClassRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::CGFloat:
|
|
if (!ClangType->isFloatingType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::Block:
|
|
if (!ClangType->isBlockPointerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
}
|
|
|
|
ModuleDecl *M;
|
|
if (IsSwiftModule)
|
|
M = Impl.getStdlibModule();
|
|
else
|
|
M = Impl.getNamedModule(SwiftModuleName);
|
|
|
|
if (!M) {
|
|
// User did not import the library module that contains the type we want to
|
|
// substitute.
|
|
*IsError = true;
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
|
|
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
|
|
|
|
if (!SwiftType && CTypeKind == MappedCTypeKind::CGFloat) {
|
|
// Look for CGFloat in CoreFoundation.
|
|
M = Impl.getNamedModule("CoreFoundation");
|
|
SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
|
|
}
|
|
|
|
if (!SwiftType && !CanBeMissing) {
|
|
// The required type is not defined in the standard library.
|
|
// The required type is not defined in the library, or the user has not
|
|
// imported the library that defines it (so `M` was null and
|
|
// `getNamedSwiftType()` returned early).
|
|
*IsError = true;
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
return std::make_pair(SwiftType, SwiftTypeName);
|
|
}
|
|
|
|
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
|
|
clang::Selector cmd) {
|
|
if (MD->getSelector() != cmd)
|
|
return false;
|
|
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
|
|
return false;
|
|
if (MD->getClassInterface()->getName() != "NSDictionary")
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void ClangImporter::Implementation::addSynthesizedTypealias(
|
|
NominalTypeDecl *nominal, Identifier name, Type underlyingType) {
|
|
auto &ctx = nominal->getASTContext();
|
|
|
|
auto typealias = new (ctx) TypeAliasDecl(SourceLoc(), SourceLoc(), name,
|
|
SourceLoc(), nullptr, nominal);
|
|
typealias->setUnderlyingType(underlyingType);
|
|
typealias->setAccess(nominal->getFormalAccess());
|
|
typealias->setImplicit();
|
|
|
|
nominal->addMember(typealias);
|
|
}
|
|
|
|
void ClangImporter::Implementation::addSynthesizedProtocolAttrs(
|
|
NominalTypeDecl *nominal,
|
|
ArrayRef<KnownProtocolKind> synthesizedProtocolAttrs, bool isUnchecked,
|
|
bool isSuppressed) {
|
|
auto &ctx = nominal->getASTContext();
|
|
|
|
for (auto kind : synthesizedProtocolAttrs) {
|
|
// This is unfortunately not an error because some test use mock protocols.
|
|
// If those tests were updated, we could assert that
|
|
// ctx.getProtocol(kind) != nulltpr which would be nice.
|
|
if (auto proto = ctx.getProtocol(kind))
|
|
nominal->addAttribute(
|
|
new (ctx) SynthesizedProtocolAttr(proto, this, isUnchecked, isSuppressed));
|
|
}
|
|
}
|
|
|
|
/// Retrieve the element interface type and key param decl of a subscript
|
|
/// setter.
|
|
static std::pair<Type, ParamDecl *> decomposeSubscriptSetter(FuncDecl *setter) {
|
|
auto *PL = setter->getParameters();
|
|
if (PL->size() != 2)
|
|
return {nullptr, nullptr};
|
|
|
|
// Setter type is (self) -> (elem_type, key_type) -> ()
|
|
Type elementType = setter->getInterfaceType()
|
|
->castTo<AnyFunctionType>()
|
|
->getResult()
|
|
->castTo<AnyFunctionType>()
|
|
->getParams().front().getParameterType();
|
|
ParamDecl *keyDecl = PL->get(1);
|
|
|
|
return {elementType, keyDecl};
|
|
}
|
|
|
|
/// Rectify the (possibly different) types determined by the
|
|
/// getter and setter for a subscript.
|
|
///
|
|
/// \param canUpdateType whether the type of subscript can be
|
|
/// changed from the getter type to something compatible with both
|
|
/// the getter and the setter.
|
|
///
|
|
/// \returns the type to be used for the subscript, or a null type
|
|
/// if the types cannot be rectified.
|
|
static ImportedType rectifySubscriptTypes(Type getterType, bool getterIsIUO,
|
|
Type setterType, bool canUpdateType) {
|
|
// If the caller couldn't provide a setter type, there is
|
|
// nothing to rectify.
|
|
if (!setterType)
|
|
return {nullptr, false};
|
|
|
|
// Trivial case: same type in both cases.
|
|
if (getterType->isEqual(setterType))
|
|
return {getterType, getterIsIUO};
|
|
|
|
// The getter/setter types are different. If we cannot update
|
|
// the type, we have to fail.
|
|
if (!canUpdateType)
|
|
return {nullptr, false};
|
|
|
|
// Unwrap one level of optionality from each.
|
|
if (Type getterObjectType = getterType->getOptionalObjectType())
|
|
getterType = getterObjectType;
|
|
if (Type setterObjectType = setterType->getOptionalObjectType())
|
|
setterType = setterObjectType;
|
|
|
|
// If they are still different, fail.
|
|
// FIXME: We could produce the greatest common supertype of the
|
|
// two types.
|
|
if (!getterType->isEqual(setterType))
|
|
return {nullptr, false};
|
|
|
|
// Create an optional of the object type that can be implicitly
|
|
// unwrapped which subsumes both behaviors.
|
|
return {OptionalType::get(setterType), true};
|
|
}
|
|
|
|
/// Add an AvailableAttr to the declaration for the given
|
|
/// version range.
|
|
static void applyAvailableAttribute(Decl *decl, AvailabilityRange &info,
|
|
ASTContext &C) {
|
|
// If the range is "all", this is the same as not having an available
|
|
// attribute.
|
|
if (info.isAlwaysAvailable())
|
|
return;
|
|
|
|
auto AvAttr = AvailableAttr::createPlatformVersioned(
|
|
C, targetPlatform(C.LangOpts), /*Message=*/"", /*Rename=*/"",
|
|
info.getRawMinimumVersion(), /*Deprecated=*/{}, /*Obsoleted=*/{});
|
|
|
|
decl->addAttribute(AvAttr);
|
|
}
|
|
|
|
/// Synthesize availability attributes for protocol requirements
|
|
/// based on availability of the types mentioned in the requirements.
|
|
static void inferProtocolMemberAvailability(ClangImporter::Implementation &impl,
|
|
DeclContext *dc, Decl *member) {
|
|
// Don't synthesize attributes if there is already an
|
|
// availability annotation.
|
|
if (member->getAttrs().hasAttribute<AvailableAttr>())
|
|
return;
|
|
|
|
auto *valueDecl = dyn_cast<ValueDecl>(member);
|
|
if (!valueDecl)
|
|
return;
|
|
|
|
AvailabilityRange requiredRange =
|
|
AvailabilityInference::inferForType(valueDecl->getInterfaceType());
|
|
|
|
ASTContext &C = impl.SwiftContext;
|
|
|
|
const Decl *innermostDecl = dc->getInnermostDeclarationDeclContext();
|
|
AvailabilityRange containingDeclRange =
|
|
AvailabilityInference::availableRange(innermostDecl);
|
|
|
|
requiredRange.intersectWith(containingDeclRange);
|
|
|
|
applyAvailableAttribute(valueDecl, requiredRange, C);
|
|
}
|
|
|
|
/// Synthesizer callback for the error domain property getter.
|
|
static std::pair<BraceStmt *, bool>
|
|
synthesizeErrorDomainGetterBody(AbstractFunctionDecl *afd, void *context) {
|
|
auto getterDecl = cast<AccessorDecl>(afd);
|
|
ASTContext &ctx = getterDecl->getASTContext();
|
|
|
|
auto contextData =
|
|
llvm::PointerIntPair<ValueDecl *, 1, bool>::getFromOpaqueValue(context);
|
|
auto swiftValueDecl = contextData.getPointer();
|
|
bool isImplicit = contextData.getInt();
|
|
DeclRefExpr *domainDeclRef = new (ctx)
|
|
DeclRefExpr(ConcreteDeclRef(swiftValueDecl), {}, isImplicit);
|
|
domainDeclRef->setType(
|
|
getterDecl->mapTypeIntoEnvironment(swiftValueDecl->getInterfaceType()));
|
|
|
|
auto *ret = ReturnStmt::createImplicit(ctx, domainDeclRef);
|
|
return { BraceStmt::create(ctx, SourceLoc(), {ret}, SourceLoc(), isImplicit),
|
|
/*isTypeChecked=*/true };
|
|
}
|
|
|
|
/// Add a domain error member, as required by conformance to
|
|
/// _BridgedStoredNSError.
|
|
/// \returns true on success, false on failure
|
|
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
|
|
clang::NamedDecl *errorDomainDecl,
|
|
ClangImporter::Implementation &importer) {
|
|
auto &C = importer.SwiftContext;
|
|
auto swiftValueDecl = dyn_cast_or_null<ValueDecl>(
|
|
importer.importDecl(errorDomainDecl, importer.CurrentVersion));
|
|
auto stringTy = C.getStringType();
|
|
assert(stringTy && "no string type available");
|
|
if (!swiftValueDecl || !swiftValueDecl->getInterfaceType()->isString()) {
|
|
// Couldn't actually import it as an error enum, fall back to enum
|
|
return false;
|
|
}
|
|
|
|
bool isStatic = true;
|
|
bool isImplicit = true;
|
|
|
|
// Make the property decl
|
|
auto errorDomainPropertyDecl = new (C) VarDecl(
|
|
/*IsStatic*/isStatic, VarDecl::Introducer::Var,
|
|
SourceLoc(), C.Id_errorDomain, swiftDecl);
|
|
errorDomainPropertyDecl->setInterfaceType(stringTy);
|
|
errorDomainPropertyDecl->setAccess(AccessLevel::Public);
|
|
|
|
auto *params = ParameterList::createEmpty(C);
|
|
|
|
auto getterDecl = AccessorDecl::create(
|
|
C,
|
|
/*FuncLoc=*/SourceLoc(),
|
|
/*AccessorKeywordLoc=*/SourceLoc(), AccessorKind::Get,
|
|
errorDomainPropertyDecl,
|
|
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
|
|
/*ThrownType=*/TypeLoc(), params, stringTy, swiftDecl);
|
|
getterDecl->setIsObjC(false);
|
|
getterDecl->setIsDynamic(false);
|
|
getterDecl->setIsTransparent(false);
|
|
|
|
swiftDecl->addMember(errorDomainPropertyDecl);
|
|
importer.makeComputed(errorDomainPropertyDecl, getterDecl, nullptr);
|
|
|
|
getterDecl->setImplicit();
|
|
getterDecl->setAccess(AccessLevel::Public);
|
|
|
|
llvm::PointerIntPair<ValueDecl *, 1, bool> contextData(swiftValueDecl,
|
|
isImplicit);
|
|
getterDecl->setBodySynthesizer(synthesizeErrorDomainGetterBody,
|
|
contextData.getOpaqueValue());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// As addErrorDomain above, but performs a lookup
|
|
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
|
|
StringRef errorDomainName,
|
|
ClangImporter::Implementation &importer) {
|
|
auto &clangSema = importer.getClangSema();
|
|
clang::IdentifierInfo *errorDomainDeclName =
|
|
&clangSema.getASTContext().Idents.get(errorDomainName);
|
|
clang::LookupResult lookupResult(
|
|
clangSema, clang::DeclarationName(errorDomainDeclName),
|
|
clang::SourceLocation(), clang::Sema::LookupNameKind::LookupOrdinaryName);
|
|
|
|
if (!clangSema.LookupName(lookupResult, clangSema.TUScope)) {
|
|
// Couldn't actually import it as an error enum, fall back to enum
|
|
return false;
|
|
}
|
|
|
|
auto clangNamedDecl = lookupResult.getAsSingle<clang::NamedDecl>();
|
|
if (!clangNamedDecl) {
|
|
// Couldn't actually import it as an error enum, fall back to enum
|
|
return false;
|
|
}
|
|
|
|
return addErrorDomain(swiftDecl, clangNamedDecl, importer);
|
|
}
|
|
|
|
/// Retrieve the property type as determined by the given accessor.
|
|
static clang::QualType
|
|
getAccessorPropertyType(const clang::FunctionDecl *accessor, bool isSetter,
|
|
std::optional<unsigned> selfIndex) {
|
|
// Simple case: the property type of the getter is in the return
|
|
// type.
|
|
if (!isSetter) return accessor->getReturnType();
|
|
|
|
// For the setter, first check that we have the right number of
|
|
// parameters.
|
|
unsigned numExpectedParams = selfIndex ? 2 : 1;
|
|
if (accessor->getNumParams() != numExpectedParams)
|
|
return clang::QualType();
|
|
|
|
// Dig out the parameter for the value.
|
|
unsigned valueIdx = selfIndex ? (1 - *selfIndex) : 0;
|
|
auto param = accessor->getParamDecl(valueIdx);
|
|
return param->getType();
|
|
}
|
|
|
|
/// Whether we should suppress importing the Objective-C generic type params
|
|
/// of this class as Swift generic type params.
|
|
static bool
|
|
shouldSuppressGenericParamsImport(const LangOptions &langOpts,
|
|
const clang::ObjCInterfaceDecl *decl) {
|
|
if (decl->hasAttr<clang::SwiftImportAsNonGenericAttr>())
|
|
return true;
|
|
|
|
// FIXME: This check is only necessary to keep things working even without
|
|
// the SwiftImportAsNonGeneric API note. Once we can guarantee that that
|
|
// attribute is present in all contexts, we can remove this check.
|
|
auto isFromFoundationModule = [](const clang::Decl *decl) -> bool {
|
|
clang::Module *module = getClangSubmoduleForDecl(decl).value();
|
|
if (!module)
|
|
return false;
|
|
return module->getTopLevelModuleName() == "Foundation";
|
|
};
|
|
|
|
if (isFromFoundationModule(decl)) {
|
|
// In Swift 3 we used a hardcoded list of declarations, and made all of
|
|
// their subclasses drop their generic parameters when imported.
|
|
while (decl) {
|
|
StringRef name = decl->getName();
|
|
if (name == "NSArray" || name == "NSDictionary" || name == "NSSet" ||
|
|
name == "NSOrderedSet" || name == "NSEnumerator" ||
|
|
name == "NSMeasurement") {
|
|
return true;
|
|
}
|
|
decl = decl->getSuperClass();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine if the given Objective-C instance method should also
|
|
/// be imported as a class method.
|
|
///
|
|
/// Objective-C root class instance methods are also reflected as
|
|
/// class methods.
|
|
static bool shouldAlsoImportAsClassMethod(FuncDecl *method) {
|
|
// Only instance methods.
|
|
if (!method->isInstanceMember())
|
|
return false;
|
|
|
|
// Must be a method within a class or extension thereof.
|
|
auto classDecl = method->getDeclContext()->getSelfClassDecl();
|
|
if (!classDecl)
|
|
return false;
|
|
|
|
// The class must not have a superclass.
|
|
if (classDecl->hasSuperclass())
|
|
return false;
|
|
|
|
// There must not already be a class method with the same
|
|
// selector.
|
|
auto objcClass =
|
|
cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
|
|
if (!objcClass)
|
|
return false;
|
|
|
|
auto objcMethod = cast_or_null<clang::ObjCMethodDecl>(method->getClangDecl());
|
|
if (!objcMethod)
|
|
return false;
|
|
return !objcClass->getClassMethod(objcMethod->getSelector(),
|
|
/*AllowHidden=*/true);
|
|
}
|
|
|
|
static bool
|
|
classImplementsProtocol(const clang::ObjCInterfaceDecl *constInterface,
|
|
const clang::ObjCProtocolDecl *constProto,
|
|
bool checkCategories) {
|
|
auto interface = const_cast<clang::ObjCInterfaceDecl *>(constInterface);
|
|
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
|
|
return interface->ClassImplementsProtocol(proto, checkCategories);
|
|
}
|
|
|
|
static void
|
|
applyPropertyOwnership(VarDecl *prop,
|
|
clang::ObjCPropertyAttribute::Kind attrs) {
|
|
Type ty = prop->getInterfaceType();
|
|
if (auto innerTy = ty->getOptionalObjectType())
|
|
ty = innerTy;
|
|
if (!ty->is<GenericTypeParamType>() && !ty->isAnyClassReferenceType())
|
|
return;
|
|
|
|
ASTContext &ctx = prop->getASTContext();
|
|
if (attrs & clang::ObjCPropertyAttribute::kind_copy) {
|
|
prop->addAttribute(new (ctx) NSCopyingAttr(false));
|
|
return;
|
|
}
|
|
if (attrs & clang::ObjCPropertyAttribute::kind_weak) {
|
|
prop->addAttribute(new (ctx)
|
|
ReferenceOwnershipAttr(ReferenceOwnership::Weak));
|
|
prop->setInterfaceType(WeakStorageType::get(
|
|
prop->getInterfaceType(), ctx));
|
|
return;
|
|
}
|
|
if ((attrs & clang::ObjCPropertyAttribute::kind_assign) ||
|
|
(attrs & clang::ObjCPropertyAttribute::kind_unsafe_unretained)) {
|
|
prop->addAttribute(
|
|
new (ctx) ReferenceOwnershipAttr(ReferenceOwnership::Unmanaged));
|
|
prop->setInterfaceType(UnmanagedStorageType::get(
|
|
prop->getInterfaceType(), ctx));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Does this name refer to a method that might shadow Swift.print?
|
|
///
|
|
/// As a heuristic, methods that have a base name of 'print' but more than
|
|
/// one argument are left alone. These can still shadow Swift.print but are
|
|
/// less likely to be confused for it, at least.
|
|
static bool isPrintLikeMethod(DeclName name, const DeclContext *dc) {
|
|
if (!name || name.isSpecial() || name.isSimpleName())
|
|
return false;
|
|
if (name.getBaseName().userFacingName() != "print")
|
|
return false;
|
|
if (!dc->isTypeContext())
|
|
return false;
|
|
if (name.getArgumentNames().size() > 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
using MirroredMethodEntry =
|
|
std::tuple<const clang::ObjCMethodDecl*, ProtocolDecl*, bool /*isAsync*/>;
|
|
|
|
static bool areRecordFieldsComplete(const clang::CXXRecordDecl *decl) {
|
|
// If the type is incomplete, then the fields are not complete.
|
|
if (!decl->isCompleteDefinition())
|
|
return false;
|
|
|
|
for (const auto *f : decl->fields()) {
|
|
auto *fieldRecord = f->getType()->getAsCXXRecordDecl();
|
|
if (fieldRecord) {
|
|
if (!fieldRecord->isCompleteDefinition()) {
|
|
return false;
|
|
}
|
|
if (!areRecordFieldsComplete(fieldRecord))
|
|
return false;
|
|
}
|
|
}
|
|
for (const auto base : decl->bases()) {
|
|
if (auto *baseRecord = base.getType()->getAsCXXRecordDecl()) {
|
|
if (!areRecordFieldsComplete(baseRecord))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// Search the member tables for this class and its superclasses and try to
|
|
/// identify the nearest VarDecl that serves as a base for an override. We
|
|
/// have to do this ourselves because Objective-C has no semantic notion of
|
|
/// overrides, and freely allows users to refine the type of any member
|
|
/// property in a derived class.
|
|
///
|
|
/// The override must be the nearest possible one so there are not breaks
|
|
/// in the override chain. That is, suppose C refines B refines A and each
|
|
/// successively redeclares a member with a different type. It should be
|
|
/// the case that the nearest override from C is B and from B is A. If the
|
|
/// override point from C were A, then B would record an override on A as
|
|
/// well and we would introduce a semantic ambiguity.
|
|
///
|
|
/// There is also a special case for finding a method that stomps over a
|
|
/// getter. If this is the case and no override point is identified, we will
|
|
/// not import the property to force users to explicitly call the method.
|
|
static std::pair<VarDecl *, bool>
|
|
identifyNearestOverriddenDecl(ClangImporter::Implementation &Impl,
|
|
DeclContext *dc,
|
|
const clang::ObjCPropertyDecl *decl,
|
|
Identifier name,
|
|
ClassDecl *subject) {
|
|
bool foundMethod = false;
|
|
for (; subject; (subject = subject->getSuperclassDecl())) {
|
|
llvm::SmallVector<ValueDecl *, 8> lookup;
|
|
auto foundNames = Impl.MembersForNominal.find(subject);
|
|
if (foundNames != Impl.MembersForNominal.end()) {
|
|
auto foundDecls = foundNames->second.find(name);
|
|
if (foundDecls != foundNames->second.end()) {
|
|
lookup.append(foundDecls->second.begin(), foundDecls->second.end());
|
|
}
|
|
}
|
|
|
|
for (auto *&result : lookup) {
|
|
if (auto *fd = dyn_cast<FuncDecl>(result)) {
|
|
if (fd->isInstanceMember() != decl->isInstanceProperty())
|
|
continue;
|
|
|
|
// We only care about methods with no arguments, because they can
|
|
// shadow imported properties.
|
|
if (!fd->getName().getArgumentNames().empty())
|
|
continue;
|
|
|
|
// async methods don't conflict with properties because of sync/async
|
|
// overloading.
|
|
if (fd->hasAsync())
|
|
continue;
|
|
|
|
foundMethod = true;
|
|
} else if (auto *var = dyn_cast<VarDecl>(result)) {
|
|
if (var->isInstanceMember() != decl->isInstanceProperty())
|
|
continue;
|
|
|
|
// If the selectors of the getter match in Objective-C, we have an
|
|
// override.
|
|
if (var->getObjCGetterSelector() ==
|
|
Impl.importSelector(decl->getGetterName())) {
|
|
return {var, foundMethod};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return {nullptr, foundMethod};
|
|
}
|
|
|
|
// Attempt to identify the redeclaration of a property.
|
|
//
|
|
// Note that this function does not perform any additional member loading and
|
|
// is therefore subject to the relativistic effects of module import order.
|
|
// That is, suppose that a Clang Module and an Overlay module are in play.
|
|
// Depending on which module loads members first, a redeclaration point may
|
|
// or may not be identifiable.
|
|
VarDecl *
|
|
identifyPropertyRedeclarationPoint(ClangImporter::Implementation &Impl,
|
|
const clang::ObjCPropertyDecl *decl,
|
|
ClassDecl *subject, Identifier name) {
|
|
llvm::SetVector<Decl *> lookup;
|
|
// First, pull in all available members of the base class so we can catch
|
|
// redeclarations of APIs that are refined for Swift.
|
|
auto currentMembers = subject->getCurrentMembersWithoutLoading();
|
|
lookup.insert(currentMembers.begin(), currentMembers.end());
|
|
|
|
// Now pull in any just-imported members from the overrides table.
|
|
auto foundNames = Impl.MembersForNominal.find(subject);
|
|
if (foundNames != Impl.MembersForNominal.end()) {
|
|
auto foundDecls = foundNames->second.find(name);
|
|
if (foundDecls != foundNames->second.end()) {
|
|
lookup.insert(foundDecls->second.begin(), foundDecls->second.end());
|
|
}
|
|
}
|
|
|
|
for (auto *result : lookup) {
|
|
auto *var = dyn_cast<VarDecl>(result);
|
|
if (!var)
|
|
continue;
|
|
|
|
if (var->isInstanceMember() != decl->isInstanceProperty())
|
|
continue;
|
|
|
|
// If the selectors of the getter match in Objective-C, we have a
|
|
// redeclaration.
|
|
if (var->getObjCGetterSelector() ==
|
|
Impl.importSelector(decl->getGetterName())) {
|
|
return var;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Convert Clang declarations into the corresponding Swift
|
|
/// declarations.
|
|
class SwiftDeclConverter
|
|
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
|
|
{
|
|
ClangImporter::Implementation &Impl;
|
|
bool forwardDeclaration = false;
|
|
ImportNameVersion version;
|
|
SwiftDeclSynthesizer synthesizer;
|
|
|
|
/// The version that we're being asked to import for. May not be the version
|
|
/// the user requested, as we may be forming an alternate for diagnostic
|
|
/// purposes.
|
|
ImportNameVersion getVersion() const { return version; }
|
|
|
|
/// The actual language version the user requested we compile for.
|
|
ImportNameVersion getActiveSwiftVersion() const {
|
|
return Impl.CurrentVersion;
|
|
}
|
|
|
|
/// Whether the names we're importing are from the language version the user
|
|
/// requested, or if these are decls from another version
|
|
bool isActiveSwiftVersion() const {
|
|
return getVersion().withConcurrency(false) == getActiveSwiftVersion().withConcurrency(false);
|
|
}
|
|
|
|
void recordMemberInContext(const DeclContext *dc, ValueDecl *member) {
|
|
assert(member && "Attempted to record null member!");
|
|
auto *nominal = dc->getSelfNominalTypeDecl();
|
|
auto name = member->getBaseName();
|
|
Impl.MembersForNominal[nominal][name].push_back(member);
|
|
}
|
|
|
|
/// Import the name of the given entity.
|
|
///
|
|
/// This version of importFullName introduces any context-specific
|
|
/// name importing options (e.g., if we're importing the Swift 2 version).
|
|
///
|
|
/// Note: Use this rather than calling Impl.importFullName directly!
|
|
std::pair<ImportedName, std::optional<ImportedName>>
|
|
importFullName(const clang::NamedDecl *D) {
|
|
ImportNameVersion canonicalVersion = getActiveSwiftVersion();
|
|
if (isa<clang::TypeDecl>(D) || isa<clang::ObjCContainerDecl>(D)) {
|
|
canonicalVersion = ImportNameVersion::forTypes();
|
|
}
|
|
|
|
// First, import based on the Swift name of the canonical declaration:
|
|
// the latest version for types and the current version for non-type
|
|
// values. If that fails, we won't do anything.
|
|
auto canonicalName = Impl.importFullName(D, canonicalVersion);
|
|
if (!canonicalName)
|
|
return {ImportedName(), std::nullopt};
|
|
|
|
if (getVersion() == canonicalVersion) {
|
|
// Make sure we don't try to import the same type twice as canonical.
|
|
if (canonicalVersion != getActiveSwiftVersion()) {
|
|
auto activeName = Impl.importFullName(D, getActiveSwiftVersion());
|
|
if (activeName &&
|
|
activeName.getDeclName() == canonicalName.getDeclName() &&
|
|
activeName.getEffectiveContext().equalsWithoutResolving(
|
|
canonicalName.getEffectiveContext())) {
|
|
return {ImportedName(), std::nullopt};
|
|
}
|
|
}
|
|
|
|
return {canonicalName, std::nullopt};
|
|
}
|
|
|
|
// Special handling when we import using the alternate Swift name.
|
|
//
|
|
// Import using the alternate Swift name. If that fails, or if it's
|
|
// identical to the active Swift name, we won't introduce an alternate
|
|
// Swift name stub declaration.
|
|
auto alternateName = Impl.importFullName(D, getVersion());
|
|
if (!alternateName)
|
|
return {ImportedName(), std::nullopt};
|
|
|
|
// Importing for concurrency is special in that the same declaration
|
|
// is imported both with a completion handler parameter and as 'async',
|
|
// creating two separate declarations.
|
|
if (getVersion().supportsConcurrency()) {
|
|
// If the resulting name isn't special for concurrency, it's not
|
|
// different.
|
|
if (!alternateName.getAsyncInfo())
|
|
return {ImportedName(), std::nullopt};
|
|
|
|
// Otherwise, it's a legitimately different import.
|
|
return {alternateName, std::nullopt};
|
|
}
|
|
|
|
if (alternateName.getDeclName() == canonicalName.getDeclName() &&
|
|
alternateName.getEffectiveContext().equalsWithoutResolving(
|
|
canonicalName.getEffectiveContext())) {
|
|
if (getVersion() == getActiveSwiftVersion()) {
|
|
assert(canonicalVersion != getActiveSwiftVersion());
|
|
return {alternateName, std::nullopt};
|
|
}
|
|
return {ImportedName(), std::nullopt};
|
|
}
|
|
|
|
// Always use the active version as the preferred name, even if the
|
|
// canonical name is a different version.
|
|
ImportedName correctSwiftName =
|
|
Impl.importFullName(D, getActiveSwiftVersion());
|
|
assert(correctSwiftName);
|
|
|
|
return {alternateName, correctSwiftName};
|
|
}
|
|
|
|
/// Create a declaration name for anonymous enums, unions and
|
|
/// structs.
|
|
///
|
|
/// Since Swift does not natively support these features, we fake them by
|
|
/// importing them as declarations with generated names. The generated name
|
|
/// is derived from the name of the field in the outer type. Since the
|
|
/// anonymous type is imported as a nested type of the outer type, this
|
|
/// generated name will most likely be unique.
|
|
std::pair<ImportedName, std::optional<ImportedName>>
|
|
getClangDeclName(const clang::TagDecl *decl) {
|
|
// If we have a name for this declaration, use it.
|
|
auto result = importFullName(decl);
|
|
if (result.first)
|
|
return result;
|
|
|
|
// If that didn't succeed, check whether this is an anonymous tag declaration
|
|
// with a corresponding typedef-name declaration.
|
|
if (decl->getDeclName().isEmpty()) {
|
|
if (auto *typedefForAnon = decl->getTypedefNameForAnonDecl())
|
|
return importFullName(typedefForAnon);
|
|
}
|
|
|
|
return {ImportedName(), std::nullopt};
|
|
}
|
|
|
|
bool isFactoryInit(ImportedName &name) {
|
|
return name && name.getDeclName().getBaseName().isConstructor() &&
|
|
(name.getInitKind() == CtorInitializerKind::Factory ||
|
|
name.getInitKind() == CtorInitializerKind::ConvenienceFactory);
|
|
}
|
|
|
|
public:
|
|
explicit SwiftDeclConverter(ClangImporter::Implementation &impl,
|
|
ImportNameVersion vers)
|
|
: Impl(impl), version(vers), synthesizer(Impl) { }
|
|
|
|
bool hadForwardDeclaration() const {
|
|
return forwardDeclaration;
|
|
}
|
|
|
|
Decl *VisitDecl(const clang::Decl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
|
|
// Note: translation units are handled specially by importDeclContext.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
|
|
DeclContext *dc = nullptr;
|
|
// Do not import namespace declarations marked as 'swift_private'.
|
|
if (decl->hasAttr<clang::SwiftPrivateAttr>())
|
|
return nullptr;
|
|
// Workaround for os module declaring `namespace os` on Darwin, causing
|
|
// name lookup issues. That namespace only declares utility functions that
|
|
// are not supposed to be used from Swift, so let's just not import the
|
|
// namespace (rdar://119044493).
|
|
if (decl->getIdentifier() && decl->getName() == "os" &&
|
|
decl->getOwningModule() &&
|
|
decl->getOwningModule()->getTopLevelModuleName() == "os")
|
|
return nullptr;
|
|
// If this is a top-level namespace, don't put it in the module we're
|
|
// importing, put it in the "__ObjC" module that is implicitly imported.
|
|
if (!decl->getParent()->isNamespace())
|
|
dc = Impl.ImportedHeaderUnit;
|
|
else {
|
|
// This is a nested namespace, so just lookup it's parent normally.
|
|
auto parentNS = cast<clang::NamespaceDecl>(decl->getParent());
|
|
auto parent =
|
|
Impl.importDecl(parentNS, getVersion(), /*UseCanonicalDecl*/ false);
|
|
// The parent namespace might not be imported if it's `swift_private`.
|
|
if (!parent)
|
|
return nullptr;
|
|
dc = cast<EnumDecl>(parent);
|
|
}
|
|
|
|
ImportedName importedName;
|
|
std::tie(importedName, std::ignore) = importFullName(decl);
|
|
// If we don't have a name for this declaration, bail. We can't import it.
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
auto *enumDecl = Impl.createDeclWithClangNode<EnumDecl>(
|
|
decl, AccessLevel::Public, Impl.importSourceLoc(decl->getBeginLoc()),
|
|
importedName.getBaseIdentifier(Impl.SwiftContext),
|
|
Impl.importSourceLoc(decl->getLocation()), ArrayRef<InheritedEntry>(),
|
|
nullptr, dc);
|
|
// TODO: we only have this for the sid effect of calling
|
|
// "FirstDeclAndLazyMembers.setInt(true)".
|
|
// This should never actually try to use Impl as the member loader,
|
|
// that should all be done via requests.
|
|
enumDecl->setMemberLoader(&Impl, 0);
|
|
|
|
// Only import one enum for all redecls of a namespace. Because members
|
|
// are loaded lazily, we can cache all the redecls to prevent the creation
|
|
// of multiple enums.
|
|
for (auto redecl : decl->redecls())
|
|
Impl.ImportedDecls[{redecl, getVersion()}] = enumDecl;
|
|
|
|
for (auto redecl : decl->redecls()) {
|
|
// Because a namespaces's decl context is the bridging header, make sure
|
|
// we add them to the bridging header lookup table.
|
|
addEntryToLookupTable(*Impl.BridgingHeaderLookupTable,
|
|
const_cast<clang::NamespaceDecl *>(redecl),
|
|
Impl.getNameImporter());
|
|
}
|
|
|
|
return enumDecl;
|
|
}
|
|
|
|
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
|
|
// Never imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
auto aliasedDecl =
|
|
Impl.importDecl(decl->getAliasedNamespace(), getActiveSwiftVersion());
|
|
if (!aliasedDecl)
|
|
return nullptr;
|
|
|
|
Type aliasedType;
|
|
if (auto aliasedTypeDecl = dyn_cast<TypeDecl>(aliasedDecl))
|
|
aliasedType = aliasedTypeDecl->getDeclaredInterfaceType();
|
|
else if (auto aliasedExtDecl = dyn_cast<ExtensionDecl>(aliasedDecl))
|
|
// This happens if the alias points to its parent namespace.
|
|
aliasedType = aliasedExtDecl->getExtendedType();
|
|
else
|
|
return nullptr;
|
|
|
|
auto result = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
decl, AccessLevel::Public, Impl.importSourceLoc(decl->getBeginLoc()),
|
|
SourceLoc(), name, Impl.importSourceLoc(decl->getLocation()),
|
|
/*GenericParams=*/nullptr, dc);
|
|
result->setUnderlyingType(aliasedType);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
|
|
// Labels are function-local, and therefore never imported.
|
|
return nullptr;
|
|
}
|
|
|
|
ClassDecl *importCFClassType(const clang::TypedefNameDecl *decl,
|
|
Identifier className, CFPointeeInfo info,
|
|
EffectiveClangContext effectiveContext);
|
|
|
|
/// Mark the given declaration as an older Swift version variant of the
|
|
/// current name.
|
|
void markAsVariant(Decl *decl, ImportedName correctSwiftName) {
|
|
// Types always import using the latest version. Make sure all names up
|
|
// to that version are considered available.
|
|
if (isa<TypeDecl>(decl)) {
|
|
cast<TypeAliasDecl>(decl)->markAsCompatibilityAlias();
|
|
|
|
if (getVersion() >= getActiveSwiftVersion())
|
|
return;
|
|
}
|
|
|
|
// If this the active and current Swift versions differ based on
|
|
// concurrency, it's not actually a variant.
|
|
if (getVersion().supportsConcurrency() !=
|
|
getActiveSwiftVersion().supportsConcurrency()) {
|
|
return;
|
|
}
|
|
|
|
// TODO: some versions should be deprecated instead of unavailable
|
|
|
|
ASTContext &ctx = decl->getASTContext();
|
|
llvm::SmallString<64> renamed;
|
|
{
|
|
// Render a swift_name string.
|
|
llvm::raw_svector_ostream os(renamed);
|
|
|
|
// If we're importing a global as a member, we need to provide the
|
|
// effective context.
|
|
Impl.printSwiftName(
|
|
correctSwiftName, getActiveSwiftVersion(),
|
|
/*fullyQualified=*/correctSwiftName.importAsMember(), os);
|
|
}
|
|
|
|
DeclAttribute *attr;
|
|
if (isActiveSwiftVersion() || getVersion() == ImportNameVersion::raw()) {
|
|
// "Raw" is the Objective-C name, which was never available in Swift.
|
|
// Variants within the active version are usually declarations that
|
|
// have been superseded, like the accessors of a property.
|
|
attr = AvailableAttr::createUnavailableInSwift(
|
|
ctx, /*Message*/ StringRef(), ctx.AllocateCopy(renamed.str()));
|
|
} else {
|
|
unsigned majorVersion = getVersion().majorVersionNumber();
|
|
unsigned minorVersion = getVersion().minorVersionNumber();
|
|
if (getVersion() < getActiveSwiftVersion()) {
|
|
// A Swift 2 name, for example, was obsoleted in Swift 3.
|
|
// However, a Swift 4 name is obsoleted in Swift 4.2.
|
|
// FIXME: it would be better to have a unified place
|
|
// to represent Swift versions for API versioning.
|
|
llvm::VersionTuple obsoletedVersion =
|
|
(majorVersion == 4 && minorVersion < 2)
|
|
? llvm::VersionTuple(4, 2)
|
|
: llvm::VersionTuple(majorVersion + 1);
|
|
attr = AvailableAttr::createSwiftLanguageModeVersioned(
|
|
ctx, /*Message=*/"", ctx.AllocateCopy(renamed.str()),
|
|
/*Introduced=*/{}, obsoletedVersion);
|
|
} else {
|
|
// Future names are introduced in their future version.
|
|
assert(getVersion() > getActiveSwiftVersion());
|
|
llvm::VersionTuple introducedVersion =
|
|
(majorVersion == 4 && minorVersion == 2)
|
|
? llvm::VersionTuple(4, 2)
|
|
: llvm::VersionTuple(majorVersion);
|
|
attr = AvailableAttr::createSwiftLanguageModeVersioned(
|
|
ctx, /*Message=*/"", ctx.AllocateCopy(renamed.str()),
|
|
introducedVersion, /*Obsoleted=*/{});
|
|
}
|
|
}
|
|
|
|
decl->addAttribute(attr);
|
|
decl->setImplicit();
|
|
}
|
|
|
|
/// Create a typealias for the name of a Clang type declaration in an
|
|
/// alternate version of Swift.
|
|
Decl *importCompatibilityTypeAlias(const clang::NamedDecl *decl,
|
|
ImportedName compatibilityName,
|
|
ImportedName correctSwiftName);
|
|
|
|
/// Create a swift_newtype struct corresponding to a typedef. Returns
|
|
/// nullptr if unable.
|
|
Decl *importSwiftNewtype(const clang::TypedefNameDecl *decl,
|
|
clang::SwiftNewTypeAttr *newtypeAttr,
|
|
DeclContext *dc, Identifier name);
|
|
|
|
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(Decl);
|
|
auto Name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (Name.empty())
|
|
return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(Decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
Type SwiftType;
|
|
auto clangDC = Decl->getDeclContext()->getRedeclContext();
|
|
if (clangDC->isTranslationUnit() || clangDC->isStdNamespace()) {
|
|
bool IsError;
|
|
StringRef StdlibTypeName;
|
|
MappedTypeNameKind NameMapping;
|
|
std::tie(SwiftType, StdlibTypeName) =
|
|
getSwiftStdlibType(Decl, Name, Impl, &IsError, NameMapping);
|
|
|
|
if (IsError)
|
|
return nullptr;
|
|
|
|
// Import 'typedef struct __Blah *BlahRef;' and
|
|
// 'typedef const void *FooRef;' as CF types if they have the
|
|
// right attributes or match our list of known types.
|
|
if (!SwiftType) {
|
|
auto DC = Impl.importDeclContextOf(
|
|
Decl, importedName.getEffectiveContext());
|
|
if (!DC)
|
|
return nullptr;
|
|
|
|
if (auto pointee = CFPointeeInfo::classifyTypedef(Decl)) {
|
|
// If the pointee is a record, consider creating a class type.
|
|
if (pointee.isRecord()) {
|
|
auto swiftClass = importCFClassType(
|
|
Decl, Name, pointee, importedName.getEffectiveContext());
|
|
if (!swiftClass) return nullptr;
|
|
|
|
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
|
|
MappedTypeNameKind::DefineAndUse;
|
|
return swiftClass;
|
|
}
|
|
|
|
// If the pointee is another CF typedef, create an extra typealias
|
|
// for the name without "Ref", but not a separate type.
|
|
if (pointee.isTypedef()) {
|
|
auto underlying = cast_or_null<TypeDecl>(Impl.importDecl(
|
|
pointee.getTypedef(), getActiveSwiftVersion()));
|
|
if (!underlying)
|
|
return nullptr;
|
|
|
|
// Check for a newtype
|
|
if (auto newtypeAttr =
|
|
getSwiftNewtypeAttr(Decl, getVersion()))
|
|
if (auto newtype =
|
|
importSwiftNewtype(Decl, newtypeAttr, DC, Name))
|
|
return newtype;
|
|
|
|
// Create a typealias for this CF typedef.
|
|
TypeAliasDecl *typealias = nullptr;
|
|
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
Decl, importer::convertClangAccess(Decl->getAccess()),
|
|
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name,
|
|
Impl.importSourceLoc(Decl->getLocation()),
|
|
/*genericparams*/ nullptr, DC);
|
|
typealias->setUnderlyingType(
|
|
underlying->getDeclaredInterfaceType());
|
|
|
|
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
|
|
MappedTypeNameKind::DefineAndUse;
|
|
return typealias;
|
|
}
|
|
|
|
// If the pointee is 'void', 'CFTypeRef', bring it
|
|
// in specifically as AnyObject.
|
|
if (pointee.isVoid()) {
|
|
// Create a typealias for this CF typedef.
|
|
TypeAliasDecl *typealias = nullptr;
|
|
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
Decl, importer::convertClangAccess(Decl->getAccess()),
|
|
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name,
|
|
Impl.importSourceLoc(Decl->getLocation()),
|
|
/*genericparams*/ nullptr, DC);
|
|
typealias->setUnderlyingType(
|
|
Impl.SwiftContext.getAnyObjectType());
|
|
|
|
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
|
|
MappedTypeNameKind::DefineAndUse;
|
|
return typealias;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SwiftType) {
|
|
// Note that this typedef-name is special.
|
|
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] = NameMapping;
|
|
|
|
if (NameMapping == MappedTypeNameKind::DoNothing) {
|
|
// Record the remapping using the name of the Clang declaration.
|
|
// This will be useful for type checker diagnostics when
|
|
// a user tries to use the Objective-C/C type instead of the
|
|
// Swift type.
|
|
Impl.SwiftContext.RemappedTypes[Decl->getNameAsString()]
|
|
= SwiftType;
|
|
|
|
// Don't create an extra typealias in the imported module because
|
|
// doing so will cause confusion (or even lookup ambiguity) between
|
|
// the name in the imported module and the same name in the
|
|
// standard library.
|
|
if (auto *NAT =
|
|
dyn_cast<TypeAliasType>(SwiftType.getPointer()))
|
|
return NAT->getDecl();
|
|
|
|
auto *NTD = SwiftType->getAnyNominal();
|
|
assert(NTD);
|
|
return NTD;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto DC =
|
|
Impl.importDeclContextOf(Decl, importedName.getEffectiveContext());
|
|
if (!DC)
|
|
return nullptr;
|
|
|
|
// Check for swift_newtype
|
|
if (!SwiftType)
|
|
if (auto newtypeAttr = getSwiftNewtypeAttr(Decl, getVersion()))
|
|
if (auto newtype = importSwiftNewtype(Decl, newtypeAttr, DC, Name))
|
|
return newtype;
|
|
|
|
if (!SwiftType) {
|
|
// Note that the code below checks to see if the typedef allows
|
|
// bridging, i.e. if the imported typealias should name a bridged type
|
|
// or the original C type.
|
|
clang::QualType ClangType = Decl->getUnderlyingType();
|
|
|
|
SwiftType = Impl.importTypeIgnoreIUO(
|
|
ClangType, ImportTypeKind::Typedef,
|
|
ImportDiagnosticAdder(Impl, Decl, Decl->getLocation()),
|
|
isInSystemModule(DC), getTypedefBridgeability(Decl),
|
|
getImportTypeAttrs(Decl), OTK_Optional);
|
|
}
|
|
|
|
if (!SwiftType)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(Decl->getLocation());
|
|
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
Decl, importer::convertClangAccess(Decl->getAccess()),
|
|
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name, Loc,
|
|
/*genericparams*/ nullptr, DC);
|
|
|
|
Result->setUnderlyingType(SwiftType);
|
|
if (SwiftType->isUnsafe())
|
|
Result->addAttribute(new (Impl.SwiftContext)
|
|
UnsafeAttr(/*implicit=*/true));
|
|
|
|
// Make Objective-C's 'id' unavailable.
|
|
if (Impl.SwiftContext.LangOpts.EnableObjCInterop && isObjCId(Decl)) {
|
|
auto attr = AvailableAttr::createUnavailableInSwift(
|
|
Impl.SwiftContext, "'id' is not available in Swift; use 'Any'", "");
|
|
Result->addAttribute(attr);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
Decl *
|
|
VisitUnresolvedUsingTypenameDecl(const
|
|
clang::UnresolvedUsingTypenameDecl *decl) {
|
|
// Note: only occurs in templates.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Import an NS_ENUM constant as a case of a Swift enum.
|
|
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
EnumDecl *theEnum,
|
|
Decl *swift3Decl = nullptr);
|
|
|
|
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
|
|
///
|
|
/// This is also used to import enum case aliases.
|
|
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
NominalTypeDecl *theStruct);
|
|
|
|
/// Import \p alias as an alias for the imported constant \p original.
|
|
///
|
|
/// This builds the getter in a way that's compatible with switch
|
|
/// statements. Changing the body here may require changing
|
|
/// TypeCheckPattern.cpp as well.
|
|
Decl *importEnumCaseAlias(Identifier name,
|
|
const clang::EnumConstantDecl *alias,
|
|
ValueDecl *original,
|
|
const clang::EnumDecl *clangEnum,
|
|
NominalTypeDecl *importedEnum,
|
|
DeclContext *importIntoDC = nullptr);
|
|
|
|
NominalTypeDecl *importAsOptionSetType(DeclContext *dc,
|
|
Identifier name,
|
|
const clang::EnumDecl *decl);
|
|
|
|
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
|
|
decl = decl->getDefinition();
|
|
if (!decl) {
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// Don't import nominal types that are over-aligned.
|
|
if (Impl.isOverAligned(decl))
|
|
return nullptr;
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = getClangDeclName(decl);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// It's possible that we already encountered and imported decl while
|
|
// importing its decl context. If we are able to find a cached result,
|
|
// use it to avoid making a duplicate imported decl.
|
|
auto alreadyImported =
|
|
Impl.ImportedDecls.find({decl->getCanonicalDecl(), getVersion()});
|
|
if (alreadyImported != Impl.ImportedDecls.end())
|
|
return alreadyImported->second;
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
|
|
// Create the enum declaration and record it.
|
|
ImportDiagnosticAdder addDiag(Impl, decl, decl->getLocation());
|
|
StructDecl *errorWrapper = nullptr;
|
|
NominalTypeDecl *result;
|
|
auto enumInfo = Impl.getEnumInfo(decl);
|
|
auto enumKind = enumInfo.getKind();
|
|
switch (enumKind) {
|
|
case EnumKind::Constants: {
|
|
// There is no declaration. Rather, the type is mapped to the
|
|
// underlying type.
|
|
return nullptr;
|
|
}
|
|
|
|
case EnumKind::Unknown: {
|
|
// Compute the underlying type of the enumeration.
|
|
auto underlyingType = Impl.importTypeIgnoreIUO(
|
|
decl->getIntegerType(), ImportTypeKind::Enum, addDiag,
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
auto access = importer::convertClangAccess(decl->getAccess());
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
|
|
decl, access, Loc, name, Loc, ArrayRef<InheritedEntry>(), nullptr,
|
|
dc);
|
|
|
|
auto options = getDefaultMakeStructRawValuedOptions();
|
|
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
|
|
options -= MakeStructRawValuedFlags::IsLet;
|
|
options -= MakeStructRawValuedFlags::IsImplicit;
|
|
|
|
synthesizer.makeStructRawValued(structDecl, underlyingType,
|
|
{KnownProtocolKind::RawRepresentable,
|
|
KnownProtocolKind::Equatable,
|
|
KnownProtocolKind::Hashable},
|
|
options, /*setterAccess=*/access);
|
|
|
|
result = structDecl;
|
|
break;
|
|
}
|
|
|
|
case EnumKind::NonFrozenEnum:
|
|
case EnumKind::FrozenEnum: {
|
|
auto &C = Impl.SwiftContext;
|
|
EnumDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
// Compute the underlying type.
|
|
auto underlyingType = Impl.importTypeIgnoreIUO(
|
|
decl->getIntegerType(), ImportTypeKind::Enum, addDiag,
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
/// Basic information about the enum type we're building.
|
|
Identifier enumName = name;
|
|
DeclContext *enumDC = dc;
|
|
SourceLoc loc = Impl.importSourceLoc(decl->getBeginLoc());
|
|
|
|
// If this is an error enum, form the error wrapper type,
|
|
// which is a struct containing an NSError instance.
|
|
ProtocolDecl *bridgedNSError = nullptr;
|
|
ClassDecl *nsErrorDecl = nullptr;
|
|
ProtocolDecl *errorCodeProto = nullptr;
|
|
if (enumInfo.isErrorEnum() &&
|
|
(bridgedNSError =
|
|
C.getProtocol(KnownProtocolKind::BridgedStoredNSError)) &&
|
|
(nsErrorDecl = C.getNSErrorDecl()) &&
|
|
(errorCodeProto =
|
|
C.getProtocol(KnownProtocolKind::ErrorCodeProtocol))) {
|
|
assert(
|
|
decl->getAccess() != clang::AS_private &&
|
|
decl->getAccess() != clang::AS_protected &&
|
|
"NSError enums shouldn't be defined as non-public C++ members");
|
|
// Create the wrapper struct.
|
|
errorWrapper =
|
|
new (C) StructDecl(loc, name, loc, /*Inherited*/ {}, nullptr, dc);
|
|
SourceLoc end = Impl.importSourceLoc(decl->getEndLoc());
|
|
errorWrapper->setBraces(SourceRange(loc, end));
|
|
errorWrapper->setAccess(AccessLevel::Public);
|
|
errorWrapper->addAttribute(new (Impl.SwiftContext)
|
|
FrozenAttr(/*IsImplicit*/ true));
|
|
|
|
StringRef nameForMangling;
|
|
ClangImporterSynthesizedTypeAttr::Kind relatedEntityKind;
|
|
if (decl->getDeclName().isEmpty()) {
|
|
nameForMangling = decl->getTypedefNameForAnonDecl()->getName();
|
|
relatedEntityKind =
|
|
ClangImporterSynthesizedTypeAttr::Kind::NSErrorWrapperAnon;
|
|
} else {
|
|
nameForMangling = decl->getName();
|
|
relatedEntityKind =
|
|
ClangImporterSynthesizedTypeAttr::Kind::NSErrorWrapper;
|
|
}
|
|
errorWrapper->addAttribute(new (C) ClangImporterSynthesizedTypeAttr(
|
|
nameForMangling, relatedEntityKind));
|
|
|
|
// Add inheritance clause.
|
|
Impl.addSynthesizedProtocolAttrs(
|
|
errorWrapper, {KnownProtocolKind::BridgedStoredNSError});
|
|
|
|
// Create the _nsError member.
|
|
// public let _nsError: NSError
|
|
auto nsErrorType = nsErrorDecl->getDeclaredInterfaceType();
|
|
auto nsErrorProp = new (C) VarDecl(/*IsStatic*/false,
|
|
VarDecl::Introducer::Let,
|
|
loc, C.Id_nsError,
|
|
errorWrapper);
|
|
nsErrorProp->setImplicit();
|
|
nsErrorProp->setAccess(AccessLevel::Public);
|
|
nsErrorProp->setInterfaceType(nsErrorType);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *nsErrorPattern =
|
|
synthesizer.createTypedNamedPattern(nsErrorProp);
|
|
|
|
auto *nsErrorBinding = PatternBindingDecl::createImplicit(
|
|
C, StaticSpellingKind::None, nsErrorPattern, /*InitExpr*/ nullptr,
|
|
/*ParentDC*/ errorWrapper, /*VarLoc*/ loc);
|
|
errorWrapper->addMember(nsErrorProp);
|
|
errorWrapper->addMember(nsErrorBinding);
|
|
|
|
// Create the _nsError initializer.
|
|
// public init(_nsError error: NSError)
|
|
VarDecl *members[1] = {nsErrorProp};
|
|
auto nsErrorInit =
|
|
synthesizer.createValueConstructor(errorWrapper, members,
|
|
/*wantCtorParamNames=*/true,
|
|
/*wantBody=*/true);
|
|
errorWrapper->addMember(nsErrorInit);
|
|
|
|
// Add the domain error member.
|
|
// public static var errorDomain: String { return error-domain }
|
|
addErrorDomain(errorWrapper, enumInfo.getErrorDomain(), Impl);
|
|
|
|
// Note: the Code will be added after it's created.
|
|
|
|
// The enum itself will be nested within the error wrapper,
|
|
// and be named Code.
|
|
enumDC = errorWrapper;
|
|
enumName = C.Id_Code;
|
|
}
|
|
|
|
// Create the enumeration.
|
|
auto enumDecl = Impl.createDeclWithClangNode<EnumDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), loc,
|
|
enumName, Impl.importSourceLoc(decl->getLocation()),
|
|
ArrayRef<InheritedEntry>(), nullptr, enumDC);
|
|
enumDecl->setHasFixedRawValues();
|
|
|
|
// Annotate as 'frozen' if appropriate.
|
|
if (enumKind == EnumKind::FrozenEnum)
|
|
enumDecl->addAttribute(new (C) FrozenAttr(/*implicit*/ false));
|
|
|
|
// Set up the C underlying type as its Swift raw type.
