Files
swift-mirror/lib/AST/NameLookup.cpp
Slava Pestov 7499c222ee AST: Requestify lookup of protocol referenced by ImplementsAttr
Direct lookup relied in primary file checking to have filled in the
protocol type stored in the ImplementsAttr. This was already wrong
with multi-file test cases in non-WMO mode, and crashed in the
ASTPrinter if printing a declaration in a non-primary file.

I don't have a standalone test case that is independent of my
upcoming ASTPrinter changes, but this is a nice cleanup regardless.
2023-06-02 13:17:25 -04:00

3911 lines
142 KiB
C++

//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements interfaces for performing name lookup.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/DebuggerClient.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/MacroDeclaration.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PotentialMacroExpansions.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/Parse/Lexer.h"
#include "swift/Strings.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "namelookup"
using namespace swift;
using namespace swift::namelookup;
void VisibleDeclConsumer::anchor() {}
void VectorDeclConsumer::anchor() {}
ValueDecl *LookupResultEntry::getBaseDecl() const {
if (BaseDC == nullptr)
return nullptr;
return BaseDecl;
}
void LookupResult::filter(
llvm::function_ref<bool(LookupResultEntry, bool)> pred) {
size_t index = 0;
size_t originalFirstOuter = IndexOfFirstOuterResult;
Results.erase(std::remove_if(Results.begin(), Results.end(),
[&](LookupResultEntry result) -> bool {
auto isInner = index < originalFirstOuter;
++index;
if (pred(result, !isInner))
return false;
// Need to remove this, which means, if it is
// an inner result, the outer results need to
// shift down.
if (isInner)
--IndexOfFirstOuterResult;
return true;
}),
Results.end());
}
void LookupResult::shiftDownResults() {
// Remove inner results.
Results.erase(Results.begin(), Results.begin() + IndexOfFirstOuterResult);
IndexOfFirstOuterResult = 0;
if (Results.empty())
return;
// Compute IndexOfFirstOuterResult.
const DeclContext *dcInner = Results.front().getValueDecl()->getDeclContext();
for (auto &&result : Results) {
const DeclContext *dc = result.getValueDecl()->getDeclContext();
if (dc == dcInner ||
(dc->isModuleScopeContext() && dcInner->isModuleScopeContext()))
++IndexOfFirstOuterResult;
else
break;
}
}
void swift::simple_display(llvm::raw_ostream &out,
UnqualifiedLookupOptions options) {
using Flag = std::pair<UnqualifiedLookupFlags, StringRef>;
Flag possibleFlags[] = {
{UnqualifiedLookupFlags::AllowProtocolMembers, "AllowProtocolMembers"},
{UnqualifiedLookupFlags::IgnoreAccessControl, "IgnoreAccessControl"},
{UnqualifiedLookupFlags::IncludeOuterResults, "IncludeOuterResults"},
{UnqualifiedLookupFlags::TypeLookup, "TypeLookup"},
};
auto flagsToPrint = llvm::make_filter_range(
possibleFlags, [&](Flag flag) { return options.contains(flag.first); });
out << "{ ";
interleave(
flagsToPrint, [&](Flag flag) { out << flag.second; },
[&] { out << ", "; });
out << " }";
}
void DebuggerClient::anchor() {}
void AccessFilteringDeclConsumer::foundDecl(
ValueDecl *D, DeclVisibilityKind reason,
DynamicLookupInfo dynamicLookupInfo) {
if (!D->isAccessibleFrom(DC))
return;
ChainedConsumer.foundDecl(D, reason, dynamicLookupInfo);
}
void UsableFilteringDeclConsumer::foundDecl(ValueDecl *D,
DeclVisibilityKind reason, DynamicLookupInfo dynamicLookupInfo) {
// Skip when Loc is within the decl's own initializer
if (auto *VD = dyn_cast<VarDecl>(D)) {
Expr *init = VD->getParentInitializer();
if (auto *PD = dyn_cast<ParamDecl>(D)) {
init = PD->getStructuralDefaultExpr();
}
// Only check if the VarDecl has the same (or parent) context to avoid
// grabbing the end location for every decl with an initializer
if (init != nullptr) {
auto *varContext = VD->getDeclContext();
if (DC == varContext || DC->isChildContextOf(varContext)) {
auto initRange = Lexer::getCharSourceRangeFromSourceRange(
SM, init->getSourceRange());
if (initRange.isValid() && initRange.contains(Loc))
return;
}
}
}
switch (reason) {
case DeclVisibilityKind::LocalVariable:
case DeclVisibilityKind::FunctionParameter:
// Skip if Loc is before the found decl if the decl is a var/let decl.
// Type and func decls can be referenced before its declaration, or from
// within nested type decls.
if (isa<VarDecl>(D)) {
if (reason == DeclVisibilityKind::LocalVariable) {
// Workaround for fast-completion. A loc in the current context might be
// in a loc
auto tmpLoc = Loc;
if (D->getDeclContext() != DC) {
if (auto *contextD = DC->getAsDecl())
tmpLoc = contextD->getStartLoc();
}
if (!SM.isBeforeInBuffer(D->getLoc(), Loc))
return;
}
// A type context cannot close over values defined in outer type contexts.
if (D->getDeclContext()->getInnermostTypeContext() != typeContext)
return;
}
break;
case DeclVisibilityKind::MemberOfOutsideNominal:
// A type context cannot close over members of outer type contexts, except
// for type decls.
if (!isa<TypeDecl>(D) && !D->isStatic())
return;
break;
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
// Members on 'Self' including inherited/derived ones are always usable.
break;
case DeclVisibilityKind::GenericParameter:
// Generic params are type decls and are always usable from nested context.
break;
case DeclVisibilityKind::VisibleAtTopLevel:
// The rest of the file is currently skipped, so no need to check
// decl location for VisibleAtTopLevel.
break;
}
// Filter out shadowed decls. Do this for only usable values even though
// unusable values actually can shadow outer values, because compilers might
// be able to diagnose it with fix-it to add the qualification. E.g.
// func foo(global: T) {}
// struct Outer {
// func foo(outer: T) {}
// func test() {
// struct Inner {
// func test() {
// <HERE>
// }
// }
// }
// }
// In this case 'foo(global:)' is shadowed by 'foo(outer:)', but 'foo(outer:)'
// is _not_ usable because it's outside the current type context, whereas
// 'foo(global:)' is still usable with 'ModuleName.' qualification.
// FIXME: (for code completion,) If a global value or a static type member is
// shadowd, we should suggest it with prefix (e.g. 'ModuleName.value').
auto inserted = SeenNames.insert({D->getBaseName(), {D, reason}});
if (!inserted.second) {
auto shadowingReason = inserted.first->second.second;
auto *shadowingD = inserted.first->second.first;
// A type decl cannot have overloads, and shadows everything outside the
// scope.
if (isa<TypeDecl>(shadowingD))
return;
switch (shadowingReason) {
case DeclVisibilityKind::LocalVariable:
case DeclVisibilityKind::FunctionParameter:
// Local func and var/let with a conflicting name.
// func foo() {
// func value(arg: Int) {}
// var value = ""
// }
// In this case, 'var value' wins, regardless of their source order.
// So, for confilicting local values in the same decl context, even if the
// 'var value' is reported after 'func value', don't shadow it, but we
// shadow everything with the name after that.
if (reason == DeclVisibilityKind::LocalVariable &&
isa<VarDecl>(D) && !isa<VarDecl>(shadowingD) &&
shadowingD->getDeclContext() == D->getDeclContext()) {
// Replace the shadowing decl so we shadow subsequent conflicting decls.
inserted.first->second = {D, reason};
break;
}
// Otherwise, a local value shadows everything outside the scope.
return;
case DeclVisibilityKind::GenericParameter:
// A Generic parameter is a type name. It shadows everything outside the
// generic context.
return;
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
switch (reason) {
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
// Members on the current type context don't shadow members with the
// same base name on the current type contxt. They are overloads.
break;
default:
// Members of a type context shadows values/types outside.
return;
}
break;
case DeclVisibilityKind::MemberOfOutsideNominal:
// For static values, it's unclear _which_ type context (i.e. this type,
// super classes, conforming protocols) this decl was found in. For now,
// consider all the outer nominals are the same.
if (reason == DeclVisibilityKind::MemberOfOutsideNominal)
break;
// Values outside the nominal are shadowed.
return;
case DeclVisibilityKind::VisibleAtTopLevel:
// Top level decls don't shadow anything.