|
|
enumDecl->setRawType(underlyingType);
|
|
|
|
// Add the C name.
|
|
addObjCAttribute(enumDecl,
|
|
Impl.importIdentifier(decl->getIdentifier()));
|
|
|
|
// Add protocol declarations to the enum declaration.
|
|
SmallVector<InheritedEntry, 2> inheritedTypes;
|
|
inheritedTypes.push_back(
|
|
InheritedEntry(TypeLoc::withoutLoc(underlyingType)));
|
|
enumDecl->setInherited(C.AllocateCopy(inheritedTypes));
|
|
|
|
if (errorWrapper) {
|
|
Impl.addSynthesizedProtocolAttrs(
|
|
enumDecl, {KnownProtocolKind::ErrorCodeProtocol,
|
|
KnownProtocolKind::RawRepresentable});
|
|
} else {
|
|
Impl.addSynthesizedProtocolAttrs(
|
|
enumDecl, {KnownProtocolKind::RawRepresentable});
|
|
}
|
|
|
|
// Provide custom implementations of the init(rawValue:) and rawValue
|
|
// conversions that just do a bitcast. We can't reliably filter a
|
|
// C enum without additional knowledge that the type has no
|
|
// undeclared values, and won't ever add cases.
|
|
auto rawValueConstructor =
|
|
synthesizer.makeEnumRawValueConstructor(enumDecl);
|
|
|
|
auto varName = C.Id_rawValue;
|
|
auto rawValue = new (C) VarDecl(/*IsStatic*/false,
|
|
VarDecl::Introducer::Var,
|
|
SourceLoc(), varName,
|
|
enumDecl);
|
|
rawValue->setImplicit();
|
|
rawValue->copyFormalAccessFrom(enumDecl);
|
|
rawValue->setSetterAccess(AccessLevel::Private);
|
|
rawValue->setInterfaceType(underlyingType);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *varPattern = synthesizer.createTypedNamedPattern(rawValue);
|
|
|
|
auto *rawValueBinding = PatternBindingDecl::createImplicit(
|
|
C, StaticSpellingKind::None, varPattern, /*InitExpr*/ nullptr,
|
|
enumDecl);
|
|
|
|
synthesizer.makeEnumRawValueGetter(enumDecl, rawValue);
|
|
|
|
enumDecl->addMember(rawValueConstructor);
|
|
enumDecl->addMember(rawValue);
|
|
enumDecl->addMember(rawValueBinding);
|
|
|
|
Impl.addSynthesizedTypealias(enumDecl, C.Id_RawValue, underlyingType);
|
|
Impl.RawTypes[enumDecl] = underlyingType;
|
|
|
|
// If we have an error wrapper, finish it up now that its
|
|
// nested enum has been constructed.
|
|
if (errorWrapper) {
|
|
assert(
|
|
decl->getAccess() != clang::AS_private &&
|
|
decl->getAccess() != clang::AS_protected &&
|
|
"NSError enums shouldn't be defined as non-public C++ members");
|
|
// Add the ErrorType alias:
|
|
// public typealias ErrorType
|
|
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
decl,
|
|
AccessLevel::Public, loc, SourceLoc(),
|
|
C.Id_ErrorType, loc,
|
|
/*genericparams=*/nullptr, enumDecl);
|
|
alias->setUnderlyingType(errorWrapper->getDeclaredInterfaceType());
|
|
enumDecl->addMember(alias);
|
|
|
|
// Add the 'Code' enum to the error wrapper.
|
|
errorWrapper->addMember(enumDecl);
|
|
Impl.addAlternateDecl(enumDecl, errorWrapper);
|
|
|
|
// Stash the 'Code' enum so we can find it later.
|
|
Impl.ErrorCodeEnums[errorWrapper] = enumDecl;
|
|
}
|
|
|
|
// The enumerators go into this enumeration.
|
|
result = enumDecl;
|
|
break;
|
|
}
|
|
|
|
case EnumKind::Options: {
|
|
result = importAsOptionSetType(dc, name, decl);
|
|
if (!result)
|
|
return nullptr;
|
|
|
|
// HACK: Make sure PrintAsClang always omits the 'enum' tag for
|
|
// option set enums.
|
|
Impl.DeclsWithSuperfluousTypedefs.insert(decl);
|
|
break;
|
|
}
|
|
}
|
|
|
|
const clang::EnumDecl *canonicalClangDecl = decl->getCanonicalDecl();
|
|
Impl.ImportedDecls[{canonicalClangDecl, getVersion()}] = result;
|
|
|
|
// Import each of the enumerators.
|
|
|
|
bool addEnumeratorsAsMembers;
|
|
switch (enumKind) {
|
|
case EnumKind::Constants:
|
|
case EnumKind::Unknown:
|
|
addEnumeratorsAsMembers = false;
|
|
break;
|
|
case EnumKind::Options:
|
|
case EnumKind::NonFrozenEnum:
|
|
case EnumKind::FrozenEnum:
|
|
addEnumeratorsAsMembers = true;
|
|
break;
|
|
}
|
|
|
|
/// A table mapping each raw value used in this enum to the clang or
|
|
/// Swift decl for the "canonical" constant corresponding to that raw
|
|
/// value. The clang decls represent cases that haven't yet been imported;
|
|
/// the Swift decls represent cases that have been imported before.
|
|
///
|
|
/// The problem we are trying to solve here is that C allows several
|
|
/// constants in the same enum to have the same raw value, but Swift does
|
|
/// not. We must therefore resolve collisions by selecting one case to be
|
|
/// the "canonical" one that will be imported as an \c EnumElementDecl
|
|
/// and importing the others as static \c VarDecl aliases of it. This
|
|
/// map knows which constants are canonical and can map a constant's raw
|
|
/// value to its corresponding canonical constant.
|
|
///
|
|
/// Note that unavailable constants don't get inserted into this table,
|
|
/// so if an unavailable constant has no available alias, it simply won't
|
|
/// be present here. (Potential raw value conflicts doesn't really matter
|
|
/// for them because they will be imported as unavailable anyway.)
|
|
llvm::SmallDenseMap<llvm::APSInt,
|
|
PointerUnion<const clang::EnumConstantDecl *,
|
|
EnumElementDecl *>, 8> canonicalEnumConstants;
|
|
|
|
// Fill in `canonicalEnumConstants` if it will be used.
|
|
if (enumKind == EnumKind::NonFrozenEnum ||
|
|
enumKind == EnumKind::FrozenEnum) {
|
|
for (auto constant : decl->enumerators()) {
|
|
if (Impl.isUnavailableInSwift(constant))
|
|
continue;
|
|
canonicalEnumConstants.insert({constant->getInitVal(), constant});
|
|
}
|
|
}
|
|
|
|
auto contextIsEnum = [&](const ImportedName &name) -> bool {
|
|
EffectiveClangContext importContext = name.getEffectiveContext();
|
|
switch (importContext.getKind()) {
|
|
case EffectiveClangContext::DeclContext:
|
|
return importContext.getAsDeclContext() == canonicalClangDecl;
|
|
case EffectiveClangContext::TypedefContext: {
|
|
auto *typedefName = importContext.getTypedefName();
|
|
clang::QualType underlyingTy = typedefName->getUnderlyingType();
|
|
return underlyingTy->getAsTagDecl() == canonicalClangDecl;
|
|
}
|
|
case EffectiveClangContext::UnresolvedContext:
|
|
// Assume this is a context other than the enum.
|
|
return false;
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
};
|
|
|
|
for (auto constant : decl->enumerators()) {
|
|
Decl *enumeratorDecl = nullptr;
|
|
TinyPtrVector<Decl *> variantDecls;
|
|
switch (enumKind) {
|
|
case EnumKind::Constants:
|
|
case EnumKind::Unknown:
|
|
Impl.forEachDistinctName(constant,
|
|
[&](ImportedName newName,
|
|
ImportNameVersion nameVersion) -> bool {
|
|
Decl *imported = Impl.importDecl(constant, nameVersion);
|
|
if (!imported)
|
|
return false;
|
|
if (nameVersion == getActiveSwiftVersion())
|
|
enumeratorDecl = imported;
|
|
else
|
|
variantDecls.push_back(imported);
|
|
return true;
|
|
});
|
|
break;
|
|
case EnumKind::Options:
|
|
Impl.forEachDistinctName(constant,
|
|
[&](ImportedName newName,
|
|
ImportNameVersion nameVersion) -> bool {
|
|
if (!contextIsEnum(newName))
|
|
return true;
|
|
SwiftDeclConverter converter(Impl, nameVersion);
|
|
Decl *imported =
|
|
converter.importOptionConstant(constant, decl, result);
|
|
if (!imported)
|
|
return false;
|
|
if (nameVersion == getActiveSwiftVersion())
|
|
enumeratorDecl = imported;
|
|
else
|
|
variantDecls.push_back(imported);
|
|
return true;
|
|
});
|
|
break;
|
|
case EnumKind::NonFrozenEnum:
|
|
case EnumKind::FrozenEnum: {
|
|
auto canonicalCaseIter =
|
|
canonicalEnumConstants.find(constant->getInitVal());
|
|
|
|
if (canonicalCaseIter == canonicalEnumConstants.end()) {
|
|
// Unavailable declarations get no special treatment.
|
|
enumeratorDecl =
|
|
SwiftDeclConverter(Impl, getActiveSwiftVersion())
|
|
.importEnumCase(constant, decl, cast<EnumDecl>(result));
|
|
} else {
|
|
// Will initially be nullptr if `canonicalCaseIter` points to a
|
|
// memoized result.
|
|
const clang::EnumConstantDecl *canonConstant =
|
|
canonicalCaseIter->
|
|
second.dyn_cast<const clang::EnumConstantDecl *>();
|
|
|
|
// First, either import the canonical constant for this case,
|
|
// or extract the memoized result of a previous import (and use it
|
|
// to populate `canonConstant`).
|
|
if (canonConstant) {
|
|
enumeratorDecl = SwiftDeclConverter(Impl, getActiveSwiftVersion())
|
|
.importEnumCase(canonConstant, decl, cast<EnumDecl>(result));
|
|
if (enumeratorDecl) {
|
|
// Memoize so we end up in the `else` branch next time.
|
|
canonicalCaseIter->getSecond() =
|
|
cast<EnumElementDecl>(enumeratorDecl);
|
|
}
|
|
} else {
|
|
enumeratorDecl =
|
|
cast<EnumElementDecl *>(canonicalCaseIter->second);
|
|
canonConstant =
|
|
cast<clang::EnumConstantDecl>(enumeratorDecl->getClangDecl());
|
|
}
|
|
|
|
// If `constant` wasn't the `canonConstant`, import it as an alias.
|
|
if (canonConstant != constant && enumeratorDecl) {
|
|
ImportedName importedName =
|
|
Impl.importFullName(constant, getActiveSwiftVersion());
|
|
Identifier name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty()) {
|
|
// Clear the existing declaration so we don't try to process it
|
|
// twice later.
|
|
enumeratorDecl = nullptr;
|
|
} else {
|
|
auto original = cast<ValueDecl>(enumeratorDecl);
|
|
enumeratorDecl = importEnumCaseAlias(name, constant, original,
|
|
decl, result);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now import each of the constant's alternate names.
|
|
Impl.forEachDistinctName(constant,
|
|
[&](ImportedName newName,
|
|
ImportNameVersion nameVersion) -> bool {
|
|
if (nameVersion == getActiveSwiftVersion())
|
|
return true;
|
|
if (!contextIsEnum(newName))
|
|
return true;
|
|
SwiftDeclConverter converter(Impl, nameVersion);
|
|
Decl *imported =
|
|
converter.importEnumCase(constant, decl, cast<EnumDecl>(result),
|
|
enumeratorDecl);
|
|
if (!imported)
|
|
return false;
|
|
variantDecls.push_back(imported);
|
|
return true;
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
if (!enumeratorDecl)
|
|
continue;
|
|
|
|
if (addEnumeratorsAsMembers) {
|
|
// Add a member enumerator to the given nominal type.
|
|
auto addDecl = [&](NominalTypeDecl *nominal, Decl *decl) {
|
|
if (!decl) return;
|
|
nominal->addMember(decl);
|
|
};
|
|
|
|
addDecl(result, enumeratorDecl);
|
|
for (auto *variant : variantDecls)
|
|
addDecl(result, variant);
|
|
|
|
// If there is an error wrapper, add an alias within the
|
|
// wrapper to the corresponding value within the enumerator
|
|
// context.
|
|
if (errorWrapper) {
|
|
auto enumeratorValue = cast<ValueDecl>(enumeratorDecl);
|
|
auto name = enumeratorValue->getBaseIdentifier();
|
|
auto alias = importEnumCaseAlias(name,
|
|
constant,
|
|
enumeratorValue,
|
|
decl,
|
|
result,
|
|
errorWrapper);
|
|
addDecl(errorWrapper, alias);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We don't always add an imported canonical constant to the enum's
|
|
// members right away, but we should have by the time we leave the loop.
|
|
// Verify that they are all in the enum's member list. (rdar://148213237)
|
|
if (CONDITIONAL_ASSERT_enabled()) {
|
|
for (const auto &entry : canonicalEnumConstants) {
|
|
auto importedCase = entry.second.dyn_cast<EnumElementDecl *>();
|
|
if (!importedCase)
|
|
continue;
|
|
|
|
ASSERT(llvm::is_contained(result->getCurrentMembers(), importedCase));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool recordHasReferenceSemantics(const clang::RecordDecl *decl) {
|
|
return importer::recordHasReferenceSemantics(decl, &Impl);
|
|
}
|
|
|
|
bool recordIsCopyable(const clang::RecordDecl *decl) {
|
|
auto semanticsKind = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CxxValueSemantics({decl->getTypeForDecl(), &Impl}), {});
|
|
return semanticsKind == CxxValueSemanticsKind::Copyable;
|
|
}
|
|
|
|
void markReturnsUnsafeNonescapable(AbstractFunctionDecl *fd) {
|
|
fd->addAttribute(new (Impl.SwiftContext) UnsafeAttr(/*Implicit=*/true));
|
|
|
|
unsigned resultIndex = fd->getParameters()->size();
|
|
if (fd->hasImplicitSelfDecl()) {
|
|
++resultIndex;
|
|
}
|
|
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
|
|
LifetimeDependenceInfo immortalLifetime(nullptr, nullptr, resultIndex,
|
|
/*isImmortal*/ true);
|
|
lifetimeDependencies.push_back(immortalLifetime);
|
|
Impl.SwiftContext.evaluator.cacheOutput(
|
|
LifetimeDependenceInfoRequest{fd},
|
|
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
|
|
return;
|
|
}
|
|
|
|
bool
|
|
injectBridgingConversionsForRefCountedSmartPtrs(NominalTypeDecl *smartPtr) {
|
|
for (const auto *attr : smartPtr->getAttrs()) {
|
|
if (const auto *customAttr = dyn_cast<CustomAttr>(attr)) {
|
|
if (!customAttr->getTypeRepr()->isSimpleUnqualifiedIdentifier(
|
|
"_refCountedPtr"))
|
|
continue;
|
|
auto clangDecl = cast<clang::TagDecl>(smartPtr->getClangDecl());
|
|
StringRef ToRawPtrFuncName;
|
|
for (auto arg : *customAttr->getArgs()) {
|
|
if (arg.getLabel().str() == "ToRawPointer") {
|
|
if (const auto *literal =
|
|
dyn_cast<StringLiteralExpr>(arg.getExpr()))
|
|
ToRawPtrFuncName = literal->getValue();
|
|
}
|
|
}
|
|
if (ToRawPtrFuncName.empty()) {
|
|
Impl.addImportDiagnostic(
|
|
clangDecl,
|
|
Diagnostic(diag::refcounted_ptr_missing_torawpointer,
|
|
clangDecl),
|
|
clangDecl->getLocation());
|
|
return false;
|
|
}
|
|
|
|
auto results = getValueDeclsForName(smartPtr, ToRawPtrFuncName);
|
|
if (results.empty()) {
|
|
Impl.addImportDiagnostic(
|
|
clangDecl,
|
|
Diagnostic(
|
|
diag::refcounted_ptr_torawpointer_lookup_failure,
|
|
Impl.SwiftContext.AllocateCopy(ToRawPtrFuncName.str()),
|
|
clangDecl),
|
|
clangDecl->getLocation());
|
|
return false;
|
|
}
|
|
if (results.size() > 1) {
|
|
Impl.addImportDiagnostic(
|
|
clangDecl,
|
|
Diagnostic(
|
|
diag::refcounted_ptr_torawpointer_lookup_ambiguity,
|
|
Impl.SwiftContext.AllocateCopy(ToRawPtrFuncName.str()),
|
|
clangDecl),
|
|
clangDecl->getLocation());
|
|
return false;
|
|
}
|
|
|
|
auto toRawPtrFunc = dyn_cast<FuncDecl>(results.front());
|
|
if (!toRawPtrFunc) {
|
|
Impl.addImportDiagnostic(
|
|
clangDecl,
|
|
Diagnostic(diag::refcounted_ptr_torawpointer_not_function,
|
|
toRawPtrFunc, clangDecl),
|
|
clangDecl->getLocation());
|
|
return false;
|
|
}
|
|
|
|
auto pointeeType = toRawPtrFunc->getResultInterfaceType()
|
|
->lookThroughSingleOptionalType();
|
|
ClassDecl *referenceDecl = pointeeType->getClassOrBoundGenericClass();
|
|
|
|
if (toRawPtrFunc->getParameters()->size() != 0 || !referenceDecl) {
|
|
Impl.addImportDiagnostic(
|
|
clangDecl,
|
|
Diagnostic(diag::refcounted_ptr_torawpointer_wrong_signature,
|
|
toRawPtrFunc, clangDecl),
|
|
clangDecl->getLocation());
|
|
return false;
|
|
}
|
|
|
|
auto asReferenceDecl =
|
|
synthesizer.createSmartPtrBridgingProperty(toRawPtrFunc);
|
|
smartPtr->addMember(asReferenceDecl);
|
|
smartPtr->addMemberToLookupTable(asReferenceDecl);
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
|
|
// Track whether this record contains fields we can't reference in Swift
|
|
// as stored properties.
|
|
bool hasUnreferenceableStorage = false;
|
|
|
|
// Track whether this record contains fields that can't be zero-
|
|
// initialized.
|
|
bool hasZeroInitializableStorage = true;
|
|
|
|
// Track whether all fields in this record can be referenced in Swift,
|
|
// either as stored or computed properties, in which case the record type
|
|
// gets a memberwise initializer.
|
|
bool hasMemberwiseInitializer = true;
|
|
|
|
if (decl->isUnion()) {
|
|
hasUnreferenceableStorage = true;
|
|
|
|
// We generate initializers specially for unions below.
|
|
hasMemberwiseInitializer = false;
|
|
}
|
|
|
|
// FIXME: Skip Microsoft __interfaces.
|
|
if (decl->isInterface())
|
|
return nullptr;
|
|
|
|
bool incompleteTypeAsReference = false;
|
|
if (auto def = decl->getDefinition()) {
|
|
// Continue with the definition of the type.
|
|
decl = def;
|
|
} else if (recordHasReferenceSemantics(decl)) {
|
|
// Incomplete types are okay if the resulting type has reference
|
|
// semantics.
|
|
incompleteTypeAsReference = true;
|
|
} else {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::incomplete_record, Impl.SwiftContext.AllocateCopy(
|
|
decl->getNameAsString())),
|
|
decl->getLocation());
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO(https://github.com/apple/swift/issues/56206): Fix this once we support dependent types.
|
|
if (decl->getTypeForDecl()->isDependentType()) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(
|
|
diag::record_is_dependent,
|
|
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
|
|
// Don't import nominal types that are over-aligned.
|
|
if (decl->isCompleteDefinition() && Impl.isOverAligned(decl)) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(
|
|
diag::record_over_aligned,
|
|
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
|
|
auto isNonTrivialDueToAddressDiversifiedPtrAuth =
|
|
[](const clang::RecordDecl *decl) {
|
|
if (!decl->isCompleteDefinition())
|
|
return true;
|
|
|
|
for (auto *field : decl->fields()) {
|
|
if (!field->getType().isNonTrivialToPrimitiveCopy()) {
|
|
continue;
|
|
}
|
|
if (field->getType().isNonTrivialToPrimitiveCopy() !=
|
|
clang::QualType::PCK_PtrAuth) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
bool isNonTrivialPtrAuth = false;
|
|
// FIXME: We should actually support strong ARC references and similar in
|
|
// C structs. That'll require some SIL and IRGen work, though.
|
|
if (decl->isNonTrivialToPrimitiveCopy() ||
|
|
decl->isNonTrivialToPrimitiveDestroy()) {
|
|
isNonTrivialPtrAuth = Impl.SwiftContext.SILOpts
|
|
.EnableImportPtrauthFieldFunctionPointers &&
|
|
isNonTrivialDueToAddressDiversifiedPtrAuth(decl);
|
|
if (!isNonTrivialPtrAuth) {
|
|
// Note that there is a third predicate related to these,
|
|
// isNonTrivialToPrimitiveDefaultInitialize. That one's not important
|
|
// for us because Swift never "trivially default-initializes" a struct
|
|
// (i.e. uses whatever bits were lying around as an initial value).
|
|
|
|
// FIXME: It would be nice to instead import the declaration but mark
|
|
// it as unavailable, but then it might get used as a type for an
|
|
// imported function and the developer would be able to use it without
|
|
// referencing the name, which would sidestep our availability
|
|
// diagnostics.
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(
|
|
diag::record_non_trivial_copy_destroy,
|
|
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Import the name.
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = getClangDeclName(decl);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext(),
|
|
incompleteTypeAsReference);
|
|
if (!dc) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(
|
|
diag::record_parent_unimportable,
|
|
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the struct declaration and record it.
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
NominalTypeDecl *result = nullptr;
|
|
// Try to find an already-imported struct. This case happens any time
|
|
// there are nested structs. The "Parent" struct will import the "Child"
|
|
// struct at which point it attempts to import its decl context which is
|
|
// the "Parent" struct. Without trying to look up already-imported structs
|
|
// this will cause an infinite loop.
|
|
auto alreadyImportedResult =
|
|
Impl.ImportedDecls.find({decl->getCanonicalDecl(), getVersion()});
|
|
if (alreadyImportedResult != Impl.ImportedDecls.end())
|
|
return alreadyImportedResult->second;
|
|
|
|
Impl.validateSwiftAttributes(decl);
|
|
auto loc = Impl.importSourceLoc(decl->getLocation());
|
|
if (recordHasReferenceSemantics(decl))
|
|
result = Impl.createDeclWithClangNode<ClassDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), loc, name,
|
|
loc, ArrayRef<InheritedEntry>{}, nullptr, dc, false);
|
|
else
|
|
result = Impl.createDeclWithClangNode<StructDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), loc, name,
|
|
loc, ArrayRef<InheritedEntry>(), nullptr, dc);
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
|
|
if (!recordIsCopyable(decl)) {
|
|
if (decl->isInStdNamespace() && decl->getName() == "promise") {
|
|
// Do not import std::promise.
|
|
return nullptr;
|
|
}
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
MoveOnlyAttr(/*Implicit=*/true));
|
|
}
|
|
|
|
// FIXME: Figure out what to do with superclasses in C++. One possible
|
|
// solution would be to turn them into members and add conversion
|
|
// functions.
|
|
if (auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(decl)) {
|
|
if (cxxRecordDecl->isCompleteDefinition()) {
|
|
for (auto base : cxxRecordDecl->bases()) {
|
|
if (auto *baseRecordDecl = base.getType()->getAsCXXRecordDecl()) {
|
|
Impl.importDecl(baseRecordDecl, getVersion());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isNonEscapable = false;
|
|
if (evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
ClangTypeEscapability({decl->getTypeForDecl(), &Impl}),
|
|
CxxEscapability::Unknown) == CxxEscapability::NonEscapable) {
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
NonEscapableAttr(/*Implicit=*/true));
|
|
isNonEscapable = true;
|
|
}
|
|
|
|
// Import each of the members.
|
|
SmallVector<VarDecl *, 4> members;
|
|
SmallVector<FuncDecl *, 4> methods;
|
|
SmallVector<ConstructorDecl *, 4> ctors;
|
|
|
|
// The name of every member.
|
|
llvm::DenseSet<StringRef> allMemberNames;
|
|
|
|
// FIXME: Import anonymous union fields and support field access when
|
|
// it is nested in a struct.
|
|
for (auto m : decl->decls()) {
|
|
if (isa<clang::AccessSpecDecl>(m)) {
|
|
// The presence of AccessSpecDecls themselves does not influence
|
|
// whether we can generate a member-wise initializer.
|
|
continue;
|
|
}
|
|
|
|
if (auto friendDecl = dyn_cast<clang::FriendDecl>(m)) {
|
|
if (friendDecl->getFriendDecl()) {
|
|
m = friendDecl->getFriendDecl();
|
|
}
|
|
}
|
|
|
|
auto nd = dyn_cast<clang::NamedDecl>(m);
|
|
if (!nd) {
|
|
// We couldn't import the member, so we can't reference it in Swift.
|
|
hasUnreferenceableStorage = true;
|
|
hasMemberwiseInitializer = false;
|
|
continue;
|
|
}
|
|
|
|
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
|
|
// Non-nullable pointers can't be zero-initialized.
|
|
if (auto nullability =
|
|
field->getType()->getNullability()) {
|
|
if (*nullability == clang::NullabilityKind::NonNull)
|
|
hasZeroInitializableStorage = false;
|
|
}
|
|
// TODO: If we had the notion of a closed enum with no private
|
|
// cases or resilience concerns, then complete NS_ENUMs with
|
|
// no case corresponding to zero would also not be zero-
|
|
// initializable.
|
|
|
|
// Unnamed bitfields are just for padding and should not
|
|
// inhibit creation of a memberwise initializer.
|
|
if (field->isUnnamedBitField()) {
|
|
hasUnreferenceableStorage = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Decl *member = Impl.importDecl(nd, getActiveSwiftVersion());
|
|
|
|
if (!member) {
|
|
if (!isa<clang::TypeDecl>(nd) && !isa<clang::FunctionDecl>(nd) &&
|
|
!isa<clang::TypeAliasTemplateDecl>(nd) &&
|
|
!isa<clang::FunctionTemplateDecl>(nd)) {
|
|
// We don't know what this member is.
|
|
// Assume it may be important in C.
|
|
hasUnreferenceableStorage = true;
|
|
hasMemberwiseInitializer = false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (nd->getDeclName().isIdentifier())
|
|
allMemberNames.insert(nd->getName());
|
|
|
|
if (isa<TypeDecl>(member)) {
|
|
// TODO: we have a problem lazily looking up unnamed members, so we
|
|
// add them here.
|
|
if (isa<clang::RecordDecl>(nd) &&
|
|
!cast<clang::RecordDecl>(nd)->hasNameForLinkage())
|
|
result->addMemberToLookupTable(member);
|
|
continue;
|
|
}
|
|
|
|
if (auto CD = dyn_cast<ConstructorDecl>(member)) {
|
|
ctors.push_back(CD);
|
|
continue;
|
|
}
|
|
|
|
if (auto MD = dyn_cast<FuncDecl>(member)) {
|
|
methods.push_back(MD);
|
|
continue;
|
|
}
|
|
|
|
if (isa<VarDecl>(member) && isa<clang::CXXMethodDecl>(nd)) {
|
|
result->addMember(member);
|
|
continue;
|
|
}
|
|
|
|
auto *vd = cast<VarDecl>(member);
|
|
auto getFieldDecl =
|
|
[](const clang::NamedDecl *decl) -> const clang::FieldDecl * {
|
|
if (const clang::FieldDecl *fd = dyn_cast<clang::FieldDecl>(decl))
|
|
return fd;
|
|
if (const clang::IndirectFieldDecl *ind =
|
|
dyn_cast<clang::IndirectFieldDecl>(decl))
|
|
return ind->getAnonField();
|
|
return nullptr;
|
|
};
|
|
|
|
if (!isNonEscapable && !decl->isAnonymousStructOrUnion()) {
|
|
if (const auto *fd = getFieldDecl(nd)) {
|
|
if (evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
ClangTypeEscapability({fd->getType().getTypePtr(), &Impl}),
|
|
CxxEscapability::Unknown) ==
|
|
CxxEscapability::NonEscapable) {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::nonescapable_field_of_escapable, decl,
|
|
nd->getName()),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
members.push_back(vd);
|
|
}
|
|
|
|
bool hasReferenceableFields = !members.empty();
|
|
for (auto member : members) {
|
|
auto nd = cast<clang::NamedDecl>(member->getClangDecl());
|
|
// Bitfields are imported as computed properties with Clang-generated
|
|
// accessors.
|
|
bool isBitField = false;
|
|
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
|
|
if (field->isBitField()) {
|
|
// We can't represent this struct completely in SIL anymore,
|
|
// but we're still able to define a memberwise initializer.
|
|
hasUnreferenceableStorage = true;
|
|
isBitField = true;
|
|
|
|
synthesizer.makeBitFieldAccessors(
|
|
const_cast<clang::RecordDecl *>(decl), result,
|
|
const_cast<clang::FieldDecl *>(field), member);
|
|
}
|
|
}
|
|
|
|
if (auto ind = dyn_cast<clang::IndirectFieldDecl>(nd)) {
|
|
// Indirect fields are created as computed property accessible the
|
|
// fields on the anonymous field from which they are injected.
|
|
synthesizer.makeIndirectFieldAccessors(ind, members, result, member);
|
|
} else if (decl->isUnion() && !isBitField) {
|
|
// Union fields should only be available indirectly via a computed
|
|
// property. Since the union is made of all of the fields at once,
|
|
// this is a trivial accessor that casts self to the correct
|
|
// field type.
|
|
synthesizer.makeUnionFieldAccessors(result, member);
|
|
|
|
// Union accessors are always unsafe.
|
|
member->addAttribute(new (Impl.SwiftContext)
|
|
UnsafeAttr(/*Implicit=*/true));
|
|
|
|
// Create labeled initializers for unions that take one of the
|
|
// fields, which only initializes the data for that field.
|
|
auto valueCtor =
|
|
synthesizer.createValueConstructor(result, member,
|
|
/*want param names*/ true,
|
|
/*wantBody=*/true);
|
|
|
|
if (isNonEscapable)
|
|
markReturnsUnsafeNonescapable(valueCtor);
|
|
ctors.push_back(valueCtor);
|
|
}
|
|
// TODO: we have a problem lazily looking up members of an unnamed
|
|
// record, so we add them here. To fix this `translateContext` needs to
|
|
// somehow translate unnamed contexts so that `SwiftLookupTable::lookup`
|
|
// can find members in unnamed contexts.
|
|
if (!decl->hasNameForLinkage())
|
|
result->addMemberToLookupTable(member);
|
|
}
|
|
|
|
const clang::CXXRecordDecl *cxxRecordDecl =
|
|
dyn_cast<clang::CXXRecordDecl>(decl);
|
|
bool hasBaseClasses = cxxRecordDecl &&
|
|
cxxRecordDecl->isCompleteDefinition() &&
|
|
!cxxRecordDecl->bases().empty();
|
|
if (hasBaseClasses) {
|
|
hasUnreferenceableStorage = true;
|
|
hasMemberwiseInitializer = false;
|
|
}
|
|
|
|
bool needsEmptyInitializer = true;
|
|
if (cxxRecordDecl) {
|
|
needsEmptyInitializer = cxxRecordDecl->isCompleteDefinition() &&
|
|
!cxxRecordDecl->isAbstract() &&
|
|
(!cxxRecordDecl->hasDefaultConstructor() ||
|
|
cxxRecordDecl->ctors().empty());
|
|
}
|
|
|
|
// TODO: builtin "zeroInitializer" does not work with non-escapable
|
|
// types yet. Don't generate an initializer.
|
|
if (hasZeroInitializableStorage && needsEmptyInitializer &&
|
|
!isNonEscapable) {
|
|
// Add default constructor for the struct if compiling in C mode.
|
|
// If we're compiling for C++:
|
|
// 1. If a default constructor is declared, don't synthesize one.
|
|
// 2. If a default constructor is deleted, don't try to synthesize one.
|
|
// 3. If there is no default constructor, synthesize a C-like default
|
|
// constructor that zero-initializes the backing memory of the
|
|
// struct. This is important to maintain source compatibility when a
|
|
// client enables C++ interop in an existing project that uses C
|
|
// interop and might rely on the fact that C structs have a default
|
|
// constructor available in Swift.
|
|
ConstructorDecl *defaultCtor =
|
|
synthesizer.createDefaultConstructor(result);
|
|
if (cxxRecordDecl) {
|
|
auto attr = AvailableAttr::createUniversallyDeprecated(
|
|
defaultCtor->getASTContext(),
|
|
"This zero-initializes the backing memory of the struct, which "
|
|
"is unsafe for some C++ structs. Consider adding an explicit "
|
|
"default initializer for this C++ struct.",
|
|
"");
|
|
defaultCtor->addAttribute(attr);
|
|
}
|
|
ctors.push_back(defaultCtor);
|
|
}
|
|
|
|
bool forceMemberwiseInitializer = false;
|
|
if (cxxRecordDecl && cxxRecordDecl->isInStdNamespace() &&
|
|
cxxRecordDecl->getIdentifier() &&
|
|
cxxRecordDecl->getName() == "pair") {
|
|
forceMemberwiseInitializer = true;
|
|
}
|
|
// If this is the type that wraps around a Swift closure for the purpose
|
|
// of std::function support, force a memberwise initializer. It will be
|
|
// called by the synthesized std::function initializer.
|
|
if (cxxRecordDecl && Impl.isSwiftFunctionWrapper(cxxRecordDecl))
|
|
forceMemberwiseInitializer = true;
|
|
|
|
// We can assume that it is possible to correctly construct the object by
|
|
// simply initializing its member variables to arbitrary supplied values
|
|
// only when the same is possible in C++. While we could check for that
|
|
// exactly, checking whether the C++ class is an aggregate
|
|
// (C++ [dcl.init.aggr]) has the same effect.
|
|
bool isAggregate = decl->isCompleteDefinition() &&
|
|
(!cxxRecordDecl || cxxRecordDecl->isAggregate());
|
|
if ((hasReferenceableFields && hasMemberwiseInitializer && isAggregate) ||
|
|
forceMemberwiseInitializer) {
|
|
// The default zero initializer suppresses the implicit value
|
|
// constructor that would normally be formed, so we have to add that
|
|
// explicitly as well.
|
|
//
|
|
// If we can completely represent the struct in SIL, leave the body
|
|
// implicit, otherwise synthesize one to call property setters.
|
|
auto valueCtor = synthesizer.createValueConstructor(
|
|
result, members,
|
|
/*want param names*/ true,
|
|
/*want body*/ hasUnreferenceableStorage);
|
|
if (!hasUnreferenceableStorage)
|
|
valueCtor->setIsMemberwiseInitializer(MemberwiseInitKind::Regular);
|
|
|
|
if (isNonEscapable)
|
|
markReturnsUnsafeNonescapable(valueCtor);
|
|
|
|
ctors.push_back(valueCtor);
|
|
}
|
|
|
|
if (isa<StructDecl>(result)) {
|
|
for (auto ctor : ctors) {
|
|
// Add ctors directly as they cannot always be looked up from the
|
|
// clang decl (some are synthesized by Swift).
|
|
result->addMember(ctor);
|
|
}
|
|
} else {
|
|
assert(
|
|
isa<ClassDecl>(result) &&
|
|
"Expected result to be a ClassDecl as it cannot be a StructDecl");
|
|
// When we add full support for C foreign reference types then we
|
|
// should synthesize static factories for them as well
|
|
if (auto *cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(decl)) {
|
|
bool hasUserProvidedStaticFactory = llvm::any_of(
|
|
cxxRecordDecl->methods(), [](const clang::CXXMethodDecl *method) {
|
|
return method->isStatic() &&
|
|
llvm::any_of(
|
|
method->specific_attrs<clang::SwiftNameAttr>(),
|
|
[](const auto *attr) {
|
|
return attr->getName().starts_with("init(");
|
|
});
|
|
});
|
|
if (!hasUserProvidedStaticFactory) {
|
|
auto generatedCxxMethodDecls =
|
|
synthesizer.synthesizeStaticFactoryForCXXForeignRef(
|
|
cxxRecordDecl);
|
|
for (auto *methodDecl : generatedCxxMethodDecls) {
|
|
if (Decl *importedInitDecl =
|
|
Impl.SwiftContext.getClangModuleLoader()
|
|
->importDeclDirectly(methodDecl))
|
|
result->addMember(importedInitDecl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto structResult = dyn_cast<StructDecl>(result)) {
|
|
structResult->setHasUnreferenceableStorage(hasUnreferenceableStorage);
|
|
if (isNonTrivialPtrAuth) {
|
|
structResult->setHasNonTrivialPtrAuth(true);
|
|
}
|
|
}
|
|
|
|
if (cxxRecordDecl) {
|
|
if (auto structResult = dyn_cast<StructDecl>(result)) {
|
|
// Address-only type is a type that can't be passed in registers.
|
|
// Address-only types are typically non-trivial, however some
|
|
// non-trivial types can be loadable as well (although such types
|
|
// are not yet available in Swift).
|
|
bool isAddressOnly = !cxxRecordDecl->canPassInRegisters();
|
|
// Check if the given type is non-trivial to ensure we can
|
|
// still perform the right copy/move/destroy even if it's
|
|
// not an address-only type.
|
|
auto isNonTrivial = [](const clang::CXXRecordDecl *decl) -> bool {
|
|
return decl->hasNonTrivialCopyConstructor() ||
|
|
decl->hasNonTrivialMoveConstructor() ||
|
|
!decl->hasTrivialDestructor();
|
|
};
|
|
if (!isAddressOnly &&
|
|
Impl.SwiftContext.LangOpts.Target.isWindowsMSVCEnvironment() &&
|
|
isNonTrivial(cxxRecordDecl)) {
|
|
// MSVC ABI allows non-trivially destroyed C++ types
|
|
// to be passed in register. This is not supported, as such
|
|
// type wouldn't be destroyed in Swift correctly. Therefore,
|
|
// mark this type as unavailable.
|
|
// FIXME: Support can pass in registers for MSVC correctly.
|
|
Impl.markUnavailable(result, "non-trivial C++ class with trivial "
|
|
"ABI is not yet available in Swift");
|
|
}
|
|
structResult->setIsCxxNonTrivial(isAddressOnly);
|
|
}
|
|
|
|
auto gettersAndSetters = Impl.GetterSetterMap[result];
|
|
for (auto &getterAndSetter : gettersAndSetters) {
|
|
auto getter = getterAndSetter.second.first;
|
|
auto setter = getterAndSetter.second.second;
|
|
// We cannot make a computed property without a getter.
|
|
if (!getter || getter->getDeclContext() != result)
|
|
continue;
|
|
|
|
// If we have a getter and a setter make sure the types line up.
|
|
if (setter && !getter->getResultInterfaceType()->isEqual(
|
|
setter->getParameters()->get(0)->getTypeInContext()))
|
|
continue;
|
|
|
|
// If the name that we would import this as already exists, then don't
|
|
// add a computed property, because it will conflict with an existing
|
|
// name and make both APIs unusable.
|
|
CXXMethodBridging cxxMethodBridging(
|
|
cast<clang::CXXMethodDecl>(getter->getClangDecl()));
|
|
if (allMemberNames.contains(
|
|
cxxMethodBridging.importNameAsCamelCaseName()))
|
|
continue;
|
|
|
|
auto p =
|
|
synthesizer.makeComputedPropertyFromCXXMethods(getter, setter);
|
|
// Add computed properties directly because they won't be found from
|
|
// the clang decl during lazy member lookup.
|
|
result->addMember(p);
|
|
}
|
|
|
|
auto it = Impl.cxxSubscripts.find(result);
|
|
if (it != Impl.cxxSubscripts.end()) {
|
|
for (auto &subscriptInfo : it->second) {
|
|
auto getterAndSetter = subscriptInfo.second;
|
|
auto subscript = synthesizer.makeSubscript(getterAndSetter.first,
|
|
getterAndSetter.second);
|
|
// Also add subscripts directly because they won't be found from the
|
|
// clang decl.
|
|
result->addMember(subscript);
|
|
|
|
// Add the subscript as an alternative for the getter so that it
|
|
// gets carried into derived classes.
|
|
auto *subscriptImpl = getterAndSetter.first
|
|
? getterAndSetter.first
|
|
: getterAndSetter.second;
|
|
Impl.addAlternateDecl(subscriptImpl, subscript);
|
|
}
|
|
}
|
|
|
|
auto getterAndSetterIt = Impl.cxxDereferenceOperators.find(result);
|
|
if (getterAndSetterIt != Impl.cxxDereferenceOperators.end()) {
|
|
// If this type has a dereference operator, synthesize a computed
|
|
// property called `pointee` for it.
|
|
auto getterAndSetter = getterAndSetterIt->second;
|
|
|
|
VarDecl *pointeeProperty =
|
|
synthesizer.makeDereferencedPointeeProperty(
|
|
getterAndSetter.first, getterAndSetter.second);
|
|
|
|
// Import the attributes from clang decl of dereference operator to
|
|
// synthesized pointee property.
|
|
FuncDecl *getterOrSetterImpl = getterAndSetter.first
|
|
? getterAndSetter.first
|
|
: getterAndSetter.second;
|
|
Impl.importAttributesFromClangDeclToSynthesizedSwiftDecl(
|
|
getterOrSetterImpl, pointeeProperty);
|
|
|
|
result->addMember(pointeeProperty);
|
|
}
|
|
}
|
|
|
|
if (auto classDecl = dyn_cast<ClassDecl>(result)) {
|
|
validateForeignReferenceType(decl, classDecl);
|
|
|
|
auto availability = Impl.SwiftContext.getSwift58Availability();
|
|
if (!availability.isAlwaysAvailable()) {
|
|
assert(availability.hasMinimumVersion());
|
|
auto AvAttr = AvailableAttr::createPlatformVersioned(
|
|
Impl.SwiftContext, targetPlatform(Impl.SwiftContext.LangOpts),
|
|
/*Message=*/"", /*Rename=*/"",
|
|
availability.getRawMinimumVersion(), /*Deprecated=*/{},
|
|
/*Obsoleted=*/{});
|
|
classDecl->addAttribute(AvAttr);
|
|
}
|
|
|
|
if (cxxRecordDecl && cxxRecordDecl->isEffectivelyFinal())
|
|
classDecl->addAttribute(new (Impl.SwiftContext)
|
|
FinalAttr(/*IsImplicit=*/true));
|
|
}
|
|
|
|
// If we need it, add an explicit "deinit" to this type.
|
|
synthesizer.addExplicitDeinitIfRequired(result, decl);
|
|
|
|
if (!injectBridgingConversionsForRefCountedSmartPtrs(result))
|
|
return nullptr;
|
|
|
|
result->setMemberLoader(&Impl, 0);
|
|
return result;
|
|
}
|
|
|
|
void validatePrivateFileIDAttributes(const clang::CXXRecordDecl *decl) {
|
|
auto anns = importer::getPrivateFileIDAttrs(decl);
|
|
|
|
if (anns.size() > 1) {
|
|
Impl.diagnose(HeaderLoc(decl->getLocation()),
|
|
diag::private_fileid_attr_repeated, decl->getName());
|
|
for (auto ann : anns)
|
|
Impl.diagnose(HeaderLoc(ann.second), diag::annotation_here,
|
|
"SWIFT_PRIVATE_FILEID");
|
|
} else if (anns.size() == 1) {
|
|
auto ann = anns[0];
|
|
if (!SourceFile::FileIDStr::parse(ann.first)) {
|
|
Impl.diagnose(HeaderLoc(ann.second),
|
|
diag::private_fileid_attr_format_invalid,
|
|
decl->getName());
|
|
Impl.diagnose({}, diag::private_fileid_attr_format_specification);
|
|
|
|
if (ann.first.count('/') > 1) {
|
|
// Try to construct a suggestion from predictable mistakes.
|
|
SmallString<32> suggestion;
|
|
|
|
// Mistake #1: confusing fileID for filePath => writing too many
|
|
// '/'s
|
|
suggestion.append(ann.first.split('/').first);
|
|
suggestion.push_back('/');
|
|
suggestion.append(ann.first.rsplit('/').second);
|
|
|
|
// Mistake #2: forgetting to use filename with .swift extension
|
|
if (!suggestion.ends_with(".swift"))
|
|
suggestion.append(".swift");
|
|
|
|
if (SourceFile::FileIDStr::parse(suggestion))
|
|
Impl.diagnose({}, diag::private_fileid_attr_format_suggestion,
|
|
suggestion);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void validateForeignReferenceType(const clang::RecordDecl *decl,
|
|
ClassDecl *classDecl) {
|
|
|
|
enum class RetainReleaseOperationKind {
|
|
notAfunction,
|
|
notAnInstanceFunction,
|
|
invalidReturnType,
|
|
invalidParameters,
|
|
valid
|
|
};
|
|
|
|
auto getOperationValidity =
|
|
[&](ValueDecl *operation,
|
|
CustomRefCountingOperationKind operationKind)
|
|
-> RetainReleaseOperationKind {
|
|
auto operationFn = dyn_cast<FuncDecl>(operation);
|
|
if (!operationFn)
|
|
return RetainReleaseOperationKind::notAfunction;
|
|
|
|
if (operationFn->isStatic())
|
|
return RetainReleaseOperationKind::notAnInstanceFunction;
|
|
|
|
if (operationFn->isInstanceMember()) {
|
|
if (operationFn->getParameters()->size() != 0)
|
|
return RetainReleaseOperationKind::invalidParameters;
|
|
} else {
|
|
if (operationFn->getParameters()->size() != 1)
|
|
return RetainReleaseOperationKind::invalidParameters;
|
|
}
|
|
|
|
Type paramType;
|
|
NominalTypeDecl *paramDecl = nullptr;
|
|
if (!operationFn->isInstanceMember()) {
|
|
paramType =
|
|
operationFn->getParameters()->get(0)->getInterfaceType();
|
|
// Unwrap if paramType is an OptionalType
|
|
if (Type optionalType = paramType->getOptionalObjectType()) {
|
|
paramType = optionalType;
|
|
}
|
|
|
|
paramDecl = paramType->getAnyNominal();
|
|
} else {
|
|
paramDecl = cast<NominalTypeDecl>(operationFn->getParent());
|
|
paramType = paramDecl->getDeclaredInterfaceType();
|
|
}
|
|
|
|
// The return type should be void (for release functions), or void
|
|
// or the parameter type (for retain functions).
|
|
auto resultInterfaceType = operationFn->getResultInterfaceType();
|
|
if (!resultInterfaceType->isVoid() &&
|
|
!resultInterfaceType->isUInt() &&
|
|
!resultInterfaceType->isUInt8() &&
|
|
!resultInterfaceType->isUInt16() &&
|
|
!resultInterfaceType->isUInt32() &&
|
|
!resultInterfaceType->isUInt64() &&
|
|
!resultInterfaceType->isInt() &&
|
|
!resultInterfaceType->isInt8() &&
|
|
!resultInterfaceType->isInt16() &&
|
|
!resultInterfaceType->isInt32() &&
|
|
!resultInterfaceType->isInt64()) {
|
|
if (operationKind == CustomRefCountingOperationKind::release ||
|
|
!resultInterfaceType->lookThroughSingleOptionalType()->isEqual(paramType))
|
|
return RetainReleaseOperationKind::invalidReturnType;
|
|
}
|
|
|
|
// The parameter of the retain/release function should be pointer to the
|
|
// same FRT or a base FRT.
|
|
if (paramDecl != classDecl) {
|
|
if (auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(decl)) {
|
|
if (const clang::Decl *paramClangDecl = paramDecl->getClangDecl()) {
|
|
if (const auto *paramTypeDecl =
|
|
dyn_cast<clang::CXXRecordDecl>(paramClangDecl)) {
|
|
if (cxxDecl->isDerivedFrom(paramTypeDecl)) {
|
|
return RetainReleaseOperationKind::valid;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return RetainReleaseOperationKind::invalidParameters;
|
|
}
|
|
|
|
return RetainReleaseOperationKind::valid;
|
|
};
|
|
|
|
auto retainOperation = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CustomRefCountingOperation(
|
|
{classDecl, CustomRefCountingOperationKind::retain}),
|
|
{});
|
|
if (retainOperation.kind ==
|
|
CustomRefCountingOperationResult::noAttribute) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc, diag::reference_type_must_have_retain_release_attr,
|
|
false, decl->getNameAsString());
|
|
} else if (retainOperation.kind ==
|
|
CustomRefCountingOperationResult::tooManyAttributes) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc, diag::too_many_reference_type_retain_release_attr,
|
|
false, decl->getNameAsString());
|
|
} else if (retainOperation.kind ==
|
|
CustomRefCountingOperationResult::notFound) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc,
|
|
diag::foreign_reference_types_cannot_find_retain_release,
|
|
false, retainOperation.name, decl->getNameAsString());
|
|
if (!Impl.SwiftContext.LangOpts
|
|
.DisableExperimentalClangImporterDiagnostics) {
|
|
Impl.diagnoseTopLevelValue(
|
|
DeclName(Impl.SwiftContext.getIdentifier(retainOperation.name)));
|
|
}
|
|
} else if (retainOperation.kind ==
|
|
CustomRefCountingOperationResult::tooManyFound) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc,
|
|
diag::too_many_reference_type_retain_release_operations,
|
|
false, retainOperation.name, decl->getNameAsString());
|
|
} else if (retainOperation.kind ==
|
|
CustomRefCountingOperationResult::foundOperation) {
|
|
RetainReleaseOperationKind operationKind =
|
|
getOperationValidity(retainOperation.operation,
|
|
CustomRefCountingOperationKind::retain);
|
|
HeaderLoc loc(decl->getLocation());
|
|
switch (operationKind) {
|
|
case RetainReleaseOperationKind::notAfunction:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_retain_release_not_a_function_decl,
|
|
false, retainOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::notAnInstanceFunction:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_retain_release_not_an_instance_function,
|
|
false, retainOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::invalidReturnType:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_retain_non_void_or_self_return_type,
|
|
retainOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::invalidParameters:
|
|
Impl.diagnose(loc,
|
|
diag::foreign_reference_types_invalid_retain_release,
|
|
false, retainOperation.name, classDecl->getNameStr());
|
|
break;
|
|
case RetainReleaseOperationKind::valid:
|
|
break;
|
|
}
|
|
} else {
|
|
// Nothing to do.
|
|
assert(retainOperation.kind ==
|
|
CustomRefCountingOperationResult::immortal);
|
|
}
|
|
|
|
auto releaseOperation = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CustomRefCountingOperation(
|
|
{classDecl, CustomRefCountingOperationKind::release}),
|
|
{});
|
|
if (releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::noAttribute) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc, diag::reference_type_must_have_retain_release_attr,
|
|
true, decl->getNameAsString());
|
|
} else if (releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::tooManyAttributes) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc, diag::too_many_reference_type_retain_release_attr,
|
|
true, decl->getNameAsString());
|
|
} else if (releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::notFound) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc,
|
|
diag::foreign_reference_types_cannot_find_retain_release,
|
|
true, releaseOperation.name, decl->getNameAsString());
|
|
if (!Impl.SwiftContext.LangOpts
|
|
.DisableExperimentalClangImporterDiagnostics) {
|
|
Impl.diagnoseTopLevelValue(
|
|
DeclName(Impl.SwiftContext.getIdentifier(releaseOperation.name)));
|
|
}
|
|
} else if (releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::tooManyFound) {
|
|
HeaderLoc loc(decl->getLocation());
|
|
Impl.diagnose(loc,
|
|
diag::too_many_reference_type_retain_release_operations,
|
|
true, releaseOperation.name, decl->getNameAsString());
|
|
} else if (releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::foundOperation) {
|
|
RetainReleaseOperationKind operationKind =
|
|
getOperationValidity(releaseOperation.operation,
|
|
CustomRefCountingOperationKind::release);
|
|
HeaderLoc loc(decl->getLocation());
|
|
switch (operationKind) {
|
|
case RetainReleaseOperationKind::notAfunction:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_retain_release_not_a_function_decl,
|
|
true, releaseOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::notAnInstanceFunction:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_retain_release_not_an_instance_function,
|
|
true, releaseOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::invalidReturnType:
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::foreign_reference_types_release_non_void_return_type,
|
|
releaseOperation.name);
|
|
break;
|
|
case RetainReleaseOperationKind::invalidParameters:
|
|
Impl.diagnose(loc,
|
|
diag::foreign_reference_types_invalid_retain_release,
|
|
true, releaseOperation.name, classDecl->getNameStr());
|
|
break;
|
|
case RetainReleaseOperationKind::valid:
|
|
break;
|
|
}
|
|
} else {
|
|
// Nothing to do.
|
|
assert(releaseOperation.kind ==
|
|
CustomRefCountingOperationResult::immortal);
|
|
}
|
|
}
|
|
|
|
Decl *VisitCXXRecordDecl(const clang::CXXRecordDecl *decl) {
|
|
// This can be called from lldb without C++ interop being enabled: There
|
|
// may be C++ declarations in imported modules, but the interface for
|
|
// those modules may be a pure C or Objective-C interface.
|
|
// To avoid crashing in Clang's Sema, fall back to importing this as a
|
|
// plain RecordDecl.
|
|
if (!Impl.SwiftContext.LangOpts.EnableCXXInterop)
|
|
return VisitRecordDecl(decl);
|
|
|
|
if (auto def = decl->getDefinition()) {
|
|
// Continue with the definition of the type.
|
|
decl = def;
|
|
} else if (recordHasReferenceSemantics(decl)) {
|
|
// Incomplete types are okay if the resulting type has reference
|
|
// semantics.
|
|
} else {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::incomplete_record, Impl.SwiftContext.AllocateCopy(
|
|
decl->getNameAsString())),
|
|
decl->getLocation());
|
|
|
|
auto attrs = importer::getPrivateFileIDAttrs(decl);
|
|
if (!attrs.empty()) {
|
|
Impl.diagnose(HeaderLoc(decl->getLocation()),
|
|
diag::private_fileid_attr_on_incomplete_type,
|
|
decl->getName());
|
|
for (auto attr : attrs)
|
|
Impl.diagnose(HeaderLoc(attr.second), diag::annotation_here,
|
|
"SWIFT_PRIVATE_FILEID");
|
|
}
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// Bail if this is `std::chrono::tzdb`. This type causes issues in copy
|
|
// constructor instantiation.
|
|
// FIXME: https://github.com/apple/swift/issues/73037
|
|
if (decl->getDeclContext()->isNamespace() &&
|
|
decl->getDeclContext()->getParent()->isStdNamespace() &&
|
|
decl->getIdentifier() &&
|
|
(decl->getName() == "tzdb" || decl->getName() == "time_zone_link" ||
|
|
decl->getName() == "__compressed_pair" ||
|
|
decl->getName() == "__optional_copy_assign_base" || // libc++
|
|
decl->getName() == "__optional_move_assign_base" || // libc++
|
|
decl->getName() == "time_zone"))
|
|
return nullptr;
|
|
// Bail if this is one of the base types of std::optional. Those types are
|
|
// mixins that are not designed to be used directly.
|
|
if (decl->getDeclContext()->isNamespace() && decl->isInStdNamespace() &&
|
|
decl->getIdentifier() &&
|
|
(decl->getName() == "_Optional_payload_base" ||
|
|
decl->getName() == "_Optional_payload"))
|
|
return nullptr;
|
|
|
|
auto &clangSema = Impl.getClangSema();
|
|
// Make Clang define any implicit constructors it may need (copy,
|
|
// default). Make sure we only do this if the class has been fully defined
|
|
// with complete fields, and we're not in a dependent context(this is
|
|
// equivalent to the logic in CanDeclareSpecialMemberFunction in Clang's
|
|
// SemaLookup.cpp).
|
|
assert(!decl->isBeingDefined() && "can only import fully defined decls");
|
|
if (!decl->isDependentContext() && areRecordFieldsComplete(decl)) {
|
|
if (decl->hasInheritedConstructor()) {
|
|
for (auto member : decl->decls()) {
|
|
if (auto usingDecl = dyn_cast<clang::UsingDecl>(member)) {
|
|
for (auto usingShadowDecl : usingDecl->shadows()) {
|
|
if (auto ctorUsingShadowDecl =
|
|
dyn_cast<clang::ConstructorUsingShadowDecl>(
|
|
usingShadowDecl)) {
|
|
auto baseCtorDecl = dyn_cast<clang::CXXConstructorDecl>(
|
|
ctorUsingShadowDecl->getTargetDecl());
|
|
if (!baseCtorDecl || baseCtorDecl->isDeleted() ||
|
|
baseCtorDecl->isCopyConstructor() ||
|
|
baseCtorDecl->isMoveConstructor())
|
|
continue;
|
|
auto loc = ctorUsingShadowDecl->getLocation();
|
|
|
|
auto derivedCtorDecl = clangSema.findInheritingConstructor(
|
|
loc, baseCtorDecl, ctorUsingShadowDecl);
|
|
if (!derivedCtorDecl->isDefined() &&
|
|
!derivedCtorDecl->isDeleted())
|
|
clangSema.DefineInheritingConstructor(loc, derivedCtorDecl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (decl->needsImplicitDefaultConstructor()) {
|
|
clang::CXXConstructorDecl *ctor =
|
|
clangSema.DeclareImplicitDefaultConstructor(
|
|
const_cast<clang::CXXRecordDecl *>(decl));
|
|
if (!ctor->isDeleted())
|
|
clangSema.DefineImplicitDefaultConstructor(clang::SourceLocation(),
|
|
ctor);
|
|
}
|
|
// If the C++ struct is annotated as non-copyable, we should not try to
|
|
// instantiate its copy constructor.
|
|
bool isExplicitlyNonCopyable = hasNonCopyableAttr(decl);
|
|
|
|
clang::CXXConstructorDecl *defaultCtor = nullptr;
|
|
if (decl->needsImplicitCopyConstructor() && !isExplicitlyNonCopyable) {
|
|
clangSema.DeclareImplicitCopyConstructor(
|
|
const_cast<clang::CXXRecordDecl *>(decl));
|
|
}
|
|
if (decl->needsImplicitMoveConstructor()) {
|
|
clangSema.DeclareImplicitMoveConstructor(
|
|
const_cast<clang::CXXRecordDecl *>(decl));
|
|
}
|
|
if (decl->needsImplicitDefaultConstructor()) {
|
|
defaultCtor = clangSema.DeclareImplicitDefaultConstructor(
|
|
const_cast<clang::CXXRecordDecl *>(decl));
|
|
}
|
|
// We may have a defaulted copy/move/default constructor that needs to
|
|
// be defined. Try to find it.
|
|
for (auto methods : decl->methods()) {
|
|
if (auto declCtor = dyn_cast<clang::CXXConstructorDecl>(methods)) {
|
|
if (declCtor->isDefaulted() &&
|
|
declCtor->getAccess() == clang::AS_public &&
|
|
!declCtor->isDeleted() &&
|
|
// Note: we use "doesThisDeclarationHaveABody" here because
|
|
// that's what "DefineImplicitCopyConstructor" checks.
|
|
!declCtor->doesThisDeclarationHaveABody()) {
|
|
if (declCtor->isDefaultConstructor()) {
|
|
if (!defaultCtor)
|
|
defaultCtor = declCtor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (defaultCtor) {
|
|
clangSema.DefineImplicitDefaultConstructor(clang::SourceLocation(),
|
|
defaultCtor);
|
|
}
|
|
|
|
if (decl->needsImplicitDestructor()) {
|
|
auto dtor = clangSema.DeclareImplicitDestructor(
|
|
const_cast<clang::CXXRecordDecl *>(decl));
|
|
if (!dtor->isDeleted() && !dtor->isIneligibleOrNotSelected())
|
|
clangSema.DefineImplicitDestructor(clang::SourceLocation(), dtor);
|
|
}
|
|
}
|
|
|
|
// It is important that we bail on an unimportable record *before* we import
|
|
// any of its members or cache the decl.
|
|
auto valueSemanticsKind = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CxxValueSemantics({decl->getTypeForDecl(), &Impl}), {});
|
|
if (valueSemanticsKind == CxxValueSemanticsKind::Unknown) {
|
|
|
|
HeaderLoc loc(decl->getLocation());
|
|
if (hasUnsafeAPIAttr(decl))
|
|
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_unsafe",
|
|
decl->getNameAsString());
|
|
if (hasOwnedValueAttr(decl))
|
|
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_owned",
|
|
decl->getNameAsString());
|
|
if (hasIteratorAPIAttr(decl))
|
|
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_iterator",
|
|
decl->getNameAsString());
|
|
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::record_not_automatically_importable,
|
|
Impl.SwiftContext.AllocateCopy(decl->getNameAsString()),
|
|
"it must have a copy/move constructor and a destructor"),
|
|
decl->getLocation());
|
|
return nullptr;
|
|
}
|
|
|
|
auto cxxRecordsemanticsKind = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CxxRecordSemantics({decl, Impl.SwiftContext, &Impl}), {});
|
|
|
|
if (cxxRecordsemanticsKind == CxxRecordSemanticsKind::SwiftClassType) {
|
|
// FIXME: add a diagnostic here for unsupported imported use of Swift
|
|
// type?
|
|
return nullptr;
|
|
}
|
|
|
|
auto result = VisitRecordDecl(decl);
|
|
if (!result)
|
|
return nullptr;
|
|
|
|
if (decl->hasAttr<clang::TrivialABIAttr>()) {
|
|
// We cannot yet represent trivial_abi C++ records in Swift.
|
|
// Clang tells us such type can be passed in registers, so
|
|
// we avoid using AddressOnly type-layout for such type, which means
|
|
// that it then does not use C++'s copy and destroy semantics from
|
|
// Swift.
|
|
Impl.markUnavailable(cast<ValueDecl>(result),
|
|
"C++ classes with `trivial_abi` Clang attribute "
|
|
"are not yet available in Swift");
|
|
}
|
|
|
|
validatePrivateFileIDAttributes(decl);
|
|
|
|
// If this module is declared as a C++ module, try to synthesize
|
|
// conformances to Swift protocols from the Cxx module.
|
|
auto clangModule = Impl.getClangOwningModule(result->getClangNode());
|
|
if (!clangModule || requiresCPlusPlus(clangModule)) {
|
|
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(result)) {
|
|
conformToCxxIteratorIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxSequenceIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxConvertibleToBoolIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxSetIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxDictionaryIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxPairIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxOptionalIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxVectorIfNeeded(Impl, nominalDecl, decl);
|
|
conformToCxxSpanIfNeeded(Impl, nominalDecl, decl);
|
|
|
|
if (Impl.needsClosureConstructor(decl)) {
|
|
if (auto closureCtor =
|
|
synthesizer.makeClosureConstructor(nominalDecl))
|
|
nominalDecl->addMember(closureCtor);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool isSpecializationDepthGreaterThan(
|
|
const clang::ClassTemplateSpecializationDecl *decl, unsigned maxDepth) {
|
|
for (auto arg : decl->getTemplateArgs().asArray()) {
|
|
if (arg.getKind() == clang::TemplateArgument::Type) {
|
|
if (auto classSpec =
|
|
dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
|
|
arg.getAsType()->getAsCXXRecordDecl())) {
|
|
if (maxDepth == 0 ||
|
|
isSpecializationDepthGreaterThan(classSpec, maxDepth - 1))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Decl *VisitClassTemplateSpecializationDecl(
|
|
const clang::ClassTemplateSpecializationDecl *decl) {
|
|
// Importing std::conditional substantially increases compile times when
|
|
// building with libstdc++, i.e. on most Linux distros.
|
|
if (decl->isInStdNamespace() && decl->getIdentifier() &&
|
|
(decl->getName() == "conditional" || decl->getName() == "__or_" ||
|
|
decl->getName() == "_Expr" || decl->getName() == "__val_expr"))
|
|
return nullptr;
|
|
|
|
// Don't even try to specialize/import this template if it's
|
|
// a forward-declared specialization like this:
|
|
//
|
|
// template <> struct MyTemplate<int>;
|
|
//
|
|
if (decl->getSpecializationKind() == clang::TSK_ExplicitSpecialization &&
|
|
!decl->isCompleteDefinition())
|
|
return nullptr;
|
|
|
|
// `decl->getDefinition()` can return nullptr before the call to sema and
|
|
// return its definition afterwards.
|
|
clang::Sema &clangSema = Impl.getClangSema();
|
|
if (!decl->getDefinition()) {
|
|
bool notInstantiated = clangSema.InstantiateClassTemplateSpecialization(
|
|
decl->getLocation(),
|
|
const_cast<clang::ClassTemplateSpecializationDecl *>(decl),
|
|
clang::TemplateSpecializationKind::TSK_ImplicitInstantiation,
|
|
/*Complain*/ false, /*PrimaryStrictPackMatch*/ false);
|
|
// If the template can't be instantiated, bail.
|
|
if (notInstantiated)
|
|
return nullptr;
|
|
}
|
|
if (!decl->getDefinition()) {
|
|
// If we got nullptr definition now it means the type is not complete.
|
|
// We don't import incomplete types.
|
|
return nullptr;
|
|
}
|
|
auto def = dyn_cast<clang::ClassTemplateSpecializationDecl>(
|
|
decl->getDefinition());
|
|
assert(def && "Class template instantiation didn't have definition");
|
|
|
|
// Currently this is a relatively low number, in the future we might
|
|
// consider increasing it, but this should keep compile time down,
|
|
// especially for types that become exponentially large when
|
|
// instantiating.
|
|
if (isSpecializationDepthGreaterThan(def, 8))
|
|
return nullptr;
|
|
|
|
// For class template instantiations, we need to add their member
|
|
// operators to the lookup table to make them discoverable with
|
|
// unqualified lookup. This makes it possible to implement a Swift
|
|
// protocol requirement with an instantiation of a C++ member operator.
|
|
// This cannot be done when building the lookup table,
|
|
// because templates are instantiated lazily.
|
|
for (auto member : def->decls()) {
|
|
if (auto friendDecl = dyn_cast<clang::FriendDecl>(member))
|
|
if (auto underlyingDecl = friendDecl->getFriendDecl())
|
|
member = underlyingDecl;
|
|
|
|
if (auto method = dyn_cast<clang::FunctionDecl>(member)) {
|
|
if (method->isOverloadedOperator()) {
|
|
addEntryToLookupTable(*Impl.findLookupTable(decl), method,
|
|
Impl.getNameImporter());
|
|
}
|
|
}
|
|
}
|
|
|
|
return VisitCXXRecordDecl(def);
|
|
}
|
|
|
|
Decl *VisitClassTemplatePartialSpecializationDecl(
|
|
const clang::ClassTemplatePartialSpecializationDecl *decl) {
|
|
// Note: partial template specializations are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
|
|
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) return nullptr;
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto enumKind = Impl.getEnumKind(clangEnum);
|
|
switch (enumKind) {
|
|
case EnumKind::Constants:
|
|
case EnumKind::Unknown: {
|
|
// The enumeration was simply mapped to an integral type. Create a
|
|
// constant with that integral type.
|
|
|
|
// The context where the constant will be introduced.
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Enumeration type.
|
|
auto &clangContext = Impl.getClangASTContext();
|
|
auto type = Impl.importTypeIgnoreIUO(
|
|
clangContext.getTagDeclType(clangEnum), ImportTypeKind::Value,
|
|
ImportDiagnosticAdder(Impl, clangEnum, clangEnum->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
// Create the global constant.
|
|
bool isStatic = dc->isTypeContext();
|
|
auto result = synthesizer.createConstant(
|
|
name, dc, type, clang::APValue(decl->getInitVal()),
|
|
enumKind == EnumKind::Unknown ? ConstantConvertKind::Construction
|
|
: ConstantConvertKind::None,
|
|
isStatic, decl,
|
|
importer::convertClangAccess(clangEnum->getAccess()));
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
return result;
|
|
}
|
|
|
|
case EnumKind::NonFrozenEnum:
|
|
case EnumKind::FrozenEnum:
|
|
case EnumKind::Options: {
|
|
// The enumeration was mapped to a high-level Swift type, and its
|
|
// elements were created as children of that enum. They aren't available
|
|
// independently.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid EnumKind.");
|
|
}
|
|
|
|
|
|
Decl *
|
|
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) return nullptr;
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// If we encounter an IndirectFieldDecl, ensure that its parent is
|
|
// importable before attempting to import it because they are dependent
|
|
// when it comes to getter/setter generation.
|
|
if (auto parent = dyn_cast<clang::CXXRecordDecl>(
|
|
decl->getAnonField()->getParent())) {
|
|
auto semanticsKind = evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
CxxValueSemantics({parent->getTypeForDecl(), &Impl}), {});
|
|
if (semanticsKind == CxxValueSemanticsKind::Unknown)
|
|
return nullptr;
|
|
}
|
|
|
|
auto importedType =
|
|
Impl.importType(decl->getType(), ImportTypeKind::Variable,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None,
|
|
getImportTypeAttrs(decl));
|
|
if (!importedType)
|
|
return nullptr;
|
|
|
|
auto type = importedType.getType();
|
|
|
|
// Map this indirect field to a Swift variable.
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()),
|
|
/*IsStatic*/ false, VarDecl::Introducer::Var,
|
|
Impl.importSourceLoc(decl->getBeginLoc()), name, dc);
|
|
result->setInterfaceType(type);
|
|
result->setIsObjC(false);
|
|
result->setIsDynamic(false);
|
|
if (decl->getType().isConstQualified()) {
|
|
// Note that in C++ there are ways to change the values of const
|
|
// members, so we don't use WriteImplKind::Immutable storage.
|
|
assert(result->supportsMutation());
|
|
result->overwriteSetterAccess(AccessLevel::Private);
|
|
}
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
// If this is a compatibility stub, mark is as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
// Don't import unavailable fields that have no associated storage.
|
|
// TODO: is there any way we could bail here before we allocate/construct
|
|
// the VarDecl?
|
|
if (result->isUnavailable())
|
|
return nullptr;
|
|
|
|
return result;
|
|
}
|
|
|
|
ParameterList *
|
|
getNonSelfParamList(DeclContext *dc, const clang::FunctionDecl *decl,
|
|
std::optional<unsigned> selfIdx,
|
|
ArrayRef<Identifier> argNames,
|
|
bool allowNSUIntegerAsInt, bool isAccessor,
|
|
ArrayRef<GenericTypeParamDecl *> genericParams) {
|
|
if (bool(selfIdx)) {
|
|
assert(((decl->getNumParams() == argNames.size() + 1) || isAccessor) &&
|
|
(*selfIdx < decl->getNumParams()) && "where's self?");
|
|
} else {
|
|
unsigned numParamsAdjusted =
|
|
decl->getNumParams() + (decl->isVariadic() ? 1 : 0);
|
|
assert(numParamsAdjusted == argNames.size() || isAccessor);
|
|
}
|
|
|
|
SmallVector<const clang::ParmVarDecl *, 4> nonSelfParams;
|
|
for (unsigned i = 0; i < decl->getNumParams(); ++i) {
|
|
if (selfIdx && i == *selfIdx)
|
|
continue;
|
|
nonSelfParams.push_back(decl->getParamDecl(i));
|
|
}
|
|
return Impl.importFunctionParameterList(
|
|
dc, decl, nonSelfParams, decl->isVariadic(), allowNSUIntegerAsInt,
|
|
argNames, genericParams, /*resultType=*/nullptr);
|
|
}
|
|
|
|
Decl *
|
|
importGlobalAsInitializer(const clang::FunctionDecl *decl, DeclName name,
|
|
DeclContext *dc, CtorInitializerKind initKind,
|
|
std::optional<ImportedName> correctSwiftName);
|
|
|
|
/// Create an implicit property given the imported name of one of
|
|
/// the accessors.
|
|
VarDecl *getImplicitProperty(ImportedName importedName,
|
|
const clang::FunctionDecl *accessor);
|
|
|
|
bool foreignReferenceTypePassedByRef(const clang::FunctionDecl *decl) {
|
|
bool anyParamPassesByVal =
|
|
llvm::any_of(decl->parameters(), [this, decl](auto *param) {
|
|
if (auto recordType = dyn_cast<clang::RecordType>(
|
|
param->getType().getCanonicalType())) {
|
|
if (recordHasReferenceSemantics(recordType->getDecl())) {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::reference_passed_by_value,
|
|
Impl.SwiftContext.AllocateCopy(
|
|
recordType->getDecl()->getNameAsString()),
|
|
"a parameter"),
|
|
decl->getLocation());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
});
|
|
|
|
if (anyParamPassesByVal)
|
|
return true;
|
|
|
|
if (auto recordType = dyn_cast<clang::RecordType>(
|
|
decl->getReturnType().getCanonicalType())) {
|
|
if (recordHasReferenceSemantics(recordType->getDecl())) {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::reference_passed_by_value,
|
|
Impl.SwiftContext.AllocateCopy(
|
|
recordType->getDecl()->getNameAsString()),
|
|
"the return"),
|
|
decl->getLocation());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
|
|
// Import the name of the function.
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// Don't import functions that pass a foreign reference type by value
|
|
// (either as a parameter or return type).
|
|
if (foreignReferenceTypePassedByRef(decl))
|
|
return nullptr;
|
|
|
|
switch (importedName.getAccessorKind()) {
|
|
case ImportedAccessorKind::None:
|
|
case ImportedAccessorKind::SubscriptGetter:
|
|
case ImportedAccessorKind::SubscriptSetter:
|
|
case ImportedAccessorKind::DereferenceGetter:
|
|
case ImportedAccessorKind::DereferenceSetter:
|
|
break;
|
|
|
|
case ImportedAccessorKind::PropertyGetter: {
|
|
auto property = getImplicitProperty(importedName, decl);
|
|
if (!property) return nullptr;
|
|
return property->getParsedAccessor(AccessorKind::Get);
|
|
}
|
|
|
|
case ImportedAccessorKind::PropertySetter:
|
|
auto property = getImplicitProperty(importedName, decl);
|
|
if (!property) return nullptr;
|
|
return property->getParsedAccessor(AccessorKind::Set);
|
|
}
|
|
|
|
checkBridgingAttrs(decl);
|
|
Impl.validateSwiftAttributes(decl);
|
|
|
|
return importFunctionDecl(decl, importedName, correctSwiftName,
|
|
std::nullopt);
|
|
}
|
|
|
|
/// Emit diagnostics for incorrect usage of SWIFT_RETURNS_RETAINED and
|
|
/// SWIFT_RETURNS_UNRETAINED
|
|
void checkBridgingAttrs(const clang::NamedDecl *decl) {
|
|
assert(isa<clang::FunctionDecl>(decl) ||
|
|
isa<clang::ObjCMethodDecl>(decl) &&
|
|
"checkBridgingAttrs called with a clang::NamedDecl which is "
|
|
"neither clang::FunctionDecl nor clang::ObjCMethodDecl");
|
|
|
|
auto attrInfo = importer::ReturnOwnershipInfo(decl);
|
|
|
|
HeaderLoc loc(decl->getLocation());
|
|
const auto retType =
|
|
isa<clang::FunctionDecl>(decl)
|
|
? cast<clang::FunctionDecl>(decl)->getReturnType()
|
|
: cast<clang::ObjCMethodDecl>(decl)->getReturnType();
|
|
clang::QualType pointeeType = retType;
|
|
if (retType->isPointerType() || retType->isReferenceType()) {
|
|
pointeeType = retType->getPointeeType();
|
|
}
|
|
|
|
clang::RecordDecl *recordDecl = nullptr;
|
|
if (const auto *recordType = pointeeType->getAs<clang::RecordType>()) {
|
|
recordDecl = recordType->getDecl();
|
|
}
|
|
|
|
if (recordDecl && recordHasReferenceSemantics(recordDecl) &&
|
|
!hasImmortalAttrs(recordDecl)) {
|
|
if (attrInfo.hasConflictingAttr()) {
|
|
Impl.diagnose(loc, diag::both_returns_retained_returns_unretained,
|
|
decl);
|
|
} else if (const auto *methodDecl =
|
|
dyn_cast<clang::CXXMethodDecl>(decl)) {
|
|
// Warning for annotated overloaded C++ operators as they currently
|
|
// follow Swift method's convention and always return owned.
|
|
if (methodDecl->isOverloadedOperator() && attrInfo.hasRetainAttr()) {
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::
|
|
returns_retained_returns_unretained_on_overloaded_operator,
|
|
decl);
|
|
}
|
|
}
|
|
} else {
|
|
if (attrInfo.hasRetainAttr()) {
|
|
if (const auto *functionDecl = dyn_cast<clang::FunctionDecl>(decl)) {
|
|
// Skip diagnostics for template instantiations and template-dependent
|
|
// return types. We cannot determine at import time whether T or T* will
|
|
// be instantiated as a SWIFT_SHARED_REFERENCE type or not, so we avoid
|
|
// emitting potentially incorrect warnings for these cases.
|
|
if (functionDecl->isTemplateInstantiation() ||
|
|
functionDecl->getReturnType()->isInstantiationDependentType() ||
|
|
functionDecl->getReturnType()->isDependentType()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
Impl.diagnose(
|
|
loc,
|
|
diag::
|
|
returns_retained_or_returns_unretained_for_non_cxx_frt_values,
|
|
decl);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Handles special functions such as subscripts and dereference operators.
|
|
bool
|
|
processSpecialImportedFunc(FuncDecl *func, ImportedName importedName,
|
|
clang::OverloadedOperatorKind cxxOperatorKind) {
|
|
if (cxxOperatorKind == clang::OverloadedOperatorKind::OO_None)
|
|
return true;
|
|
|
|
auto dc = func->getDeclContext();
|
|
auto typeDecl = dc->getSelfNominalTypeDecl();
|
|
if (!typeDecl)
|
|
return true;
|
|
|
|
if (importedName.isSubscriptAccessor()) {
|
|
SmallVector<TypeBase *> params;
|
|
for (auto parameter : *(func->getParameters())) {
|
|
auto parameterType = parameter->getTypeInContext();
|
|
if (!typeDecl || !parameterType)
|
|
return false;
|
|
if (parameter->isInOut())
|
|
// Subscripts with inout parameters are not allowed in Swift.
|
|
return false;
|
|
params.push_back(parameterType.getPointer());
|
|
}
|
|
// Subscript setter is marked as mutating in Swift even if the
|
|
// C++ `operator []` is `const`.
|
|
if (importedName.getAccessorKind() ==
|
|
ImportedAccessorKind::SubscriptSetter &&
|
|
!dc->isModuleScopeContext() &&
|
|
!typeDecl->getDeclaredType()->isForeignReferenceType())
|
|
func->setSelfAccessKind(SelfAccessKind::Mutating);
|
|
|
|
auto &getterAndSetterMap = Impl.cxxSubscripts[typeDecl];
|
|
auto &getterAndSetter = getterAndSetterMap[params];
|
|
|
|
switch (importedName.getAccessorKind()) {
|
|
case ImportedAccessorKind::SubscriptGetter:
|
|
getterAndSetter.first = func;
|
|
break;
|
|
case ImportedAccessorKind::SubscriptSetter:
|
|
getterAndSetter.second = func;
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid subscript kind");
|
|
}
|
|
|
|
Impl.markUnavailable(func, "use subscript");
|
|
return true;
|
|
}
|
|
|
|
if (importedName.isDereferenceAccessor()) {
|
|
auto &getterAndSetter = Impl.cxxDereferenceOperators[typeDecl];
|
|
|
|
switch (importedName.getAccessorKind()) {
|
|
case ImportedAccessorKind::DereferenceGetter:
|
|
getterAndSetter.first = func;
|
|
break;
|
|
case ImportedAccessorKind::DereferenceSetter:
|
|
getterAndSetter.second = func;
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid dereference operator kind");
|
|
}
|
|
|
|
Impl.markUnavailable(func, "use .pointee property");
|
|
return true;
|
|
}
|
|
|
|
if (cxxOperatorKind == clang::OverloadedOperatorKind::OO_PlusPlus) {
|
|
// Make sure the type is not a foreign reference type.
|
|
// We cannot handle `operator++` for those types, since the
|
|
// current implementation creates a new instance of the type.
|
|
if (func->getParameters()->size() == 0 && !isa<ClassDecl>(typeDecl)) {
|
|
// This is a pre-increment operator. We synthesize a
|
|
// non-mutating function called `successor() -> Self`.
|
|
FuncDecl *successorFunc = synthesizer.makeSuccessorFunc(func);
|
|
|
|
// Import the clang decl attributes to synthesized successor function.
|
|
Impl.importAttributesFromClangDeclToSynthesizedSwiftDecl(func, successorFunc);
|
|
|
|
typeDecl->addMember(successorFunc);
|
|
|
|
Impl.markUnavailable(func, "use .successor()");
|
|
} else {
|
|
Impl.markUnavailable(func, "unable to create .successor() func");
|
|
}
|
|
func->overwriteAccess(AccessLevel::Private);
|
|
return true;
|
|
}
|
|
|
|
// Check if this method _is_ an overloaded operator but is not a
|
|
// call / subscript / dereference / increment. Those
|
|
// operators do not need static versions.
|
|
if (cxxOperatorKind != clang::OverloadedOperatorKind::OO_Call) {
|
|
auto opFuncDecl = synthesizer.makeOperator(func, cxxOperatorKind);
|
|
Impl.addAlternateDecl(func, opFuncDecl);
|
|
|
|
Impl.markUnavailable(
|
|
func, (Twine("use ") + clang::getOperatorSpelling(cxxOperatorKind) +
|
|
" instead")
|
|
.str());
|
|
|
|
// Make sure the synthesized decl can be found by lookupDirect.
|
|
typeDecl->addMemberToLookupTable(opFuncDecl);
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Decl *importFunctionDecl(
|
|
const clang::FunctionDecl *decl, ImportedName importedName,
|
|
std::optional<ImportedName> correctSwiftName,
|
|
std::optional<AccessorInfo> accessorInfo,
|
|
const clang::FunctionTemplateDecl *funcTemplate = nullptr) {
|
|
|
|
if (decl->isDeleted())
|
|
return nullptr;
|
|
|
|
// For now, we don't support non-subscript operators which are templated
|
|
bool isOperator = decl->getDeclName().getNameKind() ==
|
|
clang::DeclarationName::CXXOperatorName;
|
|
bool isNonSubscriptOperator =
|
|
isOperator && (decl->getDeclName().getCXXOverloadedOperator() !=
|
|
clang::OO_Subscript);
|
|
if (isNonSubscriptOperator && decl->isTemplated())
|
|
return nullptr;
|
|
|
|
if (auto *ctordecl = dyn_cast<clang::CXXConstructorDecl>(decl)) {
|
|
// Don't import copy constructor or move constructor -- these will be
|
|
// provided through the value witness table.
|
|
if (ctordecl->isCopyConstructor() || ctordecl->isMoveConstructor())
|
|
return nullptr;
|
|
|
|
// Don't import the generic ctors of std::span, rely on the ctors that
|
|
// we instantiate when conforming to the overlay. These generic ctors
|
|
// can cause crashes in codegen.
|
|
// FIXME: figure out why.
|
|
const auto *parent = ctordecl->getParent();
|
|
if (funcTemplate && parent->isInStdNamespace() &&
|
|
parent->getIdentifier() && parent->getName() == "span")
|
|
return nullptr;
|
|
}
|
|
|
|
if (Impl.SwiftContext.LangOpts.EnableCXXInterop &&
|
|
!isa<clang::CXXMethodDecl>(decl)) {
|
|
// Do not import math functions from the C++ standard library, as
|
|
// they're also imported from the Darwin/Glibc module, and their
|
|
// presence in the C++ standard library will cause overloading
|
|
// ambiguities or other type checking errors in Swift.
|
|
auto isAlternativeCStdlibFunctionFromTextualHeader =
|
|
[this](const clang::FunctionDecl *d) -> bool {
|
|
// stdlib.h might be a textual header in libc++'s module map.
|
|
// in this case, check for known ambiguous functions by their name
|
|
// instead of checking if they come from the `std` module.
|
|
if (!d->getDeclName().isIdentifier())
|
|
return false;
|
|
if (Impl.SwiftContext.LangOpts.Target.isOSDarwin())
|
|
return d->getName() == "strstr" || d->getName() == "sin" ||
|
|
d->getName() == "cos" || d->getName() == "exit";
|
|
return false;
|
|
};
|
|
|
|
if (clang::Module *owningModule = decl->getOwningModule();
|
|
owningModule && importer::isCxxStdModule(owningModule)) {
|
|
if (isAlternativeCStdlibFunctionFromTextualHeader(decl)) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto &sourceManager = Impl.getClangPreprocessor().getSourceManager();
|
|
if (auto file = sourceManager.getFileEntryRefForID(
|
|
sourceManager.getFileID(decl->getLocation()))) {
|
|
auto filename = file->getName();
|
|
if ((file->getDir() == owningModule->Directory) &&
|
|
(filename.ends_with("cmath") || filename.ends_with("math.h") ||
|
|
filename.ends_with("stdlib.h") || filename.ends_with("cstdlib"))) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::SmallSet<clang::NamedDecl *, 4> unusedTemplateParams;
|
|
if (funcTemplate) {
|
|
for (auto *param : *funcTemplate->getTemplateParameters()) {
|
|
auto *templateTypeParam = cast<clang::TemplateTypeParmDecl>(param);
|
|
// If the template type parameter isn't used in the signature then we
|
|
// won't be able to deduce what it is when the function template is
|
|
// called in Swift code. This is OK if there's a defaulted type we can
|
|
// use (in which case we just don't add a correspond generic). This
|
|
// also means sometimes we will import a function template as a
|
|
// "normal" (non-generic) Swift function.
|
|
//
|
|
// If the defaulted template type parameter is used in the signature,
|
|
// then still add a generic so that it can be overrieded.
|
|
// TODO(https://github.com/apple/swift/issues/57184): In the future we might want to import two overloads in this case so that the default type could still be used.
|
|
auto usedInSignature = [&]() -> bool {
|
|
if (hasSameUnderlyingType(decl->getReturnType().getTypePtr(),
|
|
templateTypeParam))
|
|
return true;
|
|
for (unsigned i : range(0, decl->getNumParams())) {
|
|
if (hasSameUnderlyingType(
|
|
decl->getParamDecl(i)->getType().getTypePtr(),
|
|
templateTypeParam))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (templateTypeParam->hasDefaultArgument() && !usedInSignature()) {
|
|
// We do not yet support instantiation of default values of template
|
|
// parameters when the function template is instantiated, so do not
|
|
// import the function template if the template parameter has
|
|
// dependent default value.
|
|
if (templateTypeParam->getDefaultArgument()
|
|
.getArgument()
|
|
.isDependent())
|
|
return nullptr;
|
|
unusedTemplateParams.insert(param);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// We may have already imported this function decl while importing its
|
|
// decl context. Check decl cache to make sure we don't import twice.
|
|
auto known = Impl.ImportedDecls.find({decl, getVersion()});
|
|
if (known != Impl.ImportedDecls.end()) {
|
|
return known->second;
|
|
}
|
|
|
|
DeclName name = accessorInfo ? DeclName() : importedName.getDeclName();
|
|
auto selfIdx = importedName.getSelfIndex();
|
|
|
|
if (auto *method = dyn_cast<clang::CXXMethodDecl>(decl);
|
|
method && method->isStatic() && name.getBaseName().isConstructor()) {
|
|
return importGlobalAsInitializer(
|
|
decl, name, dc, importedName.getInitKind(), correctSwiftName);
|
|
}
|
|
|
|
if (!dc->isModuleScopeContext() && !isClangNamespace(dc) &&
|
|
!isa<clang::CXXMethodDecl>(decl)) {
|
|
if (name.getBaseName().isConstructor()) {
|
|
ASSERT(!accessorInfo && "accessor should not be constructor()");
|
|
return importGlobalAsInitializer(decl, name, dc,
|
|
importedName.getInitKind(),
|
|
correctSwiftName);
|
|
}
|
|
|
|
if (dc->getSelfProtocolDecl() && !selfIdx) {
|
|
// FIXME: source location...
|
|
Impl.diagnose({}, diag::swift_name_protocol_static, /*isInit=*/false);
|
|
Impl.diagnose({}, diag::note_while_importing, decl->getName());
|
|
return nullptr;
|
|
}
|
|
|
|
if (!decl->hasPrototype()) {
|
|
// FIXME: source location...
|
|
Impl.diagnose({}, diag::swift_name_no_prototype);
|
|
Impl.diagnose({}, diag::note_while_importing, decl->getName());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
SmallVector<GenericTypeParamDecl *, 4> templateParams;
|
|
if (funcTemplate) {
|
|
unsigned i = 0;
|
|
for (auto *param : *funcTemplate->getTemplateParameters()) {
|
|
if (unusedTemplateParams.contains(param))
|
|
continue;
|
|
auto *typeParam = Impl.createDeclWithClangNode<GenericTypeParamDecl>(
|
|
param, AccessLevel::Public, dc,
|
|
Impl.SwiftContext.getIdentifier(param->getName()),
|
|
/*nameLoc*/ Impl.importSourceLoc(param->getLocation()),
|
|
/*specifierLoc*/ SourceLoc(),
|
|
/*depth*/ 0, /*index*/ i, GenericTypeParamKind::Type);
|
|
templateParams.push_back(typeParam);
|
|
(void)++i;
|
|
}
|
|
}
|
|
auto getGenericParams = [&]() -> GenericParamList * {
|
|
if (templateParams.empty())
|
|
return nullptr;
|
|
return GenericParamList::create(Impl.SwiftContext, SourceLoc(),
|
|
templateParams, SourceLoc());
|
|
};
|
|
|
|
ImportedType resultType;
|
|
bool selfIsInOut = false;
|
|
ParameterList *bodyParams = nullptr;
|
|
if (!dc->isModuleScopeContext() && !isClangNamespace(dc) &&
|
|
!isa<clang::CXXMethodDecl>(decl)) {
|
|
|
|
// There is an inout 'self' when the parameter is a pointer to a
|
|
// non-const instance of the type we're importing onto. Importing this
|
|
// as a method means that the method should be treated as mutating in
|
|
// this situation.
|
|
if (selfIdx &&
|
|
!dc->getDeclaredInterfaceType()->hasReferenceSemantics()) {
|
|
auto selfParam = decl->getParamDecl(*selfIdx);
|
|
auto selfParamTy = selfParam->getType();
|
|
if ((selfParamTy->isPointerType() ||
|
|
selfParamTy->isReferenceType()) &&
|
|
!selfParamTy->getPointeeType().isConstQualified()) {
|
|
selfIsInOut = true;
|
|
|
|
// If there's a swift_newtype, check the levels of indirection: self
|
|
// is only inout if this is a pointer to the typedef type (which
|
|
// itself is a pointer).
|
|
if (auto nominalTypeDecl = dc->getSelfNominalTypeDecl()) {
|
|
if (auto clangDCTy = dyn_cast_or_null<clang::TypedefNameDecl>(
|
|
nominalTypeDecl->getClangDecl()))
|
|
if (getSwiftNewtypeAttr(clangDCTy, getVersion()))
|
|
if (clangDCTy->getUnderlyingType().getCanonicalType() !=
|
|
selfParamTy->getPointeeType().getCanonicalType())
|
|
selfIsInOut = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool allowNSUIntegerAsInt =
|
|
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
|
|
|
|
bodyParams =
|
|
getNonSelfParamList(dc, decl, selfIdx, name.getArgumentNames(),
|
|
allowNSUIntegerAsInt, !name, templateParams);
|
|
// If we can't import a param for some reason (ex. it's a dependent
|
|
// type), bail.
|
|
if (!bodyParams)
|
|
return nullptr;
|
|
|
|
if (decl->getReturnType()->isScalarType())
|
|
resultType =
|
|
Impl.importFunctionReturnType(dc, decl, allowNSUIntegerAsInt);
|
|
} else {
|
|
// Import the function type. If we have parameters, make sure their
|
|
// names get into the resulting function type.
|
|
resultType = Impl.importFunctionParamsAndReturnType(
|
|
dc, decl, {decl->param_begin(), decl->param_size()},
|
|
decl->isVariadic(), isInSystemModule(dc), name, bodyParams,
|
|
templateParams);
|
|
|
|
if (auto *mdecl = dyn_cast<clang::CXXMethodDecl>(decl)) {
|
|
if (mdecl->isStatic()) {
|
|
selfIdx = std::nullopt;
|
|
} else {
|
|
// Swift imports the "self" param last, even for clang functions.
|
|
selfIdx = bodyParams ? bodyParams->size() : 0;
|
|
// If the method is imported as mutating, this implicitly makes the
|
|
// parameter indirect.
|
|
selfIsInOut =
|
|
!isa<ClassDecl>(dc) &&
|
|
Impl.SwiftContext.getClangModuleLoader()->isCXXMethodMutating(
|
|
mdecl);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!bodyParams) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::invoked_func_not_imported, decl),
|
|
decl->getSourceRange().getBegin());
|
|
return nullptr;
|
|
}
|
|
|
|
// We may have already imported this function decl while importing its
|
|
// type signature. Check decl cache to make sure we don't import twice.
|
|
auto known2 = Impl.ImportedDecls.find({decl, getVersion()});
|
|
if (known2 != Impl.ImportedDecls.end()) {
|
|
return known2->second;
|
|
}
|
|
|
|
if (name && name.isSimpleName()) {
|
|
assert(importedName.hasCustomName() &&
|
|
"imported function with simple name?");
|
|
// Just fill in empty argument labels.
|
|
name = DeclName(Impl.SwiftContext, name.getBaseName(), bodyParams);
|
|
}
|
|
|
|
if (name && name.getArgumentNames().size() != bodyParams->size()) {
|
|
// We synthesized additional parameters so rebuild the DeclName.
|
|
name = DeclName(Impl.SwiftContext, name.getBaseName(), bodyParams);
|
|
}
|
|
|
|
auto loc = Impl.importSourceLoc(decl->getLocation());
|
|
// FIXME: Poor location info.
|
|
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
ClangNode clangNode = decl;
|
|
if (funcTemplate)
|
|
clangNode = funcTemplate;
|
|
|
|
AbstractFunctionDecl *result = nullptr;
|
|
if (auto *ctordecl = dyn_cast<clang::CXXConstructorDecl>(decl)) {
|
|
DeclName ctorName(Impl.SwiftContext, DeclBaseName::createConstructor(),
|
|
bodyParams);
|
|
result = Impl.createDeclWithClangNode<ConstructorDecl>(
|
|
clangNode, importer::convertClangAccess(ctordecl->getAccess()),
|
|
ctorName, loc,
|
|
/*failable=*/false, /*FailabilityLoc=*/SourceLoc(),
|
|
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
|
|
/*ThrownType=*/TypeLoc(), bodyParams, getGenericParams(), dc);
|
|
} else {
|
|
auto *func = createFuncOrAccessor(
|
|
Impl, loc, accessorInfo, name, nameLoc, getGenericParams(),
|
|
bodyParams, resultType.getType(),
|
|
/*async=*/false, /*throws=*/false, dc, clangNode);
|
|
result = func;
|
|
|
|
if (!dc->isModuleScopeContext()) {
|
|
if (selfIsInOut) {
|
|
func->setSelfAccessKind(SelfAccessKind::Mutating);
|
|
} else {
|
|
if (getImplicitObjectParamAnnotation<clang::LifetimeBoundAttr>(
|
|
decl))
|
|
func->setSelfAccessKind(SelfAccessKind::Borrowing);
|
|
else
|
|
func->setSelfAccessKind(SelfAccessKind::NonMutating);
|
|
}
|
|
if (selfIdx) {
|
|
func->setSelfIndex(selfIdx.value());
|
|
// FIXME: Make this work when SIL Opaque Values are enabled.
|
|
// Currently, addressable parameters and opaque values are at odds.
|
|
if (!dc->getDeclaredInterfaceType()->hasReferenceSemantics() &&
|
|
!importedName.importAsMember() &&
|
|
!Impl.SwiftContext.SILOpts.EnableSILOpaqueValues)
|
|
func->addAttribute(new (Impl.SwiftContext)
|
|
AddressableSelfAttr(true));
|
|
} else {
|
|
func->setStatic();
|
|
func->setImportAsStaticMember();
|
|
}
|
|
}
|
|
func->setAccess(importer::convertClangAccess(decl->getAccess()));
|
|
|
|
bool success = processSpecialImportedFunc(
|
|
func, importedName, decl->getOverloadedOperator());
|
|
if (!success)
|
|
return nullptr;
|
|
}
|
|
|
|
result->setIsObjC(false);
|
|
result->setIsDynamic(false);
|
|
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
resultType.isImplicitlyUnwrapped());
|
|
|
|
if (dc->getSelfClassDecl())
|
|
// FIXME: only if the class itself is not marked final
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
FinalAttr(/*IsImplicit=*/true));
|
|
|
|
finishFuncDecl(decl, result);
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool isNonEscapableAnnotatedType(const clang::Type *t) {
|
|
if (const auto *rd = t->getAsRecordDecl()) {
|
|
return hasNonEscapableAttr(rd);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isEscapableAnnotatedType(const clang::Type *t) {
|
|
if (const auto *rd = t->getAsRecordDecl()) {
|
|
return hasEscapableAttr(rd);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Inject lifetime annotations selectively for some STL types so we can use
|
|
// unsafeAddress to avoid copies.
|
|
bool inferSelfDependence(const clang::FunctionDecl *decl,
|
|
AbstractFunctionDecl *result, size_t returnIdx) {
|
|
const auto *method = dyn_cast<clang::CXXMethodDecl>(decl);
|
|
if (!method)
|
|
return false;
|
|
const auto *enclosing = method->getParent();
|
|
if (enclosing->isInStdNamespace() &&
|
|
(enclosing->getName() == "unique_ptr" ||
|
|
enclosing->getName() == "shared_ptr") &&
|
|
method->isOverloadedOperator() &&
|
|
method->getOverloadedOperator() == clang::OO_Star) {
|
|
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
|
|
SmallBitVector dependenciesOfRet(returnIdx);
|
|
dependenciesOfRet[result->getSelfIndex()] = true;
|
|
lifetimeDependencies.push_back(LifetimeDependenceInfo(
|
|
nullptr, IndexSubset::get(Impl.SwiftContext, dependenciesOfRet),
|
|
returnIdx,
|
|
/*isImmortal*/ false));
|
|
Impl.SwiftContext.evaluator.cacheOutput(
|
|
LifetimeDependenceInfoRequest{result},
|
|
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
|
|
Impl.returnsSelfDependentValue.insert(result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isReturnDependsOnSelf(
|
|
AbstractFunctionDecl *f,
|
|
const ArrayRef<LifetimeDependenceInfo> &lifetimeDeps) {
|
|
if (isa<ConstructorDecl>(f) || !f->getImportAsMemberStatus().isInstance())
|
|
return false;
|
|
for (auto dependence : lifetimeDeps) {
|
|
auto returnIdx = f->getParameters()->size() + !isa<ConstructorDecl>(f);
|
|
if (!dependence.hasInheritLifetimeParamIndices() &&
|
|
dependence.hasScopeLifetimeParamIndices() &&
|
|
dependence.getTargetIndex() == returnIdx)
|
|
return dependence.getScopeIndices()->contains(f->getSelfIndex());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void addLifetimeDependencies(const clang::FunctionDecl *decl,
|
|
AbstractFunctionDecl *result) {
|
|
if (decl->getTemplatedKind() == clang::FunctionDecl::TK_FunctionTemplate)
|
|
return;
|
|
|
|
// FIXME: support C functions imported as members.
|
|
if (!isClangNamespace(result->getDeclContext()) &&
|
|
result->getImportAsMemberStatus().isImportAsMember() &&
|
|
!isa<clang::CXXMethodDecl, clang::ObjCMethodDecl>(decl))
|
|
return;
|
|
|
|
bool hasSkippedLifetimeAnnotation = false;
|
|
auto isEscapable = [this](clang::QualType ty) {
|
|
return evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
ClangTypeEscapability({ty.getTypePtr(), &Impl}),
|
|
CxxEscapability::Unknown) != CxxEscapability::NonEscapable;
|
|
};
|
|
auto importedAsClass = [this](clang::QualType ty, bool forSelf) {
|
|
if (!forSelf) {
|
|
if (ty->getPointeeType().isNull())
|
|
return false;
|
|
ty = ty->getPointeeType();
|
|
}
|
|
if (const auto *rd = ty->getAsRecordDecl())
|
|
return recordHasReferenceSemantics(rd);
|
|
return false;
|
|
};
|
|
|
|
auto swiftParams = result->getParameters();
|
|
bool hasSelf =
|
|
result->hasImplicitSelfDecl() && !isa<ConstructorDecl>(result);
|
|
auto returnIdx = swiftParams->size() + hasSelf;
|
|
|
|
if (inferSelfDependence(decl, result, returnIdx))
|
|
return;
|
|
|
|
// FIXME: this uses '0' as the result index. That only works for
|
|
// standalone functions with no parameters.
|
|
// See markReturnsUnsafeNonescapable() for a general approach.
|
|
auto &ASTContext = result->getASTContext();
|
|
|
|
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
|
|
LifetimeDependenceInfo immortalLifetime(nullptr, nullptr, 0,
|
|
/*isImmortal*/ true);
|
|
if (hasUnsafeAPIAttr(decl) && !isEscapable(decl->getReturnType())) {
|
|
lifetimeDependencies.push_back(immortalLifetime);
|
|
Impl.SwiftContext.evaluator.cacheOutput(
|
|
LifetimeDependenceInfoRequest{result},
|
|
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
|
|
return;
|
|
}
|
|
|
|
auto retType = decl->getReturnType();
|
|
auto warnForEscapableReturnType = [&] {
|
|
if (isEscapableAnnotatedType(retType.getTypePtr())) {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::return_escapable_with_lifetimebound,
|
|
Impl.SwiftContext.AllocateCopy(retType.getAsString())),
|
|
decl->getLocation());
|
|
}
|
|
};
|
|
|
|
const auto dependencyVecSize = returnIdx;
|
|
SmallBitVector inheritLifetimeParamIndicesForReturn(dependencyVecSize);
|
|
SmallBitVector scopedLifetimeParamIndicesForReturn(dependencyVecSize);
|
|
SmallBitVector paramHasAnnotation(dependencyVecSize);
|
|
std::map<unsigned, SmallBitVector> inheritedArgDependences;
|
|
auto processLifetimeBound = [&](unsigned idx, clang::QualType ty,
|
|
bool forSelf = false) {
|
|
warnForEscapableReturnType();
|
|
if (importedAsClass(ty, forSelf))
|
|
hasSkippedLifetimeAnnotation = true;
|
|
paramHasAnnotation[idx] = true;
|
|
if (isEscapable(ty))
|
|
scopedLifetimeParamIndicesForReturn[idx] = true;
|
|
else
|
|
inheritLifetimeParamIndicesForReturn[idx] = true;
|
|
};
|
|
auto processLifetimeCaptureBy =
|
|
[&](const clang::LifetimeCaptureByAttr *attr, unsigned idx,
|
|
clang::QualType ty) {
|
|
// FIXME: support scoped lifetimes. This is not straightforward as
|
|
// const T& is imported as taking a value
|
|
// and we assume the address of T would not escape. An
|
|
// annotation in this case contradicts our assumptions. We
|
|
// should diagnose that, and support this for the non-const
|
|
// case.
|
|
if (isEscapable(ty))
|
|
return;
|
|
for (auto param : attr->params()) {
|
|
// FIXME: Swift assumes no escaping to globals. We should diagnose
|
|
// this.
|
|
if (param == clang::LifetimeCaptureByAttr::Global ||
|
|
param == clang::LifetimeCaptureByAttr::Unknown ||
|
|
param == clang::LifetimeCaptureByAttr::Invalid)
|
|
continue;
|
|
|
|
paramHasAnnotation[idx] = true;
|
|
if (isa<clang::CXXMethodDecl>(decl) &&
|
|
param == clang::LifetimeCaptureByAttr::This) {
|
|
auto [it, inserted] = inheritedArgDependences.try_emplace(
|
|
result->getSelfIndex(), SmallBitVector(dependencyVecSize));
|
|
it->second[idx] = true;
|
|
} else {
|
|
auto [it, inserted] = inheritedArgDependences.try_emplace(
|
|
param - isa<clang::CXXMethodDecl>(decl),
|
|
SmallBitVector(dependencyVecSize));
|
|
it->second[idx] = true;
|
|
}
|
|
}
|
|
};
|
|
for (auto [idx, param] : llvm::enumerate(decl->parameters())) {
|
|
if (param->hasAttr<clang::LifetimeBoundAttr>())
|
|
processLifetimeBound(idx, param->getType());
|
|
if (const auto *attr = param->getAttr<clang::LifetimeCaptureByAttr>())
|
|
processLifetimeCaptureBy(attr, idx, param->getType());
|
|
}
|
|
if (getImplicitObjectParamAnnotation<clang::LifetimeBoundAttr>(decl))
|
|
processLifetimeBound(
|
|
result->getSelfIndex(),
|
|
cast<clang::CXXMethodDecl>(decl)->getThisType()->getPointeeType(),
|
|
/*forSelf=*/true);
|
|
if (auto attr =
|
|
getImplicitObjectParamAnnotation<clang::LifetimeCaptureByAttr>(
|
|
decl))
|
|
processLifetimeCaptureBy(
|
|
attr, result->getSelfIndex(),
|
|
cast<clang::CXXMethodDecl>(decl)->getThisType()->getPointeeType());
|
|
|
|
for (auto& [idx, inheritedDepVec]: inheritedArgDependences) {
|
|
lifetimeDependencies.push_back(LifetimeDependenceInfo(inheritedDepVec.any() ? IndexSubset::get(Impl.SwiftContext,
|
|
inheritedDepVec): nullptr, nullptr, idx, /*isImmortal=*/false));
|
|
}
|
|
|
|
if (inheritLifetimeParamIndicesForReturn.any() ||
|
|
scopedLifetimeParamIndicesForReturn.any())
|
|
lifetimeDependencies.push_back(LifetimeDependenceInfo(
|
|
inheritLifetimeParamIndicesForReturn.any()
|
|
? IndexSubset::get(Impl.SwiftContext,
|
|
inheritLifetimeParamIndicesForReturn)
|
|
: nullptr,
|
|
scopedLifetimeParamIndicesForReturn.any()
|
|
? IndexSubset::get(Impl.SwiftContext,
|
|
scopedLifetimeParamIndicesForReturn)
|
|
: nullptr,
|
|
returnIdx,
|
|
/*isImmortal*/ false));
|
|
else if (auto *ctordecl = dyn_cast<clang::CXXConstructorDecl>(decl)) {
|
|
// Assume default constructed view types have no dependencies.