// Well, that's not true. Decls in the current module shadows decls in
// the imported modules. But we don't care them here.
break;
}
}
ChainedConsumer.foundDecl(D, reason, dynamicLookupInfo);
}
void LookupResultEntry::print(llvm::raw_ostream& out) const {
getValueDecl()->print(out);
if (auto dc = getBaseDecl()) {
out << "\nbase: ";
dc->print(out);
out << "\n";
} else
out << "\n(no-base)\n";
}
bool swift::removeOverriddenDecls(SmallVectorImpl<ValueDecl*> &decls) {
if (decls.size() < 2)
return false;
llvm::SmallPtrSet<ValueDecl*, 8> overridden;
for (auto decl : decls) {
// Don't look at the overrides of operators in protocols. The global
// lookup of operators means that we can find overriding operators that
// aren't relevant to the types in hand, and will fail to type check.
if (isa<ProtocolDecl>(decl->getDeclContext())) {
if (auto func = dyn_cast<FuncDecl>(decl))
if (func->isOperator())
continue;
}
while (auto overrides = decl->getOverriddenDecl()) {
overridden.insert(overrides);
// Because initializers from Objective-C base classes have greater
// visibility than initializers written in Swift classes, we can
// have a "break" in the set of declarations we found, where
// C.init overrides B.init overrides A.init, but only C.init and
// A.init are in the chain. Make sure we still remove A.init from the
// set in this case.
if (decl->getBaseName() == DeclBaseName::createConstructor()) {
/// FIXME: Avoid the possibility of an infinite loop by fixing the root
/// cause instead (incomplete circularity detection).
assert(decl != overrides && "Circular class inheritance?");
decl = overrides;
continue;
}
break;
}
}
// If no methods were overridden, we're done.
if (overridden.empty()) return false;
// Erase any overridden declarations
bool anyOverridden = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](ValueDecl *decl) -> bool {
if (overridden.count(decl) > 0) {
anyOverridden = true;
return true;
}
return false;
}),
decls.end());
return anyOverridden;
}
enum class ConstructorComparison {
Worse,
Same,
Better,
};
/// Determines whether \p ctor1 is a "better" initializer than \p ctor2.
static ConstructorComparison compareConstructors(ConstructorDecl *ctor1,
ConstructorDecl *ctor2,
const swift::ASTContext &ctx) {
bool available1 = !ctor1->getAttrs().isUnavailable(ctx);
bool available2 = !ctor2->getAttrs().isUnavailable(ctx);
// An unavailable initializer is always worse than an available initializer.
if (available1 < available2)
return ConstructorComparison::Worse;
if (available1 > available2)
return ConstructorComparison::Better;
CtorInitializerKind kind1 = ctor1->getInitKind();
CtorInitializerKind kind2 = ctor2->getInitKind();
if (kind1 > kind2)
return ConstructorComparison::Worse;
if (kind1 < kind2)
return ConstructorComparison::Better;
return ConstructorComparison::Same;
}
/// Given a set of declarations whose names and interface types have matched,
/// figure out which of these declarations have been shadowed by others.
template <typename T>
static void recordShadowedDeclsAfterTypeMatch(
ArrayRef<T> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<T> &shadowed) {
assert(decls.size() > 1 && "Nothing collided");
// Compare each declaration to every other declaration. This is
// unavoidably O(n^2) in the number of declarations, but because they
// all have the same signature, we expect n to remain small.
auto *curModule = dc->getParentModule();
ASTContext &ctx = curModule->getASTContext();
auto &imports = ctx.getImportCache();
for (unsigned firstIdx : indices(decls)) {
auto firstDecl = decls[firstIdx];
auto firstModule = firstDecl->getModuleContext();
bool firstTopLevel = firstDecl->getDeclContext()->isModuleScopeContext();
auto name = firstDecl->getBaseName();
auto isShadowed = [&](ArrayRef<ImportPath::Access> paths) {
for (auto path : paths) {
if (path.matches(name))
return false;
}
return true;
};
auto isScopedImport = [&](ArrayRef<ImportPath::Access> paths) {
for (auto path : paths) {
if (path.empty())
continue;
if (path.matches(name))
return true;
}
return false;
};
auto isPrivateImport = [&](ModuleDecl *module) {
auto file = dc->getParentSourceFile();
if (!file) return false;
for (const auto &import : file->getImports()) {
if (import.options.contains(ImportFlags::PrivateImport)
&& import.module.importedModule == module
&& import.module.accessPath.matches(name))
return true;
}
return false;
};
bool firstPrivate = isPrivateImport(firstModule);
for (unsigned secondIdx : range(firstIdx + 1, decls.size())) {
// Determine whether one module takes precedence over another.
auto secondDecl = decls[secondIdx];
auto secondModule = secondDecl->getModuleContext();
bool secondTopLevel = secondDecl->getDeclContext()->isModuleScopeContext();
bool secondPrivate = isPrivateImport(secondModule);
// For member types, we skip most of the below rules. Instead, we allow
// member types defined in a subclass to shadow member types defined in
// a superclass.
if (isa<TypeDecl>(firstDecl) &&
isa<TypeDecl>(secondDecl) &&
!firstTopLevel &&
!secondTopLevel) {
auto *firstClass = firstDecl->getDeclContext()->getSelfClassDecl();
auto *secondClass = secondDecl->getDeclContext()->getSelfClassDecl();
if (firstClass && secondClass && firstClass != secondClass) {
if (firstClass->isSuperclassOf(secondClass)) {
shadowed.insert(firstDecl);
continue;
} else if (secondClass->isSuperclassOf(firstClass)) {
shadowed.insert(secondDecl);
continue;
}
}
// If one declaration is in a protocol or extension thereof and the
// other is not, prefer the one that is not.
if ((bool)firstDecl->getDeclContext()->getSelfProtocolDecl() !=
(bool)secondDecl->getDeclContext()->getSelfProtocolDecl()) {
if (firstDecl->getDeclContext()->getSelfProtocolDecl()) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
continue;
}
// Top-level type declarations in a module shadow other declarations
// visible through the module's imports.
//
// [Backward compatibility] Note that members of types have the same
// shadowing check, but we do it after dropping unavailable members.
if (firstModule != secondModule &&
firstTopLevel && secondTopLevel) {
auto firstPaths = imports.getAllAccessPathsNotShadowedBy(
firstModule, secondModule, dc);
auto secondPaths = imports.getAllAccessPathsNotShadowedBy(
secondModule, firstModule, dc);
// Check if one module shadows the other.
if (isShadowed(firstPaths)) {
shadowed.insert(firstDecl);
break;
} else if (isShadowed(secondPaths)) {
shadowed.insert(secondDecl);
continue;
}
// If neither module shadows the other, but one was imported with
// '@_private import' in dc, we want to favor that module. This makes
// name lookup in this file behave more like name lookup in the file we
// imported from, avoiding headaches for source-transforming tools.
if (!firstPrivate && secondPrivate) {
shadowed.insert(firstDecl);
break;
} else if (firstPrivate && !secondPrivate) {
shadowed.insert(secondDecl);
continue;
}
// We might be in a situation where neither module shadows the
// other, but one declaration is visible via a scoped import.
bool firstScoped = isScopedImport(firstPaths);
bool secondScoped = isScopedImport(secondPaths);
if (!firstScoped && secondScoped) {
shadowed.insert(firstDecl);
break;
} else if (firstScoped && !secondScoped) {
shadowed.insert(secondDecl);
continue;
}
}
// Swift 4 compatibility hack: Don't shadow properties defined in
// extensions of generic types with properties defined elsewhere.
// This is due to the fact that in Swift 4, we only gave custom overload
// types to properties in extensions of generic types, otherwise we
// used the null type.
if (!ctx.isSwiftVersionAtLeast(5) && isa<ValueDecl>(firstDecl)) {
auto secondSig = cast<ValueDecl>(secondDecl)->getOverloadSignature();
auto firstSig = cast<ValueDecl>(firstDecl)->getOverloadSignature();
if (firstSig.IsVariable && secondSig.IsVariable)
if (firstSig.InExtensionOfGenericType !=
secondSig.InExtensionOfGenericType)
continue;
}
// If one declaration is in a protocol or extension thereof and the
// other is not, prefer the one that is not.
if ((bool)firstDecl->getDeclContext()->getSelfProtocolDecl() !=
(bool)secondDecl->getDeclContext()->getSelfProtocolDecl()) {
if (firstDecl->getDeclContext()->getSelfProtocolDecl()) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// If one declaration is available and the other is not, prefer the
// available one.
if (firstDecl->getAttrs().isUnavailable(ctx) !=
secondDecl->getAttrs().isUnavailable(ctx)) {
if (firstDecl->getAttrs().isUnavailable(ctx)) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// Don't apply module-shadowing rules to members of protocol types.
if (isa<ProtocolDecl>(firstDecl->getDeclContext()) ||
isa<ProtocolDecl>(secondDecl->getDeclContext()))
continue;
// [Backward compatibility] For members of types, the general module
// shadowing check is performed after unavailable candidates have
// already been dropped.
if (firstModule != secondModule &&
!firstTopLevel && !secondTopLevel) {
auto firstPaths = imports.getAllAccessPathsNotShadowedBy(
firstModule, secondModule, dc);
auto secondPaths = imports.getAllAccessPathsNotShadowedBy(
secondModule, firstModule, dc);
// Check if one module shadows the other.
if (isShadowed(firstPaths)) {
shadowed.insert(firstDecl);
break;
} else if (isShadowed(secondPaths)) {
shadowed.insert(secondDecl);
continue;
}
}
// Prefer declarations in the any module over those in the standard
// library module.
if (auto swiftModule = ctx.getStdlibModule()) {
if ((firstModule == swiftModule) != (secondModule == swiftModule)) {
// If the second module is the standard library module, the second
// declaration is shadowed by the first.
if (secondModule == swiftModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second. There is
// no point in continuing to compare the first declaration to others.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _Concurrency module.
if (auto concurModule = ctx.getLoadedModule(ctx.Id_Concurrency)) {
if ((firstModule == concurModule) != (secondModule == concurModule)) {
// If second module is _Concurrency, then it is shadowed by first.
if (secondModule == concurModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _StringProcessing module.
if (auto spModule = ctx.getLoadedModule(ctx.Id_StringProcessing)) {
if ((firstModule == spModule) != (secondModule == spModule)) {
// If second module is _StringProcessing, then it is shadowed by
// first.
if (secondModule == spModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _Backtracing module.
if (auto spModule = ctx.getLoadedModule(ctx.Id_Backtracing)) {
if ((firstModule == spModule) != (secondModule == spModule)) {
// If second module is _StringProcessing, then it is shadowed by
// first.
if (secondModule == spModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// The Foundation overlay introduced Data.withUnsafeBytes, which is
// treated as being ambiguous with SwiftNIO's Data.withUnsafeBytes
// extension. Apply a special-case name shadowing rule to use the
// latter rather than the former, which be the consequence of a more
// significant change to name shadowing in the future.
if (auto owningStruct1
= firstDecl->getDeclContext()->getSelfStructDecl()) {
if (auto owningStruct2
= secondDecl->getDeclContext()->getSelfStructDecl()) {
if (owningStruct1 == owningStruct2 &&
owningStruct1->getName().is("Data") &&
isa<FuncDecl>(firstDecl) && isa<FuncDecl>(secondDecl) &&
firstDecl->getName() == secondDecl->getName() &&
firstDecl->getBaseName().userFacingName() == "withUnsafeBytes") {
// If the second module is the Foundation module and the first
// is the NIOFoundationCompat module, the second is shadowed by the
// first.
if (firstDecl->getModuleContext()->getName()
.is("NIOFoundationCompat") &&
secondDecl->getModuleContext()->getName().is("Foundation")) {
shadowed.insert(secondDecl);
continue;
}
// If it's the other way around, the first declaration is shadowed
// by the second.
if (secondDecl->getModuleContext()->getName()
.is("NIOFoundationCompat") &&
firstDecl->getModuleContext()->getName().is("Foundation")) {
shadowed.insert(firstDecl);
break;
}
}
}
}
// Prefer declarations in an overlay to similar declarations in
// the Clang module it customizes.
if (firstDecl->hasClangNode() != secondDecl->hasClangNode()) {
auto clangLoader = ctx.getClangModuleLoader();
if (!clangLoader) continue;
if (clangLoader->isInOverlayModuleForImportedModule(
firstDecl->getDeclContext(),
secondDecl->getDeclContext())) {
shadowed.insert(secondDecl);
continue;
}
if (clangLoader->isInOverlayModuleForImportedModule(
secondDecl->getDeclContext(),
firstDecl->getDeclContext())) {
shadowed.insert(firstDecl);
break;
}
}
}
}
}
/// Given a set of declarations whose names and generic signatures have matched,
/// figure out which of these declarations have been shadowed by others.
static void recordShadowedDeclsAfterSignatureMatch(
ArrayRef<ValueDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
assert(decls.size() > 1 && "Nothing collided");
// Categorize all of the declarations based on their overload types.
llvm::SmallDenseMap<CanType, llvm::TinyPtrVector<ValueDecl *>> collisions;
llvm::SmallVector<CanType, 2> collisionTypes;
for (auto decl : decls) {
assert(!isa<TypeDecl>(decl));
CanType type;
// FIXME: The type of a variable or subscript doesn't include
// enough context to distinguish entities from different
// constrained extensions, so use the overload signature's
// type. This is layering a partial fix upon a total hack.
if (auto asd = dyn_cast<AbstractStorageDecl>(decl))
type = asd->getOverloadSignatureType();
else
type = decl->getInterfaceType()->getCanonicalType();
// Record this declaration based on its signature.
auto &known = collisions[type];
if (known.size() == 1) {
collisionTypes.push_back(type);
}
known.push_back(decl);
}
// Check whether we have shadowing for signature collisions.
for (auto type : collisionTypes) {
ArrayRef<ValueDecl *> collidingDecls = collisions[type];
recordShadowedDeclsAfterTypeMatch(collidingDecls, dc,
shadowed);
}
}
/// Look through the given set of declarations (that all have the same name),
/// recording those that are shadowed by another declaration in the
/// \c shadowed set.
static void recordShadowedDeclsForImportedInits(
ArrayRef<ConstructorDecl *> ctors,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
assert(ctors.size() > 1 && "No collisions");
ASTContext &ctx = ctors.front()->getASTContext();
// Find the "best" constructor with this signature.
ConstructorDecl *bestCtor = ctors[0];
for (auto ctor : ctors.slice(1)) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Better)
bestCtor = ctor;
}
// Shadow any initializers that are worse.
for (auto ctor : ctors) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Worse)
shadowed.insert(ctor);
}
}
/// Look through the given set of declarations (that all have the same name),
/// recording those that are shadowed by another declaration in the
/// \c shadowed set.
static void recordShadowedDecls(ArrayRef<ValueDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
if (decls.size() < 2)
return;
llvm::TinyPtrVector<ValueDecl *> typeDecls;
// Categorize all of the declarations based on their overload signatures.
llvm::SmallDenseMap<const GenericSignatureImpl *,
llvm::TinyPtrVector<ValueDecl *>> collisions;
llvm::SmallVector<const GenericSignatureImpl *, 2> collisionSignatures;
llvm::SmallDenseMap<NominalTypeDecl *,
llvm::TinyPtrVector<ConstructorDecl *>>
importedInitializerCollisions;
llvm::TinyPtrVector<NominalTypeDecl *> importedInitializerCollisionTypes;
for (auto decl : decls) {
if (auto *typeDecl = dyn_cast<TypeDecl>(decl)) {
typeDecls.push_back(typeDecl);
continue;
}
// Specifically keep track of imported initializers, which can come from
// Objective-C init methods, Objective-C factory methods, renamed C
// functions, or be synthesized by the importer.
if (decl->hasClangNode() ||
(isa<NominalTypeDecl>(decl->getDeclContext()) &&
cast<NominalTypeDecl>(decl->getDeclContext())->hasClangNode())) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
auto nominal = ctor->getDeclContext()->getSelfNominalTypeDecl();
auto &knownInits = importedInitializerCollisions[nominal];
if (knownInits.size() == 1) {
importedInitializerCollisionTypes.push_back(nominal);
}
knownInits.push_back(ctor);
}
}
// If the decl is currently being validated, this is likely a recursive
// reference and we'll want to skip ahead so as to avoid having its type
// attempt to desugar itself.