|
|
if (ctordecl->isDefaultConstructor() &&
|
|
evaluateOrDefault(
|
|
Impl.SwiftContext.evaluator,
|
|
ClangTypeEscapability(
|
|
{ctordecl->getParent()->getTypeForDecl(), &Impl}),
|
|
CxxEscapability::Unknown) == CxxEscapability::NonEscapable)
|
|
lifetimeDependencies.push_back(immortalLifetime);
|
|
}
|
|
if (lifetimeDependencies.empty()) {
|
|
if (isNonEscapableAnnotatedType(retType.getTypePtr())) {
|
|
Impl.addImportDiagnostic(
|
|
decl,
|
|
Diagnostic(diag::return_nonescapable_without_lifetimebound,
|
|
Impl.SwiftContext.AllocateCopy(retType.getAsString())),
|
|
decl->getLocation());
|
|
}
|
|
} else {
|
|
Impl.SwiftContext.evaluator.cacheOutput(
|
|
LifetimeDependenceInfoRequest{result},
|
|
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
|
|
}
|
|
|
|
if (hasSkippedLifetimeAnnotation) {
|
|
result->addAttribute(new (ASTContext) UnsafeAttr(/*implicit=*/true));
|
|
} else {
|
|
for (auto [idx, param] : llvm::enumerate(decl->parameters())) {
|
|
if (isEscapable(param->getType()))
|
|
continue;
|
|
if (param->hasAttr<clang::NoEscapeAttr>() || paramHasAnnotation[idx])
|
|
continue;
|
|
// We have a nonescapable parameter that does not have its lifetime
|
|
// annotated nor is it marked noescape.
|
|
result->addAttribute(new (ASTContext) UnsafeAttr(/*implicit=*/true));
|
|
break;
|
|
}
|
|
}
|
|
|
|
Impl.diagnoseTargetDirectly(decl);
|
|
|
|
if (isReturnDependsOnSelf(result, lifetimeDependencies)) {
|
|
Impl.returnsSelfDependentValue.insert(result);
|
|
}
|
|
}
|
|
|
|
void finishFuncDecl(const clang::FunctionDecl *decl,
|
|
AbstractFunctionDecl *result) {
|
|
// Set availability.
|
|
if (decl->isVariadic()) {
|
|
Impl.markUnavailable(result, "Variadic function is unavailable");
|
|
}
|
|
|
|
addLifetimeDependencies(decl, result);
|
|
|
|
if (decl->hasAttr<clang::ReturnsTwiceAttr>()) {
|
|
// The Clang 'returns_twice' attribute is used for functions like
|
|
// 'vfork' or 'setjmp'. Because these functions may return control flow
|
|
// of a Swift program to an arbitrary point, Swift's guarantees of
|
|
// definitive initialization of variables cannot be upheld. As a result,
|
|
// functions like these cannot be used in Swift.
|
|
Impl.markUnavailable(
|
|
result,
|
|
"Functions that may return more than one time (annotated with the "
|
|
"'returns_twice' attribute) are unavailable in Swift");
|
|
}
|
|
|
|
recordObjCOverride(result);
|
|
Impl.swiftify(result);
|
|
}
|
|
|
|
static bool hasComputedPropertyAttr(const clang::Decl *decl) {
|
|
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
|
|
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
|
|
return swiftAttr->getAttribute() == "import_computed_property";
|
|
return false;
|
|
});
|
|
}
|
|
|
|
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
|
|
// The static `operator ()` introduced in C++ 23 is still callable as an
|
|
// instance operator in C++, and we want to preserve the ability to call
|
|
// it as an instance method in Swift as well for source compatibility.
|
|
// Therefore, we synthesize a C++ instance member that invokes the
|
|
// operator and import it instead.
|
|
if (decl->getOverloadedOperator() ==
|
|
clang::OverloadedOperatorKind::OO_Call &&
|
|
decl->isStatic()) {
|
|
auto result = synthesizer.makeInstanceToStaticOperatorCallMethod(decl);
|
|
if (result)
|
|
return result;
|
|
}
|
|
auto method = VisitFunctionDecl(decl);
|
|
|
|
// Do not expose constructors of abstract C++ classes.
|
|
if (auto recordDecl =
|
|
dyn_cast<clang::CXXRecordDecl>(decl->getDeclContext())) {
|
|
if (isa<clang::CXXConstructorDecl>(decl) && recordDecl->isAbstract() &&
|
|
isa_and_nonnull<ValueDecl>(method)) {
|
|
Impl.markUnavailable(
|
|
cast<ValueDecl>(method),
|
|
"constructors of abstract C++ classes are unavailable in Swift");
|
|
return method;
|
|
}
|
|
}
|
|
|
|
if (decl->isVirtual()) {
|
|
if (auto funcDecl = dyn_cast_or_null<FuncDecl>(method)) {
|
|
if (isa_and_nonnull<StructDecl>(method->getDeclContext())) {
|
|
// If this is a method of a Swift struct, any possible override of
|
|
// this method would get sliced away, and an invocation would get
|
|
// dispatched statically. This is fine because it matches the C++
|
|
// behavior.
|
|
if (decl->isPureVirtual()) {
|
|
// If this is a pure virtual method, we won't have any
|
|
// implementation of it to invoke.
|
|
Impl.markUnavailable(funcDecl,
|
|
"virtual function is not available in Swift "
|
|
"because it is pure");
|
|
}
|
|
} else if (isa_and_nonnull<ClassDecl>(funcDecl->getDeclContext())) {
|
|
// This is a foreign reference type. Since `class T` on the Swift
|
|
// side is mapped from `T*` on the C++ side, an invocation of a
|
|
// virtual method `t->method()` should get dispatched dynamically.
|
|
// Create a thunk that will perform dynamic dispatch.
|
|
// TODO: we don't have to import the actual `method` in this case,
|
|
// we can just synthesize a thunk and import that instead.
|
|
|
|
llvm::SmallString<64> swiftName;
|
|
funcDecl->getName().getString(swiftName);
|
|
FuncDecl *result =
|
|
synthesizer.makeVirtualMethod(decl, swiftName.str());
|
|
|
|
if (result) {
|
|
return result;
|
|
} else {
|
|
Impl.markUnavailable(
|
|
funcDecl, "virtual function is not available in Swift");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Impl.SwiftContext.LangOpts.CxxInteropGettersSettersAsProperties ||
|
|
hasComputedPropertyAttr(decl)) {
|
|
if (auto funcDecl = dyn_cast_or_null<FuncDecl>(method)) {
|
|
auto parent = funcDecl->getParent()->getSelfNominalTypeDecl();
|
|
CXXMethodBridging bridgingInfo(decl);
|
|
if (bridgingInfo.classify() == CXXMethodBridging::Kind::getter) {
|
|
auto name = bridgingInfo.getClangName().drop_front(3);
|
|
Impl.GetterSetterMap[parent][name].first = funcDecl;
|
|
} else if (bridgingInfo.classify() ==
|
|
CXXMethodBridging::Kind::setter) {
|
|
auto name = bridgingInfo.getClangName().drop_front(3);
|
|
Impl.GetterSetterMap[parent][name].second = funcDecl;
|
|
}
|
|
}
|
|
}
|
|
|
|
return method;
|
|
}
|
|
|
|
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
|
|
if (decl->hasAttr<clang::NoUniqueAddressAttr>()) {
|
|
if (const auto *rd = decl->getType()->getAsRecordDecl()) {
|
|
// Clang can store the next field in the padding of this one. Swift
|
|
// does not support this yet so let's not import the field and
|
|
// represent it with an opaque blob in codegen.
|
|
//
|
|
// This check is not relevant when importing the decl symbolically
|
|
// (since that isn't used for codegen). In fact, we need to avoid this
|
|
// check because symbolic imports can expose us to dependent types
|
|
// whose ASTRecordLayout cannot be queried.
|
|
const auto &fieldLayout =
|
|
decl->getASTContext().getASTRecordLayout(rd);
|
|
auto &clangCtx = decl->getASTContext();
|
|
if (!decl->isZeroSize(clangCtx) &&
|
|
fieldLayout.getDataSize() != fieldLayout.getSize()) {
|
|
const auto *parent = decl->getParent();
|
|
auto currIdx = decl->getFieldIndex();
|
|
auto nextIdx = currIdx + 1;
|
|
const auto &parentLayout = clangCtx.getASTRecordLayout(parent);
|
|
if (parentLayout.getFieldCount() > nextIdx &&
|
|
parentLayout.getFieldOffset(nextIdx) <
|
|
(parentLayout.getFieldOffset(currIdx) +
|
|
clangCtx.toBits(fieldLayout.getSize())))
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
// Fields are imported as variables.
|
|
std::optional<ImportedName> correctSwiftName;
|
|
ImportedName importedName;
|
|
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) {
|
|
return nullptr;
|
|
}
|
|
if (correctSwiftName) {
|
|
// FIXME: We should import this as a variant, but to do that, we'll also
|
|
// need to make this a computed variable or otherwise fix how the rest
|
|
// of the compiler thinks about stored properties in imported structs.
|
|
// For now, just don't import it at all. (rdar://86069786)
|
|
return nullptr;
|
|
}
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
auto known = Impl.importDeclCached(decl, getVersion());
|
|
if (known.has_value())
|
|
return known.value();
|
|
|
|
// TODO: do we want to emit a diagnostic here?
|
|
// Types that are marked as foreign references cannot be stored by value.
|
|
if (auto recordType =
|
|
dyn_cast<clang::RecordType>(decl->getType().getCanonicalType())) {
|
|
if (recordHasReferenceSemantics(recordType->getDecl()))
|
|
return nullptr;
|
|
}
|
|
|
|
auto fieldType = desugarIfElaborated(decl->getType());
|
|
ImportedType importedType = importer::findOptionSetEnum(fieldType, Impl);
|
|
|
|
// If this is a closure field of the __SwiftFunctionWrapper type, pretend
|
|
// that the type of the field is a Swift closure. The actual Clang type is
|
|
// a pair of two pointers: code and context.
|
|
if (!importedType && decl->getParent() &&
|
|
decl->getParent()->getIdentifier() &&
|
|
Impl.isSwiftFunctionWrapper(decl->getParent()) &&
|
|
name.is("closure")) {
|
|
auto &ctx = dc->getASTContext();
|
|
auto functionWrapperDecl = dc->getSelfStructDecl();
|
|
auto callAsFunctionOverloads =
|
|
functionWrapperDecl->lookupDirect(ctx.Id_callAsFunction);
|
|
ASSERT(callAsFunctionOverloads.size() == 1 &&
|
|
"__SwiftFunctionWrapper should only have one operator()");
|
|
auto callAsFunctionDecl =
|
|
cast<FuncDecl>(callAsFunctionOverloads.front());
|
|
|
|
auto closureType = callAsFunctionDecl->getInterfaceType()
|
|
->getAs<FunctionType>()
|
|
->getResult();
|
|
|
|
importedType = ImportedType(closureType, false);
|
|
}
|
|
|
|
if (!importedType)
|
|
importedType =
|
|
Impl.importType(decl->getType(), ImportTypeKind::RecordField,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None,
|
|
getImportTypeAttrs(decl));
|
|
if (!importedType) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::record_field_not_imported, decl),
|
|
decl->getSourceRange().getBegin());
|
|
return nullptr;
|
|
}
|
|
|
|
auto type = importedType.getType();
|
|
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()),
|
|
/*IsStatic*/ false, VarDecl::Introducer::Var,
|
|
Impl.importSourceLoc(decl->getLocation()), name, dc);
|
|
if (decl->getType().isConstQualified()) {
|
|
// Note that in C++ there are ways to change the values of const
|
|
// members, so we don't use WriteImplKind::Immutable storage.
|
|
assert(result->supportsMutation());
|
|
result->overwriteSetterAccess(AccessLevel::Private);
|
|
}
|
|
result->setIsObjC(false);
|
|
result->setIsDynamic(false);
|
|
result->setInterfaceType(type);
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBOutletAttr>())
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
IBOutletAttr(/*IsImplicit=*/false));
|
|
// FIXME: Handle IBOutletCollection.
|
|
|
|
// If this is a compatibility stub, handle it as such.
|
|
if (correctSwiftName)
|
|
// FIXME: Temporarily unreachable because of check above.
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
if (decl->isAnonymousStructOrUnion())
|
|
Impl.markUnavailable(
|
|
result, "refer to the members of the anonymous type instead");
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
|
|
// Disallow direct ivar access (and avoid conflicts with property names).
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
|
|
// @defs is an anachronism; ignore it.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitVarDecl(const clang::VarDecl *decl) {
|
|
// Variables are imported as... variables.
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) return nullptr;
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// If we've imported this variable as a member, it's a static
|
|
// member.
|
|
bool isStatic = false;
|
|
if (dc->isTypeContext())
|
|
isStatic = true;
|
|
|
|
// For now we don't import static constexpr. TODO: Lift this restriction.
|
|
if (isStatic && !isClangNamespace(dc) && decl->isConstexpr())
|
|
return nullptr;
|
|
|
|
auto introducer = Impl.shouldImportGlobalAsLet(decl->getType())
|
|
? VarDecl::Introducer::Let
|
|
: VarDecl::Introducer::Var;
|
|
|
|
ValueDecl *result = nullptr;
|
|
|
|
bool initIsEvaluatable = false;
|
|
if (Impl.SwiftContext.ClangImporterOpts.EnableConstValueImporting) {
|
|
if (auto init = decl->getInit()) {
|
|
// Don't import values when type-dependent or value-dependent.
|
|
bool typeDependent = decl->getType()->isDependentType();
|
|
bool valueDependent = init->isValueDependent();
|
|
|
|
initIsEvaluatable = !typeDependent && !valueDependent;
|
|
}
|
|
}
|
|
|
|
// If the variable is const (we're importing it as a let), and has an
|
|
// initializer, then ask Clang for its constant value and synthesize a
|
|
// getter with that value.
|
|
if (introducer == VarDecl::Introducer::Let && initIsEvaluatable) {
|
|
auto val = decl->evaluateValue();
|
|
// For now, only import integer and float constants. If in the future
|
|
// SwiftDeclSynthesizer::createConstant becomes able to import more
|
|
// types, we can lift this restriction.
|
|
if (val && (val->isFloat() || val->isInt())) {
|
|
auto type = Impl.importTypeIgnoreIUO(
|
|
decl->getType(), ImportTypeKind::Value,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
|
|
// Do not attempt to import CGFloat values, for now. Importing
|
|
// CGFloats is special cased in the importer, and needs more handling.
|
|
bool isCGFloat = (type && type->isCGFloat()) ||
|
|
(type && synthesizer.isCGFloat(type));
|
|
// Do not attempts to import ObjCBool values, for similar reasons.
|
|
bool isObjCBool = (type && type->isObjCBool()) ||
|
|
(type && synthesizer.isObjCBool(type));
|
|
// Do not attempts to import CWideChar (wchar_t) values. CWideChar is
|
|
// a typealias for Unicode.Scalar, which does not
|
|
// implement _ExpressibleByBuiltinIntegerLiteral.
|
|
// FIXME: import using _ExpressibleByUnicodeScalarLiteral.
|
|
bool isUnicodeScalar = (type && type->isUnicodeScalar()) ||
|
|
(type && synthesizer.isUnicodeScalar(type));
|
|
|
|
if (type && !isCGFloat && !isObjCBool && !isUnicodeScalar) {
|
|
auto convertKind = ConstantConvertKind::None;
|
|
// Request conversions on enums, and swift_wrapper((enum/struct))
|
|
// types
|
|
if (decl->getType()->isEnumeralType()) {
|
|
if (type->getEnumOrBoundGenericEnum()) {
|
|
// When importing as an enum, also apply implicit force unwrap
|
|
convertKind = ConstantConvertKind::ConstructionWithUnwrap;
|
|
} else {
|
|
convertKind = ConstantConvertKind::Construction;
|
|
}
|
|
} else if (findSwiftNewtype(decl, Impl.getClangSema(),
|
|
Impl.CurrentVersion))
|
|
convertKind = ConstantConvertKind::Construction;
|
|
|
|
result = synthesizer.createConstant(
|
|
name, dc, type, *val, convertKind, isStatic, decl,
|
|
importer::convertClangAccess(decl->getAccess()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, import as an external declaration
|
|
if (!result) {
|
|
result = Impl.createDeclWithClangNode<VarDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()),
|
|
/*IsStatic*/ isStatic, introducer,
|
|
Impl.importSourceLoc(decl->getLocation()), name, dc);
|
|
result->setIsObjC(false);
|
|
result->setIsDynamic(false);
|
|
}
|
|
|
|
// If imported as member, the member should be final.
|
|
if (dc->getSelfClassDecl())
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
FinalAttr(/*IsImplicit=*/true));
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
// If the decl represents an availability domain, eagerly synthesize its
|
|
// `if #available` predicate function.
|
|
if (decl->hasAttrs() &&
|
|
llvm::any_of(decl->getAttrs(), [](clang::Attr *attr) {
|
|
return isa<clang::AvailabilityDomainAttr>(attr);
|
|
}))
|
|
(void)synthesizer.makeAvailabilityDomainPredicate(decl);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitVarTemplatePartialSpecializationDecl(
|
|
const clang::VarTemplatePartialSpecializationDecl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
|
|
// Parameters are never directly imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
|
|
// Parameters are never directly imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *
|
|
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFunctionTemplateDecl(const clang::FunctionTemplateDecl *decl) {
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) =
|
|
importFullName(decl->getAsFunction());
|
|
if (!importedName)
|
|
return nullptr;
|
|
// All template parameters must be template type parameters.
|
|
if (!llvm::all_of(*decl->getTemplateParameters(), [](auto param) {
|
|
return isa<clang::TemplateTypeParmDecl>(param);
|
|
}))
|
|
return nullptr;
|
|
return importFunctionDecl(decl->getAsFunction(), importedName,
|
|
correctSwiftName, std::nullopt, decl);
|
|
}
|
|
|
|
Decl *VisitClassTemplateDecl(const clang::ClassTemplateDecl *decl) {
|
|
ImportedName importedName;
|
|
std::tie(importedName, std::ignore) = importFullName(decl);
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto loc = Impl.importSourceLoc(decl->getLocation());
|
|
auto dc = Impl.importDeclContextOf(
|
|
decl, importedName.getEffectiveContext());
|
|
|
|
SmallVector<GenericTypeParamDecl *, 4> genericParams;
|
|
for (auto ¶m : *decl->getTemplateParameters()) {
|
|
auto genericParamDecl =
|
|
Impl.createDeclWithClangNode<GenericTypeParamDecl>(
|
|
param, AccessLevel::Public, dc,
|
|
Impl.SwiftContext.getIdentifier(param->getName()),
|
|
Impl.importSourceLoc(param->getLocation()),
|
|
/*specifierLoc*/ SourceLoc(), /*depth*/ 0,
|
|
/*index*/ genericParams.size(), GenericTypeParamKind::Type);
|
|
genericParams.push_back(genericParamDecl);
|
|
}
|
|
auto genericParamList = GenericParamList::create(
|
|
Impl.SwiftContext, loc, genericParams, loc);
|
|
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), loc, name, loc,
|
|
ArrayRef<InheritedEntry>(), genericParamList, dc);
|
|
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
Impl.SwiftContext, "Un-specialized class templates are not currently "
|
|
"supported. Please use a specialization of this "
|
|
"type.");
|
|
structDecl->addAttribute(attr);
|
|
|
|
return structDecl;
|
|
}
|
|
|
|
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
|
|
// See VisitUsingShadowDecl below.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
|
|
// Only import:
|
|
// 1. Types
|
|
// 2. C++ methods from privately inherited base classes
|
|
if (!isa<clang::TypeDecl>(decl->getTargetDecl()) &&
|
|
!isa<clang::CXXMethodDecl>(decl->getTargetDecl()))
|
|
return nullptr;
|
|
// Constructors (e.g. `using BaseClass::BaseClass`) are handled in
|
|
// VisitCXXRecordDecl, since we need them to determine whether a struct
|
|
// can be imported into Swift.
|
|
if (isa<clang::CXXConstructorDecl>(decl->getTargetDecl()))
|
|
return nullptr;
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
// Don't import something that doesn't have a name.
|
|
if (importedName.getDeclName().isSpecial())
|
|
return nullptr;
|
|
auto Name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (Name.empty())
|
|
return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
auto importedDC =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!importedDC)
|
|
return nullptr;
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
auto known = Impl.importDeclCached(decl, getVersion());
|
|
if (known.has_value())
|
|
return known.value();
|
|
|
|
if (isa<clang::TypeDecl>(decl->getTargetDecl())) {
|
|
Decl *SwiftDecl = Impl.importDecl(decl->getUnderlyingDecl(), getActiveSwiftVersion());
|
|
if (!SwiftDecl)
|
|
return nullptr;
|
|
|
|
const TypeDecl *SwiftTypeDecl = dyn_cast<TypeDecl>(SwiftDecl);
|
|
if (!SwiftTypeDecl)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()),
|
|
Impl.importSourceLoc(decl->getBeginLoc()), SourceLoc(), Name, Loc,
|
|
/*genericparams*/ nullptr, importedDC);
|
|
Result->setUnderlyingType(SwiftTypeDecl->getDeclaredInterfaceType());
|
|
|
|
return Result;
|
|
}
|
|
if (auto targetMethod =
|
|
dyn_cast<clang::CXXMethodDecl>(decl->getTargetDecl())) {
|
|
auto *derivedRecord =
|
|
dyn_cast_or_null<clang::CXXRecordDecl>(decl->getDeclContext());
|
|
auto *baseRecord = dyn_cast_or_null<clang::CXXRecordDecl>(
|
|
targetMethod->getDeclContext());
|
|
if (!derivedRecord || !baseRecord ||
|
|
!derivedRecord->isDerivedFrom(baseRecord))
|
|
return nullptr;
|
|
|
|
// TODO: If the derived class already has a member with the same name,
|
|
// parameter list, and qualifications, the derived class member should
|
|
// hide or override (rather than conflict with) the member that is
|
|
// introduced from the base class. Need to check this.
|
|
|
|
auto importedBaseMethod = dyn_cast_or_null<FuncDecl>(
|
|
Impl.importDecl(targetMethod, getActiveSwiftVersion()));
|
|
if (!importedBaseMethod)
|
|
return nullptr;
|
|
|
|
auto clonedMethod =
|
|
dyn_cast_or_null<FuncDecl>(Impl.importBaseMemberDecl(
|
|
importedBaseMethod, importedDC, ClangInheritanceInfo()));
|
|
if (!clonedMethod)
|
|
return nullptr;
|
|
clonedMethod->overwriteAccess(
|
|
importer::convertClangAccess(decl->getAccess()));
|
|
|
|
bool success = processSpecialImportedFunc(
|
|
clonedMethod, importedName, targetMethod->getOverloadedOperator());
|
|
if (!success)
|
|
return nullptr;
|
|
|
|
return clonedMethod;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Add an @objc(name) attribute with the given, optional name expressed as
|
|
/// selector.
|
|
///
|
|
/// The importer should use this rather than adding the attribute directly.
|
|
void addObjCAttribute(Decl *decl, std::optional<ObjCSelector> name) {
|
|
auto &ctx = Impl.SwiftContext;
|
|
if (name) {
|
|
decl->addAttribute(ObjCAttr::create(ctx, name,
|
|
/*implicitName=*/true));
|
|
}
|
|
if (auto VD = dyn_cast<ValueDecl>(decl)) {
|
|
VD->setIsObjC(true);
|
|
VD->setIsDynamic(true);
|
|
}
|
|
|
|
// If the declaration we attached the 'objc' attribute to is within a
|
|
// type, record it in the type.
|
|
if (auto contextTy = decl->getDeclContext()->getDeclaredInterfaceType()) {
|
|
if (auto tyDecl = contextTy->getNominalOrBoundGenericNominal()) {
|
|
if (auto method = dyn_cast<AbstractFunctionDecl>(decl)) {
|
|
if (name)
|
|
tyDecl->recordObjCMethod(method, *name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add an @objc(name) attribute with the given, optional name expressed as
|
|
/// selector.
|
|
///
|
|
/// The importer should use this rather than adding the attribute directly.
|
|
void addObjCAttribute(Decl *decl, Identifier name) {
|
|
addObjCAttribute(decl, ObjCSelector(Impl.SwiftContext, 0, name));
|
|
}
|
|
|
|
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
|
|
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
checkBridgingAttrs(decl);
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
auto Known = Impl.importDeclCached(decl, getVersion());
|
|
if (Known.has_value())
|
|
return Known.value();
|
|
|
|
ImportedName importedName;
|
|
std::tie(importedName, std::ignore) = importFullName(decl);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// some ObjC method decls are imported as computed properties.
|
|
switch(importedName.getAccessorKind()) {
|
|
case ImportedAccessorKind::PropertyGetter:
|
|
if (importedName.getAsyncInfo())
|
|
return importObjCMethodAsEffectfulProp(decl, dc, importedName);
|
|
|
|
// if there is no valid async info, then fall-back to method import.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case ImportedAccessorKind::PropertySetter:
|
|
case ImportedAccessorKind::SubscriptGetter:
|
|
case ImportedAccessorKind::SubscriptSetter:
|
|
case ImportedAccessorKind::None:
|
|
return importObjCMethodDecl(decl, dc, std::nullopt);
|
|
|
|
case ImportedAccessorKind::DereferenceGetter:
|
|
case ImportedAccessorKind::DereferenceSetter:
|
|
llvm_unreachable("dereference operators only exist in C++");
|
|
}
|
|
}
|
|
|
|
/// Check whether we have already imported a method with the given
|
|
/// selector in the given context.
|
|
bool isMethodAlreadyImported(ObjCSelector selector, ImportedName importedName,
|
|
bool isInstance, const DeclContext *dc,
|
|
llvm::function_ref<bool(AbstractFunctionDecl *fn)> filter) {
|
|
// We only need to perform this check for classes.
|
|
auto *classDecl = dc->getSelfClassDecl();
|
|
if (!classDecl)
|
|
return false;
|
|
|
|
auto matchesImportedDecl = [&](Decl *member) -> bool {
|
|
auto *afd = dyn_cast<AbstractFunctionDecl>(member);
|
|
if (!afd)
|
|
return false;
|
|
|
|
// Instance-ness must match.
|
|
if (afd->isObjCInstanceMethod() != isInstance)
|
|
return false;
|
|
|
|
// Both the selector and imported name must match.
|
|
if (afd->getObjCSelector() != selector ||
|
|
importedName.getDeclName() != afd->getName()) {
|
|
return false;
|
|
}
|
|
|
|
// Finally, the provided filter must match.
|
|
return filter(afd);
|
|
};
|
|
|
|
// First check to see if we've already imported a method with the same
|
|
// selector.
|
|
auto importedMembers = Impl.MembersForNominal.find(classDecl);
|
|
if (importedMembers != Impl.MembersForNominal.end()) {
|
|
auto baseName = importedName.getDeclName().getBaseName();
|
|
auto membersForName = importedMembers->second.find(baseName);
|
|
if (membersForName != importedMembers->second.end()) {
|
|
return llvm::any_of(membersForName->second, matchesImportedDecl);
|
|
}
|
|
}
|
|
|
|
// Then, for a deserialized Swift class, check to see if it has brought in
|
|
// any matching @objc methods.
|
|
if (classDecl->wasDeserialized()) {
|
|
auto &ctx = Impl.SwiftContext;
|
|
TinyPtrVector<AbstractFunctionDecl *> deserializedMethods;
|
|
ctx.loadObjCMethods(classDecl, selector, isInstance,
|
|
/*prevGeneration*/ 0, deserializedMethods,
|
|
/*swiftOnly*/ true);
|
|
return llvm::any_of(deserializedMethods, matchesImportedDecl);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
|
|
DeclContext *dc,
|
|
std::optional<AccessorInfo> accessorInfo) {
|
|
return importObjCMethodDecl(decl, dc, false, accessorInfo);
|
|
}
|
|
|
|
private:
|
|
static bool
|
|
isAcceptableResultOrNull(Decl *fn,
|
|
std::optional<AccessorInfo> accessorInfo) {
|
|
if (nullptr == fn)
|
|
return true;
|
|
|
|
// We can't safely re-use the same declaration if it disagrees
|
|
// in accessor-ness.
|
|
auto accessor = dyn_cast<AccessorDecl>(fn);
|
|
if (!accessorInfo)
|
|
return accessor == nullptr;
|
|
|
|
// For consistency with previous behavior, allow it even if it's been
|
|
// imported for some other property.
|
|
return (accessor && accessor->getAccessorKind() == accessorInfo->Kind);
|
|
}
|
|
|
|
/// Creates a fresh VarDecl with a single 'get' accessor to represent
|
|
/// an ObjC method that takes no arguments other than a completion-handler
|
|
/// (where the handler may have an NSError argument).
|
|
Decl *importObjCMethodAsEffectfulProp(const clang::ObjCMethodDecl *decl,
|
|
DeclContext *dc,
|
|
ImportedName name) {
|
|
assert(name.getAsyncInfo() && "expected to be for an effectful prop!");
|
|
|
|
if (name.getAccessorKind() != ImportedAccessorKind::PropertyGetter) {
|
|
assert(false && "unexpected accessor kind as a computed prop");
|
|
// NOTE: to handle setters, we would need to search for an existing
|
|
// VarDecl corresponding to the one we might have already created
|
|
// for the 'get' accessor, and tack this accessor onto it.
|
|
return nullptr;
|
|
}
|
|
|
|
auto importedType = Impl.importEffectfulPropertyType(decl, dc, name,
|
|
isInSystemModule(dc));
|
|
if (!importedType)
|
|
return nullptr;
|
|
|
|
auto type = importedType.getType();
|
|
const auto access = getOverridableAccessLevel(dc);
|
|
auto ident = name.getBaseIdentifier(Impl.SwiftContext);
|
|
auto propDecl = Impl.createDeclWithClangNode<VarDecl>(decl, access,
|
|
/*IsStatic*/decl->isClassMethod(), VarDecl::Introducer::Var,
|
|
Impl.importSourceLoc(decl->getLocation()), ident, dc);
|
|
propDecl->setInterfaceType(type);
|
|
Impl.recordImplicitUnwrapForDecl(propDecl,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
////
|
|
// Build the getter
|
|
AccessorInfo info{propDecl, AccessorKind::Get};
|
|
auto *getter = cast_or_null<AccessorDecl>(
|
|
importObjCMethodDecl(decl, dc, info));
|
|
if (!getter)
|
|
return nullptr;
|
|
|
|
Impl.importAttributes(decl, getter);
|
|
|
|
////
|
|
// Combine the getter and the VarDecl into a computed property.
|
|
|
|
// NOTE: since it's an ObjC method we're turning into a Swift computed
|
|
// property, we infer that it has no ObjC 'atomic' guarantees.
|
|
auto inferredObjCPropertyAttrs =
|
|
static_cast<clang::ObjCPropertyAttribute::Kind>
|
|
( clang::ObjCPropertyAttribute::Kind::kind_readonly
|
|
| clang::ObjCPropertyAttribute::Kind::kind_nonatomic
|
|
| (decl->isInstanceMethod()
|
|
? clang::ObjCPropertyAttribute::Kind::kind_class
|
|
: clang::ObjCPropertyAttribute::Kind::kind_noattr)
|
|
);
|
|
|
|
// FIXME: Fake locations for '{' and '}'?
|
|
propDecl->setIsSetterMutating(false);
|
|
Impl.makeComputed(propDecl, getter, /*setter=*/nullptr);
|
|
addObjCAttribute(propDecl, Impl.importIdentifier(decl->getIdentifier()));
|
|
applyPropertyOwnership(propDecl, inferredObjCPropertyAttrs);
|
|
|
|
////
|
|
// Check correctness
|
|
|
|
if (getter->getParameters()->size() != 0) {
|
|
assert(false && "this should not happen!");
|
|
return nullptr;
|
|
}
|
|
|
|
return propDecl;
|
|
}
|
|
|
|
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
|
|
DeclContext *dc, bool forceClassMethod,
|
|
std::optional<AccessorInfo> accessorInfo) {
|
|
// If we have an init method, import it as an initializer.
|
|
if (isInitMethod(decl)) {
|
|
// Cannot import initializers as accessors.
|
|
if (accessorInfo)
|
|
return nullptr;
|
|
|
|
// Cannot force initializers into class methods.
|
|
if (forceClassMethod)
|
|
return nullptr;
|
|
|
|
return importConstructor(decl, dc, /*implicit=*/false, std::nullopt,
|
|
/*required=*/false);
|
|
}
|
|
|
|
// Check whether we already imported this method.
|
|
if (!forceClassMethod &&
|
|
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
|
|
// FIXME: Should also be able to do this for forced class
|
|
// methods.
|
|
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
|
|
getVersion()});
|
|
if (known != Impl.ImportedDecls.end()) {
|
|
auto decl = known->second;
|
|
if (isAcceptableResultOrNull(decl, accessorInfo))
|
|
return decl;
|
|
}
|
|
}
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// Check whether another method with the same selector has already been
|
|
// imported into this context.
|
|
ObjCSelector selector = Impl.importSelector(decl->getSelector());
|
|
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
|
|
if (isActiveSwiftVersion()) {
|
|
if (isMethodAlreadyImported(selector, importedName, isInstance, dc,
|
|
[&](AbstractFunctionDecl *fn) {
|
|
return isAcceptableResultOrNull(fn, accessorInfo);
|
|
})) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Normal case applies when we're importing an older name, or when we're
|
|
// not an init
|
|
if (!isFactoryInit(importedName)) {
|
|
auto result = importNonInitObjCMethodDecl(decl, dc, importedName,
|
|
selector, forceClassMethod,
|
|
accessorInfo);
|
|
|
|
if (!isActiveSwiftVersion() && result)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
return result;
|
|
}
|
|
|
|
// We can't import a factory-initializer as an accessor.
|
|
if (accessorInfo)
|
|
return nullptr;
|
|
|
|
// We don't want to suppress init formation in Swift 3 names. Instead, we
|
|
// want the normal Swift 3 name, and a "raw" name for diagnostics. The
|
|
// "raw" name will be imported as unavailable with a more helpful and
|
|
// specific message.
|
|
++NumFactoryMethodsAsInitializers;
|
|
ConstructorDecl *existing = nullptr;
|
|
auto result =
|
|
importConstructor(decl, dc, false, importedName.getInitKind(),
|
|
/*required=*/false, selector, importedName,
|
|
{decl->param_begin(), decl->param_size()},
|
|
decl->isVariadic(), existing);
|
|
|
|
if (!isActiveSwiftVersion() && result)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *
|
|
importNonInitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
|
|
DeclContext *dc, ImportedName importedName,
|
|
ObjCSelector selector, bool forceClassMethod,
|
|
std::optional<AccessorInfo> accessorInfo) {
|
|
assert(dc->isTypeContext() && "Method in non-type context?");
|
|
assert(isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
|
|
"Clang method in Swift context?");
|
|
|
|
// FIXME: We should support returning "Self.Type" for a root class
|
|
// instance method mirrored as a class method, but it currently causes
|
|
// problems for the type checker.
|
|
if (forceClassMethod && decl->hasRelatedResultType())
|
|
return nullptr;
|
|
|
|
// Hack: avoid importing methods named "print" that aren't available in
|
|
// the current version of Swift. We'd rather just let the user use
|
|
// Swift.print in that case.
|
|
if (!isActiveSwiftVersion() &&
|
|
isPrintLikeMethod(importedName.getDeclName(), dc)) {
|
|
return nullptr;
|
|
}
|
|
|
|
SpecialMethodKind kind = SpecialMethodKind::Regular;
|
|
if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
|
|
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
|
|
|
|
// Import the type that this method will have.
|
|
std::optional<ForeignAsyncConvention> asyncConvention;
|
|
std::optional<ForeignErrorConvention> errorConvention;
|
|
|
|
// If we have a property accessor, find the corresponding property
|
|
// declaration.
|
|
const clang::ObjCPropertyDecl *prop = nullptr;
|
|
if (decl->isPropertyAccessor()) {
|
|
prop = decl->findPropertyDecl();
|
|
if (!prop) return nullptr;
|
|
|
|
// If we're importing just the accessors (not the property), ignore
|
|
// the property.
|
|
if (shouldImportPropertyAsAccessors(prop))
|
|
prop = nullptr;
|
|
}
|
|
|
|
const bool nameImportIsGetter =
|
|
importedName.getAccessorKind() == ImportedAccessorKind::PropertyGetter;
|
|
|
|
const bool needAccessorDecl = prop || nameImportIsGetter;
|
|
|
|
// If we have an accessor-import request, but didn't find a property
|
|
// or it's ImportedName doesn't indicate a getter,
|
|
// then reject the import request.
|
|
if (accessorInfo && !needAccessorDecl)
|
|
return nullptr;
|
|
|
|
// Import the parameter list and result type.
|
|
ParameterList *bodyParams = nullptr;
|
|
ImportedType importedType;
|
|
if (prop) {
|
|
// If the matching property is in a superclass, or if the getter and
|
|
// setter are redeclared in a potentially incompatible way, bail out.
|
|
if (prop->getGetterMethodDecl() != decl &&
|
|
prop->getSetterMethodDecl() != decl)
|
|
return nullptr;
|
|
importedType =
|
|
Impl.importAccessorParamsAndReturnType(dc, prop, decl,
|
|
isInSystemModule(dc),
|
|
importedName, &bodyParams);
|
|
} else {
|
|
importedType = Impl.importMethodParamsAndReturnType(
|
|
dc, decl, decl->parameters(), decl->isVariadic(),
|
|
isInSystemModule(dc), &bodyParams, importedName,
|
|
asyncConvention, errorConvention, kind);
|
|
|
|
if (!importedType) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::record_method_not_imported, decl),
|
|
decl->getSourceRange().getBegin());
|
|
}
|
|
}
|
|
if (!importedType)
|
|
return nullptr;
|
|
|
|
// Check whether we recursively imported this method
|
|
if (!forceClassMethod &&
|
|
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
|
|
// FIXME: Should also be able to do this for forced class
|
|
// methods.
|
|
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
|
|
getVersion()});
|
|
if (known != Impl.ImportedDecls.end()) {
|
|
auto decl = known->second;
|
|
if (isAcceptableResultOrNull(decl, accessorInfo))
|
|
return decl;
|
|
}
|
|
}
|
|
|
|
// Determine whether the function is throwing and/or async.
|
|
bool throws = importedName.getErrorInfo().has_value();
|
|
bool async = false;
|
|
auto asyncInfo = importedName.getAsyncInfo();
|
|
if (asyncInfo) {
|
|
async = true;
|
|
if (asyncInfo->isThrowing())
|
|
throws = true;
|
|
}
|
|
|
|
auto resultTy = importedType.getType();
|
|
auto isIUO = importedType.isImplicitlyUnwrapped();
|
|
|
|
// If the method has a related result type that is representable
|
|
// in Swift as DynamicSelf, do so.
|
|
if (!needAccessorDecl && decl->hasRelatedResultType()) {
|
|
resultTy = dc->getSelfInterfaceType();
|
|
if (dc->getSelfClassDecl())
|
|
resultTy = DynamicSelfType::get(resultTy, Impl.SwiftContext);
|
|
isIUO = false;
|
|
|
|
OptionalTypeKind nullability = OTK_ImplicitlyUnwrappedOptional;
|
|
if (auto typeNullability = decl->getReturnType()->getNullability()) {
|
|
// If the return type has nullability, use it.
|
|
nullability = translateNullability(*typeNullability);
|
|
}
|
|
if (nullability != OTK_None && !errorConvention.has_value()) {
|
|
resultTy = OptionalType::get(resultTy);
|
|
isIUO = nullability == OTK_ImplicitlyUnwrappedOptional;
|
|
}
|
|
}
|
|
|
|
auto result = createFuncOrAccessor(Impl,
|
|
/*funcLoc*/ SourceLoc(), accessorInfo,
|
|
importedName.getDeclName(),
|
|
/*nameLoc*/ SourceLoc(),
|
|
/*genericParams=*/nullptr, bodyParams,
|
|
resultTy, async, throws, dc, decl);
|
|
|
|
result->setAccess(decl->isDirectMethod() ? AccessLevel::Public
|
|
: getOverridableAccessLevel(dc));
|
|
|
|
// Optional methods in protocols.
|
|
if (decl->getImplementationControl() ==
|
|
clang::ObjCImplementationControl::Optional &&
|
|
isa<ProtocolDecl>(dc))
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
OptionalAttr(/*implicit*/ false));
|
|
|
|
// Mark class methods as static.
|
|
if (decl->isClassMethod() || forceClassMethod)
|
|
result->setStatic();
|
|
if (forceClassMethod)
|
|
result->setImplicit();
|
|
|
|
Impl.recordImplicitUnwrapForDecl(result, isIUO);
|
|
|
|
// Mark this method @objc.
|
|
addObjCAttribute(result, selector);
|
|
|
|
// If this method overrides another method, mark it as such.
|
|
recordObjCOverride(result);
|
|
|
|
// Make a note that we've imported this method into this context.
|
|
recordMemberInContext(dc, result);
|
|
|
|
// Record the error convention.
|
|
if (errorConvention) {
|
|
result->setForeignErrorConvention(*errorConvention);
|
|
}
|
|
|
|
// Record the async convention.
|
|
if (asyncConvention) {
|
|
result->setForeignAsyncConvention(*asyncConvention);
|
|
}
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBActionAttr>() &&
|
|
isa<FuncDecl>(result) &&
|
|
cast<FuncDecl>(result)->isPotentialIBActionTarget()) {
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
IBActionAttr(/*IsImplicit=*/false));
|
|
}
|
|
|
|
// FIXME: Is there an IBSegueAction equivalent?
|
|
|
|
// Check whether there's some special method to import.
|
|
if (!forceClassMethod) {
|
|
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext()))
|
|
Impl.ImportedDecls.try_emplace(
|
|
{decl->getCanonicalDecl(), getVersion()}, result);
|
|
|
|
if (importedName.isSubscriptAccessor()) {
|
|
// If this was a subscript accessor, try to create a
|
|
// corresponding subscript declaration.
|
|
(void)importSubscript(result, decl);
|
|
} else if (shouldAlsoImportAsClassMethod(result)) {
|
|
// If we should import this instance method also as a class
|
|
// method, do so and mark the result as an alternate
|
|
// declaration.
|
|
if (auto imported = importObjCMethodDecl(decl, dc,
|
|
/*forceClassMethod=*/true,
|
|
/*accessor*/ std::nullopt))
|
|
Impl.addAlternateDecl(result, cast<ValueDecl>(imported));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public:
|
|
/// Record the function or initializer overridden by the given Swift method.
|
|
void recordObjCOverride(AbstractFunctionDecl *decl);
|
|
|
|
/// Given an imported method, try to import it as a constructor.
|
|
///
|
|
/// Objective-C methods in the 'init' family are imported as
|
|
/// constructors in Swift, enabling object construction syntax, e.g.,
|
|
///
|
|
/// \code
|
|
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
|
|
/// NSArray(capacity: 1024)
|
|
/// \endcode
|
|
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
|
|
const DeclContext *dc, bool implicit,
|
|
std::optional<CtorInitializerKind> kind,
|
|
bool required);
|
|
|
|
/// Returns the latest "introduced" version on the current platform for
|
|
/// \p D.
|
|
llvm::VersionTuple findLatestIntroduction(const clang::Decl *D);
|
|
|
|
/// Returns true if importing \p objcMethod will produce a "better"
|
|
/// initializer than \p existingCtor.
|
|
bool
|
|
existingConstructorIsWorse(const ConstructorDecl *existingCtor,
|
|
const clang::ObjCMethodDecl *objcMethod,
|
|
CtorInitializerKind kind);
|
|
|
|
/// Given an imported method, try to import it as a constructor.
|
|
///
|
|
/// Objective-C methods in the 'init' family are imported as
|
|
/// constructors in Swift, enabling object construction syntax, e.g.,
|
|
///
|
|
/// \code
|
|
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
|
|
/// NSArray(capacity: 1024)
|
|
/// \endcode
|
|
///
|
|
/// This variant of the function is responsible for actually binding the
|
|
/// constructor declaration appropriately.
|
|
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
|
|
const DeclContext *dc,
|
|
bool implicit,
|
|
CtorInitializerKind kind,
|
|
bool required,
|
|
ObjCSelector selector,
|
|
ImportedName importedName,
|
|
ArrayRef<const clang::ParmVarDecl*> args,
|
|
bool variadic,
|
|
ConstructorDecl *&existing);
|
|
|
|
void recordObjCOverride(SubscriptDecl *subscript);
|
|
|
|
/// Given either the getter or setter for a subscript operation,
|
|
/// create the Swift subscript declaration.
|
|
SubscriptDecl *importSubscript(Decl *decl,
|
|
const clang::ObjCMethodDecl *objcMethod);
|
|
|
|
/// Import the accessor and its attributes.
|
|
AccessorDecl *importAccessor(const clang::ObjCMethodDecl *clangAccessor,
|
|
AbstractStorageDecl *storage,
|
|
AccessorKind accessorKind,
|
|
DeclContext *dc);
|
|
|
|
public:
|
|
|
|
/// Recursively add the given protocol and its inherited protocols to the
|
|
/// given vector, guarded by the known set of protocols.
|
|
void addProtocols(ProtocolDecl *protocol,
|
|
SmallVectorImpl<ProtocolDecl *> &protocols,
|
|
llvm::SmallPtrSetImpl<ProtocolDecl *> &known);
|
|
|
|
// Import the given Objective-C protocol list, along with any
|
|
// implicitly-provided protocols, and attach them to the given
|
|
// declaration.
|
|
void importObjCProtocols(Decl *decl,
|
|
const clang::ObjCProtocolList &clangProtocols,
|
|
SmallVectorImpl<InheritedEntry> &inheritedTypes);
|
|
|
|
// Returns None on error. Returns nullptr if there is no type param list to
|
|
// import or we suppress its import, as in the case of NSArray, NSSet, and
|
|
// NSDictionary.
|
|
std::optional<GenericParamList *>
|
|
importObjCGenericParams(const clang::ObjCInterfaceDecl *decl,
|
|
DeclContext *dc);
|
|
|
|
/// Import the members of all of the protocols to which the given
|
|
/// Objective-C class, category, or extension explicitly conforms into
|
|
/// the given list of members, so long as the method was not already
|
|
/// declared in the class.
|
|
///
|
|
/// FIXME: This whole thing is a hack, because name lookup should really
|
|
/// just find these members when it looks in the protocol. Unfortunately,
|
|
/// that's not something the name lookup code can handle right now, and
|
|
/// it may still be necessary when the protocol's instance methods become
|
|
/// class methods on a root class (e.g. NSObject-the-protocol's instance
|
|
/// methods become class methods on NSObject).
|
|
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
|
|
DeclContext *dc,
|
|
std::optional<DeclBaseName> name,
|
|
SmallVectorImpl<Decl *> &newMembers);
|
|
|
|
void importNonOverriddenMirroredMethods(DeclContext *dc,
|
|
MutableArrayRef<MirroredMethodEntry> entries,
|
|
SmallVectorImpl<Decl *> &newMembers);
|
|
|
|
/// Import constructors from our superclasses (and their
|
|
/// categories/extensions), effectively "inheriting" constructors.
|
|
void importInheritedConstructors(const ClassDecl *classDecl,
|
|
SmallVectorImpl<Decl *> &newMembers);
|
|
|
|
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
|
|
// If the declaration is invalid, fail.
|
|
if (decl->isInvalidDecl()) return nullptr;
|
|
|
|
// Objective-C categories and extensions map to Swift extensions.
|
|
if (importer::hasNativeSwiftDecl(decl))
|
|
return nullptr;
|
|
|
|
// Find the Swift class being extended.
|
|
auto objcClass = castIgnoringCompatibilityAlias<ClassDecl>(
|
|
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion()));
|
|
if (!objcClass)
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
auto loc = Impl.importSourceLoc(decl->getBeginLoc());
|
|
auto result = ExtensionDecl::create(
|
|
Impl.SwiftContext, loc,
|
|
nullptr,
|
|
{ }, dc, nullptr, decl);
|
|
Impl.SwiftContext.evaluator.cacheOutput(ExtendedTypeRequest{result},
|
|
objcClass->getDeclaredType());
|
|
result->setExtendedNominal(objcClass);
|
|
|
|
Identifier categoryName;
|
|
if (!decl->getName().empty())
|
|
categoryName = Impl.SwiftContext.getIdentifier(decl->getName());
|
|
addObjCAttribute(result, categoryName);
|
|
|
|
// Create the extension declaration and record it.
|
|
objcClass->addExtension(result);
|
|
Impl.ImportedDecls[{decl, getVersion()}] = result;
|
|
SmallVector<InheritedEntry, 4> inheritedTypes;
|
|
importObjCProtocols(result, decl->getReferencedProtocols(),
|
|
inheritedTypes);
|
|
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
T *resolveSwiftDeclImpl(const U *decl, Identifier name,
|
|
bool hasKnownSwiftName, ModuleDecl *module,
|
|
bool allowObjCMismatchFallback,
|
|
bool cacheResult) {
|
|
auto isMatch = [&](const T *singleResult, bool baseNameMatches,
|
|
bool allowObjCMismatch) -> bool {
|
|
const DeclAttributes &attrs = singleResult->getAttrs();
|
|
|
|
// Skip versioned variants.
|
|
if (singleResult->isUnavailableInCurrentSwiftVersion())
|
|
return false;
|
|
|
|
// If Clang decl has a custom Swift name, then we know that the name we
|
|
// did direct lookup for is correct.
|
|
// 'allowObjCMismatch' shouldn't exist, but we need it for source
|
|
// compatibility where a previous version of the compiler didn't check
|
|
// @objc-ness at all.
|
|
if (hasKnownSwiftName || allowObjCMismatch) {
|
|
assert(baseNameMatches);
|
|
return allowObjCMismatch || singleResult->isObjC();
|
|
}
|
|
|
|
// Skip if a different name is used for Objective-C.
|
|
if (auto objcAttr = attrs.getAttribute<ObjCAttr>())
|
|
if (auto objcName = objcAttr->getName())
|
|
return objcName->getSimpleName() == name;
|
|
|
|
return baseNameMatches && singleResult->isObjC();
|
|
};
|
|
|
|
// First look at Swift types with the same name.
|
|
SmallVector<ValueDecl *, 4> swiftDeclsByName;
|
|
module->lookupValue(name, NLKind::QualifiedLookup, swiftDeclsByName);
|
|
T *found = nullptr;
|
|
for (auto result : swiftDeclsByName) {
|
|
if (auto singleResult = dyn_cast<T>(result)) {
|
|
if (isMatch(singleResult, /*baseNameMatches=*/true,
|
|
/*allowObjCMismatch=*/false)) {
|
|
if (found)
|
|
return nullptr;
|
|
found = singleResult;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found && hasKnownSwiftName)
|
|
return nullptr;
|
|
|
|
if (!found) {
|
|
// Try harder to find a match looking at just custom Objective-C names.
|
|
// Limit what we deserialize to decls with an @objc attribute.
|
|
SmallVector<Decl *, 4> matchingTopLevelDecls;
|
|
|
|
// Get decls with a matching @objc attribute
|
|
module->getTopLevelDeclsWhereAttributesMatch(
|
|
matchingTopLevelDecls, [&name](const DeclAttributes attrs) -> bool {
|
|
if (auto objcAttr = attrs.getAttribute<ObjCAttr>())
|
|
if (auto objcName = objcAttr->getName())
|
|
return objcName->getSimpleName() == name;
|
|
return false;
|
|
});
|
|
|
|
// Filter by decl kind
|
|
for (auto result : matchingTopLevelDecls) {
|
|
if (auto singleResult = dyn_cast<T>(result)) {
|
|
if (found)
|
|
return nullptr;
|
|
found = singleResult;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found && allowObjCMismatchFallback) {
|
|
// Go back to the first list and find classes with matching Swift names
|
|
// *even if the ObjC name doesn't match.*
|
|
// This shouldn't be allowed but we need it for source compatibility;
|
|
// people used `\@class SwiftNameOfClass` as a workaround for not
|
|
// having the previous loop, and it "worked".
|
|
for (auto result : swiftDeclsByName) {
|
|
if (auto singleResult = dyn_cast<T>(result)) {
|
|
if (isMatch(singleResult, /*baseNameMatches=*/true,
|
|
/*allowObjCMismatch=*/true)) {
|
|
if (found)
|
|
return nullptr;
|
|
found = singleResult;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found && cacheResult)
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(),
|
|
getActiveSwiftVersion()}] = found;
|
|
|
|
return found;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
T *resolveSwiftDecl(const U *decl, Identifier name,
|
|
bool hasKnownSwiftName, ClangModuleUnit *clangModule) {
|
|
if (auto overlay = clangModule->getOverlayModule())
|
|
return resolveSwiftDeclImpl<T>(decl, name, hasKnownSwiftName, overlay,
|
|
/*allowObjCMismatchFallback*/ true, /*cacheResult*/ true);
|
|
if (clangModule == Impl.ImportedHeaderUnit) {
|
|
// Use an index-based loop because new owners can come in as we're
|
|
// iterating.
|
|
for (size_t i = 0; i < Impl.ImportedHeaderOwners.size(); ++i) {
|
|
ModuleDecl *owner = Impl.ImportedHeaderOwners[i];
|
|
if (T *result =
|
|
resolveSwiftDeclImpl<T>(decl, name, hasKnownSwiftName, owner,
|
|
/*allowObjCMismatchFallback*/ true, /*cacheResult*/ true))
|
|
return result;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given some forward declared Objective-C type `\@class Foo` or `\@protocol Bar`, this
|
|
/// method attempts to find a matching @objc annotated Swift declaration `@objc class Foo {}`
|
|
/// or `@objc protocol Bar {}`, in an imported Swift module. That is if the Clang node is in
|
|
/// a Clang module, the Swift overlay for that module does not count as "non-local". Similarly,
|
|
/// if the Clang node is in a bridging header, any owners of that header also do not count as
|
|
/// "non-local". This is intended to find @objc exposed Swift declarations in a different module
|
|
/// that share the name as the forward declaration.
|
|
///
|
|
/// Pass \p hasKnownSwiftName when the Clang declaration is annotated with NS_SWIFT_NAME or similar,
|
|
/// such that the @objc provided name is known.
|
|
template <typename T, typename U>
|
|
T* hasNonLocalNativeSwiftDecl(U *decl, Identifier name, bool hasKnownSwiftName) {
|
|
assert(!decl->hasDefinition() && "This method is only intended to be used on incomplete Clang types");
|
|
|
|
// We intentionally do not consider if the declaration has a clang::ExternalSourceSymbolAttr
|
|
// attribute, since we can't know if the corresponding Swift definition is "local" (ie.
|
|
// in the overlay or bridging header owner) or not.
|
|
|
|
// Check first if the Swift definition is "local"
|
|
auto owningClangModule = Impl.getClangModuleForDecl(decl, /*allowForwardDeclaration*/ true);
|
|
if (owningClangModule && resolveSwiftDecl<T>(decl, name, hasKnownSwiftName, owningClangModule))
|
|
return nullptr;
|
|
|
|
// If not, check all imported Swift modules for a definition
|
|
if (auto mainModule = Impl.SwiftContext.MainModule) {
|
|
llvm::SmallVector<ValueDecl *> results;
|
|
llvm::SmallVector<ImportedModule> importedModules;
|
|
|
|
mainModule->getImportedModules(importedModules,
|
|
ModuleDecl::getImportFilterAll());
|
|
|
|
for (auto &import : importedModules) {
|
|
if (import.importedModule->isNonSwiftModule())
|
|
continue;
|
|
|
|
if (T *result = resolveSwiftDeclImpl<T>(
|
|
decl, name, hasKnownSwiftName, import.importedModule,
|
|
/*allowObjCMismatchFallback*/ false, /*cacheResult*/ false))
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool hasNativeSwiftDecl(const U *decl, Identifier name,
|
|
const DeclContext *dc, T *&swiftDecl,
|
|
bool hasKnownSwiftName = true) {
|
|
if (!importer::hasNativeSwiftDecl(decl))
|
|
return false;
|
|
auto wrapperUnit = cast<ClangModuleUnit>(dc->getModuleScopeContext());
|
|
swiftDecl = resolveSwiftDecl<T>(decl, name, hasKnownSwiftName,
|
|
wrapperUnit);
|
|
return true;
|
|
}
|
|
|
|
void markMissingSwiftDecl(ValueDecl *VD) {
|
|
const char *message;
|
|
if (isa<ClassDecl>(VD))
|
|
message = "cannot find Swift declaration for this class";
|
|
else if (isa<ProtocolDecl>(VD))
|
|
message = "cannot find Swift declaration for this protocol";
|
|
else
|
|
llvm_unreachable("unknown bridged decl kind");
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(Impl.SwiftContext,
|
|
message);
|
|
VD->addAttribute(attr);
|
|
}
|
|
|
|
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
Identifier name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
bool hasKnownSwiftName = importedName.hasCustomName();
|
|
|
|
if (!decl->hasDefinition()) {
|
|
// Check if this protocol is implemented in its overlay.
|
|
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
|
|
if (auto native = resolveSwiftDecl<ProtocolDecl>(decl, name,
|
|
hasKnownSwiftName,
|
|
clangModule))
|
|
return native;
|
|
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::forward_declared_protocol_label, decl),
|
|
decl->getSourceRange().getBegin());
|
|
|
|
if (Impl.ImportForwardDeclarations) {
|
|
if (auto native = hasNonLocalNativeSwiftDecl<ProtocolDecl>(decl, name, hasKnownSwiftName)) {
|
|
const ModuleDecl* moduleForNativeDecl = native->getParentModule();
|
|
assert(moduleForNativeDecl);
|
|
Impl.addImportDiagnostic(decl, Diagnostic(diag::forward_declared_protocol_clashes_with_imported_objc_Swift_protocol,
|
|
decl, Decl::getDescriptiveKindName(native->getDescriptiveKind()), moduleForNativeDecl->getNameStr()),
|
|
decl->getSourceRange().getBegin());
|
|
} else {
|
|
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(
|
|
decl, AccessLevel::Public,
|
|
Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
|
|
/*allowForwardDeclaration=*/true),
|
|
Impl.importSourceLoc(decl->getBeginLoc()),
|
|
Impl.importSourceLoc(decl->getLocation()), name,
|
|
ArrayRef<PrimaryAssociatedTypeName>(),
|
|
ArrayRef<InheritedEntry>(),
|
|
/*TrailingWhere=*/nullptr);
|
|
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
result->setAddedImplicitInitializers(); // suppress all initializers
|
|
addObjCAttribute(result,
|
|
Impl.importIdentifier(decl->getIdentifier()));
|
|
result->setImplicit();
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
Impl.SwiftContext,
|
|
"This Objective-C protocol has only been forward-declared; "
|
|
"import its owning module to use it");
|
|
result->addAttribute(attr);
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
ForbidSerializingReferenceAttr(true));
|
|
return result;
|
|
}
|
|
}
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
decl = decl->getDefinition();
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
ProtocolDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
// Create the protocol declaration and record it.
|
|
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(
|
|
decl, AccessLevel::Public, dc,
|
|
Impl.importSourceLoc(decl->getBeginLoc()),
|
|
Impl.importSourceLoc(decl->getLocation()), name,
|
|
ArrayRef<PrimaryAssociatedTypeName>(), ArrayRef<InheritedEntry>(),
|
|
/*TrailingWhere=*/nullptr);
|
|
|
|
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
|
|
|
|
if (declaredNative)
|
|
markMissingSwiftDecl(result);
|
|
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
|
|
// Import protocols this protocol conforms to.
|
|
SmallVector<InheritedEntry, 4> inheritedTypes;
|
|
importObjCProtocols(result, decl->getReferencedProtocols(),
|
|
inheritedTypes);
|
|
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
|
|
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
Impl.swiftifyProtocol(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Add inferred attributes.
|
|
void addInferredAttributes(Decl *decl, unsigned attributes) {
|
|
using namespace inferred_attributes;
|
|
if (attributes & requires_stored_property_inits) {
|
|
auto a = new (Impl.SwiftContext)
|
|
RequiresStoredPropertyInitsAttr(/*IsImplicit=*/true);
|
|
decl->addAttribute(a);
|
|
}
|
|
}
|
|
|
|
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
|
|
|
|
auto createFakeClass = [=](Identifier name, bool cacheResult,
|
|
bool inheritFromNSObject,
|
|
DeclContext *dc = nullptr) -> ClassDecl * {
|
|
if (!dc) {
|
|
dc = Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
|
|
/*allowForwardDeclaration=*/true);
|
|
}
|
|
|
|
auto result = Impl.createDeclWithClangNode<ClassDecl>(
|
|
decl, AccessLevel::Public, SourceLoc(), name, SourceLoc(),
|
|
ArrayRef<InheritedEntry>(), nullptr, dc,
|
|
/*isActor*/ false);
|
|
if (cacheResult)
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
|
|
if (inheritFromNSObject)
|
|
result->setSuperclass(Impl.getNSObjectType());
|
|
else
|
|
result->setSuperclass(Type());
|
|
|
|
result->setAddedImplicitInitializers(); // suppress all initializers
|
|
result->setHasMissingVTableEntries(false);
|
|
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
|
|
return result;
|
|
};
|
|
|
|
// Special case for Protocol, which gets forward-declared as an ObjC
|
|
// class which is hidden in modern Objective-C runtimes.
|
|
// We treat it as a foreign class (like a CF type) because it doesn't
|
|
// have a real public class object.
|
|
clang::ASTContext &clangCtx = Impl.getClangASTContext();
|
|
if (decl->getCanonicalDecl() ==
|
|
clangCtx.getObjCProtocolDecl()->getCanonicalDecl()) {
|
|
Type nsObjectTy = Impl.getNSObjectType();
|
|
if (!nsObjectTy)
|
|
return nullptr;
|
|
const ClassDecl *nsObjectDecl =
|
|
nsObjectTy->getClassOrBoundGenericClass();
|
|
|
|
auto result = createFakeClass(Impl.SwiftContext.Id_Protocol,
|
|
/* cacheResult */ false,
|
|
/* inheritFromNSObject */ false,
|
|
nsObjectDecl->getDeclContext());
|
|
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
|
|
return result;
|
|
}
|
|
|
|
if (auto *definition = decl->getDefinition())
|
|
decl = definition;
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
if (!importedName) return nullptr;
|
|
|
|
// If we've been asked to produce a compatibility stub, handle it via a
|
|
// typealias.
|
|
if (correctSwiftName)
|
|
return importCompatibilityTypeAlias(decl, importedName,
|
|
*correctSwiftName);
|
|
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
bool hasKnownSwiftName = importedName.hasCustomName();
|
|
|
|
if (!decl->hasDefinition()) {
|
|
// Check if this class is implemented in its overlay.
|
|
if (auto clangModule = Impl.getClangModuleForDecl(decl, true)) {
|
|
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name,
|
|
hasKnownSwiftName,
|
|
clangModule)) {
|
|
return native;
|
|
}
|
|
}
|
|
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::forward_declared_interface_label, decl),
|
|
decl->getSourceRange().getBegin());
|
|
|
|
if (Impl.ImportForwardDeclarations) {
|
|
if (auto native = hasNonLocalNativeSwiftDecl<ClassDecl>(decl, name, hasKnownSwiftName)) {
|
|
const ModuleDecl* moduleForNativeDecl = native->getParentModule();
|
|
assert(moduleForNativeDecl);
|
|
Impl.addImportDiagnostic(decl, Diagnostic(diag::forward_declared_interface_clashes_with_imported_objc_Swift_interface,
|
|
decl, Decl::getDescriptiveKindName(native->getDescriptiveKind()), moduleForNativeDecl->getNameStr()),
|
|
decl->getSourceRange().getBegin());
|
|
} else {
|
|
// Fake it by making an unavailable opaque @objc root class.
|
|
auto result = createFakeClass(name, /* cacheResult */ true,
|
|
/* inheritFromNSObject */ true);
|
|
result->setImplicit();
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
Impl.SwiftContext,
|
|
"This Objective-C class has only been forward-declared; "
|
|
"import its owning module to use it");
|
|
result->addAttribute(attr);
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
ForbidSerializingReferenceAttr(true));
|
|
return result;
|
|
}
|
|
}
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
auto dc =
|
|
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
ClassDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
auto access = AccessLevel::Open;
|
|
if (decl->hasAttr<clang::ObjCSubclassingRestrictedAttr>() &&
|
|
Impl.SwiftContext.isLanguageModeAtLeast(5)) {
|
|
access = AccessLevel::Public;
|
|
}
|
|
|
|
// Create the class declaration and record it.
|
|
auto result = Impl.createDeclWithClangNode<ClassDecl>(
|
|
decl, access, Impl.importSourceLoc(decl->getBeginLoc()), name,
|
|
Impl.importSourceLoc(decl->getLocation()), ArrayRef<InheritedEntry>(),
|
|
nullptr, dc,
|
|
/*isActor*/ false);
|
|
|
|
// Import generic arguments, if any.
|
|
if (auto gpImportResult = importObjCGenericParams(decl, dc)) {
|
|
auto genericParams = *gpImportResult;
|
|
if (genericParams) {
|
|
result->getASTContext().evaluator.cacheOutput(
|
|
GenericParamListRequest{result}, std::move(genericParams));
|
|
|
|
auto sig = Impl.buildGenericSignature(genericParams, dc);
|
|
result->setGenericSignature(sig);
|
|
}
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
|
|
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
|
|
|
|
if (declaredNative)
|
|
markMissingSwiftDecl(result);
|
|
if (decl->getAttr<clang::ObjCRuntimeVisibleAttr>()) {
|
|
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
|
|
}
|
|
|
|
// If this Objective-C class has a supertype, import it.
|
|
SmallVector<InheritedEntry, 4> inheritedTypes;
|
|
Type superclassType;
|
|
if (decl->getSuperClass()) {
|
|
clang::QualType clangSuperclassType =
|
|
decl->getSuperClassType()->stripObjCKindOfTypeAndQuals(clangCtx);
|
|
clangSuperclassType =
|
|
clangCtx.getObjCObjectPointerType(clangSuperclassType);
|
|
superclassType = Impl.importTypeIgnoreIUO(
|
|
clangSuperclassType, ImportTypeKind::Abstract,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
if (superclassType) {
|
|
assert(superclassType->is<ClassType>() ||
|
|
superclassType->is<BoundGenericClassType>());
|
|
inheritedTypes.push_back(TypeLoc::withoutLoc(superclassType));
|
|
}
|
|
}
|
|
result->setSuperclass(superclassType);
|
|
|
|
// Import protocols this class conforms to.
|
|
importObjCProtocols(result, decl->getReferencedProtocols(),
|
|
inheritedTypes);
|
|
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
|
|
|
|
// Add inferred attributes.
|
|
#define INFERRED_ATTRIBUTES(ModuleName, ClassName, AttributeSet) \
|
|
if (name.str() == #ClassName && \
|
|
result->getParentModule()->getName().str() == #ModuleName) { \
|
|
using namespace inferred_attributes; \
|
|
addInferredAttributes(result, AttributeSet); \
|
|
}
|
|
#include "InferredAttributes.def"
|
|
|
|
if (decl->isArcWeakrefUnavailable())
|
|
result->setIsIncompatibleWithWeakReferences();
|
|
|
|
result->setHasMissingVTableEntries(false);
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
// GetDestructorRequest does not trigger lazy member loading
|
|
// And typechecking may ask for destructor before member loading is
|
|
// triggered. Create deinit explicitly
|
|
auto deallocII = &clangCtx.Idents.get("dealloc");
|
|
auto deallocSelector = clangCtx.Selectors.getNullarySelector(deallocII);
|
|
auto deallocName = clang::DeclarationName(deallocSelector);
|
|
for (auto nd : decl->lookup(deallocName)) {
|
|
if (auto deallocDecl = dyn_cast<clang::ObjCMethodDecl>(nd)) {
|
|
if (deallocDecl->isInstanceMethod()) {
|
|
auto loc = Impl.importSourceLoc(deallocDecl->getLocation());
|
|
auto dtor = Impl.createDeclWithClangNode<DestructorDecl>(
|
|
deallocDecl, access, loc, result);
|
|
result->addMember(dtor);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
|
|
// Implementations of Objective-C classes and categories are not
|
|
// reflected into Swift.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
|
|
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
auto Known = Impl.importDeclCached(decl, getVersion());
|
|
if (Known.has_value())
|
|
return Known.value();
|
|
|
|
return importObjCPropertyDecl(decl, dc);
|
|
}
|
|
|
|
/// Hack: Handle the case where a property is declared \c readonly in the
|
|
/// main class interface (either explicitly or because of an adopted
|
|
/// protocol) and then \c readwrite in a category/extension.
|
|
///
|
|
/// \see VisitObjCPropertyDecl
|
|
void handlePropertyRedeclaration(VarDecl *original,
|
|
const clang::ObjCPropertyDecl *redecl) {
|
|
// If the property isn't from Clang, we can't safely update it.
|
|
if (!original->hasClangNode())
|
|
return;
|
|
|
|
// If the original declaration was implicit, we may want to change that.
|
|
if (original->isImplicit() && !redecl->isImplicit() &&
|
|
!isa<clang::ObjCProtocolDecl>(redecl->getDeclContext()))
|
|
original->setImplicit(false);
|
|
|
|
if (!original->getAttrs().hasAttribute<ReferenceOwnershipAttr>() &&
|
|
!original->getAttrs().hasAttribute<NSCopyingAttr>()) {
|
|
applyPropertyOwnership(original,
|
|
redecl->getPropertyAttributesAsWritten());
|
|
}
|
|
|
|
auto clangSetter = redecl->getSetterMethodDecl();
|
|
if (!clangSetter)
|
|
return;
|
|
|
|
// The only other transformation we know how to do safely is add a
|
|
// setter. If the property is already settable, we're done.
|
|
if (original->isSettable(nullptr))
|
|
return;
|
|
|
|
AccessorDecl *setter = importAccessor(clangSetter,
|
|
original, AccessorKind::Set,
|
|
original->getDeclContext());
|
|
if (!setter)
|
|
return;
|
|
|
|
// Check that the redeclared property's setter uses the same type as the
|
|
// original property. Objective-C can get away with the types being
|
|
// different (usually in something like nullability), but for Swift it's
|
|
// an AST invariant that's assumed and asserted elsewhere. If the type is
|
|
// different, just drop the setter, and leave the property as get-only.
|
|
assert(setter->getParameters()->size() == 1);
|
|
const ParamDecl *param = setter->getParameters()->get(0);
|
|
if (!param->getInterfaceType()->isEqual(original->getInterfaceType()))
|
|
return;
|
|
|
|
original->setComputedSetter(setter);
|
|
}
|
|
|
|
Decl *importObjCPropertyDecl(const clang::ObjCPropertyDecl *decl,
|
|
DeclContext *dc) {
|
|
assert(dc);
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
if (shouldImportPropertyAsAccessors(decl))
|
|
return nullptr;
|
|
|
|
VarDecl *overridden = nullptr;
|
|
// Check whether there is a function with the same name as this
|
|
// property. If so, suppress the property; the user will have to use
|
|
// the methods directly, to avoid ambiguities.
|
|
if (auto *subject = dc->getSelfClassDecl()) {
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(dc)) {
|
|
// Start looking into the superclass.
|
|
subject = classDecl->getSuperclassDecl();
|
|
}
|
|
|
|
bool foundMethod = false;
|
|
std::tie(overridden, foundMethod)
|
|
= identifyNearestOverriddenDecl(Impl, dc, decl, name, subject);
|
|
|
|
if (foundMethod && !overridden)
|
|
return nullptr;
|
|
|
|
if (overridden) {
|
|
const DeclContext *overrideContext = overridden->getDeclContext();
|
|
// It's okay to compare interface types directly because Objective-C
|
|
// does not have constrained extensions.
|
|
if (overrideContext != dc && overridden->hasClangNode() &&
|
|
overrideContext->getSelfNominalTypeDecl()
|
|
== dc->getSelfNominalTypeDecl()) {
|
|
// We've encountered a redeclaration of the property.
|
|
handlePropertyRedeclaration(overridden, decl);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Try searching the class for a property redeclaration. We can use
|
|
// the redeclaration to refine the already-imported property with a
|
|
// setter and also cut off any double-importing behavior.
|
|
auto *redecl
|
|
= identifyPropertyRedeclarationPoint(Impl, decl,
|
|
dc->getSelfClassDecl(), name);
|
|
if (redecl) {
|
|
handlePropertyRedeclaration(redecl, decl);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto fieldType = desugarIfElaborated(decl->getType());
|
|
ImportedType importedType = importer::findOptionSetEnum(fieldType, Impl);
|
|
|
|
if (!importedType)
|
|
importedType = Impl.importPropertyType(decl, isInSystemModule(dc));
|
|
if (!importedType) {
|
|
Impl.addImportDiagnostic(
|
|
decl, Diagnostic(diag::objc_property_not_imported, decl),
|
|
decl->getSourceRange().getBegin());
|
|
return nullptr;
|
|
}
|
|
|
|
// Check whether the property already got imported.
|
|
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
|
|
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
|
|
getVersion()});
|
|
if (known != Impl.ImportedDecls.end())
|
|
return known->second;
|
|
}
|
|
|
|
auto type = importedType.getType();
|
|
const auto access = decl->isDirectProperty() ? AccessLevel::Public
|
|
: getOverridableAccessLevel(dc);
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(decl, access,
|
|
/*IsStatic*/decl->isClassProperty(), VarDecl::Introducer::Var,
|
|
Impl.importSourceLoc(decl->getLocation()), name, dc);
|
|
result->setInterfaceType(type);
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
// Recover from a missing getter in no-asserts builds. We're still not
|
|
// sure under what circumstances this occurs, but we shouldn't crash.
|
|
auto clangGetter = decl->getGetterMethodDecl();
|
|
assert(clangGetter && "ObjC property without getter");
|
|
if (!clangGetter)
|
|
return nullptr;
|
|
|
|
// Import the getter.
|
|
AccessorDecl *getter = importAccessor(clangGetter, result,
|
|
AccessorKind::Get, dc);
|
|
if (!getter)
|
|
return nullptr;
|
|
|
|
// Import the setter, if there is one.
|
|
AccessorDecl *setter = nullptr;
|
|
if (auto clangSetter = decl->getSetterMethodDecl()) {
|
|
setter = importAccessor(clangSetter, result, AccessorKind::Set, dc);
|
|
if (!setter)
|
|
return nullptr;
|
|
}
|
|
|
|
// Turn this into a computed property.
|
|
// FIXME: Fake locations for '{' and '}'?
|
|
result->setIsSetterMutating(false);
|
|
Impl.makeComputed(result, getter, setter);
|
|
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
|
|
applyPropertyOwnership(result, decl->getPropertyAttributesAsWritten());
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBOutletAttr>())
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
IBOutletAttr(/*IsImplicit=*/false));
|
|
if (decl->getPropertyImplementation() ==
|
|
clang::ObjCPropertyDecl::Optional &&
|
|
isa<ProtocolDecl>(dc) &&
|
|
!result->getAttrs().hasAttribute<OptionalAttr>())
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
OptionalAttr(/*implicit*/ false));
|
|
// FIXME: Handle IBOutletCollection.
|
|
|
|
// Only record overrides of class members.
|
|
if (overridden) {
|
|
result->setOverriddenDecl(overridden);
|
|
getter->setOverriddenDecl(overridden->getParsedAccessor(AccessorKind::Get));
|
|
if (auto parentSetter = overridden->getParsedAccessor(AccessorKind::Set))
|
|
if (setter)
|
|
setter->setOverriddenDecl(parentSetter);
|
|
}
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
recordMemberInContext(dc, result);
|
|
return result;
|
|
}
|
|
|
|
Decl *
|
|
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
|
|
// Import Objective-C's @compatibility_alias as typealias.
|
|
EffectiveClangContext effectiveContext(decl->getDeclContext()->getRedeclContext());
|
|
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
|
|
if (!dc) return nullptr;
|
|
|
|
ImportedName importedName;
|
|
std::tie(importedName, std::ignore) = importFullName(decl);
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
|
|
if (name.empty()) return nullptr;
|
|
Decl *importedDecl =
|
|
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion());
|
|
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
|
|
if (!typeDecl) return nullptr;
|
|
|
|
// Create typealias.
|
|
TypeAliasDecl *typealias = nullptr;
|
|
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
decl, AccessLevel::Public,
|
|
Impl.importSourceLoc(decl->getBeginLoc()),
|
|
SourceLoc(), name,
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
/*genericparams=*/nullptr, dc);
|
|
|
|
if (auto *GTD = dyn_cast<GenericTypeDecl>(typeDecl)) {
|
|
typealias->setGenericSignature(GTD->getGenericSignature());
|
|
if (GTD->hasGenericParamList()) {
|
|
typealias->getASTContext().evaluator.cacheOutput(
|
|
GenericParamListRequest{typealias},
|
|
std::move(GTD->getGenericParams()->clone(typealias)));
|
|
}
|
|
}
|
|
|
|
typealias->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
|
|
return typealias;
|
|
}
|
|
|
|
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
|
|
// Linkage specifications are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
|
|
// @synthesize and @dynamic are not imported, since they are not part
|
|
// of the interface to a class.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
|
|
// Friends are not imported; Swift has a different access control
|
|
// mechanism.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
|
|
// Static assertions are an implementation detail.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
|
|
// Blocks are not imported (although block types can be imported).
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
|
|
// Transitive module imports are not handled at the declaration level.
|
|
// Rather, they are understood from the module itself.
|
|
return nullptr;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Try to strip "Mutable" out of a type name.
|
|
static clang::IdentifierInfo *
|
|
getImmutableCFSuperclassName(const clang::TypedefNameDecl *decl, clang::ASTContext &ctx) {
|
|
StringRef name = decl->getName();
|
|
|
|
// Split at the first occurrence of "Mutable".
|
|
StringRef _mutable = "Mutable";
|
|
auto mutableIndex = camel_case::findWord(name, _mutable);
|
|
if (mutableIndex == StringRef::npos)
|
|
return nullptr;
|
|
|
|
StringRef namePrefix = name.substr(0, mutableIndex);
|
|
StringRef nameSuffix = name.substr(mutableIndex + _mutable.size());
|
|
|
|
// Abort if "Mutable" appears twice.
|
|
if (camel_case::findWord(nameSuffix, _mutable) != StringRef::npos)
|
|
return nullptr;
|
|
|
|
llvm::SmallString<128> buffer;
|
|
buffer += namePrefix;
|
|
buffer += nameSuffix;
|
|
return &ctx.Idents.get(buffer.str());
|
|
}
|
|
|
|
/// Check whether this CF typedef is a Mutable type, and if so,
|
|
/// look for a non-Mutable typedef.
|
|
///
|
|
/// If the "subclass" is:
|
|
/// typedef struct __foo *XXXMutableYYY;
|
|
/// then we look for a "superclass" that matches:
|
|
/// typedef const struct __foo *XXXYYY;
|
|
static Type findImmutableCFSuperclass(ClangImporter::Implementation &impl,
|
|
const clang::TypedefNameDecl *decl,
|
|
CFPointeeInfo subclassInfo) {
|
|
// If this type is already immutable, it has no immutable
|
|
// superclass.
|
|
if (subclassInfo.isConst())
|
|
return Type();
|
|
|
|
// If this typedef name does not contain "Mutable", it has no
|
|
// immutable superclass.
|
|
auto superclassName =
|
|
getImmutableCFSuperclassName(decl, impl.getClangASTContext());
|
|
if (!superclassName)
|
|
return Type();
|
|
|
|
// Look for a typedef that successfully classifies as a CF
|
|
// typedef with the same underlying record.
|
|
auto superclassTypedef = impl.lookupTypedef(superclassName);
|
|
if (!superclassTypedef)
|
|
return Type();
|
|
auto superclassInfo = CFPointeeInfo::classifyTypedef(superclassTypedef);
|
|
if (!superclassInfo || !superclassInfo.isRecord() ||
|
|
!declaresSameEntity(superclassInfo.getRecord(), subclassInfo.getRecord()))
|
|
return Type();
|
|
|
|
// Try to import the superclass.
|
|
Decl *importedSuperclassDecl =
|
|
impl.importDeclReal(superclassTypedef, impl.CurrentVersion);
|
|
if (!importedSuperclassDecl)
|
|
return Type();
|
|
|
|
auto importedSuperclass =
|
|
cast<TypeDecl>(importedSuperclassDecl)->getDeclaredInterfaceType();
|
|
assert(importedSuperclass->is<ClassType>() && "must have class type");
|
|
return importedSuperclass;
|
|
}
|
|
|
|
/// Attempt to find a superclass for the given CF typedef.
|
|
static Type findCFSuperclass(ClangImporter::Implementation &impl,
|
|
const clang::TypedefNameDecl *decl,
|
|
CFPointeeInfo info) {
|
|
if (Type immutable = findImmutableCFSuperclass(impl, decl, info))
|
|
return immutable;
|
|
|
|
// TODO: use NSObject if it exists?
|
|
return Type();
|
|
}
|
|
|
|
ClassDecl *
|
|
SwiftDeclConverter::importCFClassType(const clang::TypedefNameDecl *decl,
|
|
Identifier className, CFPointeeInfo info,
|
|
EffectiveClangContext effectiveContext) {
|
|
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
Type superclass = findCFSuperclass(Impl, decl, info);
|
|
|
|
// TODO: maybe use NSObject as the superclass if we can find it?
|
|
// TODO: try to find a non-mutable type to use as the superclass.
|
|
|
|
auto theClass = Impl.createDeclWithClangNode<ClassDecl>(
|
|
decl, AccessLevel::Public, SourceLoc(), className, SourceLoc(),
|
|
ArrayRef<InheritedEntry>(), nullptr, dc, /*isActor*/ false);
|
|
theClass->setSuperclass(superclass);
|
|
theClass->setAddedImplicitInitializers(); // suppress all initializers
|
|
theClass->setHasMissingVTableEntries(false);
|
|
theClass->setForeignClassKind(ClassDecl::ForeignKind::CFType);
|
|
addObjCAttribute(theClass, std::nullopt);
|
|
|
|
if (superclass) {
|
|
SmallVector<InheritedEntry, 4> inheritedTypes;
|
|
inheritedTypes.push_back(TypeLoc::withoutLoc(superclass));
|
|
theClass->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
|
|
}
|
|
|
|
Impl.addSynthesizedProtocolAttrs(theClass, {KnownProtocolKind::CFObject});
|
|
|
|
// Look for bridging attributes on the clang record. We can
|
|
// just check the most recent redeclaration, which will inherit
|
|
// any attributes from earlier declarations.
|
|
auto record = info.getRecord()->getMostRecentDecl();
|
|
if (info.isConst()) {
|
|
if (auto attr = record->getAttr<clang::ObjCBridgeAttr>()) {
|
|
// Record the Objective-C class to which this CF type is toll-free
|
|
// bridged.
|
|
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
|
|
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
|
|
theClass->addAttribute(new (Impl.SwiftContext)
|
|
ObjCBridgedAttr(objcClass));
|
|
}
|
|
}
|
|
} else {
|
|
if (auto attr = record->getAttr<clang::ObjCBridgeMutableAttr>()) {
|
|
// Record the Objective-C class to which this CF type is toll-free
|
|
// bridged.
|
|
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
|
|
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
|
|
theClass->addAttribute(new (Impl.SwiftContext)
|
|
ObjCBridgedAttr(objcClass));
|
|
}
|
|
}
|
|
}
|
|
|
|
return theClass;
|
|
}
|
|
|
|
Decl *SwiftDeclConverter::importCompatibilityTypeAlias(
|
|
const clang::NamedDecl *decl,
|
|
ImportedName compatibilityName,
|
|
ImportedName correctSwiftName) {
|
|
// Import the referenced declaration. If it doesn't come in as a type,
|
|
// we don't care.
|
|
Decl *importedDecl = nullptr;
|
|
if (getVersion() >= getActiveSwiftVersion())
|
|
importedDecl = Impl.importDecl(decl, ImportNameVersion::forTypes());
|
|
if (!importedDecl && getVersion() != getActiveSwiftVersion())
|
|
importedDecl = Impl.importDecl(decl, getActiveSwiftVersion());
|
|
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
|
|
if (!typeDecl)
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl,
|
|
compatibilityName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Create the type alias.
|
|
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()),
|
|
Impl.importSourceLoc(decl->getBeginLoc()), SourceLoc(),
|
|
compatibilityName.getBaseIdentifier(Impl.SwiftContext),
|
|
Impl.importSourceLoc(decl->getLocation()), /*generic params*/ nullptr,
|
|
dc);
|
|
|
|
auto *GTD = dyn_cast<GenericTypeDecl>(typeDecl);
|
|
if (GTD && !isa<ProtocolDecl>(GTD)) {
|
|
alias->setGenericSignature(GTD->getGenericSignature());
|
|
if (GTD->hasGenericParamList()) {
|
|
alias->getASTContext().evaluator.cacheOutput(
|
|
GenericParamListRequest{alias},
|
|
std::move(GTD->getGenericParams()->clone(alias)));
|
|
}
|
|
}
|
|
|
|
alias->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
|
|
|
|
// Record that this is the official version of this declaration.
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = alias;
|
|
markAsVariant(alias, correctSwiftName);
|
|
return alias;
|
|
}
|
|
|
|
namespace {
|
|
template<typename D>
|
|
bool inheritanceListContainsProtocol(D decl, const ProtocolDecl *proto) {
|
|
bool anyObject = false;
|
|
InvertibleProtocolSet inverses;
|
|
for (const auto &found :
|
|
getDirectlyInheritedNominalTypeDecls(decl, inverses, anyObject)) {
|
|
if (auto protoDecl = dyn_cast<ProtocolDecl>(found.Item))
|
|
if (protoDecl == proto || protoDecl->inheritsFrom(proto))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
static bool conformsToProtocolInOriginalModule(NominalTypeDecl *nominal,
|
|
const ProtocolDecl *proto) {
|
|
if (inheritanceListContainsProtocol(nominal, proto))
|
|
return true;
|
|
|
|
for (auto attr : nominal->getAttrs().getAttributes<SynthesizedProtocolAttr>()) {
|
|
auto *otherProto = attr->getProtocol();
|
|
if (otherProto == proto || otherProto->inheritsFrom(proto))
|
|
return !attr->isSuppressed();
|
|
}
|
|
|
|
// Only consider extensions from the original module...or from an overlay
|
|
// or the Swift half of a mixed-source framework.
|
|
const DeclContext *containingFile = nominal->getModuleScopeContext();
|
|
ModuleDecl *originalModule = containingFile->getParentModule();
|
|
|
|
ModuleDecl *overlayModule = nullptr;
|
|
if (auto *clangUnit = dyn_cast<ClangModuleUnit>(containingFile))
|
|
overlayModule = clangUnit->getOverlayModule();
|
|
|
|
for (ExtensionDecl *extension : nominal->getExtensions()) {
|
|
ModuleDecl *extensionModule = extension->getParentModule();
|
|
if (extensionModule != originalModule && extensionModule != overlayModule &&
|
|
!extensionModule->isFoundationModule()) {
|
|
continue;
|
|
}
|
|
if (inheritanceListContainsProtocol(extension, proto))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given nominal type was imported with an OptionSet
|
|
/// conformance.
|
|
static bool isImportedOptionSet(NominalTypeDecl *nominal) {
|
|
for (auto attr : nominal->getAttrs()) {
|
|
if (auto synthesizedAttr = dyn_cast<SynthesizedProtocolAttr>(attr)) {
|
|
if (synthesizedAttr->getProtocol()->isSpecificProtocol(
|
|
KnownProtocolKind::OptionSet))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Decl *
|
|
SwiftDeclConverter::importSwiftNewtype(const clang::TypedefNameDecl *decl,
|
|
clang::SwiftNewTypeAttr *newtypeAttr,
|
|
DeclContext *dc, Identifier name) {
|
|
// The only (current) difference between swift_newtype(struct) and
|
|
// swift_newtype(enum), until we can get real enum support, is that enums
|
|
// have no un-labeled inits(). This is because enums are to be considered
|
|
// closed, and if constructed from a rawValue, should be very explicit.
|
|
bool unlabeledCtor = false;
|
|
|
|
switch (newtypeAttr->getNewtypeKind()) {
|
|
case clang::SwiftNewTypeAttr::NK_Enum:
|
|
unlabeledCtor = false;
|
|
// TODO: import as enum instead
|
|
break;
|
|
|
|
case clang::SwiftNewTypeAttr::NK_Struct:
|
|
unlabeledCtor = true;
|
|
break;
|
|
// No other cases yet
|
|
}
|
|
|
|
auto &ctx = Impl.SwiftContext;
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), Loc, name, Loc,
|
|
ArrayRef<InheritedEntry>(), nullptr, dc);
|
|
|
|
// Import the type of the underlying storage
|
|
ImportDiagnosticAdder addImportDiag(Impl, decl, decl->getLocation());
|
|
auto storedUnderlyingType = Impl.importTypeIgnoreIUO(
|
|
decl->getUnderlyingType(), ImportTypeKind::Value, addImportDiag,
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs(), OTK_None);
|
|
|
|
if (!storedUnderlyingType)
|
|
return nullptr;
|
|
|
|
if (auto objTy = storedUnderlyingType->getOptionalObjectType())
|
|
storedUnderlyingType = objTy;
|
|
|
|
// If the type is Unmanaged, that is it is not CF ARC audited,
|
|
// we will store the underlying type and leave it up to the use site
|
|
// to determine whether to use this new_type, or an Unmanaged<CF...> type.
|
|
if (auto genericType = storedUnderlyingType->getAs<BoundGenericType>()) {
|
|
if (genericType->isUnmanaged()) {
|
|
assert(genericType->getGenericArgs().size() == 1 && "other args?");
|
|
storedUnderlyingType = genericType->getGenericArgs()[0];
|
|
}
|
|
}
|
|
|
|
// Find a bridged type, which may be different
|
|
auto computedPropertyUnderlyingType = Impl.importTypeIgnoreIUO(
|
|
decl->getUnderlyingType(), ImportTypeKind::Property, addImportDiag,
|
|
isInSystemModule(dc), Bridgeability::Full, ImportTypeAttrs(), OTK_None);
|
|
if (auto objTy = computedPropertyUnderlyingType->getOptionalObjectType())
|
|
computedPropertyUnderlyingType = objTy;
|
|
|
|
bool isBridged =
|
|
!storedUnderlyingType->isEqual(computedPropertyUnderlyingType);
|
|
|
|
// Determine the set of protocols to which the synthesized
|
|
// type will conform.
|
|
SmallVector<KnownProtocolKind, 4> synthesizedProtocols;
|
|
|
|
// Local function to add a known protocol.
|
|
auto addKnown = [&](KnownProtocolKind kind) {
|
|
synthesizedProtocols.push_back(kind);
|
|
};
|
|
|
|
// Add conformances that are always available.
|
|
addKnown(KnownProtocolKind::RawRepresentable);
|
|
addKnown(KnownProtocolKind::SwiftNewtypeWrapper);
|
|
|
|
// If this type was also imported as an OptionSet, include those typealiases.
|
|
if (isImportedOptionSet(structDecl)) {
|
|
Impl.addOptionSetTypealiases(structDecl);
|
|
}
|
|
|
|
// Local function to add a known protocol only when the
|
|
// underlying type conforms to it.
|
|
auto computedNominal = computedPropertyUnderlyingType->getAnyNominal();
|
|
if (auto existential =
|
|
computedPropertyUnderlyingType->getAs<ExistentialType>())
|
|
computedNominal = existential->getConstraintType()->getAnyNominal();
|
|
auto transferKnown = [&](KnownProtocolKind kind) {
|
|
if (!computedNominal)
|
|
return false;
|
|
|
|
auto proto = ctx.getProtocol(kind);
|
|
if (!proto)
|
|
return false;
|
|
|
|
if (auto *computedProto = dyn_cast<ProtocolDecl>(computedNominal)) {
|
|
return (computedProto == proto || computedProto->inheritsFrom(proto));
|
|
}
|
|
// Break circularity by only looking for declared conformances in the
|
|
// original module, or possibly its overlay.
|
|
if (conformsToProtocolInOriginalModule(computedNominal, proto)) {
|
|
synthesizedProtocols.push_back(kind);
|
|
return true;
|
|
}
|
|
// HACK: This method may be called before all extensions have been bound.
|
|
// This is a problem for newtypes in Foundation, which is what provides the
|
|
// `String: _ObjectiveCBridgeable` conformance; it can cause us to create
|
|
// `String`-backed newtypes which aren't bridgeable, causing typecheck
|
|
// failures and crashes down the line (rdar://142693093). Hardcode knowledge
|
|
// that this conformance will exist.
|
|
// FIXME: Defer adding conformances to newtypes instead of this. (#78731)
|
|
if (structDecl->getModuleContext()->isFoundationModule()
|
|
&& kind == KnownProtocolKind::ObjectiveCBridgeable
|
|
&& computedNominal == ctx.getStringDecl()) {
|
|
synthesizedProtocols.push_back(kind);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Transfer conformances. Each of these needs a forwarding
|
|
// implementation in the standard library.
|
|
transferKnown(KnownProtocolKind::Equatable);
|
|
transferKnown(KnownProtocolKind::Hashable);
|
|
bool hasObjCBridgeable =
|
|
transferKnown(KnownProtocolKind::ObjectiveCBridgeable);
|
|
bool wantsObjCBridgeableTypealias = hasObjCBridgeable && isBridged;
|
|
|
|
// Wrappers around ObjC classes and protocols are also bridgeable.
|
|
if (!hasObjCBridgeable) {
|
|
if (isBridged) {
|
|
if (auto *proto = dyn_cast_or_null<ProtocolDecl>(computedNominal))
|
|
if (proto->getKnownProtocolKind() == KnownProtocolKind::Error)
|
|
hasObjCBridgeable = true;
|
|
} else {
|
|
if (auto *objcClass = dyn_cast_or_null<ClassDecl>(computedNominal)) {
|
|
switch (objcClass->getForeignClassKind()) {
|
|
case ClassDecl::ForeignKind::Normal:
|
|
case ClassDecl::ForeignKind::RuntimeOnly:
|
|
if (objcClass->hasClangNode())
|
|
hasObjCBridgeable = true;
|
|
break;
|
|
case ClassDecl::ForeignKind::CFType:
|
|
break;
|
|
}
|
|
} else if (storedUnderlyingType->isObjCExistentialType()) {
|
|
hasObjCBridgeable = true;
|
|
}
|
|
}
|
|
|
|
if (hasObjCBridgeable) {
|
|
addKnown(KnownProtocolKind::ObjectiveCBridgeable);
|
|
wantsObjCBridgeableTypealias = true;
|
|
}
|
|
}
|
|
|
|
if (!isBridged) {
|
|
// Simple, our stored type is equivalent to our computed
|
|
// type.
|
|
auto options = getDefaultMakeStructRawValuedOptions();
|
|
if (unlabeledCtor)
|
|
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
|
|
|
|
synthesizer.makeStructRawValued(structDecl, storedUnderlyingType,
|
|
synthesizedProtocols, options);
|
|
} else {
|
|
// We need to make a stored rawValue or storage type, and a
|
|
// computed one of bridged type.
|
|
synthesizer.makeStructRawValuedWithBridge(
|
|
structDecl, storedUnderlyingType, computedPropertyUnderlyingType,
|
|
synthesizedProtocols,
|
|
/*makeUnlabeledValueInit=*/unlabeledCtor);
|
|
}
|
|
|
|
if (wantsObjCBridgeableTypealias) {
|
|
Impl.addSynthesizedTypealias(structDecl, ctx.Id_ObjectiveCType,
|
|
storedUnderlyingType);
|
|
}
|
|
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = structDecl;
|
|
return structDecl;
|
|
}
|
|
|
|
Decl *SwiftDeclConverter::importEnumCase(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
EnumDecl *theEnum,
|
|
Decl *correctDecl) {
|
|
auto &context = Impl.SwiftContext;
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(decl);
|
|
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
if (correctSwiftName) {
|
|
// We're creating a compatibility stub. Treat it as an enum case alias.
|
|
auto correctCase = dyn_cast_or_null<EnumElementDecl>(correctDecl);
|
|
if (!correctCase)
|
|
return nullptr;
|
|
|
|
// If the correct declaration was unavailable, don't map to it.
|
|
// FIXME: This eliminates spurious errors, but affects QoI.
|
|
if (correctCase->isUnavailable())
|
|
return nullptr;
|
|
|
|
auto compatibilityCase =
|
|
importEnumCaseAlias(name, decl, correctCase, clangEnum, theEnum);
|
|
if (compatibilityCase)
|
|
markAsVariant(compatibilityCase, *correctSwiftName);
|
|
|
|
return compatibilityCase;
|
|
}
|
|
|
|
// Use the constant's underlying value as its raw value in Swift.
|
|
bool negative = false;
|
|
llvm::APSInt rawValue = decl->getInitVal();
|
|
|
|
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType() &&
|
|
rawValue.slt(0)) {
|
|
rawValue = -rawValue;
|
|
negative = true;
|
|
}
|
|
llvm::SmallString<12> rawValueText;
|
|
rawValue.toString(rawValueText, 10, /*signed*/ false);
|
|
StringRef rawValueTextC = context.AllocateCopy(StringRef(rawValueText));
|
|
auto rawValueExpr =
|
|
new (context) IntegerLiteralExpr(rawValueTextC, SourceLoc(),
|
|
/*implicit*/ false);
|
|
if (negative)
|
|
rawValueExpr->setNegative(SourceLoc());
|
|
|
|
auto element = Impl.createDeclWithClangNode<EnumElementDecl>(
|
|
decl, importer::convertClangAccess(clangEnum->getAccess()), SourceLoc(),
|
|
name, nullptr, SourceLoc(), rawValueExpr, theEnum);
|
|
|
|
Impl.importAttributes(decl, element);
|
|
|
|
return element;
|
|
}
|
|
|
|
Decl *
|
|
SwiftDeclConverter::importOptionConstant(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
NominalTypeDecl *theStruct) {
|
|
ImportedName nameInfo;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(nameInfo, correctSwiftName) = importFullName(decl);
|
|
Identifier name = nameInfo.getBaseIdentifier(Impl.SwiftContext);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
// Create the constant.
|
|
auto convertKind = ConstantConvertKind::Construction;
|
|
if (isa<EnumDecl>(theStruct))
|
|
convertKind = ConstantConvertKind::ConstructionWithUnwrap;
|
|
Decl *CD = synthesizer.createConstant(
|
|
name, theStruct, theStruct->getDeclaredInterfaceType(),
|
|
clang::APValue(decl->getInitVal()), convertKind, /*isStatic*/ true, decl,
|
|
importer::convertClangAccess(clangEnum->getAccess()));
|
|
Impl.importAttributes(decl, CD);
|
|
|
|
// NS_OPTIONS members that have a value of 0 (typically named "None") do
|
|
// not operate as a set-like member. Mark them unavailable with a message
|
|
// that says that they should be used as [].
|
|
if (decl->getInitVal() == 0 && !nameInfo.hasCustomName() &&
|
|
!CD->isUnavailable()) {
|
|
/// Create an AvailableAttr that indicates specific availability
|
|
/// for all platforms.
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
Impl.SwiftContext, "use [] to construct an empty option set");
|
|
CD->addAttribute(attr);
|
|
}
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(CD, *correctSwiftName);
|
|
|
|
return CD;
|
|
}
|
|
|
|
Decl *SwiftDeclConverter::importEnumCaseAlias(
|
|
Identifier name, const clang::EnumConstantDecl *alias, ValueDecl *original,
|
|
const clang::EnumDecl *clangEnum, NominalTypeDecl *importedEnum,
|
|
DeclContext *importIntoDC) {
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
// Default the DeclContext to the enum type.
|
|
if (!importIntoDC)
|
|
importIntoDC = importedEnum;
|
|
|
|
Type importedEnumTy = importedEnum->getDeclaredInterfaceType();
|
|
auto typeRef = TypeExpr::createImplicit(importedEnumTy, Impl.SwiftContext);
|
|
|
|
Expr *result = nullptr;
|
|
if (auto *enumElt = dyn_cast<EnumElementDecl>(original)) {
|
|
assert(!enumElt->hasAssociatedValues());
|
|
|
|
// Construct the original constant. Enum constants without payloads look
|
|
// like simple values, but actually have type 'MyEnum.Type -> MyEnum'.
|
|
auto constantRef =
|
|
new (Impl.SwiftContext) DeclRefExpr(enumElt, DeclNameLoc(),
|
|
/*implicit*/ true);
|
|
constantRef->setType(enumElt->getInterfaceType());
|
|
|
|
auto instantiate =
|
|
DotSyntaxCallExpr::create(Impl.SwiftContext, constantRef, SourceLoc(),
|
|
Argument::unlabeled(typeRef));
|
|
instantiate->setType(importedEnumTy);
|
|
instantiate->setThrows(nullptr);
|
|
|
|
result = instantiate;
|
|
} else {
|
|
assert(isa<VarDecl>(original));
|
|
|
|
result =
|
|
new (Impl.SwiftContext) MemberRefExpr(typeRef, SourceLoc(),
|
|
original, DeclNameLoc(),
|
|
/*implicit*/ true);
|
|
result->setType(original->getInterfaceType());
|
|
}
|
|
|
|
Decl *CD = synthesizer.createConstant(
|
|
name, importIntoDC, importedEnumTy, result, ConstantConvertKind::None,
|
|
/*isStatic*/ true, alias,
|
|
importer::convertClangAccess(clangEnum->getAccess()));
|
|
Impl.importAttributes(alias, CD);
|
|
return CD;
|
|
}
|
|
|
|
NominalTypeDecl *
|
|
SwiftDeclConverter::importAsOptionSetType(DeclContext *dc, Identifier name,
|
|
const clang::EnumDecl *decl) {
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
// Create a struct with the underlying type as a field.