if (decl->isRecursiveValidation())
continue;
// Record this declaration based on its signature.
auto *dc = decl->getInnermostDeclContext();
auto signature = dc->getGenericSignatureOfContext().getCanonicalSignature();
auto &known = collisions[signature.getPointer()];
if (known.size() == 1) {
collisionSignatures.push_back(signature.getPointer());
}
known.push_back(decl);
}
// Check whether we have shadowing for type declarations.
if (typeDecls.size() > 1) {
ArrayRef<ValueDecl *> collidingDecls = typeDecls;
recordShadowedDeclsAfterTypeMatch(collidingDecls, dc, shadowed);
}
// Check whether we have shadowing for signature collisions.
for (auto signature : collisionSignatures) {
ArrayRef<ValueDecl *> collidingDecls = collisions[signature];
recordShadowedDeclsAfterSignatureMatch(collidingDecls, dc, shadowed);
}
// Check whether we have shadowing for imported initializer collisions.
for (auto nominal : importedInitializerCollisionTypes) {
recordShadowedDeclsForImportedInits(importedInitializerCollisions[nominal],
shadowed);
}
}
static void
recordShadowedDecls(ArrayRef<OperatorDecl *> decls, const DeclContext *dc,
llvm::SmallPtrSetImpl<OperatorDecl *> &shadowed) {
// Always considered to have the same signature.
recordShadowedDeclsAfterTypeMatch(decls, dc, shadowed);
}
static void
recordShadowedDecls(ArrayRef<PrecedenceGroupDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<PrecedenceGroupDecl *> &shadowed) {
// Always considered to have the same type.
recordShadowedDeclsAfterTypeMatch(decls, dc, shadowed);
}
template <typename T, typename Container>
static bool removeShadowedDeclsImpl(Container &decls, const DeclContext *dc) {
// Collect declarations with the same (full) name.
llvm::SmallDenseMap<DeclName, llvm::TinyPtrVector<T>> collidingDeclGroups;
bool anyCollisions = false;
for (auto decl : decls) {
// Record this declaration based on its full name.
auto &knownDecls = collidingDeclGroups[decl->getName()];
if (!knownDecls.empty())
anyCollisions = true;
knownDecls.push_back(decl);
}
// If nothing collided, we're done.
if (!anyCollisions)
return false;
// Walk through the declarations again, marking any declarations that shadow.
llvm::SmallPtrSet<T, 4> shadowed;
for (auto decl : decls) {
auto known = collidingDeclGroups.find(decl->getName());
if (known == collidingDeclGroups.end()) {
// We already handled this group.
continue;
}
recordShadowedDecls(known->second, dc, shadowed);
collidingDeclGroups.erase(known);
}
// If no declarations were shadowed, we're done.
if (shadowed.empty())
return false;
// Remove shadowed declarations from the list of declarations.
bool anyRemoved = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](T decl) {
if (shadowed.count(decl) > 0) {
anyRemoved = true;
return true;
}
return false;
}),
decls.end());
return anyRemoved;
}
bool swift::removeShadowedDecls(SmallVectorImpl<ValueDecl *> &decls,
const DeclContext *dc) {
return removeShadowedDeclsImpl<ValueDecl *>(decls, dc);
}
bool swift::removeShadowedDecls(TinyPtrVector<OperatorDecl *> &decls,
const DeclContext *dc) {
#ifndef NDEBUG
// Make sure all the operators have the same fixity.
if (decls.size() > 1) {
for (auto *op : decls)
assert(op->getFixity() == decls[0]->getFixity());
}
#endif
return removeShadowedDeclsImpl<OperatorDecl *>(decls, dc);
}
bool swift::removeShadowedDecls(TinyPtrVector<PrecedenceGroupDecl *> &decls,
const DeclContext *dc) {
return removeShadowedDeclsImpl<PrecedenceGroupDecl *>(decls, dc);
}
namespace {
enum class DiscriminatorMatch {
NoDiscriminator,
Matches,
Different
};
} // end anonymous namespace
static DiscriminatorMatch matchDiscriminator(Identifier discriminator,
const ValueDecl *value) {
if (value->getFormalAccess() > AccessLevel::FilePrivate)
return DiscriminatorMatch::NoDiscriminator;
auto containingFile =
dyn_cast<FileUnit>(value->getDeclContext()->getModuleScopeContext());
if (!containingFile)
return DiscriminatorMatch::Different;
if (discriminator == containingFile->getDiscriminatorForPrivateDecl(value))
return DiscriminatorMatch::Matches;
return DiscriminatorMatch::Different;
}
static DiscriminatorMatch
matchDiscriminator(Identifier discriminator,
LookupResultEntry lookupResult) {
return matchDiscriminator(discriminator, lookupResult.getValueDecl());
}
template <typename Result>
void namelookup::filterForDiscriminator(SmallVectorImpl<Result> &results,
DebuggerClient *debugClient) {
if (debugClient == nullptr)
return;
Identifier discriminator = debugClient->getPreferredPrivateDiscriminator();
if (discriminator.empty())
return;
auto lastMatchIter = std::find_if(results.rbegin(), results.rend(),
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Matches;
});
if (lastMatchIter == results.rend())
return;
Result lastMatch = *lastMatchIter;
auto newEnd = std::remove_if(results.begin(), lastMatchIter.base()-1,
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Different;
});
results.erase(newEnd, results.end());
results.push_back(lastMatch);
}
template void namelookup::filterForDiscriminator<LookupResultEntry>(
SmallVectorImpl<LookupResultEntry> &results, DebuggerClient *debugClient);
namespace {
/// Whether we're looking up outer results or not.
enum class LookupOuterResults {
Excluded,
Included
};
}
/// Retrieve the set of type declarations that are directly referenced from
/// the given parsed type representation.
static DirectlyReferencedTypeDecls
directReferencesForTypeRepr(Evaluator &evaluator, ASTContext &ctx,
TypeRepr *typeRepr, DeclContext *dc,
bool allowUsableFromInline=false);
/// Retrieve the set of type declarations that are directly referenced from
/// the given type.
static DirectlyReferencedTypeDecls directReferencesForType(Type type);
/// Given a set of type declarations, find all of the nominal type declarations
/// that they reference, looking through typealiases as appropriate.
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject);
SelfBounds SelfBoundsFromWhereClauseRequest::evaluate(
Evaluator &evaluator,
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl) const {
auto *typeDecl = decl.dyn_cast<const TypeDecl *>();
auto *protoDecl = dyn_cast_or_null<const ProtocolDecl>(typeDecl);
auto *extDecl = decl.dyn_cast<const ExtensionDecl *>();
const DeclContext *dc =
protoDecl ? (const DeclContext *)protoDecl : (const DeclContext *)extDecl;
// A protocol or extension 'where' clause can reference associated types of
// the protocol itself, so we have to start unqualified lookup from 'dc'.
//
// However, the right hand side of a 'Self' conformance constraint must be
// resolved before unqualified lookup into 'dc' can work, so we make an
// exception here and begin lookup from the parent context instead.
auto *lookupDC = dc->getParent();
auto requirements = protoDecl ? protoDecl->getTrailingWhereClause()
: extDecl->getTrailingWhereClause();
ASTContext &ctx = dc->getASTContext();
SelfBounds result;
if (requirements == nullptr)
return result;
for (const auto &req : requirements->getRequirements()) {
// We only care about type constraints.
if (req.getKind() != RequirementReprKind::TypeConstraint)
continue;
// The left-hand side of the type constraint must be 'Self'.
bool isSelfLHS = false;
if (auto typeRepr = req.getSubjectRepr()) {
if (auto identTypeRepr = dyn_cast<SimpleIdentTypeRepr>(typeRepr))
isSelfLHS = (identTypeRepr->getNameRef().getBaseIdentifier() ==
ctx.Id_Self);
}
if (!isSelfLHS)
continue;
// Resolve the right-hand side.
DirectlyReferencedTypeDecls rhsDecls;
if (auto typeRepr = req.getConstraintRepr()) {
rhsDecls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, lookupDC);
}
SmallVector<ModuleDecl *, 2> modulesFound;
auto rhsNominals = resolveTypeDeclsToNominal(evaluator, ctx, rhsDecls,
modulesFound,
result.anyObject);
result.decls.insert(result.decls.end(),
rhsNominals.begin(),
rhsNominals.end());
}
return result;
}
SelfBounds swift::getSelfBoundsFromWhereClause(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl) {
auto *typeDecl = decl.dyn_cast<const TypeDecl *>();
auto *extDecl = decl.dyn_cast<const ExtensionDecl *>();
auto &ctx = typeDecl ? typeDecl->getASTContext()
: extDecl->getASTContext();
return evaluateOrDefault(ctx.evaluator,
SelfBoundsFromWhereClauseRequest{decl}, {});
}
SelfBounds SelfBoundsFromGenericSignatureRequest::evaluate(
Evaluator &evaluator, const ExtensionDecl *extDecl) const {
SelfBounds result;
ASTContext &ctx = extDecl->getASTContext();
auto selfType = extDecl->getSelfInterfaceType();
for (const auto &req : extDecl->getGenericRequirements()) {
auto kind = req.getKind();
if (kind != RequirementKind::Conformance &&
kind != RequirementKind::Superclass)
continue;
// The left-hand side of the type constraint must be 'Self'.
bool isSelfLHS = selfType->isEqual(req.getFirstType());
if (!isSelfLHS)
continue;
auto rhsDecls = directReferencesForType(req.getSecondType());
SmallVector<ModuleDecl *, 2> modulesFound;
auto rhsNominals = resolveTypeDeclsToNominal(
evaluator, ctx, rhsDecls, modulesFound, result.anyObject);
result.decls.insert(result.decls.end(), rhsNominals.begin(),
rhsNominals.end());
}
return result;
}
SelfBounds
swift::getSelfBoundsFromGenericSignature(const ExtensionDecl *extDecl) {
auto &ctx = extDecl->getASTContext();
return evaluateOrDefault(ctx.evaluator,
SelfBoundsFromGenericSignatureRequest{extDecl}, {});
}
TinyPtrVector<TypeDecl *>
TypeDeclsFromWhereClauseRequest::evaluate(Evaluator &evaluator,
ExtensionDecl *ext) const {
ASTContext &ctx = ext->getASTContext();
TinyPtrVector<TypeDecl *> result;
auto resolve = [&](TypeRepr *typeRepr) {
auto decls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext);
result.insert(result.end(), decls.begin(), decls.end());
};
if (auto *whereClause = ext->getTrailingWhereClause()) {
for (const auto &req : whereClause->getRequirements()) {
switch (req.getKind()) {
case RequirementReprKind::TypeConstraint:
resolve(req.getSubjectRepr());
resolve(req.getConstraintRepr());
break;
case RequirementReprKind::SameType:
resolve(req.getFirstTypeRepr());
resolve(req.getSecondTypeRepr());
break;
case RequirementReprKind::LayoutConstraint:
resolve(req.getSubjectRepr());
break;
}
}
}
return result;
}
#pragma mark Member lookup table
void LazyMemberLoader::anchor() {}
void LazyConformanceLoader::anchor() {}
/// Lookup table used to store members of a nominal type (and its extensions)
/// for fast retrieval.
class swift::MemberLookupTable : public ASTAllocated<swift::MemberLookupTable> {
/// The type of the internal lookup table.
typedef llvm::DenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
LookupTable;
/// Lookup table mapping names to the set of declarations with that name.
LookupTable Lookup;
/// The set of names of lazily-loaded members that the lookup table has a
/// complete accounting of with respect to all known extensions of its
/// parent nominal type.
llvm::DenseSet<DeclBaseName> LazilyCompleteNames;
struct {
/// Whether we have computed the `containersWithMacroExpansions`.
bool ComputedContainersWithMacroExpansions = false;
/// The nominal type and any extensions that have macro expansions, which
/// is used to restrict the set of places one will lookup for a member
/// produced by a macro expansion.
llvm::SmallVector<TypeOrExtensionDecl, 2> ContainersWithMacroExpansions;
/// The set of names for which we have expanded relevant macros for in the
/// parent nominal type.
llvm::DenseSet<DeclName> LazilyCompleteNames;
} LazyMacroExpansionState;
public:
/// Create a new member lookup table.
explicit MemberLookupTable(ASTContext &ctx);
/// Add the given member to the lookup table.
void addMember(Decl *members);
/// Add the given members to the lookup table.
void addMembers(DeclRange members);
/// Returns \c true if the lookup table has a complete accounting of the
/// given name.
bool isLazilyComplete(DeclBaseName name) const {
return LazilyCompleteNames.contains(name);
}
/// Mark a given lazily-loaded name as being complete.
void markLazilyComplete(DeclBaseName name) {
LazilyCompleteNames.insert(name);
}
/// Clears the cache of lazily-complete names. This _must_ be called when
/// new extensions with lazy members are added to the type, or direct lookup
/// will return inconsistent or stale results.
void clearLazilyCompleteCache() {
LazilyCompleteNames.clear();
}
/// Retrieve an array containing the set of containers for this type (
/// i.e., the nominal type and any extensions) that can produce members via
/// macro expansion.
ArrayRef<TypeOrExtensionDecl> getContainersWithMacroExpansions(
NominalTypeDecl *nominal) {
if (LazyMacroExpansionState.ComputedContainersWithMacroExpansions)
return LazyMacroExpansionState.ContainersWithMacroExpansions;
LazyMacroExpansionState.ComputedContainersWithMacroExpansions = true;
// Does the type have macro expansions?
addContainerWithMacroExpansions(nominal);
// Check each extension for macro expansions.
for (auto ext : nominal->getExtensions())
addContainerWithMacroExpansions(ext);
return LazyMacroExpansionState.ContainersWithMacroExpansions;
}
void addContainerWithMacroExpansions(TypeOrExtensionDecl container){
if (LazyMacroExpansionState.ComputedContainersWithMacroExpansions &&
evaluateOrDefault(
container.getAsDecl()->getASTContext().evaluator,
PotentialMacroExpansionsInContextRequest{container}, {}))
LazyMacroExpansionState.ContainersWithMacroExpansions.push_back(
container);
}
/// Determine whether the given container has any macro-introduced names that
/// match the given declaration.
bool hasAnyMacroNamesMatching(TypeOrExtensionDecl container, DeclName name);
bool isLazilyCompleteForMacroExpansion(DeclName name) const {
assert(!MacroDecl::isUniqueMacroName(name.getBaseName()));
// If we've already expanded macros for a simple name, we must have expanded
// all macros that produce names with the same base identifier.
bool isBaseNameComplete = name.isCompoundName() &&
isLazilyCompleteForMacroExpansion(DeclName(name.getBaseName()));
return isBaseNameComplete ||
LazyMacroExpansionState.LazilyCompleteNames.contains(name);
}
void markLazilyCompleteForMacroExpansion(DeclName name) {
assert(!MacroDecl::isUniqueMacroName(name.getBaseName()));
LazyMacroExpansionState.LazilyCompleteNames.insert(name);
}
void clearLazilyCompleteForMacroExpansionCache() {
LazyMacroExpansionState.LazilyCompleteNames.clear();
}
/// Iterator into the lookup table.
typedef LookupTable::iterator iterator;
iterator begin() { return Lookup.begin(); }
iterator end() { return Lookup.end(); }
iterator find(DeclName name) {
return Lookup.find(name);
}
void dump(llvm::raw_ostream &os) const {
os << "Lookup:\n ";
for (auto &pair : Lookup) {
pair.getFirst().print(os);
if (isLazilyComplete(pair.getFirst().getBaseName())) {
os << " (lazily complete)";
}
os << ":\n ";
for (auto &decl : pair.getSecond()) {
os << "- ";
decl->dumpRef(os);
os << "\n ";
}
}
os << "\n";
}
SWIFT_DEBUG_DUMP {
dump(llvm::errs());
}
};
namespace {
/// Stores the set of Objective-C methods with a given selector within the
/// Objective-C method lookup table.
struct StoredObjCMethods {
/// The generation count at which this list was last updated.
unsigned Generation = 0;
/// The set of methods with the given selector.
llvm::TinyPtrVector<AbstractFunctionDecl *> Methods;
};
} // end anonymous namespace
/// Class member lookup table, which is a member lookup table with a second
/// table for lookup based on Objective-C selector.