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), Loc, name, Loc,
|
|
ArrayRef<InheritedEntry>(), nullptr, dc);
|
|
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = structDecl;
|
|
|
|
// Compute the underlying type.
|
|
auto underlyingType = Impl.importTypeIgnoreIUO(
|
|
decl->getIntegerType(), ImportTypeKind::Enum,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
synthesizer.makeStructRawValued(structDecl, underlyingType,
|
|
{KnownProtocolKind::OptionSet});
|
|
Impl.addOptionSetTypealiases(structDecl);
|
|
return structDecl;
|
|
}
|
|
|
|
Decl *SwiftDeclConverter::importGlobalAsInitializer(
|
|
const clang::FunctionDecl *decl, DeclName name, DeclContext *dc,
|
|
CtorInitializerKind initKind,
|
|
std::optional<ImportedName> correctSwiftName) {
|
|
// TODO: Should this be an error? How can this come up?
|
|
assert(dc->isTypeContext() && "cannot import as member onto non-type");
|
|
|
|
// Check for some invalid imports
|
|
if (dc->getSelfProtocolDecl()) {
|
|
// FIXME: clang source location
|
|
Impl.diagnose({}, diag::swift_name_protocol_static, /*isInit=*/true);
|
|
Impl.diagnose({}, diag::note_while_importing, decl->getName());
|
|
return nullptr;
|
|
}
|
|
|
|
bool allowNSUIntegerAsInt =
|
|
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
|
|
|
|
ArrayRef<Identifier> argNames = name.getArgumentNames();
|
|
|
|
ParameterList *parameterList = nullptr;
|
|
DeclName nameBeforeAdjustment;
|
|
if (argNames.size() == 1 && decl->getNumParams() == 0) {
|
|
// Special case: We need to create an empty first parameter for our
|
|
// argument label
|
|
auto *paramDecl =
|
|
new (Impl.SwiftContext) ParamDecl(
|
|
SourceLoc(), SourceLoc(), argNames.front(),
|
|
SourceLoc(), argNames.front(), dc);
|
|
paramDecl->setSpecifier(ParamSpecifier::Default);
|
|
paramDecl->setInterfaceType(Impl.SwiftContext.TheEmptyTupleType);
|
|
|
|
parameterList = ParameterList::createWithoutLoc(paramDecl);
|
|
} else {
|
|
parameterList = Impl.importFunctionParameterList(
|
|
dc, decl, {decl->param_begin(), decl->param_end()}, decl->isVariadic(),
|
|
allowNSUIntegerAsInt, argNames, /*genericParams=*/{},
|
|
/*resultType=*/nullptr);
|
|
|
|
if (name && parameterList && argNames.size() != parameterList->size()) {
|
|
// Remember that the name has changed.
|
|
nameBeforeAdjustment = name;
|
|
|
|
// Add or remove argument labels as needed to match `parameterList`.
|
|
SmallVector<Identifier, 16> newArgNames;
|
|
llvm::append_range(newArgNames, argNames);
|
|
while (newArgNames.size() > parameterList->size())
|
|
newArgNames.pop_back();
|
|
while (newArgNames.size() < parameterList->size()) {
|
|
auto param = parameterList->get(newArgNames.size());
|
|
newArgNames.push_back(param->getArgumentName());
|
|
}
|
|
|
|
// Construct the new name.
|
|
name = DeclName(Impl.SwiftContext, name.getBaseName(), newArgNames);
|
|
argNames = name.getArgumentNames();
|
|
}
|
|
}
|
|
if (!parameterList)
|
|
return nullptr;
|
|
|
|
auto importedType =
|
|
Impl.importFunctionReturnType(dc, decl, allowNSUIntegerAsInt);
|
|
|
|
// Update the failability appropriately based on the imported method type.
|
|
bool failable = false, isIUO = false;
|
|
if (!importedType.getType().isNull() &&
|
|
importedType.isImplicitlyUnwrapped()) {
|
|
assert(importedType.getType()->getOptionalObjectType());
|
|
failable = true;
|
|
isIUO = true;
|
|
} else if (importedType.getType()->getOptionalObjectType()) {
|
|
failable = true;
|
|
}
|
|
|
|
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
|
|
decl, importer::convertClangAccess(decl->getAccess()), name,
|
|
Impl.importSourceLoc(decl->getLocation()), failable,
|
|
/*FailabilityLoc=*/SourceLoc(),
|
|
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
|
|
parameterList, /*GenericParams=*/nullptr, dc);
|
|
result->setImplicitlyUnwrappedOptional(isIUO);
|
|
result->getASTContext().evaluator.cacheOutput(InitKindRequest{result},
|
|
std::move(initKind));
|
|
result->setImportAsStaticMember();
|
|
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
importedType.isImplicitlyUnwrapped());
|
|
result->setOverriddenDecls({ });
|
|
result->setIsObjC(false);
|
|
result->setIsDynamic(false);
|
|
|
|
if (nameBeforeAdjustment) {
|
|
SmallString<16> message;
|
|
llvm::raw_svector_ostream os(message);
|
|
os << "declared Swift name '" << nameBeforeAdjustment
|
|
<< "' was adjusted to '" << name
|
|
<< "' because it does not have the correct number of parameters ("
|
|
<< nameBeforeAdjustment.getArgumentNames().size() << " vs. "
|
|
<< name.getArgumentNames().size()
|
|
<< "); please report this to its maintainer";
|
|
|
|
auto attr = AvailableAttr::createUniversallyDeprecated(Impl.SwiftContext,
|
|
Impl.SwiftContext.AllocateCopy(message.str()), "");
|
|
result->addAttribute(attr);
|
|
}
|
|
|
|
finishFuncDecl(decl, result);
|
|
if (correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
return result;
|
|
}
|
|
|
|
/// Create an implicit property given the imported name of one of
|
|
/// the accessors.
|
|
VarDecl *
|
|
SwiftDeclConverter::getImplicitProperty(ImportedName importedName,
|
|
const clang::FunctionDecl *accessor) {
|
|
// Check whether we already know about the property.
|
|
auto knownProperty = Impl.FunctionsAsProperties.find(accessor);
|
|
if (knownProperty != Impl.FunctionsAsProperties.end())
|
|
return knownProperty->second;
|
|
|
|
// Determine whether we have the getter or setter.
|
|
const clang::FunctionDecl *getter = nullptr;
|
|
ImportedName getterName;
|
|
std::optional<ImportedName> swift3GetterName;
|
|
const clang::FunctionDecl *setter = nullptr;
|
|
ImportedName setterName;
|
|
std::optional<ImportedName> swift3SetterName;
|
|
switch (importedName.getAccessorKind()) {
|
|
case ImportedAccessorKind::None:
|
|
case ImportedAccessorKind::SubscriptGetter:
|
|
case ImportedAccessorKind::SubscriptSetter:
|
|
case ImportedAccessorKind::DereferenceGetter:
|
|
case ImportedAccessorKind::DereferenceSetter:
|
|
llvm_unreachable("Not a property accessor");
|
|
|
|
case ImportedAccessorKind::PropertyGetter:
|
|
getter = accessor;
|
|
getterName = importedName;
|
|
break;
|
|
|
|
case ImportedAccessorKind::PropertySetter:
|
|
setter = accessor;
|
|
setterName = importedName;
|
|
break;
|
|
}
|
|
|
|
// Find the other accessor, if it exists.
|
|
auto propertyName = importedName.getBaseIdentifier(Impl.SwiftContext);
|
|
auto lookupTable =
|
|
Impl.findLookupTable(*getClangSubmoduleForDecl(accessor));
|
|
assert(lookupTable && "No lookup table?");
|
|
bool foundAccessor = false;
|
|
for (auto entry : lookupTable->lookup(SerializedSwiftName(propertyName),
|
|
importedName.getEffectiveContext())) {
|
|
auto decl = entry.dyn_cast<clang::NamedDecl *>();
|
|
if (!decl)
|
|
continue;
|
|
|
|
auto function = dyn_cast<clang::FunctionDecl>(decl);
|
|
if (!function)
|
|
continue;
|
|
|
|
if (function->getCanonicalDecl() == accessor->getCanonicalDecl()) {
|
|
foundAccessor = true;
|
|
continue;
|
|
}
|
|
|
|
if (!getter) {
|
|
// Find the self index for the getter.
|
|
std::tie(getterName, swift3GetterName) = importFullName(function);
|
|
if (!getterName)
|
|
continue;
|
|
|
|
getter = function;
|
|
continue;
|
|
}
|
|
|
|
if (!setter) {
|
|
// Find the self index for the setter.
|
|
std::tie(setterName, swift3SetterName) = importFullName(function);
|
|
if (!setterName)
|
|
continue;
|
|
|
|
setter = function;
|
|
continue;
|
|
}
|
|
|
|
// We already have both a getter and a setter; something is
|
|
// amiss, so bail out.
|
|
return nullptr;
|
|
}
|
|
|
|
assert(foundAccessor && "Didn't find the original accessor? "
|
|
"Try clearing your module cache");
|
|
|
|
// If there is no getter, there's nothing we can do.
|
|
if (!getter)
|
|
return nullptr;
|
|
|
|
// Retrieve the type of the property that is implied by the getter.
|
|
auto propertyType =
|
|
getAccessorPropertyType(getter, false, getterName.getSelfIndex());
|
|
if (propertyType.isNull())
|
|
return nullptr;
|
|
propertyType = desugarIfElaborated(propertyType);
|
|
|
|
// If there is a setter, check that the property it implies
|
|
// matches that of the getter.
|
|
if (setter) {
|
|
auto setterPropertyType =
|
|
getAccessorPropertyType(setter, true, setterName.getSelfIndex());
|
|
if (setterPropertyType.isNull())
|
|
return nullptr;
|
|
|
|
// If the inferred property types don't match up, we can't
|
|
// form a property.
|
|
if (!getter->getASTContext().hasSameType(propertyType, setterPropertyType))
|
|
return nullptr;
|
|
}
|
|
|
|
// Import the property's context.
|
|
auto dc = Impl.importDeclContextOf(getter, getterName.getEffectiveContext());
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Is this a static property?
|
|
bool isStatic = false;
|
|
if (dc->isTypeContext() && !getterName.getSelfIndex())
|
|
isStatic = true;
|
|
|
|
ImportedType importedType = importer::findOptionSetEnum(propertyType, Impl);
|
|
|
|
if (!importedType) {
|
|
// Compute the property type.
|
|
bool isFromSystemModule = isInSystemModule(dc);
|
|
importedType = Impl.importType(
|
|
propertyType, ImportTypeKind::Property,
|
|
ImportDiagnosticAdder(Impl, getter, getter->getLocation()),
|
|
Impl.shouldAllowNSUIntegerAsInt(isFromSystemModule, getter),
|
|
Bridgeability::Full, getImportTypeAttrs(accessor),
|
|
OTK_ImplicitlyUnwrappedOptional);
|
|
}
|
|
|
|
if (!importedType)
|
|
return nullptr;
|
|
|
|
Type swiftPropertyType = importedType.getType();
|
|
|
|
auto property = Impl.createDeclWithClangNode<VarDecl>(
|
|
getter, importer::convertClangAccess(getter->getAccess()),
|
|
/*IsStatic*/ isStatic, VarDecl::Introducer::Var, SourceLoc(),
|
|
propertyName, dc);
|
|
property->setInterfaceType(swiftPropertyType);
|
|
property->setIsObjC(false);
|
|
property->setIsDynamic(false);
|
|
|
|
Impl.recordImplicitUnwrapForDecl(property,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
// Note that we've formed this property.
|
|
Impl.FunctionsAsProperties[getter] = property;
|
|
if (setter)
|
|
Impl.FunctionsAsProperties[setter] = property;
|
|
|
|
// If this property is in a class or class extension context,
|
|
// add "final".
|
|
if (dc->getSelfClassDecl())
|
|
property->addAttribute(new (Impl.SwiftContext)
|
|
FinalAttr(/*IsImplicit=*/true));
|
|
|
|
// Import the getter.
|
|
auto *swiftGetter = dyn_cast_or_null<AccessorDecl>(
|
|
importFunctionDecl(getter, getterName, std::nullopt,
|
|
AccessorInfo{property, AccessorKind::Get}));
|
|
if (!swiftGetter)
|
|
return nullptr;
|
|
|
|
Impl.importAttributes(getter, swiftGetter);
|
|
Impl.ImportedDecls[{getter, getVersion()}] = swiftGetter;
|
|
if (swift3GetterName)
|
|
markAsVariant(swiftGetter, *swift3GetterName);
|
|
|
|
// Import the setter.
|
|
AccessorDecl *swiftSetter = nullptr;
|
|
if (setter) {
|
|
swiftSetter = dyn_cast_or_null<AccessorDecl>(
|
|
importFunctionDecl(setter, setterName, std::nullopt,
|
|
AccessorInfo{property, AccessorKind::Set}));
|
|
if (!swiftSetter)
|
|
return nullptr;
|
|
|
|
Impl.importAttributes(setter, swiftSetter);
|
|
Impl.ImportedDecls[{setter, getVersion()}] = swiftSetter;
|
|
if (swift3SetterName)
|
|
markAsVariant(swiftSetter, *swift3SetterName);
|
|
}
|
|
|
|
if (swiftGetter) property->setIsGetterMutating(swiftGetter->isMutating());
|
|
if (swiftSetter) property->setIsSetterMutating(swiftSetter->isMutating());
|
|
|
|
// Make this a computed property.
|
|
Impl.makeComputed(property, swiftGetter, swiftSetter);
|
|
|
|
// Make the property the alternate declaration for the getter.
|
|
Impl.addAlternateDecl(swiftGetter, property);
|
|
|
|
return property;
|
|
}
|
|
|
|
ConstructorDecl *SwiftDeclConverter::importConstructor(
|
|
const clang::ObjCMethodDecl *objcMethod, const DeclContext *dc,
|
|
bool implicit, std::optional<CtorInitializerKind> kind, bool required) {
|
|
// Only methods in the 'init' family can become constructors.
|
|
assert(isInitMethod(objcMethod) && "Not a real init method");
|
|
|
|
// Check whether we've already created the constructor.
|
|
auto known =
|
|
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
|
|
if (known != Impl.Constructors.end())
|
|
return known->second;
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(objcMethod);
|
|
if (!importedName)
|
|
return nullptr;
|
|
|
|
// Check whether there is already a method with this selector.
|
|
auto selector = Impl.importSelector(objcMethod->getSelector());
|
|
if (isActiveSwiftVersion() &&
|
|
isMethodAlreadyImported(selector, importedName, /*isInstance=*/true, dc,
|
|
[](AbstractFunctionDecl *fn) {
|
|
return true;
|
|
}))
|
|
return nullptr;
|
|
|
|
// Map the name and complete the import.
|
|
ArrayRef<const clang::ParmVarDecl *> params{objcMethod->param_begin(),
|
|
objcMethod->param_end()};
|
|
|
|
bool variadic = objcMethod->isVariadic();
|
|
|
|
// If we dropped the variadic, handle it now.
|
|
if (importedName.droppedVariadic()) {
|
|
selector = ObjCSelector(Impl.SwiftContext, selector.getNumArgs() - 1,
|
|
selector.getSelectorPieces().drop_back());
|
|
params = params.drop_back(1);
|
|
variadic = false;
|
|
}
|
|
|
|
ConstructorDecl *existing;
|
|
auto result = importConstructor(objcMethod, dc, implicit,
|
|
kind.value_or(importedName.getInitKind()),
|
|
required, selector, importedName, params,
|
|
variadic, existing);
|
|
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (result && correctSwiftName)
|
|
markAsVariant(result, *correctSwiftName);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Returns the latest "introduced" version on the current platform for
|
|
/// \p D.
|
|
llvm::VersionTuple
|
|
SwiftDeclConverter::findLatestIntroduction(const clang::Decl *D) {
|
|
llvm::VersionTuple result;
|
|
|
|
for (auto *attr : D->specific_attrs<clang::AvailabilityAttr>()) {
|
|
if (attr->getPlatform()->getName() == "swift") {
|
|
llvm::VersionTuple maxVersion{~0U, ~0U, ~0U};
|
|
return maxVersion;
|
|
}
|
|
|
|
// Does this availability attribute map to the platform we are
|
|
// currently targeting?
|
|
if (!Impl.platformAvailability.isPlatformRelevant(
|
|
attr->getPlatform()->getName())) {
|
|
continue;
|
|
}
|
|
// Take advantage of the empty version being 0.0.0.0.
|
|
result = std::max(result, attr->getIntroduced());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Returns true if importing \p objcMethod will produce a "better"
|
|
/// initializer than \p existingCtor.
|
|
bool SwiftDeclConverter::existingConstructorIsWorse(
|
|
const ConstructorDecl *existingCtor,
|
|
const clang::ObjCMethodDecl *objcMethod, CtorInitializerKind kind) {
|
|
CtorInitializerKind existingKind = existingCtor->getInitKind();
|
|
|
|
// If one constructor is unavailable in Swift and the other is
|
|
// not, keep the available one.
|
|
bool existingIsUnavailable = existingCtor->isUnavailable();
|
|
bool newIsUnavailable = Impl.isUnavailableInSwift(objcMethod);
|
|
if (existingIsUnavailable != newIsUnavailable)
|
|
return existingIsUnavailable;
|
|
|
|
// If the new kind is the same as the existing kind, stick with
|
|
// the existing constructor.
|
|
if (existingKind == kind)
|
|
return false;
|
|
|
|
// Check for cases that are obviously better or obviously worse.
|
|
if (kind == CtorInitializerKind::Designated ||
|
|
existingKind == CtorInitializerKind::Factory)
|
|
return true;
|
|
|
|
if (kind == CtorInitializerKind::Factory ||
|
|
existingKind == CtorInitializerKind::Designated)
|
|
return false;
|
|
|
|
assert(kind == CtorInitializerKind::Convenience ||
|
|
kind == CtorInitializerKind::ConvenienceFactory);
|
|
assert(existingKind == CtorInitializerKind::Convenience ||
|
|
existingKind == CtorInitializerKind::ConvenienceFactory);
|
|
|
|
// Between different kinds of convenience initializers, keep the one that
|
|
// was introduced first.
|
|
// FIXME: But if one of them is now deprecated, should we prefer the
|
|
// other?
|
|
llvm::VersionTuple introduced = findLatestIntroduction(objcMethod);
|
|
AvailabilityRange existingAvailability =
|
|
AvailabilityInference::availableRange(existingCtor);
|
|
assert(!existingAvailability.isKnownUnreachable());
|
|
|
|
if (existingAvailability.isAlwaysAvailable()) {
|
|
if (!introduced.empty())
|
|
return false;
|
|
} else {
|
|
auto existingIntroduced = existingAvailability.getRawMinimumVersion();
|
|
if (introduced != existingIntroduced) {
|
|
return introduced < existingIntroduced;
|
|
}
|
|
}
|
|
|
|
// The "introduced" versions are the same. Prefer Convenience over
|
|
// ConvenienceFactory, but otherwise prefer leaving things as they are.
|
|
if (kind == CtorInitializerKind::Convenience &&
|
|
existingKind == CtorInitializerKind::ConvenienceFactory)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given an imported method, try to import it as a constructor.
|
|
///
|
|
/// Objective-C methods in the 'init' family are imported as
|
|
/// constructors in Swift, enabling object construction syntax, e.g.,
|
|
///
|
|
/// \code
|
|
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
|
|
/// NSArray(capacity: 1024)
|
|
/// \endcode
|
|
///
|
|
/// This variant of the function is responsible for actually binding the
|
|
/// constructor declaration appropriately.
|
|
ConstructorDecl *SwiftDeclConverter::importConstructor(
|
|
const clang::ObjCMethodDecl *objcMethod, const DeclContext *dc, bool implicit,
|
|
CtorInitializerKind kind, bool required, ObjCSelector selector,
|
|
ImportedName importedName, ArrayRef<const clang::ParmVarDecl *> args,
|
|
bool variadic, ConstructorDecl *&existing) {
|
|
existing = nullptr;
|
|
|
|
// Figure out the type of the container.
|
|
auto ownerNominal = dc->getSelfNominalTypeDecl();
|
|
assert(ownerNominal && "Method in non-type context?");
|
|
|
|
// Import the type that this method will have.
|
|
std::optional<ForeignAsyncConvention> asyncConvention;
|
|
std::optional<ForeignErrorConvention> errorConvention;
|
|
ParameterList *bodyParams;
|
|
auto importedType = Impl.importMethodParamsAndReturnType(
|
|
dc, objcMethod, args, variadic, isInSystemModule(dc), &bodyParams,
|
|
importedName, asyncConvention, errorConvention,
|
|
SpecialMethodKind::Constructor);
|
|
assert(!asyncConvention && "Initializers don't have async conventions");
|
|
if (!importedType)
|
|
return nullptr;
|
|
|
|
// Determine the failability of this initializer.
|
|
bool resultIsOptional = (bool) importedType.getType()->getOptionalObjectType();
|
|
|
|
// Update the failability appropriately based on the imported method type.
|
|
assert(resultIsOptional || !importedType.isImplicitlyUnwrapped());
|
|
OptionalTypeKind failability = OTK_None;
|
|
if (resultIsOptional) {
|
|
failability = OTK_Optional;
|
|
if (importedType.isImplicitlyUnwrapped())
|
|
failability = OTK_ImplicitlyUnwrappedOptional;
|
|
}
|
|
|
|
// Rebuild the function type with the appropriate result type;
|
|
Type resultTy = dc->getSelfInterfaceType();
|
|
if (resultIsOptional)
|
|
resultTy = OptionalType::get(resultTy);
|
|
|
|
// Look for other imported constructors that occur in this context with
|
|
// the same name.
|
|
SmallVector<AnyFunctionType::Param, 4> allocParams;
|
|
bodyParams->getParams(allocParams);
|
|
|
|
TinyPtrVector<ConstructorDecl *> ctors;
|
|
auto found = Impl.ConstructorsForNominal.find(ownerNominal);
|
|
if (found != Impl.ConstructorsForNominal.end())
|
|
ctors = found->second;
|
|
|
|
for (auto ctor : ctors) {
|
|
if (ctor->isInvalid() || ctor->isUnavailable() || !ctor->getClangDecl())
|
|
continue;
|
|
|
|
// If the types don't match, this is a different constructor with
|
|
// the same selector. This can happen when an overlay overloads an
|
|
// existing selector with a Swift-only signature.
|
|
auto ctorParams = ctor->getInterfaceType()
|
|
->castTo<AnyFunctionType>()
|
|
->getResult()
|
|
->castTo<AnyFunctionType>()
|
|
->getParams();
|
|
if (!AnyFunctionType::equalParams(ctorParams, allocParams)) {
|
|
continue;
|
|
}
|
|
|
|
// If the existing constructor has a less-desirable kind, mark
|
|
// the existing constructor unavailable.
|
|
if (existingConstructorIsWorse(ctor, objcMethod, kind)) {
|
|
// Show exactly where this constructor came from.
|
|
llvm::SmallString<32> errorStr;
|
|
errorStr += "superseded by import of ";
|
|
if (objcMethod->isClassMethod())
|
|
errorStr += "+[";
|
|
else
|
|
errorStr += "-[";
|
|
|
|
auto objcDC = objcMethod->getDeclContext();
|
|
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(objcDC)) {
|
|
errorStr += objcClass->getName();
|
|
errorStr += ' ';
|
|
} else if (auto objcCat = dyn_cast<clang::ObjCCategoryDecl>(objcDC)) {
|
|
errorStr += objcCat->getClassInterface()->getName();
|
|
auto catName = objcCat->getName();
|
|
if (!catName.empty()) {
|
|
errorStr += '(';
|
|
errorStr += catName;
|
|
errorStr += ')';
|
|
}
|
|
errorStr += ' ';
|
|
} else if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(objcDC)) {
|
|
errorStr += objcProto->getName();
|
|
errorStr += ' ';
|
|
}
|
|
|
|
errorStr += objcMethod->getSelector().getAsString();
|
|
errorStr += ']';
|
|
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
Impl.SwiftContext, Impl.SwiftContext.AllocateCopy(errorStr.str()));
|
|
ctor->addAttribute(attr);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we shouldn't create a new constructor, because
|
|
// it will be no better than the existing one.
|
|
existing = ctor;
|
|
return nullptr;
|
|
}
|
|
|
|
// Check whether we've already created the constructor.
|
|
auto known =
|
|
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
|
|
if (known != Impl.Constructors.end())
|
|
return known->second;
|
|
|
|
// Create the actual constructor.
|
|
assert(!importedName.getAsyncInfo());
|
|
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
|
|
objcMethod, AccessLevel::Public, importedName.getDeclName(),
|
|
/*NameLoc=*/Impl.importSourceLoc(objcMethod->getLocation()), failability,
|
|
/*FailabilityLoc=*/SourceLoc(),
|
|
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/importedName.getErrorInfo().has_value(),
|
|
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), bodyParams,
|
|
/*GenericParams=*/nullptr, const_cast<DeclContext *>(dc));
|
|
|
|
addObjCAttribute(result, selector);
|
|
recordMemberInContext(dc, result);
|
|
|
|
Impl.recordImplicitUnwrapForDecl(result,
|
|
importedType.isImplicitlyUnwrapped());
|
|
|
|
if (implicit)
|
|
result->setImplicit();
|
|
|
|
// Set the kind of initializer.
|
|
result->getASTContext().evaluator.cacheOutput(InitKindRequest{result},
|
|
std::move(kind));
|
|
|
|
// Consult API notes to determine whether this initializer is required.
|
|
if (!required && isRequiredInitializer(objcMethod))
|
|
required = true;
|
|
|
|
// Check whether this initializer satisfies a requirement in a protocol.
|
|
if (!required && !isa<ProtocolDecl>(dc) && objcMethod->isInstanceMethod()) {
|
|
auto objcParent =
|
|
cast<clang::ObjCContainerDecl>(objcMethod->getDeclContext());
|
|
|
|
if (isa<clang::ObjCProtocolDecl>(objcParent)) {
|
|
// An initializer declared in a protocol is required.
|
|
required = true;
|
|
} else {
|
|
// If the class in which this initializer was declared conforms to a
|
|
// protocol that requires this initializer, then this initializer is
|
|
// required.
|
|
SmallPtrSet<clang::ObjCProtocolDecl *, 8> objcProtocols;
|
|
objcParent->getASTContext().CollectInheritedProtocols(objcParent,
|
|
objcProtocols);
|
|
for (auto objcProto : objcProtocols) {
|
|
for (auto decl : objcProto->lookup(objcMethod->getSelector())) {
|
|
if (cast<clang::ObjCMethodDecl>(decl)->isInstanceMethod()) {
|
|
required = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (required)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this initializer is required, add the appropriate attribute.
|
|
if (required) {
|
|
result->addAttribute(new (Impl.SwiftContext)
|
|
RequiredAttr(/*IsImplicit=*/true));
|
|
}
|
|
|
|
// Record the error convention.
|
|
if (errorConvention) {
|
|
result->setForeignErrorConvention(*errorConvention);
|
|
}
|
|
|
|
// Record the constructor for future re-use.
|
|
Impl.Constructors[std::make_tuple(objcMethod, dc, getVersion())] = result;
|
|
Impl.ConstructorsForNominal[ownerNominal].push_back(result);
|
|
|
|
// If this constructor overrides another constructor, mark it as such.
|
|
recordObjCOverride(result);
|
|
|
|
// If we ignored a custom Swift name because it wasn't suitable for an init,
|
|
// diagnose that now.
|
|
if (importedName.hasInvalidCustomName() && isActiveSwiftVersion()) {
|
|
if (auto customName = NameImporter::findCustomName(objcMethod, version)) {
|
|
result->diagnose(diag::invalid_swift_name_for_decl, *customName, result);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void SwiftDeclConverter::recordObjCOverride(AbstractFunctionDecl *decl) {
|
|
// Make sure that we always set the overridden declarations.
|
|
SWIFT_DEFER {
|
|
if (!decl->overriddenDeclsComputed())
|
|
decl->setOverriddenDecls({ });
|
|
};
|
|
|
|
// Figure out the class in which this method occurs.
|
|
auto classDecl = decl->getDeclContext()->getSelfClassDecl();
|
|
if (!classDecl)
|
|
return;
|
|
auto superDecl = classDecl->getSuperclassDecl();
|
|
if (!superDecl)
|
|
return;
|
|
// Dig out the Objective-C superclass.
|
|
SmallVector<ValueDecl *, 4> results;
|
|
superDecl->lookupQualified(
|
|
superDecl, DeclNameRef(decl->getName()), decl->getLoc(),
|
|
NL_QualifiedDefault | NL_IgnoreMissingImports, results);
|
|
for (auto member : results) {
|
|
if (member->getKind() != decl->getKind() ||
|
|
member->isInstanceMember() != decl->isInstanceMember() ||
|
|
member->isObjC() != decl->isObjC())
|
|
continue;
|
|
// Set function override.
|
|
if (auto func = dyn_cast<FuncDecl>(decl)) {
|
|
auto foundFunc = cast<FuncDecl>(member);
|
|
// Require a selector match.
|
|
if (foundFunc->isObjC() &&
|
|
func->getObjCSelector() != foundFunc->getObjCSelector())
|
|
continue;
|
|
func->setOverriddenDecl(foundFunc);
|
|
func->addAttribute(new (func->getASTContext()) OverrideAttr(true));
|
|
return;
|
|
}
|
|
// Set constructor override.
|
|
auto ctor = cast<ConstructorDecl>(decl);
|
|
auto memberCtor = cast<ConstructorDecl>(member);
|
|
// Require a selector match.
|
|
if (ctor->isObjC() &&
|
|
ctor->getObjCSelector() != memberCtor->getObjCSelector())
|
|
continue;
|
|
ctor->setOverriddenDecl(memberCtor);
|
|
ctor->addAttribute(new (ctor->getASTContext()) OverrideAttr(true));
|
|
|
|
// Propagate 'required' to subclass initializers.
|
|
if (memberCtor->isRequired() &&
|
|
!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
|
|
ctor->addAttribute(new (Impl.SwiftContext)
|
|
RequiredAttr(/*IsImplicit=*/true));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note: This function ignores labels.
|
|
static bool areParameterTypesEqual(const ParameterList ¶ms1,
|
|
const ParameterList ¶ms2) {
|
|
if (params1.size() != params2.size())
|
|
return false;
|
|
|
|
for (unsigned i : indices(params1)) {
|
|
if (!params1[i]->getInterfaceType()->isEqual(
|
|
params2[i]->getInterfaceType())) {
|
|
return false;
|
|
}
|
|
|
|
if (params1[i]->getValueOwnership() !=
|
|
params2[i]->getValueOwnership()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void SwiftDeclConverter::recordObjCOverride(SubscriptDecl *subscript) {
|
|
// Figure out the class in which this subscript occurs.
|
|
auto classTy = subscript->getDeclContext()->getSelfClassDecl();
|
|
if (!classTy)
|
|
return;
|
|
|
|
auto superDecl = classTy->getSuperclassDecl();
|
|
if (!superDecl)
|
|
return;
|
|
|
|
// Determine whether this subscript operation overrides another subscript
|
|
// operation.
|
|
SmallVector<ValueDecl *, 2> lookup;
|
|
subscript->getModuleContext()->lookupQualified(
|
|
superDecl, DeclNameRef(subscript->getName()),
|
|
subscript->getLoc(), NL_QualifiedDefault, lookup);
|
|
|
|
for (auto result : lookup) {
|
|
auto parentSub = dyn_cast<SubscriptDecl>(result);
|
|
if (!parentSub)
|
|
continue;
|
|
|
|
if (!areParameterTypesEqual(*subscript->getIndices(),
|
|
*parentSub->getIndices()))
|
|
continue;
|
|
|
|
// The index types match. This is an override, so mark it as such.
|
|
subscript->setOverriddenDecl(parentSub);
|
|
auto getterThunk = subscript->getParsedAccessor(AccessorKind::Get);
|
|
getterThunk->setOverriddenDecl(parentSub->getParsedAccessor(AccessorKind::Get));
|
|
if (auto parentSetter = parentSub->getParsedAccessor(AccessorKind::Set)) {
|
|
if (auto setterThunk = subscript->getParsedAccessor(AccessorKind::Set))
|
|
setterThunk->setOverriddenDecl(parentSetter);
|
|
}
|
|
|
|
// FIXME: Eventually, deal with multiple overrides.
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Given either the getter or setter for a subscript operation,
|
|
/// create the Swift subscript declaration.
|
|
SubscriptDecl *
|
|
SwiftDeclConverter::importSubscript(Decl *decl,
|
|
const clang::ObjCMethodDecl *objcMethod) {
|
|
assert(objcMethod->isInstanceMethod() && "Caller must filter");
|
|
|
|
// If the method we're attempting to import has the
|
|
// swift_private attribute, don't import as a subscript.
|
|
if (objcMethod->hasAttr<clang::SwiftPrivateAttr>())
|
|
return nullptr;
|
|
|
|
// Figure out where to look for the counterpart.
|
|
const clang::ObjCInterfaceDecl *interface = nullptr;
|
|
const clang::ObjCProtocolDecl *protocol =
|
|
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
|
|
if (!protocol)
|
|
interface = objcMethod->getClassInterface();
|
|
auto lookupInstanceMethod = [&](
|
|
clang::Selector Sel) -> const clang::ObjCMethodDecl * {
|
|
if (interface)
|
|
return interface->lookupInstanceMethod(Sel);
|
|
|
|
return protocol->lookupInstanceMethod(Sel);
|
|
};
|
|
|
|
auto findCounterpart = [&](clang::Selector sel) -> FuncDecl * {
|
|
// If the declaration we're starting from is in a class, first check to see
|
|
// if we've already imported an instance method with a matching selector.
|
|
if (auto classDecl = decl->getDeclContext()->getSelfClassDecl()) {
|
|
auto swiftSel = Impl.importSelector(sel);
|
|
auto importedMembers = Impl.MembersForNominal.find(classDecl);
|
|
if (importedMembers != Impl.MembersForNominal.end()) {
|
|
for (auto membersForName : importedMembers->second) {
|
|
for (auto *member : membersForName.second) {
|
|
// Must be an instance method.
|
|
auto *afd = dyn_cast<FuncDecl>(member);
|
|
if (!afd || !afd->isInstanceMember())
|
|
continue;
|
|
|
|
// Selector must match.
|
|
if (afd->getObjCSelector() == swiftSel)
|
|
return afd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find based on selector within the current type.
|
|
auto counterpart = lookupInstanceMethod(sel);
|
|
if (!counterpart)
|
|
return nullptr;
|
|
|
|
// If we're looking at a class but the getter was found in a protocol,
|
|
// we're going to build the subscript later when we mirror the protocol
|
|
// member. Bail out here, otherwise we'll build it twice.
|
|
if (interface &&
|
|
isa<clang::ObjCProtocolDecl>(counterpart->getDeclContext()))
|
|
return nullptr;
|
|
|
|
return cast_or_null<FuncDecl>(
|
|
Impl.importDecl(counterpart, getActiveSwiftVersion()));
|
|
};
|
|
|
|
// Determine the selector of the counterpart.
|
|
FuncDecl *getter = nullptr, *setter = nullptr;
|
|
const clang::ObjCMethodDecl *getterObjCMethod = nullptr,
|
|
*setterObjCMethod = nullptr;
|
|
clang::Selector counterpartSelector;
|
|
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
|
|
getter = cast<FuncDecl>(decl);
|
|
getterObjCMethod = objcMethod;
|
|
counterpartSelector = Impl.setObjectAtIndexedSubscript;
|
|
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript) {
|
|
setter = cast<FuncDecl>(decl);
|
|
setterObjCMethod = objcMethod;
|
|
counterpartSelector = Impl.objectAtIndexedSubscript;
|
|
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
|
|
getter = cast<FuncDecl>(decl);
|
|
getterObjCMethod = objcMethod;
|
|
counterpartSelector = Impl.setObjectForKeyedSubscript;
|
|
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
|
|
setter = cast<FuncDecl>(decl);
|
|
setterObjCMethod = objcMethod;
|
|
counterpartSelector = Impl.objectForKeyedSubscript;
|
|
} else {
|
|
llvm_unreachable("Unknown getter/setter selector");
|
|
}
|
|
|
|
// Find the counterpart.
|
|
bool optionalMethods = (objcMethod->getImplementationControl() ==
|
|
clang::ObjCImplementationControl::Optional);
|
|
|
|
if (auto *counterpart = findCounterpart(counterpartSelector)) {
|
|
const clang::ObjCMethodDecl *counterpartMethod = nullptr;
|
|
|
|
// If the counterpart to the method we're attempting to import has the
|
|
// swift_private attribute, don't import as a subscript.
|
|
if (auto importedFrom = counterpart->getClangDecl()) {
|
|
if (importedFrom->hasAttr<clang::SwiftPrivateAttr>())
|
|
return nullptr;
|
|
|
|
counterpartMethod = cast<clang::ObjCMethodDecl>(importedFrom);
|
|
if (optionalMethods)
|
|
optionalMethods = (counterpartMethod->getImplementationControl() ==
|
|
clang::ObjCImplementationControl::Optional);
|
|
}
|
|
|
|
assert(!counterpart || !counterpart->isStatic());
|
|
|
|
if (getter) {
|
|
setter = counterpart;
|
|
setterObjCMethod = counterpartMethod;
|
|
} else {
|
|
getter = counterpart;
|
|
getterObjCMethod = counterpartMethod;
|
|
}
|
|
}
|
|
|
|
// Swift doesn't have write-only subscripting.
|
|
if (!getter)
|
|
return nullptr;
|
|
|
|
// Check whether we've already created a subscript operation for
|
|
// this getter/setter pair.
|
|
if (auto subscript = Impl.Subscripts[{getter, setter}]) {
|
|
return subscript->getDeclContext() == decl->getDeclContext() ? subscript
|
|
: nullptr;
|
|
}
|
|
|
|
// Find the getter indices and make sure they match.
|
|
ParamDecl *getterIndex;
|
|
{
|
|
auto params = getter->getParameters();
|
|
if (params->size() != 1)
|
|
return nullptr;
|
|
getterIndex = params->get(0);
|
|
}
|
|
|
|
// Compute the element type based on the getter, looking through
|
|
// the implicit 'self' parameter and the normal function
|
|
// parameters.
|
|
auto elementTy = getter->getResultInterfaceType();
|
|
|
|
// Local function to mark the setter unavailable.
|
|
auto makeSetterUnavailable = [&] {
|
|
if (setter && !setter->isUnavailable())
|
|
Impl.markUnavailable(setter, "use subscripting");
|
|
};
|
|
|
|
// If we have a setter, rectify it with the getter.
|
|
ParamDecl *setterIndex;
|
|
bool getterAndSetterInSameType = false;
|
|
bool isIUO = getter->isImplicitlyUnwrappedOptional();
|
|
if (setter) {
|
|
// Whether there is an existing read-only subscript for which
|
|
// we have now found a setter.
|
|
SubscriptDecl *existingSubscript = Impl.Subscripts[{getter, nullptr}];
|
|
|
|
// Are the getter and the setter in the same type.
|
|
getterAndSetterInSameType =
|
|
(getter->getDeclContext()->getSelfNominalTypeDecl() ==
|
|
setter->getDeclContext()->getSelfNominalTypeDecl());
|
|
|
|
// Whether we can update the types involved in the subscript
|
|
// operation.
|
|
bool canUpdateSubscriptType =
|
|
!existingSubscript && getterAndSetterInSameType;
|
|
|
|
// Determine the setter's element type and indices.
|
|
Type setterElementTy;
|
|
std::tie(setterElementTy, setterIndex) = decomposeSubscriptSetter(setter);
|
|
|
|
// Rectify the setter element type with the getter's element type,
|
|
// and determine if the result is an implicitly unwrapped optional
|
|
// type.
|
|
auto importedType = rectifySubscriptTypes(elementTy, isIUO, setterElementTy,
|
|
canUpdateSubscriptType);
|
|
if (!importedType)
|
|
return decl == getter ? existingSubscript : nullptr;
|
|
|
|
isIUO = importedType.isImplicitlyUnwrapped();
|
|
|
|
// Update the element type.
|
|
elementTy = importedType.getType();
|
|
|
|
// Make sure that the index types are equivalent.
|
|
// FIXME: Rectify these the same way we do for element types.
|
|
if (!setterIndex->getInterfaceType()->isEqual(
|
|
getterIndex->getInterfaceType())) {
|
|
// If there is an existing subscript operation, we're done.
|
|
if (existingSubscript)
|
|
return decl == getter ? existingSubscript : nullptr;
|
|
|
|
// Otherwise, just forget we had a setter.
|
|
// FIXME: This feels very, very wrong.
|
|
setter = nullptr;
|
|
setterObjCMethod = nullptr;
|
|
setterIndex = nullptr;
|
|
}
|
|
|
|
// If there is an existing subscript within this context, we
|
|
// cannot create a new subscript. Update it if possible.
|
|
if (setter && existingSubscript && getterAndSetterInSameType) {
|
|
// Can we update the subscript by adding the setter?
|
|
if (existingSubscript->hasClangNode() &&
|
|
!existingSubscript->supportsMutation()) {
|
|
// Create the setter thunk.
|
|
auto setterThunk = synthesizer.buildSubscriptSetterDecl(
|
|
existingSubscript, setter, elementTy, setter->getDeclContext(),
|
|
setterIndex);
|
|
|
|
// Set the computed setter.
|
|
existingSubscript->setComputedSetter(setterThunk);
|
|
|
|
// Mark the setter as unavailable; one should use
|
|
// subscripting when it is present.
|
|
makeSetterUnavailable();
|
|
}
|
|
|
|
return decl == getter ? existingSubscript : nullptr;
|
|
}
|
|
}
|
|
|
|
// The context into which the subscript should go. We prefer wherever the
|
|
// getter is declared unless the two accessors are in different types and the
|
|
// one we started with is the setter. This happens when:
|
|
// - A read-only subscript is made read/write is a subclass.
|
|
// - A setter is redeclared in a subclass, but not the getter.
|
|
// And not when:
|
|
// - A getter is redeclared in a subclass, but not the setter.
|
|
// - The getter and setter are part of the same type.
|
|
// - There is no setter.
|
|
bool associateWithSetter = !getterAndSetterInSameType && setter == decl;
|
|
DeclContext *dc =
|
|
associateWithSetter ? setter->getDeclContext() : getter->getDeclContext();
|
|
|
|
// Build the subscript declaration.
|
|
auto &C = Impl.SwiftContext;
|
|
auto bodyParams = ParameterList::create(C, getterIndex);
|
|
DeclName name(C, DeclBaseName::createSubscript(), {Identifier()});
|
|
auto *const subscript = SubscriptDecl::createImported(C,
|
|
name, decl->getLoc(),
|
|
bodyParams, decl->getLoc(),
|
|
elementTy, dc,
|
|
/*genericParams=*/nullptr,
|
|
getter->getClangNode());
|
|
|
|
bool IsObjCDirect = false;
|
|
if (auto objCDecl = dyn_cast<clang::ObjCMethodDecl>(getter->getClangDecl())) {
|
|
IsObjCDirect = objCDecl->isDirectMethod();
|
|
}
|
|
const auto access = IsObjCDirect ? AccessLevel::Public
|
|
: getOverridableAccessLevel(dc);
|
|
subscript->setAccess(access);
|
|
subscript->setSetterAccess(access);
|
|
|
|
// Build the thunks.
|
|
AccessorDecl *getterThunk = synthesizer.buildSubscriptGetterDecl(
|
|
subscript, getter, elementTy, dc, getterIndex);
|
|
|
|
AccessorDecl *setterThunk = nullptr;
|
|
if (setter)
|
|
setterThunk = synthesizer.buildSubscriptSetterDecl(
|
|
subscript, setter, elementTy, dc, setterIndex);
|
|
|
|
// Record the subscript as an alternative declaration.
|
|
Impl.addAlternateDecl(associateWithSetter ? setter : getter, subscript);
|
|
|
|
// Import attributes for the accessors if there is a pair.
|
|
Impl.importAttributes(getterObjCMethod, getterThunk);
|
|
if (setterObjCMethod)
|
|
Impl.importAttributes(setterObjCMethod, setterThunk);
|
|
|
|
subscript->setIsSetterMutating(false);
|
|
Impl.makeComputed(subscript, getterThunk, setterThunk);
|
|
|
|
Impl.recordImplicitUnwrapForDecl(subscript, isIUO);
|
|
|
|
addObjCAttribute(subscript, std::nullopt);
|
|
|
|
// Optional subscripts in protocols.
|
|
if (optionalMethods && isa<ProtocolDecl>(dc))
|
|
subscript->addAttribute(new (Impl.SwiftContext) OptionalAttr(true));
|
|
|
|
// Note that we've created this subscript.
|
|
Impl.Subscripts[{getter, setter}] = subscript;
|
|
if (setter)
|
|
Impl.Subscripts.try_emplace({getter, nullptr}, subscript);
|
|
|
|
// Make the getter/setter methods unavailable.
|
|
if (!getter->isUnavailable())
|
|
Impl.markUnavailable(getter, "use subscripting");
|
|
makeSetterUnavailable();
|
|
|
|
// Wire up overrides.
|
|
recordObjCOverride(subscript);
|
|
|
|
return subscript;
|
|
}
|
|
|
|
AccessorDecl *
|
|
SwiftDeclConverter::importAccessor(const clang::ObjCMethodDecl *clangAccessor,
|
|
AbstractStorageDecl *storage,
|
|
AccessorKind accessorKind,
|
|
DeclContext *dc) {
|
|
SwiftDeclConverter converter(Impl, getActiveSwiftVersion());
|
|
auto *accessor = cast_or_null<AccessorDecl>(
|
|
converter.importObjCMethodDecl(clangAccessor, dc,
|
|
AccessorInfo{storage, accessorKind}));
|
|
if (!accessor) {
|
|
return nullptr;
|
|
}
|
|
|
|
Impl.importAttributes(clangAccessor, accessor);
|
|
|
|
return accessor;
|
|
}
|
|
|
|
void SwiftDeclConverter::addProtocols(
|
|
ProtocolDecl *protocol, SmallVectorImpl<ProtocolDecl *> &protocols,
|
|
llvm::SmallPtrSetImpl<ProtocolDecl *> &known) {
|
|
if (!known.insert(protocol).second)
|
|
return;
|
|
|
|
protocols.push_back(protocol);
|
|
for (auto inherited : protocol->getInheritedProtocols())
|
|
addProtocols(inherited, protocols, known);
|
|
}
|
|
|
|
void SwiftDeclConverter::importObjCProtocols(
|
|
Decl *decl, const clang::ObjCProtocolList &clangProtocols,
|
|
SmallVectorImpl<InheritedEntry> &inheritedTypes) {
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
|
|
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
|
|
classDecl->getImplicitProtocols(protocols);
|
|
knownProtocols.insert(protocols.begin(), protocols.end());
|
|
}
|
|
|
|
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
|
|
cp != cpEnd; ++cp) {
|
|
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
|
|
Impl.importDecl(*cp, getActiveSwiftVersion()))) {
|
|
addProtocols(proto, protocols, knownProtocols);
|
|
inheritedTypes.push_back(
|
|
InheritedEntry(TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()),
|
|
ProtocolConformanceOptions()));
|
|
}
|
|
}
|
|
|
|
Impl.recordImportedProtocols(decl, protocols);
|
|
}
|
|
|
|
std::optional<GenericParamList *> SwiftDeclConverter::importObjCGenericParams(
|
|
const clang::ObjCInterfaceDecl *decl, DeclContext *dc) {
|
|
auto typeParamList = decl->getTypeParamList();
|
|
if (!typeParamList) {
|
|
return nullptr;
|
|
}
|
|
if (shouldSuppressGenericParamsImport(Impl.SwiftContext.LangOpts, decl)) {
|
|
return nullptr;
|
|
}
|
|
assert(typeParamList->size() > 0);
|
|
SmallVector<GenericTypeParamDecl *, 4> genericParams;
|
|
for (auto *objcGenericParam : *typeParamList) {
|
|
auto genericParamDecl = Impl.createDeclWithClangNode<GenericTypeParamDecl>(
|
|
objcGenericParam, AccessLevel::Public, dc,
|
|
Impl.SwiftContext.getIdentifier(objcGenericParam->getName()),
|
|
Impl.importSourceLoc(objcGenericParam->getLocation()),
|
|
/*specifierLoc*/ SourceLoc(),
|
|
/*depth*/ 0, /*index*/ genericParams.size(),
|
|
GenericTypeParamKind::Type);
|
|
// NOTE: depth is always 0 for ObjC generic type arguments, since only
|
|
// classes may have generic types in ObjC, and ObjC classes cannot be
|
|
// nested.
|
|
|
|
// Import parameter constraints.
|
|
SmallVector<InheritedEntry, 1> inherited;
|
|
if (objcGenericParam->hasExplicitBound()) {
|
|
assert(!objcGenericParam->getUnderlyingType().isNull());
|
|
auto underlyingTy = objcGenericParam->getUnderlyingType();
|
|
auto clangBound = underlyingTy
|
|
->castAs<clang::ObjCObjectPointerType>();
|
|
|
|
ImportTypeAttrs attrs;
|
|
getConcurrencyAttrs(Impl.SwiftContext, ImportTypeKind::Abstract, attrs,
|
|
underlyingTy);
|
|
|
|
if (clangBound->getInterfaceDecl()) {
|
|
auto unqualifiedClangBound =
|
|
clangBound->stripObjCKindOfTypeAndQuals(Impl.getClangASTContext());
|
|
assert(!objcGenericParam->hasAttrs()
|
|
&& "ObjC generics can have attributes now--we should use 'em");
|
|
Type superclassType = Impl.importTypeIgnoreIUO(
|
|
clang::QualType(unqualifiedClangBound, 0), ImportTypeKind::Abstract,
|
|
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
|
|
false, Bridgeability::None, ImportTypeAttrs());
|
|
if (!superclassType) {
|
|
return std::nullopt;
|
|
}
|
|
inherited.push_back(TypeLoc::withoutLoc(superclassType));
|
|
}
|
|
|
|
if (attrs.contains(ImportTypeAttr::Sendable)) {
|
|
if (auto *sendable =
|
|
Impl.SwiftContext.getProtocol(KnownProtocolKind::Sendable)) {
|
|
inherited.push_back(
|
|
TypeLoc::withoutLoc(sendable->getDeclaredInterfaceType()));
|
|
}
|
|
}
|
|
|
|
for (clang::ObjCProtocolDecl *clangProto : clangBound->quals()) {
|
|
ProtocolDecl *proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
|
|
Impl.importDecl(clangProto, getActiveSwiftVersion()));
|
|
if (!proto) {
|
|
return std::nullopt;
|
|
}
|
|
inherited.push_back(
|
|
TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()));
|
|
}
|
|
}
|
|
|
|
inherited.push_back(
|
|
TypeLoc::withoutLoc(Impl.SwiftContext.getAnyObjectConstraint()));
|
|
|
|
genericParamDecl->setInherited(Impl.SwiftContext.AllocateCopy(inherited));
|
|
|
|
genericParams.push_back(genericParamDecl);
|
|
}
|
|
return GenericParamList::create(
|
|
Impl.SwiftContext, Impl.importSourceLoc(typeParamList->getLAngleLoc()),
|
|
genericParams, Impl.importSourceLoc(typeParamList->getRAngleLoc()));
|
|
}
|
|
|
|
void ClangImporter::Implementation::importMirroredProtocolMembers(
|
|
const clang::ObjCContainerDecl *decl, DeclContext *dc,
|
|
std::optional<DeclBaseName> name, SmallVectorImpl<Decl *> &members) {
|
|
SwiftDeclConverter converter(*this, CurrentVersion);
|
|
converter.importMirroredProtocolMembers(decl, dc, name, members);
|
|
}
|
|
|
|
void SwiftDeclConverter::importMirroredProtocolMembers(
|
|
const clang::ObjCContainerDecl *decl, DeclContext *dc,
|
|
std::optional<DeclBaseName> name, SmallVectorImpl<Decl *> &members) {
|
|
assert(dc);
|
|
const clang::ObjCInterfaceDecl *interfaceDecl = nullptr;
|
|
const ClangModuleUnit *declModule;
|
|
const ClangModuleUnit *interfaceModule;
|
|
|
|
// Try to import only the most specific methods with a particular name.
|
|
// We use a MapVector to get deterministic iteration order later.
|
|
llvm::MapVector<clang::Selector, std::vector<MirroredMethodEntry>>
|
|
methodsByName;
|
|
|
|
for (auto proto : Impl.getImportedProtocols(dc->getAsDecl())) {
|
|
auto clangProto =
|
|
cast_or_null<clang::ObjCProtocolDecl>(proto->getClangDecl());
|
|
if (!clangProto)
|
|
continue;
|
|
|
|
if (!interfaceDecl) {
|
|
declModule = Impl.getClangModuleForDecl(decl);
|
|
if ((interfaceDecl = dyn_cast<clang::ObjCInterfaceDecl>(decl))) {
|
|
interfaceModule = declModule;
|
|
} else {
|
|
auto category = cast<clang::ObjCCategoryDecl>(decl);
|
|
interfaceDecl = category->getClassInterface();
|
|
interfaceModule = Impl.getClangModuleForDecl(interfaceDecl);
|
|
}
|
|
}
|
|
|
|
// Don't import a protocol's members if the superclass already adopts
|
|
// the protocol, or (for categories) if the class itself adopts it
|
|
// in its main @interface.
|
|
if (decl != interfaceDecl)
|
|
if (classImplementsProtocol(interfaceDecl, clangProto, false))
|
|
continue;
|
|
if (auto superInterface = interfaceDecl->getSuperClass())
|
|
if (classImplementsProtocol(superInterface, clangProto, true))
|
|
continue;
|
|
|
|
auto importProtocolRequirement = [&](Decl *member) {
|
|
// Skip compatibility stubs; there's no reason to mirror them.
|
|
if (member->isUnavailableInCurrentSwiftVersion())
|
|
return;
|
|
|
|
if (auto prop = dyn_cast<VarDecl>(member)) {
|
|
auto objcProp =
|
|
dyn_cast_or_null<clang::ObjCPropertyDecl>(prop->getClangDecl());
|
|
if (!objcProp)
|
|
return;
|
|
|
|
// We can't import a property if there's already a method with this
|
|
// name. (This also covers other properties with that same name.)
|
|
// FIXME: We should still mirror the setter as a method if it's
|
|
// not already there.
|
|
clang::Selector sel = objcProp->getGetterName();
|
|
if (interfaceDecl->getInstanceMethod(sel))
|
|
return;
|
|
|
|
bool inNearbyCategory =
|
|
std::any_of(interfaceDecl->known_categories_begin(),
|
|
interfaceDecl->known_categories_end(),
|
|
[=](const clang::ObjCCategoryDecl *category) -> bool {
|
|
if (!Impl.getClangSema().isVisible(category)) {
|
|
return false;
|
|
}
|
|
if (category != decl) {
|
|
auto *categoryModule =
|
|
Impl.getClangModuleForDecl(category);
|
|
if (categoryModule != declModule &&
|
|
categoryModule != interfaceModule) {
|
|
return false;
|
|
}
|
|
}
|
|
return category->getInstanceMethod(sel);
|
|
});
|
|
if (inNearbyCategory)
|
|
return;
|
|
|
|
if (auto imported =
|
|
Impl.importMirroredDecl(objcProp, dc, getVersion(), proto)) {
|
|
members.push_back(imported);
|
|
// FIXME: We should mirror properties of the root class onto the
|
|
// metatype.