class swift::ObjCMethodLookupTable
: public llvm::DenseMap<std::pair<ObjCSelector, char>,
StoredObjCMethods>,
public ASTAllocated<ObjCMethodLookupTable>
{
SWIFT_DEBUG_DUMP {
llvm::errs() << "ObjCMethodLookupTable:\n";
for (auto pair : *this) {
auto selector = pair.getFirst().first;
auto isInstanceMethod = pair.getFirst().second;
auto &methods = pair.getSecond();
llvm::errs() << " \"" << (isInstanceMethod ? "-" : "+") << selector
<< "\":\n";
for (auto method : methods.Methods) {
llvm::errs() << " - \"";
method->dumpRef(llvm::errs());
llvm::errs() << "\"\n";
}
}
}
};
MemberLookupTable::MemberLookupTable(ASTContext &ctx) {
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addCleanup([this]() {
this->~MemberLookupTable();
});
}
void MemberLookupTable::addMember(Decl *member) {
// Only value declarations matter.
auto vd = dyn_cast<ValueDecl>(member);
if (!vd)
return;
// @_implements members get added under their declared name.
auto A = vd->getAttrs().getAttribute<ImplementsAttr>();
// Unnamed entities w/o @_implements synonyms cannot be found by name lookup.
if (!A && !vd->hasName())
return;
// If this declaration is already in the lookup table, don't add it
// again.
if (vd->isAlreadyInLookupTable()) {
return;
}
vd->setAlreadyInLookupTable();
// Add this declaration to the lookup set under its compound name and simple
// name.
vd->getName().addToLookupTable(Lookup, vd);
// And if given a synonym, under that name too.
if (A)
A->getMemberName().addToLookupTable(Lookup, vd);
}
void MemberLookupTable::addMembers(DeclRange members) {
for (auto member : members) {
addMember(member);
}
}
void NominalTypeDecl::addedExtension(ExtensionDecl *ext) {
if (!LookupTable.getInt())
return;
auto *table = LookupTable.getPointer();
assert(table);
if (ext->hasLazyMembers()) {
table->addMembers(ext->getCurrentMembersWithoutLoading());
table->clearLazilyCompleteCache();
table->clearLazilyCompleteForMacroExpansionCache();
} else {
table->addMembers(ext->getMembers());
}
table->addContainerWithMacroExpansions(ext);
}
void NominalTypeDecl::addedMember(Decl *member) {
// If we have a lookup table, add the new member to it. If not, we'll pick up
// this member when we first create the table.
auto *vd = dyn_cast<ValueDecl>(member);
if (!vd || !LookupTable.getInt())
return;
auto *table = LookupTable.getPointer();
assert(table);
table->addMember(vd);
}
void ExtensionDecl::addedMember(Decl *member) {
// If this extension has already been bound to a nominal, add the new member
// to the nominal's lookup table.
if (NextExtension.getInt()) {
auto nominal = getExtendedNominal();
if (nominal)
nominal->addedMember(member);
}
}
void NominalTypeDecl::addMemberToLookupTable(Decl *member) {
getLookupTable()->addMember(member);
}
// For lack of anywhere more sensible to put it, here's a diagram of the pieces
// involved in finding members and extensions of a NominalTypeDecl.
//
// ┌────────────────────────────┬─┐
// │IterableDeclContext │ │ ┌─────────────────────────────┐
// │------------------- │ │ │┌───────────────┬┐ ▼
// │Decl *LastDecl ───────────┼─┼─────┘│Decl ││ ┌───────────────┬┐
// │Decl *FirstDecl ───────────┼─┼─────▶│---- ││ │Decl ││
// │ │ │ │Decl *NextDecl├┼─▶│---- ││
// │bool HasLazyMembers │ │ ├───────────────┘│ │Decl *NextDecl ││
// │IterableDeclContextKind Kind│ │ │ │ ├───────────────┘│
// │ │ │ │ValueDecl │ │ │
// ├────────────────────────────┘ │ │--------- │ │ValueDecl │
// │ │ │DeclName Name │ │--------- │
// │NominalTypeDecl │ └────────────────┘ │DeclName Name │
// │--------------- │ ▲ └────────────────┘
// │ExtensionDecl *FirstExtension─┼────────┐ │ ▲
// │ExtensionDecl *LastExtension ─┼───────┐│ │ └───┐
// │ │ ││ └──────────────────────┐│
// │MemberLookupTable *LookupTable├─┐ ││ ││
// └──────────────────────────────┘ │ ││ ┌─────────────────┐ ││
// │ ││ │ExtensionDecl │ ││
// │ ││ │------------- │ ││
// ┌─────────────┘ │└────▶│ExtensionDecl │ ││
// │ │ │ *NextExtension ├──┐ ││
// ▼ │ └─────────────────┘ │ ││
// ┌─────────────────────────────────────┐│ ┌─────────────────┐ │ ││
// │MemberLookupTable ││ │ExtensionDecl │ │ ││
// │----------------- ││ │------------- │ │ ││
// │ExtensionDecl *LastExtensionIncluded ├┴─────▶│ExtensionDecl │◀─┘ ││
// │ │ │ *NextExtension │ ││
// │┌───────────────────────────────────┐│ └─────────────────┘ ││
// ││DenseMap<Declname, ...> LookupTable││ ││
// ││-----------------------------------││ ┌──────────────────────────┐ ││
// ││[NameA] TinyPtrVector<ValueDecl *> ││ │TinyPtrVector<ValueDecl *>│ ││
// ││[NameB] TinyPtrVector<ValueDecl *> ││ │--------------------------│ ││
// ││[NameC] TinyPtrVector<ValueDecl *>─┼┼─▶│[0] ValueDecl * ─────┼─┘│
// │└───────────────────────────────────┘│ │[1] ValueDecl * ─────┼──┘
// └─────────────────────────────────────┘ └──────────────────────────┘
//
// The HasLazyMembers, Kind, and LookupTableComplete fields are packed into
// PointerIntPairs so don't go grepping for them; but for purposes of
// illustration they are effectively their own fields.
//
// MemberLookupTable is populated en-masse when the IterableDeclContext's
// (IDC's) list of Decls is populated. But MemberLookupTable can also be
// populated incrementally by one-name-at-a-time lookups by lookupDirect, in
// which case those Decls are _not_ added to the IDC's list. They are cached in
// the loader they come from, lifecycle-wise, and are added to the
// MemberLookupTable to accelerate subsequent retrieval, but the IDC is not
// considered populated until someone calls getMembers().
//
// If the IDC list is later populated and/or an extension is added _after_
// MemberLookupTable is constructed (and possibly has entries in it),
// MemberLookupTable is incrementally reconstituted with new members.
static void
populateLookupTableEntryFromLazyIDCLoader(ASTContext &ctx,
MemberLookupTable &LookupTable,
DeclBaseName name,
IterableDeclContext *IDC) {
auto ci = ctx.getOrCreateLazyIterableContextData(IDC,
/*lazyLoader=*/nullptr);
auto res = ci->loader->loadNamedMembers(IDC, name, ci->memberData);
if (auto s = ctx.Stats) {
++s->getFrontendCounters().NamedLazyMemberLoadSuccessCount;
}
for (auto d : res) {
LookupTable.addMember(d);
}
}
static void
populateLookupTableEntryFromExtensions(ASTContext &ctx,
MemberLookupTable &table,
DeclBaseName name,
NominalTypeDecl *nominal) {
assert(!table.isLazilyComplete(name) &&
"Should not be searching extensions for complete name!");
for (auto e : nominal->getExtensions()) {
// If there's no lazy members to look at, all the members of this extension
// are present in the lookup table.
if (!e->hasLazyMembers()) {
continue;
}
assert(e->wasDeserialized() || e->hasClangNode() &&
"Extension without deserializable content has lazy members!");
assert(!e->hasUnparsedMembers());
populateLookupTableEntryFromLazyIDCLoader(ctx, table, name, e);
}
}
/// Adjust the given name to make it a proper key for the lazy macro expansion
/// cache, which maps all uniquely-generated names down to a single placeholder
/// key.
static DeclName adjustLazyMacroExpansionNameKey(
ASTContext &ctx, DeclName name) {
if (MacroDecl::isUniqueMacroName(name.getBaseName()))
return MacroDecl::getUniqueNamePlaceholder(ctx);
return name;
}
/// Call the given function body with each macro declaration and its associated
/// role attribute for the given role.