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
auto afd = dyn_cast<AbstractFunctionDecl>(member);
|
|
if (!afd)
|
|
return;
|
|
|
|
if (isa<AccessorDecl>(afd))
|
|
return;
|
|
|
|
auto objcMethod =
|
|
dyn_cast_or_null<clang::ObjCMethodDecl>(member->getClangDecl());
|
|
if (!objcMethod)
|
|
return;
|
|
|
|
// For now, just remember that we saw this method.
|
|
methodsByName[objcMethod->getSelector()]
|
|
.push_back(std::make_tuple(objcMethod, proto, afd->hasAsync()));
|
|
};
|
|
|
|
if (name) {
|
|
// If we're asked to import a specific name only, look for that in the
|
|
// protocol.
|
|
auto results = proto->lookupDirect(*name);
|
|
for (auto *member : results)
|
|
if (member->getDeclContext() == proto)
|
|
importProtocolRequirement(member);
|
|
|
|
} else {
|
|
// Otherwise, import all mirrored members.
|
|
for (auto *member : proto->getMembers())
|
|
importProtocolRequirement(member);
|
|
}
|
|
}
|
|
|
|
// Process all the methods, now that we've arranged them by selector.
|
|
for (auto &mapEntry : methodsByName) {
|
|
importNonOverriddenMirroredMethods(dc, mapEntry.second, members);
|
|
}
|
|
}
|
|
|
|
enum MirrorImportComparison {
|
|
// There's no suppression relationship between the methods.
|
|
NoSuppression,
|
|
|
|
// The first method suppresses the second.
|
|
Suppresses,
|
|
|
|
// The second method suppresses the first.
|
|
IsSuppressed,
|
|
};
|
|
|
|
/// Should the mirror import of the first method be suppressed in favor
|
|
/// of the second method? The methods are known to have the same selector
|
|
/// and (because this is mirror-import) to be declared on protocols.
|
|
///
|
|
/// The algorithm that uses this assumes that it is transitive.
|
|
static bool isMirrorImportSuppressedBy(ClangImporter::Implementation &importer,
|
|
const clang::ObjCMethodDecl *first,
|
|
const clang::ObjCMethodDecl *second) {
|
|
if (first->isInstanceMethod() != second->isInstanceMethod())
|
|
return false;
|
|
|
|
auto firstProto = cast<clang::ObjCProtocolDecl>(first->getDeclContext());
|
|
auto secondProto = cast<clang::ObjCProtocolDecl>(second->getDeclContext());
|
|
|
|
// If the first method's protocol is a super-protocol of the second's,
|
|
// then the second method overrides the first and we should suppress.
|
|
// Clang provides a function to check that, phrased in terms of whether
|
|
// a value of one protocol (the RHS) can be assigned to an l-value of
|
|
// the other (the LHS).
|
|
auto &ctx = importer.getClangASTContext();
|
|
return ctx.ProtocolCompatibleWithProtocol(
|
|
const_cast<clang::ObjCProtocolDecl*>(firstProto),
|
|
const_cast<clang::ObjCProtocolDecl*>(secondProto));
|
|
}
|
|
|
|
/// Compare two methods for mirror-import purposes.
|
|
static MirrorImportComparison
|
|
compareMethodsForMirrorImport(ClangImporter::Implementation &importer,
|
|
const clang::ObjCMethodDecl *first,
|
|
const clang::ObjCMethodDecl *second) {
|
|
if (isMirrorImportSuppressedBy(importer, first, second))
|
|
return IsSuppressed;
|
|
if (isMirrorImportSuppressedBy(importer, second, first))
|
|
return Suppresses;
|
|
return NoSuppression;
|
|
}
|
|
|
|
/// Mark any methods in the given array that are overridden by this method
|
|
/// as suppressed by nulling their entries out.
|
|
/// Return true if this method is overridden by any methods in the array.
|
|
static bool suppressOverriddenMethods(ClangImporter::Implementation &importer,
|
|
const clang::ObjCMethodDecl *method,
|
|
bool isAsync,
|
|
MutableArrayRef<MirroredMethodEntry> entries) {
|
|
assert(method && "method was already suppressed");
|
|
|
|
for (auto &entry: entries) {
|
|
auto otherMethod = std::get<0>(entry);
|
|
if (!otherMethod) continue;
|
|
if (isAsync != std::get<2>(entry)) continue;
|
|
|
|
assert(method != otherMethod && "found same method twice?");
|
|
switch (compareMethodsForMirrorImport(importer, method, otherMethod)) {
|
|
// If the second method is suppressed, null it out.
|
|
case Suppresses:
|
|
std::get<0>(entry) = nullptr;
|
|
continue;
|
|
|
|
// If the first method is suppressed, return immediately. We should
|
|
// be able to suppress any following methods.
|
|
case IsSuppressed:
|
|
return true;
|
|
|
|
case NoSuppression:
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad comparison result");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void addCompletionHandlerAttribute(Decl *asyncImport,
|
|
ArrayRef<Decl *> members,
|
|
ASTContext &SwiftContext) {
|
|
auto *asyncFunc = dyn_cast_or_null<AbstractFunctionDecl>(asyncImport);
|
|
// Completion handler functions can be imported as getters, but the decl
|
|
// given back from the import is the property. Grab the underlying getter
|
|
if (auto *property = dyn_cast_or_null<AbstractStorageDecl>(asyncImport))
|
|
asyncFunc = property->getAccessor(AccessorKind::Get);
|
|
|
|
if (!asyncFunc)
|
|
return;
|
|
|
|
for (auto *member : members) {
|
|
if (member == asyncImport)
|
|
continue;
|
|
|
|
auto afd = dyn_cast<AbstractFunctionDecl>(member);
|
|
if (!afd)
|
|
continue;
|
|
|
|
// Only add the attribute to functions that don't already have availability
|
|
if (afd->getAttrs().hasAttribute<AvailableAttr>())
|
|
continue;
|
|
|
|
llvm::VersionTuple NoVersion;
|
|
auto *attr = new (SwiftContext) AvailableAttr(
|
|
SourceLoc(), SourceRange(), AvailabilityDomain::forUniversal(),
|
|
SourceLoc(), AvailableAttr::Kind::Default,
|
|
/*Message=*/"", /*Rename=*/"", /*Introduced=*/NoVersion, SourceRange(),
|
|
/*Deprecated=*/NoVersion, SourceRange(),
|
|
/*Obsoleted=*/NoVersion, SourceRange(),
|
|
/*Implicit=*/true,
|
|
/*SPI=*/false);
|
|
|
|
afd->setRenamedDecl(attr, asyncFunc);
|
|
afd->addAttribute(attr);
|
|
}
|
|
}
|
|
|
|
/// Given a set of methods with the same selector, each taken from a
|
|
/// different protocol in the protocol hierarchy of a class into which
|
|
/// we want to introduce mirror imports, import only the methods which
|
|
/// are not overridden by another method in the set.
|
|
///
|
|
/// It's possible that we'll end up selecting multiple methods to import
|
|
/// here, in the cases where there's no hierarchical relationship between
|
|
/// two methods. The importer already has code to handle this case.
|
|
void SwiftDeclConverter::importNonOverriddenMirroredMethods(DeclContext *dc,
|
|
MutableArrayRef<MirroredMethodEntry> entries,
|
|
SmallVectorImpl<Decl *> &members) {
|
|
// Keep track of the async imports. We'll come back to them.
|
|
llvm::SmallMapVector<const clang::ObjCMethodDecl*, Decl *, 4> asyncImports;
|
|
|
|
// Keep track of all of the synchronous imports.
|
|
llvm::SmallMapVector<
|
|
const clang::ObjCMethodDecl*, llvm::TinyPtrVector<Decl *>, 4>
|
|
syncImports;
|
|
|
|
for (size_t i = 0, e = entries.size(); i != e; ++i) {
|
|
auto objcMethod = std::get<0>(entries[i]);
|
|
bool isAsync = std::get<2>(entries[i]);
|
|
|
|
// If the method was suppressed by a previous method, ignore it.
|
|
if (!objcMethod)
|
|
continue;
|
|
|
|
// Compare this method to all the following methods, suppressing any
|
|
// that it overrides. If it is overridden by any of them, suppress it
|
|
// instead; but there's no need to mark that in the array, just continue
|
|
// on to the next method.
|
|
if (suppressOverriddenMethods(
|
|
Impl, objcMethod, isAsync, entries.slice(i + 1)))
|
|
continue;
|
|
|
|
// Okay, the method wasn't suppressed, import it.
|
|
|
|
// When mirroring an initializer, make it designated and required.
|
|
if (isInitMethod(objcMethod)) {
|
|
// Import the constructor.
|
|
if (auto imported = importConstructor(objcMethod, dc, /*implicit=*/true,
|
|
CtorInitializerKind::Designated,
|
|
/*required=*/true)) {
|
|
members.push_back(imported);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Import the method.
|
|
auto proto = std::get<1>(entries[i]);
|
|
if (auto imported =
|
|
Impl.importMirroredDecl(objcMethod, dc,
|
|
getVersion().withConcurrency(isAsync),
|
|
proto)) {
|
|
size_t start = members.size();
|
|
|
|
members.push_back(imported);
|
|
|
|
for (auto alternate : Impl.getAlternateDecls(imported)) {
|
|
if (imported->getDeclContext() == alternate->getDeclContext())
|
|
members.push_back(alternate);
|
|
}
|
|
|
|
if (isAsync) {
|
|
asyncImports[objcMethod] = imported;
|
|
} else {
|
|
syncImports[objcMethod] = llvm::TinyPtrVector<Decl *>(
|
|
llvm::ArrayRef(members).drop_front(start + 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write up sync and async versions.
|
|
for (const auto &asyncImport : asyncImports) {
|
|
addCompletionHandlerAttribute(
|
|
asyncImport.second,
|
|
syncImports[asyncImport.first],
|
|
Impl.SwiftContext);
|
|
}
|
|
}
|
|
|
|
void SwiftDeclConverter::importInheritedConstructors(
|
|
const ClassDecl *classDecl, SmallVectorImpl<Decl *> &newMembers) {
|
|
auto superclassDecl = classDecl->getSuperclassDecl();
|
|
if (!superclassDecl)
|
|
return;
|
|
|
|
auto superclassClangDecl = superclassDecl->getClangDecl();
|
|
if (!superclassClangDecl ||
|
|
!isa<clang::ObjCInterfaceDecl>(superclassClangDecl))
|
|
return;
|
|
|
|
auto curObjCClass = cast<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
|
|
|
|
// The kind of initializer to import. If this class has designated
|
|
// initializers, everything it inherits is a convenience initializer.
|
|
std::optional<CtorInitializerKind> kind;
|
|
if (curObjCClass->hasDesignatedInitializers())
|
|
kind = CtorInitializerKind::Convenience;
|
|
|
|
auto members = superclassDecl->lookupDirect(
|
|
DeclBaseName::createConstructor());
|
|
|
|
for (auto member : members) {
|
|
auto ctor = dyn_cast<ConstructorDecl>(member);
|
|
if (!ctor)
|
|
continue;
|
|
|
|
// Don't inherit compatibility stubs.
|
|
if (ctor->isUnavailableInCurrentSwiftVersion())
|
|
continue;
|
|
|
|
// Don't inherit (non-convenience) factory initializers.
|
|
// Note that convenience factories return instancetype and can be
|
|
// inherited.
|
|
switch (ctor->getInitKind()) {
|
|
case CtorInitializerKind::Factory:
|
|
continue;
|
|
case CtorInitializerKind::ConvenienceFactory:
|
|
case CtorInitializerKind::Convenience:
|
|
case CtorInitializerKind::Designated:
|
|
break;
|
|
}
|
|
|
|
auto objcMethod =
|
|
dyn_cast_or_null<clang::ObjCMethodDecl>(ctor->getClangDecl());
|
|
if (!objcMethod)
|
|
continue;
|
|
|
|
auto &clangSourceMgr = Impl.getClangASTContext().getSourceManager();
|
|
clang::PrettyStackTraceDecl trace(objcMethod, clang::SourceLocation(),
|
|
clangSourceMgr,
|
|
"importing (inherited)");
|
|
|
|
// If this initializer came from a factory method, inherit
|
|
// it as an initializer.
|
|
if (objcMethod->isClassMethod()) {
|
|
assert(ctor->getInitKind() == CtorInitializerKind::ConvenienceFactory);
|
|
|
|
ImportedName importedName;
|
|
std::optional<ImportedName> correctSwiftName;
|
|
std::tie(importedName, correctSwiftName) = importFullName(objcMethod);
|
|
assert(
|
|
!correctSwiftName &&
|
|
"Import inherited initializers never references correctSwiftName");
|
|
importedName.setHasCustomName();
|
|
ConstructorDecl *existing;
|
|
if (auto newCtor =
|
|
importConstructor(objcMethod, classDecl,
|
|
/*implicit=*/true, ctor->getInitKind(),
|
|
/*required=*/false, ctor->getObjCSelector(),
|
|
importedName, objcMethod->parameters(),
|
|
objcMethod->isVariadic(), existing)) {
|
|
// If this is a compatibility stub, mark it as such.
|
|
if (correctSwiftName)
|
|
markAsVariant(newCtor, *correctSwiftName);
|
|
|
|
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
|
|
newMembers.push_back(newCtor);
|
|
} else if (existing && existing->getInitKind() ==
|
|
CtorInitializerKind::ConvenienceFactory &&
|
|
existing->getClangDecl()) {
|
|
// Check that the existing constructor the prevented new creation is
|
|
// really an inherited factory initializer and not a class member.
|
|
auto existingMD = cast<clang::ObjCMethodDecl>(existing->getClangDecl());
|
|
if (existingMD->getClassInterface() != curObjCClass) {
|
|
newMembers.push_back(existing);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Figure out what kind of constructor this will be.
|
|
CtorInitializerKind myKind;
|
|
bool isRequired = false;
|
|
if (ctor->isRequired()) {
|
|
// Required initializers are always considered designated.
|
|
isRequired = true;
|
|
myKind = CtorInitializerKind::Designated;
|
|
} else if (kind) {
|
|
myKind = *kind;
|
|
} else {
|
|
myKind = ctor->getInitKind();
|
|
}
|
|
|
|
// Import the constructor into this context.
|
|
if (auto newCtor =
|
|
importConstructor(objcMethod, classDecl,
|
|
/*implicit=*/true, myKind, isRequired)) {
|
|
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
|
|
newMembers.push_back(newCtor);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::optional<Decl *> ClangImporter::Implementation::importDeclCached(
|
|
const clang::NamedDecl *ClangDecl, ImportNameVersion version,
|
|
bool UseCanonical) {
|
|
auto Known = ImportedDecls.find(
|
|
{ UseCanonical? ClangDecl->getCanonicalDecl(): ClangDecl, version });
|
|
if (Known == ImportedDecls.end())
|
|
return std::nullopt;
|
|
|
|
return Known->second;
|
|
}
|
|
|
|
/// Checks if we don't need to import the typedef itself. If the typedef
|
|
/// should be skipped, returns the underlying declaration that the typedef
|
|
/// refers to -- this declaration should be imported instead.
|
|
static const clang::TagDecl *
|
|
canSkipOverTypedef(ClangImporter::Implementation &Impl,
|
|
const clang::NamedDecl *D,
|
|
bool &TypedefIsSuperfluous) {
|
|
// If we have a typedef that refers to a tag type of the same name,
|
|
// skip the typedef and import the tag type directly.
|
|
|
|
TypedefIsSuperfluous = false;
|
|
|
|
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
|
|
if (!ClangTypedef)
|
|
return nullptr;
|
|
|
|
const clang::DeclContext *RedeclContext =
|
|
ClangTypedef->getDeclContext()->getRedeclContext();
|
|
if (!RedeclContext->isTranslationUnit())
|
|
return nullptr;
|
|
|
|
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
|
|
if (auto elaborated = dyn_cast<clang::ElaboratedType>(UnderlyingType))
|
|
UnderlyingType = elaborated->desugar();
|
|
|
|
// A typedef to a typedef should get imported as a typealias.
|
|
auto *TypedefT = UnderlyingType->getAs<clang::TypedefType>();
|
|
if (TypedefT)
|
|
return nullptr;
|
|
|
|
auto *TT = UnderlyingType->getAs<clang::TagType>();
|
|
if (!TT)
|
|
return nullptr;
|
|
|
|
clang::TagDecl *UnderlyingDecl = TT->getDecl();
|
|
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
|
|
return nullptr;
|
|
|
|
if (UnderlyingDecl->getDeclName().isEmpty())
|
|
return UnderlyingDecl;
|
|
|
|
auto TypedefName = ClangTypedef->getDeclName();
|
|
auto TagDeclName = UnderlyingDecl->getDeclName();
|
|
if (TypedefName != TagDeclName)
|
|
return nullptr;
|
|
|
|
TypedefIsSuperfluous = true;
|
|
return UnderlyingDecl;
|
|
}
|
|
|
|
StringRef ClangImporter::Implementation::
|
|
getSwiftNameFromClangName(StringRef replacement) {
|
|
auto &clangSema = getClangSema();
|
|
|
|
clang::IdentifierInfo *identifier =
|
|
&clangSema.getASTContext().Idents.get(replacement);
|
|
clang::LookupResult lookupResult(clangSema, identifier,
|
|
clang::SourceLocation(),
|
|
clang::Sema::LookupOrdinaryName);
|
|
if (!clangSema.LookupName(lookupResult, clangSema.TUScope))
|
|
return "";
|
|
|
|
auto clangDecl = lookupResult.getAsSingle<clang::NamedDecl>();
|
|
if (!clangDecl)
|
|
return "";
|
|
|
|
auto importedName = importFullName(clangDecl, CurrentVersion);
|
|
if (!importedName)
|
|
return "";
|
|
|
|
llvm::SmallString<64> renamed;
|
|
{
|
|
// Render a swift_name string.
|
|
llvm::raw_svector_ostream os(renamed);
|
|
printSwiftName(importedName, CurrentVersion, /*fullyQualified=*/true, os);
|
|
}
|
|
|
|
return SwiftContext.AllocateCopy(StringRef(renamed));
|
|
}
|
|
|
|
bool importer::isSpecialUIKitStructZeroProperty(const clang::NamedDecl *decl) {
|
|
// FIXME: Once UIKit removes the "nonswift" availability in their versioned
|
|
// API notes, this workaround can go away.
|
|
auto *constant = dyn_cast<clang::VarDecl>(decl);
|
|
if (!constant)
|
|
return false;
|
|
|
|
clang::DeclarationName name = constant->getDeclName();
|
|
const clang::IdentifierInfo *ident = name.getAsIdentifierInfo();
|
|
if (!ident)
|
|
return false;
|
|
|
|
return ident->isStr("UIEdgeInsetsZero") || ident->isStr("UIOffsetZero");
|
|
}
|
|
|
|
bool importer::isSpecialAppKitFunctionKeyProperty(
|
|
const clang::NamedDecl *decl) {
|
|
auto constant = dyn_cast<clang::EnumConstantDecl>(decl);
|
|
if (!constant)
|
|
return false;
|
|
|
|
auto module = constant->getOwningModule();
|
|
if (!module || module->getTopLevelModuleName() != "AppKit")
|
|
return false;
|
|
|
|
clang::DeclarationName name = constant->getDeclName();
|
|
const clang::IdentifierInfo *ident = name.getAsIdentifierInfo();
|
|
if (!ident)
|
|
return false;
|
|
auto rawName = ident->getName();
|
|
|
|
return rawName.starts_with("NS") &&
|
|
(rawName.ends_with("FunctionKey") || rawName.ends_with("Character"));
|
|
}
|
|
|
|
bool importer::hasSameUnderlyingType(const clang::Type *a,
|
|
const clang::TemplateTypeParmDecl *b) {
|
|
while (a->isPointerType() || a->isReferenceType())
|
|
a = a->getPointeeType().getTypePtr();
|
|
return a == b->getTypeForDecl();
|
|
}
|
|
|
|
SourceFile &ClangImporter::Implementation::getClangSwiftAttrSourceFile(
|
|
Decl *MappedDecl, StringRef attributeText, bool cached) {
|
|
auto *module = MappedDecl->getDeclContext()->getParentModule();
|
|
|
|
::TinyPtrVector<SourceFile *> *sourceFiles = nullptr;
|
|
if (cached) {
|
|
sourceFiles = &ClangSwiftAttrSourceFiles[attributeText];
|
|
|
|
// Check whether we've already created a source file.
|
|
for (auto sourceFile : *sourceFiles) {
|
|
if (sourceFile->getParentModule() == module)
|
|
return *sourceFile;
|
|
}
|
|
}
|
|
|
|
// Create a new buffer with a copy of the attribute text,
|
|
// so we don't need to rely on Clang keeping it around.
|
|
auto &sourceMgr = SwiftContext.SourceMgr;
|
|
auto bufferID = sourceMgr.addMemBufferCopy(attributeText);
|
|
|
|
auto info = GeneratedSourceInfo{GeneratedSourceInfo::AttributeFromClang,
|
|
// NB: This source range is not used by the diagnostic engine,
|
|
// but it is traversed by DiagnostciVerifier.
|
|
CharSourceRange(MappedDecl->getStartLoc(), 0),
|
|
sourceMgr.getRangeForBuffer(bufferID)};
|
|
info.astNode = static_cast<void *>(module);
|
|
info.clangNode = MappedDecl->getClangNode();
|
|
|
|
sourceMgr.setGeneratedSourceInfo(bufferID, info);
|
|
|
|
// Create the source file.
|
|
auto sourceFile =
|
|
new (SwiftContext) SourceFile(*module, SourceFileKind::Library, bufferID);
|
|
|
|
if (cached)
|
|
sourceFiles->push_back(sourceFile);
|
|
|
|
return *sourceFile;
|
|
}
|
|
|
|
bool swift::importer::isMainActorAttr(const clang::SwiftAttrAttr *swiftAttr) {
|
|
return swiftAttr->getAttribute() == "@MainActor" ||
|
|
swiftAttr->getAttribute() == "@UIActor";
|
|
}
|
|
|
|
bool swift::importer::isMutabilityAttr(const clang::SwiftAttrAttr *swiftAttr) {
|
|
return swiftAttr->getAttribute() == "mutating" ||
|
|
swiftAttr->getAttribute() == "nonmutating";
|
|
}
|
|
|
|
void ClangImporter::Implementation::importNontrivialAttribute(
|
|
Decl *MappedDecl, llvm::StringRef AttrString) {
|
|
bool cached = true;
|
|
while (true) {
|
|
// Dig out a source file we can use for parsing.
|
|
auto &sourceFile =
|
|
getClangSwiftAttrSourceFile(MappedDecl, AttrString, cached);
|
|
|
|
auto topLevelDecls = sourceFile.getTopLevelDecls();
|
|
|
|
// If we're using the cached version, check whether we can correctly
|
|
// clone the attribute.
|
|
if (cached) {
|
|
bool hasNonclonableAttribute = false;
|
|
for (auto decl : topLevelDecls) {
|
|
if (hasNonclonableAttribute)
|
|
break;
|
|
|
|
for (auto attr : decl->getAttrs()) {
|
|
if (!attr->canClone()) {
|
|
hasNonclonableAttribute = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We cannot clone one of the attributes. Go back and build a new
|
|
// source file without caching it.
|
|
if (hasNonclonableAttribute) {
|
|
cached = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Collect the attributes from the synthesized top-level declaration in
|
|
// the source file. If we're using a cached copy, clone the attribute.
|
|
for (auto decl : topLevelDecls) {
|
|
SmallVector<DeclAttribute *, 2> attrs(decl->getAttrs().begin(),
|
|
decl->getAttrs().end());
|
|
for (auto attr : attrs)
|
|
MappedDecl->addAttribute(cached ? attr->clone(SwiftContext) : attr);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
ClangImporter::Implementation::importSwiftAttrAttributes(Decl *MappedDecl) {
|
|
auto ClangDecl =
|
|
dyn_cast_or_null<clang::NamedDecl>(MappedDecl->getClangDecl());
|
|
if (!ClangDecl)
|
|
return;
|
|
|
|
// Subscripts are special-cased since there isn't a 1:1 mapping
|
|
// from its accessor(s) to the subscript declaration.
|
|
if (isa<SubscriptDecl>(MappedDecl))
|
|
return;
|
|
|
|
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
|
|
if (maybeDefinition.value())
|
|
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.value());
|
|
|
|
std::optional<const clang::SwiftAttrAttr *> seenMainActorAttr;
|
|
llvm::SmallSet<ProtocolDecl *, 4> conformancesSeen;
|
|
const clang::SwiftAttrAttr *seenSendableSuppressionAttr = nullptr;
|
|
|
|
auto importAttrsFromDecl = [&](const clang::NamedDecl *ClangDecl) {
|
|
//
|
|
// __attribute__((swift_attr("attribute")))
|
|
//
|
|
bool seenUnsafe = false;
|
|
for (auto swiftAttr : ClangDecl->specific_attrs<clang::SwiftAttrAttr>()) {
|
|
// FIXME: Hard-code @MainActor and @UIActor, because we don't have a
|
|
// point at which to do name lookup for imported entities.
|
|
if (isMainActorAttr(swiftAttr)) {
|
|
if (seenMainActorAttr) {
|
|
// Cannot add main actor annotation twice. We'll keep the first
|
|
// one and raise a warning about the duplicate.
|
|
HeaderLoc attrLoc(swiftAttr->getLocation());
|
|
diagnose(attrLoc, diag::import_multiple_mainactor_attr,
|
|
swiftAttr->getAttribute(),
|
|
seenMainActorAttr.value()->getAttribute());
|
|
continue;
|
|
}
|
|
|
|
if (Type mainActorType = SwiftContext.getMainActorType()) {
|
|
auto typeExpr = TypeExpr::createImplicit(mainActorType, SwiftContext);
|
|
auto attr = CustomAttr::create(SwiftContext, SourceLoc(), typeExpr,
|
|
/*owner*/ MappedDecl);
|
|
MappedDecl->addAttribute(attr);
|
|
seenMainActorAttr = swiftAttr;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (isMutabilityAttr(swiftAttr)) {
|
|
StringRef attr = swiftAttr->getAttribute();
|
|
|
|
// Check if 'nonmutating' attr is applicable
|
|
if (attr == "nonmutating") {
|
|
if (auto *method = dyn_cast<clang::CXXMethodDecl>(ClangDecl)) {
|
|
if (!method->isConst()) {
|
|
diagnose(HeaderLoc(swiftAttr->getLocation()),
|
|
diag::nonmutating_without_const);
|
|
}
|
|
|
|
if (!method->getParent()->hasMutableFields()) {
|
|
diagnose(HeaderLoc(swiftAttr->getLocation()),
|
|
diag::nonmutating_without_mutable_fields);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Hard-code @actorIndependent, until Objective-C clients start
|
|
// using nonisolated.
|
|
if (swiftAttr->getAttribute() == "@actorIndependent") {
|
|
auto attr = NonisolatedAttr::createImplicit(SwiftContext);
|
|
MappedDecl->addAttribute(attr);
|
|
continue;
|
|
}
|
|
|
|
if (swiftAttr->getAttribute() == "BitwiseCopyable") {
|
|
auto *protocol =
|
|
SwiftContext.getProtocol(KnownProtocolKind::BitwiseCopyable);
|
|
auto *nominal = dyn_cast<NominalTypeDecl>(MappedDecl);
|
|
if (!nominal)
|
|
continue;
|
|
|
|
// Don't synthesize a conformance if one already exists.
|
|
auto ty = nominal->getDeclaredInterfaceType();
|
|
if (lookupConformance(ty, protocol))
|
|
continue;
|
|
auto conformance = SwiftContext.getNormalConformance(
|
|
ty, protocol, nominal->getLoc(), /*inheritedTypeRepr=*/nullptr,
|
|
nominal->getDeclContextForModule(),
|
|
ProtocolConformanceState::Complete, ProtocolConformanceOptions());
|
|
conformance->setSourceKindAndImplyingConformance(
|
|
ConformanceEntryKind::Synthesized, nullptr);
|
|
|
|
nominal->registerProtocolConformance(conformance, /*synthesized=*/true);
|
|
}
|
|
|
|
if (swiftAttr->getAttribute() == "~Sendable") {
|
|
auto *nominal = dyn_cast<NominalTypeDecl>(MappedDecl);
|
|
if (!nominal)
|
|
continue;
|
|
|
|
seenSendableSuppressionAttr = swiftAttr;
|
|
addSynthesizedProtocolAttrs(nominal, {KnownProtocolKind::Sendable},
|
|
/*isUnchecked=*/false,
|
|
/*isSuppressed=*/true);
|
|
continue;
|
|
}
|
|
|
|
if (swiftAttr->getAttribute() == "sending") {
|
|
// Swallow this if the feature is not enabled.
|
|
if (!SwiftContext.LangOpts.hasFeature(Feature::SendingArgsAndResults))
|
|
continue;
|
|
auto *funcDecl = dyn_cast<FuncDecl>(MappedDecl);
|
|
if (!funcDecl)
|
|
continue;
|
|
funcDecl->setSendingResult();
|
|
continue;
|
|
}
|
|
|
|
if (swiftAttr->getAttribute() == "sensitive") {
|
|
if (!SwiftContext.LangOpts.hasFeature(Feature::Sensitive))
|
|
continue;
|
|
auto attr = new (SwiftContext) SensitiveAttr(/*implicit=*/true);
|
|
MappedDecl->addAttribute(attr);
|
|
continue;
|
|
}
|
|
|
|
if (swiftAttr->getAttribute() == "unsafe") {
|
|
seenUnsafe = true;
|
|
continue;
|
|
}
|
|
|
|
if (swiftAttr->getAttribute().starts_with("conforms_to:")) {
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(MappedDecl))
|
|
addExplicitProtocolConformance(nominal, swiftAttr, conformancesSeen);
|
|
}
|
|
|
|
importNontrivialAttribute(MappedDecl, swiftAttr->getAttribute());
|
|
}
|
|
|
|
bool importUnsafeHeuristic =
|
|
isa<clang::CXXMethodDecl>(ClangDecl) &&
|
|
!evaluateOrDefault(SwiftContext.evaluator,
|
|
IsSafeUseOfCxxDecl({ClangDecl}), {});
|
|
if (seenUnsafe || importUnsafeHeuristic) {
|
|
auto attr = new (SwiftContext) UnsafeAttr(/*implicit=*/!seenUnsafe);
|
|
MappedDecl->addAttribute(attr);
|
|
}
|
|
};
|
|
importAttrsFromDecl(ClangDecl);
|
|
|
|
// If the Clang declaration is from an anonymous tag that was given a
|
|
// name via a typedef, look for attributes on the typedef as well.
|
|
if (auto tag = dyn_cast<clang::TagDecl>(ClangDecl)) {
|
|
if (tag->getName().empty()) {
|
|
if (auto typedefDecl = tag->getTypedefNameForAnonDecl())
|
|
importAttrsFromDecl(typedefDecl);
|
|
}
|
|
}
|
|
|
|
// The rest of this concerns '@Sendable' and '@_nonSendable`. These don't
|
|
// affect typealiases, even when there's an underlying nominal type in clang.
|
|
if (isa<TypeAliasDecl>(MappedDecl))
|
|
return;
|
|
|
|
// `@Sendable` on non-types is treated as an `ImportTypeAttr` and shouldn't
|
|
// be treated as an attribute on the declaration. (Particularly, @Sendable on
|
|
// a function or method should be treated as making the return value Sendable,
|
|
// *not* as making the function/method itself Sendable, because
|
|
// `@Sendable func` is primarily meant for local functions.)
|
|
if (!isa<TypeDecl>(MappedDecl))
|
|
while (auto attr = MappedDecl->getAttrs().getEffectiveSendableAttr())
|
|
MappedDecl->getAttrs().removeAttribute(attr);
|
|
|
|
// Some types have an implicit '@Sendable' attribute.
|
|
if ((ClangDecl->hasAttr<clang::SwiftNewTypeAttr>() ||
|
|
ClangDecl->hasAttr<clang::EnumExtensibilityAttr>() ||
|
|
ClangDecl->hasAttr<clang::FlagEnumAttr>() ||
|
|
ClangDecl->hasAttr<clang::NSErrorDomainAttr>()) &&
|
|
!seenSendableSuppressionAttr)
|
|
MappedDecl->addAttribute(new (SwiftContext)
|
|
SendableAttr(/*isImplicit=*/true));
|
|
|
|
// 'Error' conforms to 'Sendable', so error wrappers have to be 'Sendable'
|
|
// and it doesn't make sense for the 'Code' enum to be non-'Sendable'.
|
|
if (ClangDecl->hasAttr<clang::NSErrorDomainAttr>()) {
|
|
// If any @_nonSendable attributes are running the show, invalidate and
|
|
// diagnose them.
|
|
while (NonSendableAttr *attr = dyn_cast_or_null<NonSendableAttr>(
|
|
MappedDecl->getAttrs().getEffectiveSendableAttr())) {
|
|
assert(attr->Specificity == NonSendableKind::Specific &&
|
|
"didn't we just add an '@Sendable' that should beat this "
|
|
"'@_nonSendable(_assumed)'?");
|
|
attr->setInvalid();
|
|
diagnose(HeaderLoc(ClangDecl->getLocation()),
|
|
diag::clang_error_code_must_be_sendable,
|
|
ClangDecl->getNameAsString());
|
|
}
|
|
}
|
|
|
|
// Import explicit conformances from C++ base classes.
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(MappedDecl)) {
|
|
if (auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(ClangDecl)) {
|
|
addExplicitProtocolConformancesFromBases(
|
|
nominal, cxxRecordDecl, /*isBase=*/false);
|
|
}
|
|
}
|
|
|
|
// Now that we've collected all @Sendable and @_nonSendable attributes, we
|
|
// can see if we should synthesize a Sendable conformance.
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(MappedDecl)) {
|
|
auto sendability = nominal->getAttrs().getEffectiveSendableAttr();
|
|
if (isa_and_nonnull<SendableAttr>(sendability)) {
|
|
addSynthesizedProtocolAttrs(nominal, {KnownProtocolKind::Sendable},
|
|
/*isUnchecked=*/true);
|
|
}
|
|
}
|
|
|
|
// Special handling of `NSNotificationName` static immutable properties.
|
|
//
|
|
// These constants could be used with observer APIs from a different isolation
|
|
// context, so it's more convenient to import them as `nonisolated` unless
|
|
// they are explicitly isolated to a MainActor.
|
|
if (!seenMainActorAttr) {
|
|
auto *DC = MappedDecl->getDeclContext();
|
|
if (DC->isTypeContext() && isa<VarDecl>(MappedDecl)) {
|
|
auto *mappedVar = cast<VarDecl>(MappedDecl);
|
|
if (mappedVar->isStatic() && mappedVar->isLet() &&
|
|
isNSNotificationName(cast<clang::ValueDecl>(ClangDecl)->getType())) {
|
|
MappedDecl->addAttribute(NonisolatedAttr::createImplicit(SwiftContext));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::addExplicitProtocolConformance(
|
|
NominalTypeDecl *decl,
|
|
clang::SwiftAttrAttr *conformsToAttr,
|
|
llvm::SmallSet<ProtocolDecl *, 4> &alreadyAdded) {
|
|
auto conformsToValue = conformsToAttr->getAttribute()
|
|
.drop_front(StringRef("conforms_to:").size())
|
|
.str();
|
|
auto names = StringRef(conformsToValue).split('.');
|
|
auto moduleName = names.first;
|
|
auto protocolName = names.second;
|
|
if (protocolName.empty()) {
|
|
HeaderLoc attrLoc(conformsToAttr->getLocation());
|
|
diagnose(attrLoc, diag::conforms_to_missing_dot, conformsToValue);
|
|
return;
|
|
}
|
|
|
|
auto *mod = SwiftContext.getModuleByIdentifier(
|
|
SwiftContext.getIdentifier(moduleName));
|
|
if (!mod) {
|
|
HeaderLoc attrLoc(conformsToAttr->getLocation());
|
|
diagnose(attrLoc, diag::cannot_find_conforms_to_module,
|
|
conformsToValue, moduleName);
|
|
return;
|
|
}
|
|
|
|
SmallVector<ValueDecl *, 1> results;
|
|
mod->lookupValue(SwiftContext.getIdentifier(protocolName),
|
|
NLKind::UnqualifiedLookup, results);
|
|
if (results.empty()) {
|
|
HeaderLoc attrLoc(conformsToAttr->getLocation());
|
|
diagnose(attrLoc, diag::cannot_find_conforms_to, protocolName,
|
|
moduleName);
|
|
return;
|
|
}
|
|
|
|
if (results.size() != 1) {
|
|
HeaderLoc attrLoc(conformsToAttr->getLocation());
|
|
diagnose(attrLoc, diag::conforms_to_ambiguous, protocolName,
|
|
moduleName);
|
|
return;
|
|
}
|
|
|
|
auto result = results.front();
|
|
if (auto protocol = dyn_cast<ProtocolDecl>(result)) {
|
|
auto [_, inserted] = alreadyAdded.insert(protocol);
|
|
if (!inserted) {
|
|
HeaderLoc attrLoc(conformsToAttr->getLocation());
|
|
diagnose(attrLoc, diag::redundant_conformance_protocol,
|
|
decl->getDeclaredInterfaceType(), conformsToValue);
|
|
}
|
|
|
|
decl->addAttribute(new (SwiftContext) SynthesizedProtocolAttr(
|
|
protocol, this, /*isUnchecked=*/false, /*isSuppressed=*/false));
|
|
} else {
|
|
HeaderLoc attrLoc((conformsToAttr)->getLocation());
|
|
diagnose(attrLoc, diag::conforms_to_not_protocol, result,
|
|
conformsToValue);
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::addExplicitProtocolConformancesFromBases(
|
|
NominalTypeDecl *nominal,
|
|
const clang::CXXRecordDecl *cxxRecordDecl,
|
|
bool isBase) {
|
|
if (cxxRecordDecl->isCompleteDefinition()) {
|
|
// Propagate conforms_to attribute from public base classes.
|
|
for (auto base : cxxRecordDecl->bases()) {
|
|
if (base.getAccessSpecifier() != clang::AccessSpecifier::AS_public)
|
|
continue;
|
|
if (auto *baseClangDecl = base.getType()->getAsCXXRecordDecl())
|
|
addExplicitProtocolConformancesFromBases(nominal, baseClangDecl,
|
|
/*isBase=*/true);
|
|
}
|
|
}
|
|
|
|
if (isBase && cxxRecordDecl->hasAttrs()) {
|
|
llvm::SmallSet<ProtocolDecl *, 4> alreadyAdded;
|
|
llvm::for_each(cxxRecordDecl->getAttrs(), [&](auto *attr) {
|
|
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr)) {
|
|
if (swiftAttr->getAttribute().starts_with("conforms_to:"))
|
|
addExplicitProtocolConformance(nominal, swiftAttr, alreadyAdded);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::addOptionSetTypealiases(
|
|
NominalTypeDecl *nominal) {
|
|
auto selfType = nominal->getDeclaredInterfaceType();
|
|
addSynthesizedTypealias(nominal, SwiftContext.Id_Element, selfType);
|
|
addSynthesizedTypealias(nominal, SwiftContext.Id_ArrayLiteralElement,
|
|
selfType);
|
|
}
|
|
|
|
static bool isUsingMacroName(clang::SourceManager &SM,
|
|
clang::SourceLocation loc,
|
|
StringRef MacroName) {
|
|
if (!loc.isMacroID())
|
|
return false;
|
|
auto Sloc = SM.getExpansionLoc(loc);
|
|
if (Sloc.isInvalid())
|
|
return false;
|
|
auto Eloc = Sloc.getLocWithOffset(MacroName.size());
|
|
if (Eloc.isInvalid())
|
|
return false;
|
|
StringRef content(SM.getCharacterData(Sloc), MacroName.size());
|
|
return content == MacroName;
|
|
}
|
|
|
|
static void filterUsableVersionedAttrs(
|
|
const clang::NamedDecl *clangDecl, llvm::VersionTuple currentVersion,
|
|
std::set<clang::SwiftVersionedAdditionAttr *> &applicableVersionedAttrSet) {
|
|
// Scan through Swift-Versioned clang attributes and select which one to apply
|
|
// if multiple candidates exist.
|
|
SmallVector<clang::SwiftVersionedAdditionAttr *, 4> swiftVersionedAttributes;
|
|
for (auto attr : clangDecl->attrs())
|
|
if (auto versionedAttr = dyn_cast<clang::SwiftVersionedAdditionAttr>(attr))
|
|
swiftVersionedAttributes.push_back(versionedAttr);
|
|
|
|
// An attribute version is valid to apply if it is greater than the current
|
|
// version or is unversioned
|
|
auto applicableVersion =
|
|
[currentVersion](clang::VersionTuple attrVersion) -> bool {
|
|
return attrVersion.empty() || attrVersion >= currentVersion;
|
|
};
|
|
|
|
// We have a better attribute option if there exists another versioned attr
|
|
// wrapper for this attribute kind with a valid version that is lower than the
|
|
// one of the attribute we are considering
|
|
auto haveBetterAttr = [swiftVersionedAttributes, applicableVersion](
|
|
clang::VersionTuple attrVersion,
|
|
clang::attr::Kind attrKind) -> bool {
|
|
for (auto VAI = swiftVersionedAttributes.begin(),
|
|
VAE = swiftVersionedAttributes.end();
|
|
VAI != VAE; ++VAI) {
|
|
auto otherVersionedAttr = *VAI;
|
|
auto otherAttrKind = otherVersionedAttr->getAdditionalAttr()->getKind();
|
|
auto otherAttrVersion = otherVersionedAttr->getVersion();
|
|
// Same exact attribute, ignore
|
|
if (otherAttrKind == attrKind && otherAttrVersion == attrVersion)
|
|
continue;
|
|
|
|
// For a matching attribute kind, an un-versioned attribute
|
|
// never takes precedence over an exsiting valid versioned one.
|
|
if (otherAttrKind == attrKind && !attrVersion.empty() &&
|
|
otherAttrVersion.empty())
|
|
continue;
|
|
if (otherAttrKind == attrKind && applicableVersion(otherAttrVersion) &&
|
|
attrVersion.empty())
|
|
return true;
|
|
|
|
// For two versioned attributes of the same kind, the one with the lower
|
|
// applicable version takes precedence.
|
|
if (otherAttrKind == attrKind && applicableVersion(otherAttrVersion) &&
|
|
otherAttrVersion < attrVersion)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
for (auto VAI = swiftVersionedAttributes.begin(),
|
|
VAE = swiftVersionedAttributes.end();
|
|
VAI != VAE; ++VAI) {
|
|
auto versionedAttr = *VAI;
|
|
auto attrKind = versionedAttr->getAdditionalAttr()->getKind();
|
|
auto attrVersion = versionedAttr->getVersion();
|
|
if (!applicableVersion(attrVersion))
|
|
continue;
|
|
else if (haveBetterAttr(attrVersion, attrKind))
|
|
continue;
|
|
else
|
|
applicableVersionedAttrSet.insert(versionedAttr);
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::importAttributesFromClangDeclToSynthesizedSwiftDecl(Decl *sourceDecl, Decl* synthesizedDecl)
|
|
{
|
|
// sourceDecl->getClangDecl() can be null because some lazily instantiated cases like C++ members that were instantiated from using-shadow-decls have no corresponding Clang decl.
|
|
// FIXME: Need to include the cases where correspondoing clang decl is not present.
|
|
if (auto clangDeclForSource =
|
|
dyn_cast_or_null<clang::NamedDecl>(
|
|
sourceDecl->getClangDecl())) {
|
|
importAttributes(clangDeclForSource, synthesizedDecl);
|
|
}
|
|
}
|
|
|
|
/// Import Clang attributes as Swift attributes.
|
|
void ClangImporter::Implementation::importAttributes(
|
|
const clang::NamedDecl *ClangDecl,
|
|
Decl *MappedDecl,
|
|
const clang::ObjCContainerDecl *NewContext)
|
|
{
|
|
// Subscripts are special-cased since there isn't a 1:1 mapping
|
|
// from its accessor(s) to the subscript declaration.
|
|
if (isa<SubscriptDecl>(MappedDecl))
|
|
return;
|
|
|
|
ASTContext &C = SwiftContext;
|
|
|
|
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
|
|
if (maybeDefinition.value())
|
|
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.value());
|
|
|
|
// Determine whether this is an async import.
|
|
bool isAsync = false;
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(MappedDecl))
|
|
isAsync = func->hasAsync();
|
|
|
|
// Scan through Clang attributes and map them onto Swift
|
|
// equivalents.
|
|
bool AnyUnavailable = MappedDecl->isUnavailable();
|
|
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
|
|
AE = ClangDecl->attr_end(); AI != AE; ++AI) {
|
|
//
|
|
// __attribute__((unavailable))
|
|
//
|
|
// Mapping: @available(*,unavailable)
|
|
//
|
|
if (auto unavailable = dyn_cast<clang::UnavailableAttr>(*AI)) {
|
|
auto Message = unavailable->getMessage();
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(C, Message);
|
|
MappedDecl->addAttribute(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// __attribute__((annotate(swift1_unavailable)))
|
|
//
|
|
// Mapping: @available(*, unavailable)
|
|
//
|
|
if (auto unavailable_annot = dyn_cast<clang::AnnotateAttr>(*AI))
|
|
if (unavailable_annot->getAnnotation() == "swift1_unavailable") {
|
|
auto attr = AvailableAttr::createUnavailableInSwift(C, "", "");
|
|
MappedDecl->addAttribute(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// __attribute__((deprecated))
|
|
//
|
|
// Mapping: @available(*,deprecated)
|
|
//
|
|
if (auto deprecated = dyn_cast<clang::DeprecatedAttr>(*AI)) {
|
|
auto Message = deprecated->getMessage();
|
|
auto attr = AvailableAttr::createUniversallyDeprecated(C, Message, "");
|
|
MappedDecl->addAttribute(attr);
|
|
continue;
|
|
}
|
|
|
|
// __attribute__((availability))
|
|
//
|
|
if (auto avail = dyn_cast<clang::AvailabilityAttr>(*AI)) {
|
|
StringRef Platform = avail->getPlatform()->getName();
|
|
|
|
// Is this our special "availability(swift, unavailable)" attribute?
|
|
if (Platform == "swift") {
|
|
// FIXME: Until Apple gets a chance to update UIKit's API notes, ignore
|
|
// the Swift-unavailability for certain properties.
|
|
if (isSpecialUIKitStructZeroProperty(ClangDecl))
|
|
continue;
|
|
|
|
auto replacement = avail->getReplacement();
|
|
StringRef swiftReplacement = "";
|
|
if (!replacement.empty())
|
|
swiftReplacement = getSwiftNameFromClangName(replacement);
|
|
|
|
auto attr = AvailableAttr::createUnavailableInSwift(
|
|
C, avail->getMessage(), swiftReplacement);
|
|
MappedDecl->addAttribute(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
// Does this availability attribute map to the platform we are
|
|
// currently targeting?
|
|
if (!platformAvailability.isPlatformRelevant(Platform))
|
|
continue;
|
|
|
|
auto platformK =
|
|
llvm::StringSwitch<std::optional<PlatformKind>>(Platform)
|
|
.Case("ios", PlatformKind::iOS)
|
|
.Case("macos", PlatformKind::macOS)
|
|
.Case("maccatalyst", PlatformKind::macCatalyst)
|
|
.Case("tvos", PlatformKind::tvOS)
|
|
.Case("watchos", PlatformKind::watchOS)
|
|
.Case("xros", PlatformKind::visionOS)
|
|
.Case("visionos", PlatformKind::visionOS)
|
|
.Case("ios_app_extension", PlatformKind::iOSApplicationExtension)
|
|
.Case("maccatalyst_app_extension",
|
|
PlatformKind::macCatalystApplicationExtension)
|
|
.Case("macos_app_extension",
|
|
PlatformKind::macOSApplicationExtension)
|
|
.Case("tvos_app_extension",
|
|
PlatformKind::tvOSApplicationExtension)
|
|
.Case("watchos_app_extension",
|
|
PlatformKind::watchOSApplicationExtension)
|
|
.Case("xros_app_extension",
|
|
PlatformKind::visionOSApplicationExtension)
|
|
.Case("android", PlatformKind::Android)
|
|
.Default(std::nullopt);
|
|
if (!platformK)
|
|
continue;
|
|
|
|
// Is this declaration marked platform-agnostically unavailable?
|
|
auto AttrKind = AvailableAttr::Kind::Default;
|
|
if (avail->getUnavailable()) {
|
|
AttrKind = AvailableAttr::Kind::Unavailable;
|
|
AnyUnavailable = true;
|
|
}
|
|
|
|
auto IsSPI = isUsingMacroName(getClangASTContext().getSourceManager(),
|
|
avail->getLoc(), "SPI_AVAILABLE") ||
|
|
isUsingMacroName(getClangASTContext().getSourceManager(),
|
|
avail->getLoc(), "__SPI_AVAILABLE");
|
|
|
|
StringRef message = avail->getMessage();
|
|
llvm::VersionTuple deprecated = avail->getDeprecated();
|
|
|
|
if (!deprecated.empty()) {
|
|
if (platformAvailability.treatDeprecatedAsUnavailable(
|
|
ClangDecl, deprecated, isAsync)) {
|
|
AttrKind = AvailableAttr::Kind::Unavailable;
|
|
AnyUnavailable = true;
|
|
if (message.empty()) {
|
|
if (isAsync) {
|
|
message =
|
|
platformAvailability.asyncDeprecatedAsUnavailableMessage;
|
|
} else {
|
|
message = platformAvailability.deprecatedAsUnavailableMessage;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::VersionTuple obsoleted = avail->getObsoleted();
|
|
llvm::VersionTuple introduced = avail->getIntroduced();
|
|
|
|
const auto &replacement = avail->getReplacement();
|
|
|
|
StringRef swiftReplacement = "";
|
|
if (!replacement.empty())
|
|
swiftReplacement = getSwiftNameFromClangName(replacement);
|
|
|
|
auto AvAttr = new (C) AvailableAttr(
|
|
SourceLoc(), SourceRange(),
|
|
AvailabilityDomain::forPlatform(*platformK), SourceLoc(), AttrKind,
|
|
message, swiftReplacement, introduced, SourceRange(), deprecated,
|
|
SourceRange(), obsoleted, SourceRange(),
|
|
/*Implicit=*/false, EnableClangSPI && IsSPI);
|
|
|
|
MappedDecl->addAttribute(AvAttr);
|
|
}
|
|
|
|
// __attribute__((availability(domain:)))
|
|
//
|
|
if (auto avail = dyn_cast<clang::DomainAvailabilityAttr>(*AI)) {
|
|
auto *declContext = MappedDecl->getInnermostDeclContext();
|
|
|
|
// FIXME: [availability] Don't look up the availability domain. Clang
|
|
// should be serializing the resolved VarDecl for the availability domain
|
|
// it found when type checking the attribute.
|
|
auto domainIdentifier = SwiftContext.getIdentifier(avail->getDomain());
|
|
llvm::SmallVector<AvailabilityDomain, 4> results;
|
|
declContext->lookupAvailabilityDomains(domainIdentifier, results);
|
|
|
|
if (results.size() > 0) {
|
|
// FIXME: [availability] Diagnose ambiguous availability domain name?
|
|
auto AttrKind = avail->getUnavailable()
|
|
? AvailableAttr::Kind::Unavailable
|
|
: AvailableAttr::Kind::Default;
|
|
|
|
auto avAttr = new (C) AvailableAttr(
|
|
SourceLoc(), SourceRange(), results.front(), SourceLoc(), AttrKind,
|
|
/*Message=*/"", /*Rename=*/"", /*Introduced=*/{}, SourceRange(),
|
|
/*Deprecated=*/{}, SourceRange(), /*Obsoleted=*/{}, SourceRange(),
|
|
/*Implicit=*/false, /*IsSPI=*/false);
|
|
|
|
MappedDecl->addAttribute(avAttr);
|
|
}
|
|
}
|
|
|
|
// __attribute__((swift_attr("attribute"))) are handled by
|
|
// importSwiftAttrAttributes(). Other attributes are ignored.
|
|
}
|
|
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
|
|
if (method->isDirectMethod() && !AnyUnavailable) {
|
|
assert(isa<AbstractFunctionDecl>(MappedDecl) &&
|
|
"objc_direct declarations are expected to be an AbstractFunctionDecl");
|
|
MappedDecl->addAttribute(new (C) FinalAttr(/*IsImplicit=*/true));
|
|
if (auto accessorDecl = dyn_cast<AccessorDecl>(MappedDecl)) {
|
|
auto attr = new (C) FinalAttr(/*isImplicit=*/true);
|
|
accessorDecl->getStorage()->addAttribute(attr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the declaration is unavailable, we're done.
|
|
if (AnyUnavailable)
|
|
return;
|
|
|
|
if (auto ID = dyn_cast<clang::ObjCInterfaceDecl>(ClangDecl)) {
|
|
// Ban NSInvocation.
|
|
if (ID->getName() == "NSInvocation") {
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(C, "");
|
|
MappedDecl->addAttribute(attr);
|
|
return;
|
|
}
|
|
|
|
// Map Clang's swift_objc_members attribute to @objcMembers.
|
|
if (ID->hasAttr<clang::SwiftObjCMembersAttr>() &&
|
|
isa<ClassDecl>(MappedDecl)) {
|
|
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
|
|
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
|
|
MappedDecl->addAttribute(attr);
|
|
}
|
|
}
|
|
|
|
// Infer @objcMembers on XCTestCase.
|
|
if (ID->getName() == "XCTestCase") {
|
|
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
|
|
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
|
|
MappedDecl->addAttribute(attr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ban CFRelease|CFRetain|CFAutorelease(CFTypeRef) as well as custom ones
|
|
// such as CGColorRelease(CGColorRef).
|
|
if (auto FD = dyn_cast<clang::FunctionDecl>(ClangDecl)) {
|
|
if (FD->getNumParams() == 1 && FD->getDeclName().isIdentifier() &&
|
|
(FD->getName().ends_with("Release") ||
|
|
FD->getName().ends_with("Retain") ||
|
|
FD->getName().ends_with("Autorelease")) &&
|
|
!FD->getAttr<clang::SwiftNameAttr>()) {
|
|
if (auto t = FD->getParamDecl(0)->getType()->getAs<clang::TypedefType>()){
|
|
if (isCFTypeDecl(t->getDecl())) {
|
|
auto attr = AvailableAttr::createUniversallyUnavailable(
|
|
C, "Core Foundation objects are automatically memory managed");
|
|
MappedDecl->addAttribute(attr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Hack: mark any method named "print" with less than two parameters as
|
|
// warn_unqualified_access.
|
|
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
|
|
if (isPrintLikeMethod(MD->getName(), MD->getDeclContext())) {
|
|
// Use a non-implicit attribute so it shows up in the generated
|
|
// interface.
|
|
MD->addAttribute(new (C) WarnUnqualifiedAccessAttr(/*implicit*/ false));
|
|
}
|
|
}
|
|
|
|
// Map __attribute__((warn_unused_result)).
|
|
if (!ClangDecl->hasAttr<clang::WarnUnusedResultAttr>()) {
|
|
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
|
|
// Ask if the clang function's return type is void to prevent eagerly
|
|
// loading the result type of the imported function.
|
|
bool hasVoidReturnType = false;
|
|
if (auto clangFunction = dyn_cast<clang::FunctionDecl>(ClangDecl))
|
|
hasVoidReturnType = clangFunction->getReturnType()->isVoidType();
|
|
if (auto clangMethod = dyn_cast<clang::ObjCMethodDecl>(ClangDecl))
|
|
hasVoidReturnType = clangMethod->getReturnType()->isVoidType();
|
|
// Async functions might get re-written to be non-void, so if this is an
|
|
// async function, eagerly load the result type and check.
|
|
if (MD->hasAsync())
|
|
hasVoidReturnType = MD->getResultInterfaceType()->isVoid();
|
|
if (!hasVoidReturnType)
|
|
MD->addAttribute(new (C) DiscardableResultAttr(/*implicit*/ true));
|
|
}
|
|
}
|
|
// Map __attribute__((const)).
|
|
if (ClangDecl->hasAttr<clang::ConstAttr>()) {
|
|
MappedDecl->addAttribute(new (C) EffectsAttr(EffectsKind::ReadNone));
|
|
}
|
|
// Map __attribute__((pure)).
|
|
if (ClangDecl->hasAttr<clang::PureAttr>()) {
|
|
MappedDecl->addAttribute(new (C) EffectsAttr(EffectsKind::ReadOnly));
|
|
}
|
|
}
|
|
|
|
static void applyTypeAndNullabilityAPINotes(
|
|
const clang::NamedDecl *ClangDecl, clang::Sema &Sema,
|
|
const ImportNameVersion CurrentImporterVersion) {
|
|
// When importing from a module built with version-independent APINotes
|
|
// payload, the decl will carry all possible versioned notes, without directly
|
|
// applying any of them. For "type" and "nullability" notes, we must apply
|
|
// them first, here, since they change the actual type of the decl as seen
|
|
// downstream.
|
|
//
|
|
// Other kinds of notes will be handled in `importAttributes`.
|
|
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
|
|
AE = ClangDecl->attr_end();
|
|
AI != AE; ++AI) {
|
|
if (!isa<clang::SwiftTypeAttr>(*AI) &&
|
|
!isa<clang::SwiftNullabilityAttr>(*AI))
|
|
continue;
|
|
|
|
// Apply Type APINotes
|
|
if (auto typeRenameAttr = dyn_cast<clang::SwiftTypeAttr>(*AI)) {
|
|
Sema.ApplyAPINotesType(const_cast<clang::NamedDecl *>(ClangDecl),
|
|
typeRenameAttr->getTypeString());
|
|
}
|
|
|
|
// Apply Nullability APINotes
|
|
if (auto nullabilityAttr = dyn_cast<clang::SwiftNullabilityAttr>(*AI)) {
|
|
clang::NullabilityKind nullability;
|
|
switch (nullabilityAttr->getKind()) {
|
|
case clang::SwiftNullabilityAttr::Kind::NonNull:
|
|
nullability = clang::NullabilityKind::NonNull;
|
|
break;
|
|
case clang::SwiftNullabilityAttr::Kind::Nullable:
|
|
nullability = clang::NullabilityKind::Nullable;
|
|
break;
|
|
case clang::SwiftNullabilityAttr::Kind::Unspecified:
|
|
nullability = clang::NullabilityKind::Unspecified;
|
|
break;
|
|
case clang::SwiftNullabilityAttr::Kind::NullableResult:
|
|
nullability = clang::NullabilityKind::NullableResult;
|
|
break;
|
|
}
|
|
|
|
Sema.ApplyNullability(const_cast<clang::NamedDecl *>(ClangDecl),
|
|
nullability);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void canonicalizeVersionedSwiftAttributes(
|
|
const clang::NamedDecl *ClangDecl,
|
|
const ImportNameVersion CurrentImporterVersion) {
|
|
if (!ClangDecl->hasAttrs())
|
|
return;
|
|
|
|
// Filter out only the versioned attributes which apply to the
|
|
// current compilation's language version
|
|
std::set<clang::SwiftVersionedAdditionAttr *> applicableVersionedAttrSet;
|
|
filterUsableVersionedAttrs(ClangDecl,
|
|
CurrentImporterVersion.asClangVersionTuple(),
|
|
applicableVersionedAttrSet);
|
|
|
|
// Drop all versioned addition attributes and re-add
|
|
// above-filtered out applicable attributes in a non-versioned
|
|
// form in order to ensure all downstream clients
|
|
// get the expected attribute view.
|
|
auto mutableDecl = const_cast<clang::NamedDecl *>(ClangDecl);
|
|
mutableDecl->dropAttrs<clang::SwiftVersionedAdditionAttr>();
|
|
for (const auto &attr : applicableVersionedAttrSet)
|
|
mutableDecl->addAttr(attr->getAdditionalAttr());
|
|
}
|
|
|
|
Decl *
|
|
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
|
|
ImportNameVersion version,
|
|
bool &TypedefIsSuperfluous,
|
|
bool &HadForwardDeclaration) {
|
|
assert(ClangDecl);
|
|
|
|
// If this decl isn't valid, don't import it. Bail now.
|
|
if (ClangDecl->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
// If '-version-independent-apinotes' is used, the `ClangDecl`
|
|
// will be carrying various APINotes-sourced attributes wrapped
|
|
// in `SwiftVersionedAdditionAttr`. Filter out which ones are applicable
|
|
// for the current compilation version and rewrite the set of versioned
|
|
// attributes with the corresponding subset of only applicable wrapped
|
|
// attributes.
|
|
if (SwiftContext.ClangImporterOpts.LoadVersionIndependentAPINotes) {
|
|
canonicalizeVersionedSwiftAttributes(ClangDecl, CurrentVersion);
|
|
// When '-version-independent-apinotes' is used, "type" and "nullability"
|
|
// notes are applied by the client (Importer) instead of the producer of the
|
|
// Clang module we are consuming. Do so now, early, since these notes
|
|
// affect the decl's type and require mutation.
|
|
applyTypeAndNullabilityAPINotes(ClangDecl, getClangSema(), CurrentVersion);
|
|
}
|
|
|
|
bool SkippedOverTypedef = false;
|
|
Decl *Result = nullptr;
|
|
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
|
|
TypedefIsSuperfluous)) {
|
|
Result = importDecl(UnderlyingDecl, version);
|
|
SkippedOverTypedef = true;
|
|
}
|
|
|
|
if (!Result) {
|
|
SwiftDeclConverter converter(*this, version);
|
|
Result = converter.Visit(ClangDecl);
|
|
HadForwardDeclaration = converter.hadForwardDeclaration();
|
|
}
|
|
if (!Result && version == CurrentVersion) {
|
|
// If we couldn't import this Objective-C entity, determine
|
|
// whether it was a required member of a protocol, or a designated
|
|
// initializer of a class.
|
|
bool hasMissingRequiredMember = false;
|
|
if (auto clangProto
|
|
= dyn_cast<clang::ObjCProtocolDecl>(ClangDecl->getDeclContext())) {
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
|
|
if (method->getImplementationControl() ==
|
|
clang::ObjCImplementationControl::Required)
|
|
hasMissingRequiredMember = true;
|
|
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(ClangDecl)) {
|
|
if (prop->getPropertyImplementation() ==
|
|
clang::ObjCPropertyDecl::Required)
|
|
hasMissingRequiredMember = true;
|
|
}
|
|
|
|
if (hasMissingRequiredMember) {
|
|
// Mark the protocol as having missing requirements.
|
|
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
|
|
importDecl(clangProto, CurrentVersion))) {
|
|
proto->setHasMissingRequirements(true);
|
|
}
|
|
}
|
|
}
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
|
|
if (method->isDesignatedInitializerForTheInterface()) {
|
|
const clang::ObjCInterfaceDecl *theClass = method->getClassInterface();
|
|
assert(theClass && "cannot be a protocol method here");
|
|
// Only allow this to affect declarations in the same top-level module
|
|
// as the original class.
|
|
if (getClangModuleForDecl(theClass) == getClangModuleForDecl(method)) {
|
|
if (auto swiftClass = castIgnoringCompatibilityAlias<ClassDecl>(
|
|
importDecl(theClass, CurrentVersion))) {
|
|
SwiftContext.evaluator.cacheOutput(
|
|
HasMissingDesignatedInitializersRequest{swiftClass}, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Finalize the imported declaration.
|
|
auto finalizeDecl = [&](Decl *result) {
|
|
importAttributes(ClangDecl, result);
|
|
|
|
// Hack to deal with Objective-C protocols without availability annotation.
|
|
// If the protocol comes from clang and is not annotated and the protocol
|
|
// requirement itself is not annotated, then infer availability of the
|
|
// requirement based on its types. This makes it possible for a type to
|
|
// conform to an Objective-C protocol that is missing annotations but whose
|
|
// requirements use types that are less available than the conforming type.
|
|
auto dc = result->getDeclContext();
|
|
auto *proto = dyn_cast<ProtocolDecl>(dc);
|
|
if (!proto || proto->getAttrs().hasAttribute<AvailableAttr>())
|
|
return;
|
|
|
|
inferProtocolMemberAvailability(*this, dc, result);
|
|
};
|
|
|
|
if (Result) {
|
|
finalizeDecl(Result);
|
|
|
|
for (auto alternate : getAlternateDecls(Result))
|
|
finalizeDecl(alternate);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
|
|
|
|
// Note that the decl was imported from Clang. Don't mark Swift decls as
|
|
// imported.
|
|
if (Result &&
|
|
(!Result->getDeclContext()->isModuleScopeContext() ||
|
|
isa<ClangModuleUnit>(Result->getDeclContext()))) {
|
|
// For using declarations that expose a method of a base class, the Clang
|
|
// decl is synthesized lazily when the method is actually used from Swift.
|
|
bool hasSynthesizedClangNode =
|
|
isa<clang::UsingShadowDecl>(ClangDecl) && isa<FuncDecl>(Result);
|
|
|
|
// Either the Swift declaration was from stdlib,
|
|
// or we imported the underlying decl of the typedef,
|
|
// or we imported the decl itself.
|
|
bool ImportedCorrectly =
|
|
!Result->getClangDecl() || SkippedOverTypedef ||
|
|
hasSynthesizedClangNode ||
|
|
Result->getClangDecl()->getCanonicalDecl() == Canon;
|
|
|
|
// Or the other type is a typedef,
|
|
if (!ImportedCorrectly &&
|
|
isa<clang::TypedefNameDecl>(Result->getClangDecl())) {
|
|
// both types are ValueDecls:
|
|
if (isa<clang::ValueDecl>(Result->getClangDecl())) {
|
|
ImportedCorrectly =
|
|
getClangASTContext().hasSameType(
|
|
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
|
|
cast<clang::ValueDecl>(Canon)->getType());
|
|
} else if (isa<clang::TypeDecl>(Result->getClangDecl())) {
|
|
// both types are TypeDecls:
|
|
ImportedCorrectly =
|
|
getClangASTContext().hasSameUnqualifiedType(
|
|
getClangASTContext().getTypeDeclType(
|
|
cast<clang::TypeDecl>(Result->getClangDecl())),
|
|
getClangASTContext().getTypeDeclType(
|
|
cast<clang::TypeDecl>(Canon)));
|
|
}
|
|
assert(ImportedCorrectly);
|
|
}
|
|
assert(Result->hasClangNode() || hasSynthesizedClangNode);
|
|
}
|
|
#else
|
|
(void)SkippedOverTypedef;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
void ClangImporter::Implementation::startedImportingEntity() {
|
|
++NumTotalImportedEntities;
|
|
// FIXME: (transitional) increment the redundant "always-on" counter.
|
|
if (auto *Stats = SwiftContext.Stats)
|
|
++Stats->getFrontendCounters().NumTotalClangImportedEntities;
|
|
}
|
|
|
|
/// Look up associated type requirements in the conforming type.
|
|
static void finishTypeWitnesses(NormalProtocolConformance *conformance,
|
|
ASTContext &ctx) {
|
|
auto *dc = conformance->getDeclContext();
|
|
auto nominal = dc->getSelfNominalTypeDecl();
|
|
|
|
auto *proto = conformance->getProtocol();
|
|
auto selfType = conformance->getType();
|
|
|
|
for (auto *assocType : proto->getAssociatedTypeMembers()) {
|
|
// FIXME: This should not happen?
|
|
if (conformance->hasTypeWitness(assocType)) continue;
|
|
|
|
bool satisfied = false;
|
|
|
|
SmallVector<ValueDecl *, 4> lookupResults;
|
|
NLOptions options = (NL_QualifiedDefault |
|
|
NL_OnlyTypes |
|
|
NL_ProtocolMembers);
|
|
|
|
dc->lookupQualified(nominal, DeclNameRef(assocType->getName()),
|
|
nominal->getLoc(), options,
|
|
lookupResults);
|
|
for (auto member : lookupResults) {
|
|
auto typeDecl = cast<TypeDecl>(member);
|
|
if (isa<AssociatedTypeDecl>(typeDecl)) continue;
|
|
|
|
auto memberType = typeDecl->getDeclaredInterfaceType();
|
|
auto subMap = selfType->getContextSubstitutionMap(
|
|
typeDecl->getDeclContext());
|
|
memberType = memberType.subst(subMap);
|
|
conformance->setTypeWitness(assocType, memberType, typeDecl);
|
|
satisfied = true;
|
|
break;
|
|
}
|
|
|
|
if (!satisfied && assocType->hasDefaultDefinitionType()) {
|
|
auto defaultType = assocType->getDefaultDefinitionType();
|
|
auto subMap =
|
|
selfType->getContextSubstitutionMap(assocType->getDeclContext());
|
|
defaultType = defaultType.subst(subMap);
|
|
conformance->setTypeWitness(assocType, defaultType, assocType);
|
|
satisfied = true;
|
|
}
|
|
|
|
if (!satisfied) {
|
|
// Avoid compiler crash due to missing witness.
|
|
conformance->setTypeWitness(assocType, ErrorType::get(ctx), assocType);
|
|
proto->diagnose(diag::type_does_not_conform, selfType,
|
|
proto->getDeclaredType());
|
|
proto->diagnose(diag::no_witnesses_type, assocType);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Create witnesses for requirements not already met.
|
|
static void finishMissingOptionalWitnesses(
|
|
NormalProtocolConformance *conformance) {
|
|
auto *proto = conformance->getProtocol();
|
|
|
|
for (auto req : proto->getMembers()) {
|
|
auto valueReq = dyn_cast<ValueDecl>(req);
|
|
if (!valueReq)
|
|
continue;
|
|
|
|
if (!conformance->hasWitness(valueReq)) {
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(valueReq)){
|
|
// For an optional requirement, record an empty witness:
|
|
// we'll end up querying this at runtime.
|
|
auto Attrs = func->getAttrs();
|
|
if (Attrs.hasAttribute<OptionalAttr>()) {
|
|
conformance->setWitness(valueReq, Witness());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
conformance->setWitness(valueReq, valueReq);
|
|
} else {
|
|
// An initializer that conforms to a requirement is required.
|
|
auto witness = conformance->getWitness(valueReq).getDecl();
|
|
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(witness)) {
|
|
if (!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
|
|
auto &ctx = proto->getASTContext();
|
|
ctor->addAttribute(new (ctx) RequiredAttr(/*IsImplicit=*/true));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::finishNormalConformance(
|
|
NormalProtocolConformance *conformance,
|
|
uint64_t unused) {
|
|
(void)unused;
|
|
|
|
auto *proto = conformance->getProtocol();
|
|
PrettyStackTraceConformance trace("completing import of", conformance);
|
|
|
|
finishTypeWitnesses(conformance, SwiftContext);
|
|
|
|
// Imported conformances to @objc protocols also require additional
|
|
// initialization to complete the requirement to witness mapping.
|
|
if (!proto->isObjC())
|
|
return;
|
|
|
|
assert(conformance->isComplete());
|
|
conformance->setState(ProtocolConformanceState::Incomplete);
|
|
|
|
finishMissingOptionalWitnesses(conformance);
|
|
|
|
conformance->setState(ProtocolConformanceState::Complete);
|
|
}
|
|
|
|
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
|
|
const clang::NamedDecl *ClangDecl, ImportNameVersion version,
|
|
bool SuperfluousTypedefsAreTransparent, bool UseCanonicalDecl) {
|
|
if (!ClangDecl)
|
|
return nullptr;
|
|
|
|
FrontendStatsTracer StatsTracer(SwiftContext.Stats,
|
|
"import-clang-decl", ClangDecl);
|
|
clang::PrettyStackTraceDecl trace(ClangDecl, clang::SourceLocation(),
|
|
Instance->getSourceManager(), "importing");
|
|
|
|
auto Canon = cast<clang::NamedDecl>(UseCanonicalDecl? ClangDecl->getCanonicalDecl(): ClangDecl);
|
|
|
|
auto Known = importDeclCached(Canon, version, UseCanonicalDecl);
|
|
if (Known.has_value()) {
|
|
if (!SuperfluousTypedefsAreTransparent &&
|
|
SuperfluousTypedefs.count(Canon))
|
|
return nullptr;
|
|
return Known.value();
|
|
}
|
|
|
|
bool TypedefIsSuperfluous = false;
|
|
bool HadForwardDeclaration = false;
|
|
|
|
startedImportingEntity();
|
|
Decl *Result = importDeclImpl(ClangDecl, version, TypedefIsSuperfluous,
|
|
HadForwardDeclaration);
|
|
if (!Result) {
|
|
ImportedDecls[{Canon, version}] = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
if (TypedefIsSuperfluous) {
|
|
SuperfluousTypedefs.insert(Canon);
|
|
if (auto tagDecl = dyn_cast_or_null<clang::TagDecl>(Result->getClangDecl()))
|
|
DeclsWithSuperfluousTypedefs.insert(tagDecl);
|
|
}
|
|
|
|
if (!HadForwardDeclaration)
|
|
ImportedDecls[{Canon, version}] = Result;
|
|
|
|
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
|
|
return nullptr;
|
|
|
|
return Result;
|
|
}
|
|
|
|
Decl *
|
|
ClangImporter::Implementation::importMirroredDecl(const clang::NamedDecl *decl,
|
|
DeclContext *dc,
|
|
ImportNameVersion version,
|
|
ProtocolDecl *proto) {
|
|
assert(dc);
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
clang::PrettyStackTraceDecl trace(decl, clang::SourceLocation(),
|
|
Instance->getSourceManager(),
|
|
"importing (mirrored)");
|
|
|
|
auto canon = decl->getCanonicalDecl();
|
|
auto known = ImportedProtocolDecls.find(std::make_tuple(canon, dc, version));
|
|
if (known != ImportedProtocolDecls.end())
|
|
return known->second;
|
|
|
|
SwiftDeclConverter converter(*this, version);
|
|
Decl *result;
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
|
|
result =
|
|
converter.importObjCMethodDecl(method, dc, /*accessor*/ std::nullopt);
|
|
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
|
|
result = converter.importObjCPropertyDecl(prop, dc);
|
|
} else {
|
|
llvm_unreachable("unexpected mirrored decl");
|
|
}
|
|
|
|
if (result) {
|
|
assert(result->getClangDecl() && result->getClangDecl() == canon);
|
|
|
|
auto updateMirroredDecl = [&](Decl *result) {
|
|
result->setImplicit();
|
|
if (auto VD = dyn_cast<ValueDecl>(result)) {
|
|
VD->setSynthesized();
|
|
}
|
|
|
|
// Map the Clang attributes onto Swift attributes.
|
|
importAttributes(decl, result);
|
|
|
|
if (proto->getAttrs().hasAttribute<AvailableAttr>()) {
|
|
if (!result->getAttrs().hasAttribute<AvailableAttr>()) {
|
|
AvailabilityRange protoRange =
|
|
AvailabilityInference::availableRange(proto);
|
|
applyAvailableAttribute(result, protoRange, SwiftContext);
|
|
}
|
|
} else {
|
|
// Infer the same availability for the mirrored declaration as
|
|
// we would for the protocol member it is mirroring.
|
|
inferProtocolMemberAvailability(*this, dc, result);
|
|
}
|
|
};
|
|
|
|
updateMirroredDecl(result);
|
|
|
|
// Update the alternate declaration as well.
|
|
for (auto alternate : getAlternateDecls(result))
|
|
updateMirroredDecl(alternate);
|
|
}
|
|
if (result || !converter.hadForwardDeclaration())
|
|
ImportedProtocolDecls[std::make_tuple(canon, dc, version)] = result;
|
|
return result;
|
|
}
|
|
|
|
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
|
|
const clang::Decl *ImportingDecl, const clang::DeclContext *dc) {
|
|
// Every declaration should come from a module, so we should not see the
|
|
// TranslationUnit DeclContext here.
|
|
assert(!dc->isTranslationUnit());
|
|
|
|
auto decl = dyn_cast<clang::NamedDecl>(dc);
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
// Category decls with same name can be merged and using canonical decl always
|
|
// leads to the first category of the given name. We'd like to keep these
|
|
// categories separated.
|
|
auto useCanonical =
|
|
!isa<clang::ObjCCategoryDecl>(decl) && !isa<clang::NamespaceDecl>(decl);
|
|
auto swiftDecl = importDeclForDeclContext(ImportingDecl, decl->getName(),
|
|
decl, CurrentVersion, useCanonical);
|
|
if (!swiftDecl)
|
|
return nullptr;
|
|
|
|
if (auto nominal = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(swiftDecl))
|
|
return nominal;
|
|
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
|
|
return extension;
|
|
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
|
|
return constructor;
|
|
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
|
|
return destructor;
|
|
return nullptr;
|
|
}
|
|
|
|
GenericSignature ClangImporter::Implementation::buildGenericSignature(
|
|
GenericParamList *genericParams, DeclContext *dc) {
|
|
SmallVector<GenericTypeParamType *, 2> genericParamTypes;
|
|
for (auto param : *genericParams) {
|
|
genericParamTypes.push_back(
|
|
param->getDeclaredInterfaceType()->castTo<GenericTypeParamType>());
|
|
}
|
|
|
|
SmallVector<Requirement, 2> requirements;
|
|
for (auto param : *genericParams) {
|
|
Type paramType = param->getDeclaredInterfaceType();
|
|
for (const auto &inherited : param->getInherited().getEntries()) {
|
|
Type inheritedType = inherited.getType();
|
|
if (inheritedType->isAnyObject()) {
|
|
requirements.push_back(
|
|
Requirement(
|
|
RequirementKind::Layout, paramType,
|
|
LayoutConstraint::getLayoutConstraint(LayoutConstraintKind::Class)));
|
|
continue;
|
|
}
|
|
if (inheritedType->getClassOrBoundGenericClass()) {
|
|
requirements.push_back(
|
|
Requirement(RequirementKind::Superclass, paramType, inheritedType));
|
|
continue;
|
|
}
|
|
assert(inheritedType->isExistentialType());
|
|
requirements.push_back(
|
|
Requirement(RequirementKind::Conformance, paramType, inheritedType));
|
|
}
|
|
}
|
|
|
|
return swift::buildGenericSignature(
|
|
SwiftContext, GenericSignature(),
|
|
std::move(genericParamTypes),
|
|
std::move(requirements),
|
|
/*allowInverses=*/true);
|
|
}
|
|
|
|
Decl *
|
|
ClangImporter::Implementation::importDeclForDeclContext(
|
|
const clang::Decl *importingDecl,
|
|
StringRef writtenName,
|
|
const clang::NamedDecl *contextDecl,
|
|
Version version,
|
|
bool useCanonicalDecl)
|
|
{
|
|
auto key = std::make_tuple(importingDecl, writtenName, contextDecl, version,
|
|
useCanonicalDecl);
|
|
auto iter = find(llvm::reverse(contextDeclsBeingImported), key);
|
|
|
|
// No cycle? Remember that we're importing this, then import normally.
|
|
if (iter == contextDeclsBeingImported.rend()) {
|
|
contextDeclsBeingImported.push_back(key);
|
|
auto imported = importDecl(contextDecl, version, useCanonicalDecl);
|
|
contextDeclsBeingImported.pop_back();
|
|
return imported;
|
|
}
|
|
|
|
// There's a cycle. Is the declaration imported enough to break the cycle
|
|
// gracefully? If so, we'll have it in the decl cache.
|
|
auto cached = importDeclCached(contextDecl, version, useCanonicalDecl);
|
|
if (cached.has_value())
|
|
return cached.value();
|
|
|
|
// Can't break it? Warn and return nullptr, which is at least better than
|
|
// stack overflow by recursion.
|
|
|
|
// Avoid emitting warnings repeatedly.
|
|
if (!contextDeclsWarnedAbout.insert(contextDecl).second)
|
|
return nullptr;
|
|
|
|
auto getDeclName = [](const clang::Decl *D) -> std::string {
|
|
if (auto ND = dyn_cast<clang::NamedDecl>(D)) {
|
|
std::string name;
|
|
llvm::raw_string_ostream os(name);
|
|
ND->printName(os);
|
|
return name;
|
|
}
|
|
return "<anonymous>";
|
|
};
|
|
|
|
HeaderLoc loc(importingDecl->getLocation());
|
|
diagnose(loc, diag::swift_name_circular_context_import,
|
|
writtenName, getDeclName(importingDecl));
|
|
|
|
// Diagnose other decls involved in the cycle.
|
|
for (auto entry : make_range(contextDeclsBeingImported.rbegin(), iter)) {
|
|
auto otherDecl = std::get<0>(entry);
|
|
auto otherWrittenName = std::get<1>(entry);
|
|
diagnose(HeaderLoc(otherDecl->getLocation()),
|
|
diag::swift_name_circular_context_import_other,
|
|
otherWrittenName, getDeclName(otherDecl));
|
|
}
|
|
|
|
if (auto *parentModule = contextDecl->getOwningModule()) {
|
|
diagnose(loc, diag::unresolvable_clang_decl_is_a_framework_bug,
|
|
parentModule->getFullModuleName());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
DeclContext *
|
|
ClangImporter::Implementation::importDeclContextOf(
|
|
const clang::Decl *decl,
|
|
EffectiveClangContext context,
|
|
bool allowForwardDeclaration)
|
|
{
|
|
DeclContext *importedDC = nullptr;
|
|
switch (context.getKind()) {
|
|
case EffectiveClangContext::DeclContext: {
|
|
auto dc = context.getAsDeclContext();
|
|
|
|
// For C++-Interop in cases where #ifdef __cplusplus surround an extern "C"
|
|
// you want to first check if the TU decl is the parent of this extern "C"
|
|
// decl (aka LinkageSpecDecl) and then proceed.
|
|
if (dc->getDeclKind() == clang::Decl::LinkageSpec)
|
|
dc = dc->getParent();
|
|
|
|
if (auto functionDecl = dyn_cast<clang::FunctionDecl>(decl)) {
|
|
// Treat friend decls like top-level decls.
|
|
if (functionDecl->getFriendObjectKind()) {
|
|
// Find the top-level decl context.
|
|
while (!dc->isFileContext())
|
|
dc = dc->getParent();
|
|
}
|
|
|
|
// If this is a non-member operator, import it as a top-level function.
|
|
if (functionDecl->isOverloadedOperator()) {
|
|
while (dc->isNamespace())
|
|
dc = dc->getParent();
|
|
}
|
|
}
|
|
|
|
if (dc->isTranslationUnit()) {
|
|
if (auto *module = getClangModuleForDecl(decl, allowForwardDeclaration))
|
|
return module;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
// Import the DeclContext.
|
|
importedDC = importDeclContextImpl(decl, dc);
|
|
break;
|
|
}
|
|
|
|
case EffectiveClangContext::TypedefContext: {
|
|
// Import the typedef-name as a declaration.
|
|
auto importedDecl = importDeclForDeclContext(
|
|
decl, context.getTypedefName()->getName(), context.getTypedefName(),
|
|
CurrentVersion);
|
|
if (!importedDecl) return nullptr;
|
|
|
|
// Dig out the imported DeclContext.
|
|
importedDC = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(importedDecl);
|
|
break;
|
|
}
|
|
|
|
case EffectiveClangContext::UnresolvedContext: {
|
|
// FIXME: Resolve through name lookup. This is brittle.
|
|
auto submodule =
|
|
getClangSubmoduleForDecl(decl, /*allowForwardDeclaration=*/false);
|
|
if (!submodule) return nullptr;
|
|
|
|
if (auto lookupTable = findLookupTable(*submodule)) {
|
|
if (auto clangDecl
|
|
= lookupTable->resolveContext(context.getUnresolvedName())) {
|
|
// Import the Clang declaration.
|
|
auto swiftDecl = importDeclForDeclContext(decl,
|
|
context.getUnresolvedName(),
|
|
clangDecl, CurrentVersion);
|
|
if (!swiftDecl) return nullptr;
|
|
|
|
// Look through typealiases.
|
|
if (auto typealias = dyn_cast<TypeAliasDecl>(swiftDecl))
|
|
importedDC = typealias->getDeclaredInterfaceType()->getAnyNominal();
|
|
else // Map to a nominal type declaration.
|
|
importedDC = dyn_cast<NominalTypeDecl>(swiftDecl);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we didn't manage to import the declaration context, we're done.
|
|
if (!importedDC) return nullptr;
|
|
|
|
// If the declaration was not global to start with, we're done.
|
|
bool isRenamedGlobal =
|
|
decl->getDeclContext()->getRedeclContext()->isTranslationUnit() ||
|
|
(context.getKind() == EffectiveClangContext::UnresolvedContext &&
|
|
decl->getDeclContext()->getRedeclContext()->isNamespace());
|
|
if (!isRenamedGlobal) return importedDC;
|
|
|
|
// If the resulting declaration context is not a nominal type,
|
|
// we're done.
|
|
auto nominal = dyn_cast<NominalTypeDecl>(importedDC);
|
|
if (!nominal) return importedDC;
|
|
|
|
// Look for the extension for the given nominal type within the
|
|
// Clang submodule of the declaration.
|
|
const clang::Module *declSubmodule = *getClangSubmoduleForDecl(decl);
|
|
auto extensionKey = std::make_pair(nominal, declSubmodule);
|
|
auto [it, inserted] = extensionPoints.try_emplace(extensionKey, nullptr);
|
|
if (!inserted)
|
|
return it->getSecond();
|
|
|
|
// Create a new extension for this nominal type/Clang submodule pair.
|
|
auto ext = ExtensionDecl::create(SwiftContext, SourceLoc(), nullptr, {},
|
|
getClangModuleForDecl(decl), nullptr);
|
|
SwiftContext.evaluator.cacheOutput(ExtendedTypeRequest{ext},
|
|
nominal->getDeclaredType());
|
|
ext->setExtendedNominal(nominal);
|
|
|
|
// Record this extension so we can find it later. We do this early because
|
|
// once we've set the member loader, we don't know when the compiler will use
|
|
// it and end up back in this method.
|
|
it->getSecond() = ext;
|
|
ext->setMemberLoader(this, reinterpret_cast<uintptr_t>(declSubmodule));
|
|
|
|
if (auto protoDecl = ext->getExtendedProtocolDecl()) {
|
|
ext->setGenericSignature(protoDecl->getGenericSignature());
|
|
}
|
|
|
|
// Add the extension to the nominal type.
|
|
nominal->addExtension(ext);
|
|
|
|
return ext;
|
|
}
|
|
|
|
/// Create a decl with error type and an "unavailable" attribute on it
|
|
/// with the specified message.
|
|
void ClangImporter::Implementation::
|
|
markUnavailable(ValueDecl *decl, StringRef unavailabilityMsgRef) {
|
|
|
|
unavailabilityMsgRef = SwiftContext.AllocateCopy(unavailabilityMsgRef);
|
|
auto ua = AvailableAttr::createUniversallyUnavailable(SwiftContext,
|
|
unavailabilityMsgRef);
|
|
decl->addAttribute(ua);
|
|
}
|
|
|
|
/// Create a decl with error type and an "unavailable" attribute on it
|
|
/// with the specified message.
|
|
ValueDecl *ClangImporter::Implementation::createUnavailableDecl(
|
|
Identifier name, DeclContext *dc, Type type, StringRef UnavailableMessage,
|
|
bool isStatic, ClangNode ClangN, AccessLevel access) {
|
|
|
|
// Create a new VarDecl with dummy type.
|
|
auto var = createDeclWithClangNode<VarDecl>(
|
|
ClangN, access,
|
|
/*IsStatic*/ isStatic, VarDecl::Introducer::Var, SourceLoc(), name, dc);
|
|
var->setIsObjC(false);
|
|
var->setIsDynamic(false);
|
|
var->setInterfaceType(type);
|
|
markUnavailable(var, UnavailableMessage);
|
|
|
|
return var;
|
|
}
|
|
|
|
void ClangImporter::Implementation::handleAmbiguousSwiftName(ValueDecl *decl) {
|
|
if (!decl || decl->isUnavailable())
|
|
return;
|
|
|
|
auto *cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(
|
|
decl->getDeclContext()->getAsDecl()->getClangDecl());
|
|
|
|
if (!cxxRecordDecl)
|
|
return;
|
|
|
|
if (findUnavailableMethod(cxxRecordDecl, decl->getName())) {
|
|
markUnavailable(decl,
|
|
"overrides multiple C++ methods with different Swift names");
|
|
}
|
|
}
|
|
|
|
// Force the members of the entire inheritance hierarchy to be loaded and
|
|
// deserialized before loading the members of this class. This allows the
|
|
// decl members table to be warmed up and enables the correct identification of
|
|
// overrides.
|
|
static void loadAllMembersOfSuperclassIfNeeded(ClassDecl *CD) {
|
|
if (!CD)
|
|
return;
|
|
|
|
CD = CD->getSuperclassDecl();
|
|
if (!CD || !CD->hasClangNode())
|
|
return;
|
|
|
|
CD->loadAllMembers();
|
|
|
|
for (auto E : CD->getExtensions())
|
|
E->loadAllMembers();
|
|
}
|
|
|
|
void ClangImporter::Implementation::loadAllMembersOfRecordDecl(
|
|
NominalTypeDecl *swiftDecl, const clang::RecordDecl *clangRecord,
|
|
ClangInheritanceInfo inheritance) {
|
|
|
|
// Whether to skip non-public members. Feature::ImportNonPublicCxxMembers says
|
|
// to import all non-public members by default; if that is disabled, we only
|
|
// import non-public members annotated with SWIFT_PRIVATE_FILEID (since those
|
|
// are the only classes that need non-public members.)
|
|
auto *baseRecord = dyn_cast<clang::CXXRecordDecl>(swiftDecl->getClangDecl());
|
|
auto skipIfNonPublic = !swiftDecl->getASTContext().LangOpts.hasFeature(
|
|
Feature::ImportNonPublicCxxMembers) &&
|
|
baseRecord &&
|
|
importer::getPrivateFileIDAttrs(baseRecord).empty();
|
|
|
|
// Import all of the members.
|
|
llvm::SmallVector<Decl *, 16> members;
|
|
for (const clang::Decl *m : clangRecord->decls()) {
|
|
auto nd = dyn_cast<clang::NamedDecl>(m);
|
|
if (!nd)
|
|
continue;
|
|
|
|
// We should not import 'found' if the following are all true:
|
|
//
|
|
// - Feature::ImportNonPublicCxxMembers is not enabled
|
|
// - 'found' is not a member of a SWIFT_PRIVATE_FILEID-annotated class
|
|
// - 'found' is a non-public member.
|
|
// - 'found' is not a non-inherited FieldDecl; we must import private
|
|
// fields because they may affect implicit conformances that iterate
|
|
// through all of a struct's fields, e.g., Sendable (#76892).
|
|
//
|
|
// Note that we can skip inherited FieldDecls because implicit conformances
|
|
// handle those separately.
|
|
//
|
|
// The first two conditions are captured by skipIfNonPublic. The next two
|
|
// are conveyed by the following:
|
|
auto nonPublic = nd->getAccess() == clang::AS_private ||
|
|
nd->getAccess() == clang::AS_protected;
|
|
auto noninheritedField = !inheritance && isa<clang::FieldDecl>(nd);
|
|
if (skipIfNonPublic && nonPublic && !noninheritedField)
|
|
continue;
|
|
|
|
// Currently, we don't import unnamed bitfields.
|
|
if (isa<clang::FieldDecl>(m) &&
|
|
cast<clang::FieldDecl>(m)->isUnnamedBitField())
|
|
continue;
|
|
|
|
// Make sure we always pull in record fields. Everything else had better
|
|
// be canonical. Note that this check mostly catches nested C++ types since
|
|
// we import nested C struct types by C's usual convention of chucking them
|
|
// into the global namespace.
|
|
const bool isCanonicalInContext =
|
|
(isa<clang::FieldDecl>(nd) || nd == nd->getCanonicalDecl());
|
|
if (isCanonicalInContext && nd->getDeclContext() == clangRecord &&
|
|
isVisibleClangEntry(nd))
|
|
// We don't pass `swiftDecl` as `expectedDC` because we might be in a
|
|
// recursive call that adds base class members to a derived class.
|
|
insertMembersAndAlternates(nd, members);
|
|
}
|
|
|
|
// Add the members here.
|
|
for (auto member : members) {
|
|
if (inheritance) {
|
|
// This means we found a member in a C++ record's base class.
|
|
assert(swiftDecl->getClangDecl() != clangRecord);
|
|
auto baseMember = cast<ValueDecl>(member);
|
|
|
|
// Do not clone the base member into the derived class
|
|
// when the derived class already has a member of such
|
|
// name and arity.
|
|
auto memberArity = getImportedBaseMemberDeclArity(baseMember);
|
|
bool shouldAddBaseMember = true;
|
|
for (const auto *currentMember : swiftDecl->getMembers()) {
|
|
auto vd = dyn_cast<ValueDecl>(currentMember);
|
|
if (vd->getName() == baseMember->getName()) {
|
|
if (memberArity == getImportedBaseMemberDeclArity(vd)) {
|
|
shouldAddBaseMember = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!shouldAddBaseMember)
|
|
continue;
|
|
|
|
// So we need to clone the member into the derived class.
|
|
if (auto cloned =
|
|
importBaseMemberDecl(baseMember, swiftDecl, inheritance))
|
|
swiftDecl->addMember(cloned);
|
|
|
|
continue;
|
|
}
|
|
|
|
// A friend C++ decl is not a member of the Swift type.
|
|
if (member->getClangDecl() &&
|
|
member->getClangDecl()->getFriendObjectKind() != clang::Decl::FOK_None)
|
|
continue;
|
|
|
|
// FIXME: constructors are added eagerly, but shouldn't be
|
|
// FIXME: subscripts are added eagerly, but shouldn't be
|
|
if (!isa<AccessorDecl>(member) &&
|
|
!isa<SubscriptDecl>(member) &&
|
|
!isa<ConstructorDecl>(member)) {
|
|
swiftDecl->addMember(member);
|
|
}
|
|
}
|
|
|
|
// If this is a C++ record, look through the base classes too.
|
|
const clang::CXXRecordDecl *cxxRecord;
|
|
if ((cxxRecord = dyn_cast<clang::CXXRecordDecl>(clangRecord)) &&
|
|
cxxRecord->isCompleteDefinition()) {
|
|
for (auto base : cxxRecord->bases()) {
|
|
if (skipIfNonPublic && base.getAccessSpecifier() != clang::AS_public)
|
|
continue;
|
|
|
|
clang::QualType baseType = base.getType();
|
|
if (auto spectType = dyn_cast<clang::TemplateSpecializationType>(baseType))
|
|
baseType = spectType->desugar();
|
|
if (auto elaborated = dyn_cast<clang::ElaboratedType>(baseType))
|
|
baseType = elaborated->desugar();
|
|
if (!isa<clang::RecordType>(baseType))
|
|
continue;
|
|
|
|
auto *baseRecord = cast<clang::RecordType>(baseType)->getDecl();
|
|
auto baseInheritance = ClangInheritanceInfo(inheritance, base);
|
|
loadAllMembersOfRecordDecl(swiftDecl, baseRecord, baseInheritance);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ClangImporter::Implementation::loadAllMembers(Decl *D, uint64_t extra) {
|
|
|
|
FrontendStatsTracer tracer(D->getASTContext().Stats,
|
|
"load-all-members", D);
|
|
assert(D);
|
|
|
|
// If a Clang decl has no owning module, then it needs to be added to the
|
|
// bridging header lookup table. This has most likely already been done, but
|
|
// in some cases, such as when processing DWARF imported AST nodes from LLDB,
|
|
// it has not. Do it here just to be safe.
|
|
if (auto namedDecl = dyn_cast_or_null<clang::NamedDecl>(D->getClangDecl())) {
|
|
if (!namedDecl->hasOwningModule()) {
|
|
auto mutableNamedDecl = const_cast<clang::NamedDecl *>(namedDecl);
|
|
addBridgeHeaderTopLevelDecls(mutableNamedDecl);
|
|
addEntryToLookupTable(*BridgingHeaderLookupTable,
|
|
mutableNamedDecl, *nameImporter);
|
|
}
|
|
}
|
|
|
|
// Check whether we're importing an Objective-C container of some sort.
|
|
auto objcContainer =
|
|
dyn_cast_or_null<clang::ObjCContainerDecl>(D->getClangDecl());
|
|
auto *IDC = dyn_cast<IterableDeclContext>(D);
|
|
|
|
// If not, we're importing globals-as-members into an extension.
|
|
if (objcContainer) {
|
|
loadAllMembersOfSuperclassIfNeeded(dyn_cast<ClassDecl>(D));
|
|
loadAllMembersOfObjcContainer(D, objcContainer);
|
|
if (IDC) // Set member deserialization status
|
|
IDC->setDeserializedMembers(true);
|
|
return;
|
|
}
|
|
|
|
if (isa_and_nonnull<clang::RecordDecl>(D->getClangDecl())) {
|
|
loadAllMembersOfRecordDecl(cast<NominalTypeDecl>(D),
|
|
cast<clang::RecordDecl>(D->getClangDecl()),
|
|
ClangInheritanceInfo());
|
|
if (IDC) // Set member deserialization status
|
|
IDC->setDeserializedMembers(true);
|
|
return;
|
|
}
|
|
|
|
if (isa_and_nonnull<clang::NamespaceDecl>(D->getClangDecl())) {
|
|
// Namespace members will only be loaded lazily.
|
|
cast<EnumDecl>(D)->setHasLazyMembers(true);
|
|
return;
|
|
}
|
|
|
|
loadAllMembersIntoExtension(D, extra);
|
|
if (IDC) // Set member deserialization status
|
|
IDC->setDeserializedMembers(true);
|
|
}
|
|
|
|
void ClangImporter::Implementation::loadAllMembersIntoExtension(
|
|
Decl *D, uint64_t extra) {
|
|
// We have extension.
|
|
auto ext = cast<ExtensionDecl>(D);
|
|
auto nominal = ext->getExtendedNominal();
|
|
|
|
// The submodule of the extension is encoded in the extra data.
|
|
clang::Module *submodule =
|
|
reinterpret_cast<clang::Module *>(static_cast<uintptr_t>(extra));
|
|
|
|
// Find the lookup table.
|
|
auto topLevelModule = submodule;
|
|
if (topLevelModule)
|
|
topLevelModule = topLevelModule->getTopLevelModule();
|
|
auto table = findLookupTable(topLevelModule);
|
|
if (!table)
|
|
return;
|
|
|
|
PrettyStackTraceStringAction trace(
|
|
"loading import-as-members from",
|
|
topLevelModule ? topLevelModule->getTopLevelModuleName()
|
|
: "(bridging header)");
|
|
PrettyStackTraceDecl trace2("...for", nominal);
|
|
|
|
// Dig out the effective Clang context for this nominal type.
|
|
auto effectiveClangContext = getEffectiveClangContext(nominal);
|
|
if (!effectiveClangContext)
|
|
return;
|
|
|
|
// Get ready to actually load the members.
|
|
startedImportingEntity();
|
|
|
|
// Load the members.
|
|
for (auto entry : table->allGlobalsAsMembersInContext(effectiveClangContext)) {
|
|
auto decl = cast<clang::NamedDecl *>(entry);
|
|
|
|
// Only include members in the same submodule as this extension.
|
|
if (getClangSubmoduleForDecl(decl) != submodule)
|
|
continue;
|
|
|
|
forEachDistinctName(
|
|
decl, [&](ImportedName newName, ImportNameVersion nameVersion) -> bool {
|
|
return addMemberAndAlternatesToExtension(decl, newName, nameVersion, ext);
|
|
});
|
|
}
|
|
}
|
|
|
|
static Decl *findMemberThatWillLandInAnExtensionContext(Decl *member) {
|
|
Decl *result = member;
|
|
while (!isa<ExtensionDecl>(result->getDeclContext())) {
|
|
auto nominal = dyn_cast<NominalTypeDecl>(result->getDeclContext());
|
|
if (!nominal)
|
|
return nullptr;
|
|
|
|
result = nominal;
|
|
if (result->hasClangNode())
|
|
return nullptr;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool ClangImporter::Implementation::addMemberAndAlternatesToExtension(
|
|
clang::NamedDecl *decl, ImportedName newName, ImportNameVersion nameVersion,
|
|
ExtensionDecl *ext) {
|
|
// Quickly check the context and bail out if it obviously doesn't
|
|
// belong here.
|
|
if (auto *importDC = newName.getEffectiveContext().getAsDeclContext())
|
|
if (importDC->isFileContext())
|
|
return true;
|
|
|
|
// Then try to import the decl under the specified name.
|
|
Decl *member = importDecl(decl, nameVersion);
|
|
if (!member)
|
|
return false;
|
|
|
|
member = findMemberThatWillLandInAnExtensionContext(member);
|
|
if (!member || member->getDeclContext() != ext)
|
|
return true;
|
|
if (!isa<AccessorDecl>(member))
|
|
ext->addMember(member);
|
|
|
|
for (auto alternate : getAlternateDecls(member)) {
|
|
if (alternate->getDeclContext() == ext)
|
|
if (!isa<AccessorDecl>(alternate))
|
|
ext->addMember(alternate);
|
|
}
|
|
|
|
member->visitAuxiliaryDecls([&](Decl *aux) {
|
|
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
|
|
ext->addMember(auxValue);
|
|
}
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
static void loadMembersOfBaseImportedFromClang(ExtensionDecl *ext) {
|
|
const NominalTypeDecl *base = ext->getExtendedNominal();
|
|
auto *clangBase = base->getClangDecl();
|
|
if (!clangBase)
|
|
return;
|
|
base->loadAllMembers();
|
|
|
|
// Soundness check: make sure we don't jump over to a category /while/
|
|
// loading the original class's members. Right now we only check if this
|
|
// happens on the first member.
|
|
if (auto *clangContainer = dyn_cast<clang::ObjCContainerDecl>(clangBase))
|
|
assert((clangContainer->decls_empty() || !base->getMembers().empty()) &&
|
|
"can't load extension members before base has finished");
|
|
}
|
|
|
|
void ClangImporter::Implementation::loadAllMembersOfObjcContainer(
|
|
Decl *D, const clang::ObjCContainerDecl *objcContainer) {
|
|
clang::PrettyStackTraceDecl trace(objcContainer, clang::SourceLocation(),
|
|
Instance->getSourceManager(),
|
|
"loading members for");
|
|
|
|
assert(isa<ExtensionDecl>(D) || isa<NominalTypeDecl>(D));
|
|
if (auto *ext = dyn_cast<ExtensionDecl>(D)) {
|
|
// If the extended type is also imported from Clang, load its members first.
|
|
loadMembersOfBaseImportedFromClang(ext);
|
|
}
|
|
|
|
startedImportingEntity();
|
|
|
|
SmallVector<Decl *, 16> members;
|
|
collectMembersToAdd(objcContainer, D, cast<DeclContext>(D), members);
|
|
|
|
auto *IDC = cast<IterableDeclContext>(D);
|
|
for (auto member : members) {
|
|
if (!isa<AccessorDecl>(member))
|
|
IDC->addMember(member);
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::insertMembersAndAlternates(
|
|
const clang::NamedDecl *nd,
|
|
SmallVectorImpl<Decl *> &members,
|
|
DeclContext *expectedDC) {
|
|
|
|
size_t start = members.size();
|
|
llvm::SmallPtrSet<Decl *, 4> knownAlternateMembers;
|
|
Decl *asyncImport = nullptr;
|
|
forEachDistinctName(
|
|
nd, [&](ImportedName name, ImportNameVersion nameVersion) -> bool {
|
|
auto member = importDecl(nd, nameVersion);
|
|
if (!member) {
|
|
if (SwiftContext.LangOpts.EnableExperimentalEagerClangModuleDiagnostics) {
|
|
diagnoseTargetDirectly(nd);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If no DC was provided, use wherever the primary decl was imported into.
|
|
if (!expectedDC)
|
|
expectedDC = member->getDeclContext();
|
|
|
|
// If there are alternate declarations for this member, add them.
|
|
for (auto alternate : getAlternateDecls(member)) {
|
|
if (alternate->getDeclContext() == expectedDC &&
|
|
knownAlternateMembers.insert(alternate).second) {
|
|
members.push_back(alternate);
|
|
}
|
|
}
|
|
|
|
// If there are auxiliary declarations (e.g., produced by macros), load
|
|
// those.
|
|
member->visitAuxiliaryDecls([&](Decl *aux) {
|
|
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
|
|
if (auxValue->getDeclContext() == expectedDC &&
|
|
knownAlternateMembers.insert(auxValue).second)
|
|
members.push_back(auxValue);
|
|
}
|
|
});
|
|
|
|
// If this declaration shouldn't be visible, don't add it to
|
|
// the list.
|
|
if (shouldSuppressDeclImport(nd))
|
|
return true;
|
|
|
|
if (member->getDeclContext() == expectedDC)
|
|
members.push_back(member);
|
|
if (nameVersion.supportsConcurrency()) {
|
|
assert(!asyncImport &&
|
|
"Should only have a single version with concurrency enabled");
|
|
asyncImport = member;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
|
|
addCompletionHandlerAttribute(
|
|
asyncImport, llvm::ArrayRef(members).drop_front(start), SwiftContext);
|
|
}
|
|
|
|
void ClangImporter::Implementation::importInheritedConstructors(
|
|
const clang::ObjCInterfaceDecl *curObjCClass,
|
|
const ClassDecl *classDecl, SmallVectorImpl<Decl *> &newMembers) {
|
|
if (curObjCClass->getName() != "Protocol") {
|
|
SwiftDeclConverter converter(*this, CurrentVersion);
|
|
converter.importInheritedConstructors(classDecl, newMembers);
|
|
}
|
|
}
|
|
|
|
void ClangImporter::Implementation::collectMembersToAdd(
|
|
const clang::ObjCContainerDecl *objcContainer, Decl *D, DeclContext *DC,
|
|
SmallVectorImpl<Decl *> &members) {
|
|
for (const clang::Decl *m : objcContainer->decls()) {
|
|
auto nd = dyn_cast<clang::NamedDecl>(m);
|
|
if (nd && nd == nd->getCanonicalDecl() &&
|
|
nd->getDeclContext() == objcContainer &&
|
|
isVisibleClangEntry(nd))
|
|
insertMembersAndAlternates(nd, members, DC);
|
|
}
|
|
|
|
// Objective-C protocols don't require any special handling.
|
|
if (isa<clang::ObjCProtocolDecl>(objcContainer))
|
|
return;
|
|
|
|
// Objective-C interfaces can inherit constructors from their superclass,
|
|
// which we must model explicitly.
|
|
if (auto clangClass = dyn_cast<clang::ObjCInterfaceDecl>(objcContainer)) {
|
|
objcContainer = clangClass = clangClass->getDefinition();
|
|
importInheritedConstructors(clangClass, cast<ClassDecl>(D), members);
|
|
} else if (auto clangProto
|
|
= dyn_cast<clang::ObjCProtocolDecl>(objcContainer)) {
|
|
objcContainer = clangProto->getDefinition();
|
|
}
|
|
|
|
// Interfaces and categories can declare protocol conformances, and
|
|
// members of those protocols are mirrored into the interface or
|
|
// category.
|
|
// FIXME: This is supposed to be a short-term hack.
|
|
importMirroredProtocolMembers(objcContainer, DC, std::nullopt, members);
|
|
}
|
|
|
|
void ClangImporter::Implementation::loadAllConformances(
|
|
const Decl *decl, uint64_t contextData,
|
|
SmallVectorImpl<ProtocolConformance *> &Conformances) {
|
|
auto dc = decl->getInnermostDeclContext();
|
|
|
|
// Synthesize trivial conformances for each of the protocols.
|
|
for (auto *protocol : getImportedProtocols(decl)) {
|
|
// FIXME: Build a superclass conformance if the superclass
|
|
// conforms.
|
|
ProtocolConformanceOptions options;
|
|
if (protocol->isSpecificProtocol(KnownProtocolKind::Sendable))
|
|
options |= ProtocolConformanceFlags::Unchecked;
|
|
|
|
auto conformance = SwiftContext.getNormalConformance(
|
|
dc->getDeclaredInterfaceType(), protocol, SourceLoc(),
|
|
/*inheritedTypeRepr=*/nullptr, dc, ProtocolConformanceState::Incomplete,
|
|
options);
|
|
conformance->setLazyLoader(this, /*context*/0);
|
|
conformance->setState(ProtocolConformanceState::Complete);
|
|
Conformances.push_back(conformance);
|
|
}
|
|
}
|
|
|
|
std::optional<MappedTypeNameKind>
|
|
ClangImporter::Implementation::getSpecialTypedefKind(
|
|
clang::TypedefNameDecl *decl) {
|
|
auto iter = SpecialTypedefNames.find(decl->getCanonicalDecl());
|
|
if (iter == SpecialTypedefNames.end())
|
|
return std::nullopt;
|
|
return iter->second;
|
|
}
|
|
|
|
Identifier
|
|
ClangImporter::getEnumConstantName(const clang::EnumConstantDecl *enumConstant){
|
|
return Impl.importFullName(enumConstant, Impl.CurrentVersion)
|
|
.getBaseIdentifier(Impl.SwiftContext);
|
|
}
|
|
|
|
// See swift/Basic/Statistic.h for declaration: this enables tracing
|
|
// clang::Decls, is defined here to avoid too much layering violation / circular
|
|
// linkage dependency.
|
|
|
|
struct ClangDeclTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
|
|
void traceName(const void *Entity, raw_ostream &OS) const override {
|
|
if (!Entity)
|
|
return;
|
|
const clang::Decl *CD = static_cast<const clang::Decl *>(Entity);
|
|
if (auto const *ND = dyn_cast<const clang::NamedDecl>(CD)) {
|
|
ND->printName(OS);
|
|
} else {
|
|
OS << "<unnamed-clang-decl>";
|
|
}
|
|
}
|
|
|
|
static inline bool printClangShortLoc(raw_ostream &OS,
|
|
clang::SourceManager *CSM,
|
|
clang::SourceLocation L) {
|
|
if (!L.isValid() || !L.isFileID())
|
|
return false;
|
|
auto PLoc = CSM->getPresumedLoc(L);
|
|
OS << llvm::sys::path::filename(PLoc.getFilename()) << ':' << PLoc.getLine()
|
|
<< ':' << PLoc.getColumn();
|
|
return true;
|
|
}
|
|
|
|
void traceLoc(const void *Entity, SourceManager *SM,
|
|
clang::SourceManager *CSM, raw_ostream &OS) const override {
|
|
if (!Entity)
|
|
return;
|
|
if (CSM) {
|
|
const clang::Decl *CD = static_cast<const clang::Decl *>(Entity);
|
|
auto Range = CD->getSourceRange();
|
|
if (printClangShortLoc(OS, CSM, Range.getBegin()))
|
|
OS << '-';
|
|
printClangShortLoc(OS, CSM, Range.getEnd());
|
|
}
|
|
}
|
|
};
|
|
|
|
static ClangDeclTraceFormatter TF;
|
|
|
|
template<>
|
|
const UnifiedStatsReporter::TraceFormatter*
|
|
FrontendStatsTracer::getTraceFormatter<const clang::Decl *>() {
|
|
return &TF;
|
|
}
|