///
/// This routine intentionally avoids calling `forEachAttachedMacro`, which
/// triggers request cycles.
void namelookup::forEachPotentialResolvedMacro(
DeclContext *moduleScopeCtx, DeclNameRef macroName, MacroRole role,
llvm::function_ref<void(MacroDecl *, const MacroRoleAttr *)> body
) {
ASTContext &ctx = moduleScopeCtx->getASTContext();
UnqualifiedLookupDescriptor lookupDesc{
macroName, moduleScopeCtx, SourceLoc(),
UnqualifiedLookupFlags::ExcludeMacroExpansions
};
auto lookup = evaluateOrDefault(
ctx.evaluator, UnqualifiedLookupRequest{lookupDesc}, {});
for (auto result : lookup.allResults()) {
auto *vd = result.getValueDecl();
auto *macro = dyn_cast<MacroDecl>(vd);
if (!macro)
continue;
auto *macroRoleAttr = macro->getMacroRoleAttr(role);
if (!macroRoleAttr)
continue;
body(macro, macroRoleAttr);
}
}
/// For each macro with the given role that might be attached to the given
/// declaration, call the body.
static void forEachPotentialAttachedMacro(
Decl *decl, MacroRole role,
llvm::function_ref<void(MacroDecl *macro, const MacroRoleAttr *)> body
) {
// We intentionally avoid calling `forEachAttachedMacro` in order to avoid
// a request cycle.
auto moduleScopeCtx = decl->getDeclContext()->getModuleScopeContext();
for (auto attrConst : decl->getSemanticAttrs().getAttributes<CustomAttr>()) {
auto *attr = const_cast<CustomAttr *>(attrConst);
UnresolvedMacroReference macroRef(attr);
auto macroName = macroRef.getMacroName();
forEachPotentialResolvedMacro(moduleScopeCtx, macroName, role, body);
}
}
namespace {
/// Function object that tracks macro-introduced names.
struct MacroIntroducedNameTracker {
ValueDecl *attachedTo = nullptr;
PotentialMacroExpansions potentialExpansions;
/// Augment the set of names with those introduced by the given macro.
void operator()(MacroDecl *macro, const MacroRoleAttr *attr) {
potentialExpansions.noteExpandedMacro();
// First check for arbitrary names.
if (attr->hasNameKind(MacroIntroducedDeclNameKind::Arbitrary)) {
potentialExpansions.noteIntroducesArbitraryNames();
}
// If this introduces arbitrary names, there's nothing more to do.
if (potentialExpansions.introducesArbitraryNames())
return;
SmallVector<DeclName, 4> introducedNames;
macro->getIntroducedNames(
attr->getMacroRole(), attachedTo, introducedNames);
for (auto name : introducedNames)
potentialExpansions.addIntroducedMacroName(name);
}
bool shouldExpandForName(DeclName name) const {
return potentialExpansions.shouldExpandForName(name);
}
};
}
PotentialMacroExpansions PotentialMacroExpansionsInContextRequest::evaluate(
Evaluator &evaluator, TypeOrExtensionDecl container) const {
/// The implementation here needs to be kept in sync with
/// populateLookupTableEntryFromMacroExpansions.
MacroIntroducedNameTracker nameTracker;
// Member macros on the type or extension.
auto containerDecl = container.getAsDecl();
forEachPotentialAttachedMacro(containerDecl, MacroRole::Member, nameTracker);
// Peer and freestanding declaration macros.
auto dc = container.getAsDeclContext();
auto idc = container.getAsIterableDeclContext();
for (auto *member : idc->getCurrentMembersWithoutLoading()) {
if (auto *med = dyn_cast<MacroExpansionDecl>(member)) {
nameTracker.attachedTo = nullptr;
forEachPotentialResolvedMacro(
dc->getModuleScopeContext(), med->getMacroName(),
MacroRole::Declaration, nameTracker);
} else if (auto *vd = dyn_cast<ValueDecl>(member)) {
nameTracker.attachedTo = dyn_cast<ValueDecl>(member);
forEachPotentialAttachedMacro(member, MacroRole::Peer, nameTracker);
}
}
nameTracker.attachedTo = nullptr;
return nameTracker.potentialExpansions;
}
bool MemberLookupTable::hasAnyMacroNamesMatching(
TypeOrExtensionDecl container, DeclName name) {
ASTContext &ctx = container.getAsDecl()->getASTContext();
auto potentialExpansions = evaluateOrDefault(
ctx.evaluator, PotentialMacroExpansionsInContextRequest{container},
PotentialMacroExpansions());
return potentialExpansions.shouldExpandForName(name);
}
static void
populateLookupTableEntryFromMacroExpansions(ASTContext &ctx,
MemberLookupTable &table,
DeclName name,
TypeOrExtensionDecl container) {
// If there are no macro-introduced names in this container that match the
// given name, do nothing. This avoids an expensive walk over the members
// and attributes for the common case where there are no macros.
if (!table.hasAnyMacroNamesMatching(container, name))
return;
// Trigger the expansion of member macros on the container, if any of the
// names match.
{
MacroIntroducedNameTracker nameTracker;
auto decl = container.getAsDecl();
forEachPotentialAttachedMacro(decl, MacroRole::Member, nameTracker);
if (nameTracker.shouldExpandForName(name)) {
(void)evaluateOrDefault(
ctx.evaluator,
ExpandSynthesizedMemberMacroRequest{decl},
false);
}
}
auto dc = container.getAsDeclContext();
auto *module = dc->getParentModule();
auto idc = container.getAsIterableDeclContext();
for (auto *member : idc->getCurrentMembersWithoutLoading()) {
// Collect all macro introduced names, along with its corresponding macro
// reference. We need the macro reference to prevent adding auxiliary decls
// that weren't introduced by the macro.
MacroIntroducedNameTracker nameTracker;
if (auto *med = dyn_cast<MacroExpansionDecl>(member)) {
forEachPotentialResolvedMacro(
dc->getModuleScopeContext(), med->getMacroName(),
MacroRole::Declaration, nameTracker);
} else if (auto *vd = dyn_cast<ValueDecl>(member)) {
nameTracker.attachedTo = dyn_cast<ValueDecl>(member);
forEachPotentialAttachedMacro(member, MacroRole::Peer, nameTracker);
}
// Expand macros on this member.
if (nameTracker.shouldExpandForName(name)) {
member->visitAuxiliaryDecls([&](Decl *decl) {
auto *sf = module->getSourceFileContainingLocation(decl->getLoc());
// Bail out if the auxiliary decl was not produced by a macro.
if (!sf || sf->Kind != SourceFileKind::MacroExpansion) return;
table.addMember(decl);
});
}
}
}
MemberLookupTable *NominalTypeDecl::getLookupTable() {
if (!LookupTable.getPointer()) {
auto &ctx = getASTContext();
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
}
return LookupTable.getPointer();
}
void NominalTypeDecl::prepareLookupTable() {
// If we have already prepared the lookup table, then there's nothing further
// to do.
if (LookupTable.getInt())
return;
auto *table = getLookupTable();
// Otherwise start the first fill.
if (hasLazyMembers()) {
assert(!hasUnparsedMembers());
table->addMembers(getCurrentMembersWithoutLoading());
} else {
table->addMembers(getMembers());
}
// Note: this calls prepareExtensions()
for (auto e : getExtensions()) {
// If we can lazy-load this extension, only take the members we've loaded
// so far.
//
// FIXME: This should be 'e->hasLazyMembers()' but that crashes` because
// some imported extensions don't have a Clang node, and only support
// LazyMemberLoader::loadAllMembers() and not
// LazyMemberLoader::loadNamedMembers().
if (e->wasDeserialized() || e->hasClangNode()) {
table->addMembers(e->getCurrentMembersWithoutLoading());
continue;
}
// Else, load all the members into the table.
table->addMembers(e->getMembers());
}
// Any extensions added after this point will add their members to the
// lookup table.
LookupTable.setInt(true);
}
static TinyPtrVector<ValueDecl *>
maybeFilterOutUnwantedDecls(TinyPtrVector<ValueDecl *> decls,
DeclName name,
bool includeAttrImplements,
bool excludeMacroExpansions) {
if (includeAttrImplements && !excludeMacroExpansions)
return decls;
TinyPtrVector<ValueDecl*> result;
for (auto V : decls) {
// If we're supposed to exclude anything that comes from a macro expansion,
// check whether the source location of the declaration is in a macro
// expansion, and skip this declaration if it does.
if (excludeMacroExpansions) {
auto sourceFile =
V->getModuleContext()->getSourceFileContainingLocation(V->getLoc());
if (sourceFile && sourceFile->Kind == SourceFileKind::MacroExpansion)
continue;
}
// Filter-out any decl that doesn't have the name we're looking for
// (asserting as a consistency-check that such entries all have
// @_implements attrs for the name!)
if (V->getName().matchesRef(name)) {
result.push_back(V);
} else {
auto A = V->getAttrs().getAttribute<ImplementsAttr>();
(void)A;
assert(A && A->getMemberName().matchesRef(name));
}
}
return result;
}
TinyPtrVector<ValueDecl *>
NominalTypeDecl::lookupDirect(DeclName name,
OptionSet<LookupDirectFlags> flags) {
return evaluateOrDefault(getASTContext().evaluator,
DirectLookupRequest({this, name, flags}), {});
}
TinyPtrVector<ValueDecl *>
DirectLookupRequest::evaluate(Evaluator &evaluator,
DirectLookupDescriptor desc) const {
const auto &name = desc.Name;
const auto flags = desc.Options;
auto *decl = desc.DC;
// We only use NamedLazyMemberLoading when a user opts-in and we have
// not yet loaded all the members into the IDC list in the first place.
ASTContext &ctx = decl->getASTContext();
const bool useNamedLazyMemberLoading = (ctx.LangOpts.NamedLazyMemberLoading &&
decl->hasLazyMembers());
const bool includeAttrImplements =
flags.contains(NominalTypeDecl::LookupDirectFlags::IncludeAttrImplements);
const bool excludeMacroExpansions =
flags.contains(NominalTypeDecl::LookupDirectFlags::ExcludeMacroExpansions);
LLVM_DEBUG(llvm::dbgs() << decl->getNameStr() << ".lookupDirect("
<< name << ")"
<< ", hasLazyMembers()=" << decl->hasLazyMembers()
<< ", useNamedLazyMemberLoading="
<< useNamedLazyMemberLoading
<< ", excludeMacroExpansions="
<< excludeMacroExpansions
<< "\n");
decl->prepareLookupTable();
// Call prepareExtensions() to ensure we properly invalidate the
// lazily-complete cache for any extensions brought in by modules
// loaded after-the-fact. This can happen with the LLDB REPL.
decl->prepareExtensions();
auto &Table = *decl->getLookupTable();
if (!useNamedLazyMemberLoading) {
// Make sure we have the complete list of members (in this nominal and in
// all extensions).
(void)decl->getMembers();
for (auto E : decl->getExtensions())
(void)E->getMembers();
} else if (!Table.isLazilyComplete(name.getBaseName())) {
DeclBaseName baseName(name.getBaseName());
if (isa_and_nonnull<clang::NamespaceDecl>(decl->getClangDecl())) {
auto allFound = evaluateOrDefault(
ctx.evaluator, CXXNamespaceMemberLookup({cast<EnumDecl>(decl), name}),
{});
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
// Bypass the regular member lookup table if we find something in
// the original C++ namespace. We don't want to store the C++ decl in the
// lookup table as the decl can be referenced from multiple namespace
// declarations due to inline namespaces. We still merge in the other
// entries found in the lookup table, to support finding members in
// namespace extensions.
if (!allFound.empty()) {
auto known = Table.find(name);
if (known != Table.end()) {
auto swiftLookupResult = maybeFilterOutUnwantedDecls(
known->second, name, includeAttrImplements,
excludeMacroExpansions);
for (auto foundSwiftDecl : swiftLookupResult) {
allFound.push_back(foundSwiftDecl);
}
}
return allFound;
}
} else if (isa_and_nonnull<clang::RecordDecl>(decl->getClangDecl())) {
auto allFound = evaluateOrDefault(
ctx.evaluator,
ClangRecordMemberLookup({cast<NominalTypeDecl>(decl), name}), {});
// Add all the members we found, later we'll combine these with the
// existing members.
for (auto found : allFound)
Table.addMember(found);
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
} else {
// The lookup table believes it doesn't have a complete accounting of this
// name - either because we're never seen it before, or another extension
// was registered since the last time we searched. Ask the loaders to give
// us a hand.
populateLookupTableEntryFromLazyIDCLoader(ctx, Table, baseName, decl);
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
}
Table.markLazilyComplete(baseName);
}
DeclName macroExpansionKey = adjustLazyMacroExpansionNameKey(ctx, name);
if (!excludeMacroExpansions &&
!Table.isLazilyCompleteForMacroExpansion(macroExpansionKey)) {
for (auto container : Table.getContainersWithMacroExpansions(decl)) {
populateLookupTableEntryFromMacroExpansions(
ctx, Table, macroExpansionKey, container);
}
Table.markLazilyCompleteForMacroExpansion(macroExpansionKey);
}
// Look for a declaration with this name.
auto known = Table.find(name);
if (known == Table.end()) {
return TinyPtrVector<ValueDecl *>();
}
// We found something; return it.
return maybeFilterOutUnwantedDecls(known->second, name,
includeAttrImplements,
excludeMacroExpansions);
}
bool NominalTypeDecl::createObjCMethodLookup() {
assert(!ObjCMethodLookup && "Already have an Objective-C member table");
// Most types cannot have ObjC methods.
if (!(isa<ClassDecl>(this) || isa<ProtocolDecl>(this)))
return false;
auto &ctx = getASTContext();
ObjCMethodLookup = new (ctx) ObjCMethodLookupTable();
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addDestructorCleanup(*ObjCMethodLookup);
return true;
}
TinyPtrVector<AbstractFunctionDecl *>
NominalTypeDecl::lookupDirect(ObjCSelector selector, bool isInstance) {
if (!ObjCMethodLookup && !createObjCMethodLookup())
return {};
// If any modules have been loaded since we did the search last (or if we
// hadn't searched before), look in those modules, too.
auto &stored = (*ObjCMethodLookup)[{selector, isInstance}];
ASTContext &ctx = getASTContext();
if (ctx.getCurrentGeneration() > stored.Generation) {
ctx.loadObjCMethods(this, selector, isInstance, stored.Generation,
stored.Methods);
stored.Generation = ctx.getCurrentGeneration();
}
return stored.Methods;
}
static bool inObjCImplExtension(AbstractFunctionDecl *newDecl) {
if (auto ext = dyn_cast<ExtensionDecl>(newDecl->getDeclContext()))
return ext->isObjCImplementation();
return false;
}
/// If there is an apparent conflict between \p newDecl and one of the methods
/// in \p vec, should we diagnose it?
static bool
shouldDiagnoseConflict(NominalTypeDecl *ty, AbstractFunctionDecl *newDecl,
llvm::TinyPtrVector<AbstractFunctionDecl *> &vec) {
// Conflicts between member implementations and their interfaces, or
// inherited inits and their overrides in @_objcImpl extensions, are spurious.
if (newDecl->isObjCMemberImplementation()
|| (isa<ConstructorDecl>(newDecl) && inObjCImplExtension(newDecl)
&& newDecl->getAttrs().hasAttribute<OverrideAttr>()))
return false;
// Are all conflicting methods imported from ObjC and in our ObjC half or a
// bridging header? Some code bases implement ObjC methods in Swift even
// though it's not exactly supported.
auto newDeclModuleName = newDecl->getModuleContext()->getName();
auto newDeclPrivateModuleName = newDecl->getASTContext().getIdentifier(
(llvm::Twine(newDeclModuleName.str()) + "_Private").str());
auto bridgingHeaderModuleName = newDecl->getASTContext().getIdentifier(
CLANG_HEADER_MODULE_NAME);
if (llvm::all_of(vec, [&](AbstractFunctionDecl *oldDecl) {
if (!oldDecl->hasClangNode())
return false;
auto oldDeclModuleName = oldDecl->getModuleContext()->getName();
return oldDeclModuleName == newDeclModuleName
|| oldDeclModuleName == newDeclPrivateModuleName
|| oldDeclModuleName == bridgingHeaderModuleName;
}))
return false;
return true;
}
void NominalTypeDecl::recordObjCMethod(AbstractFunctionDecl *method,
ObjCSelector selector) {
if (!ObjCMethodLookup && !createObjCMethodLookup())
return;
// Record the method.
bool isInstanceMethod = method->isObjCInstanceMethod();
auto &vec = (*ObjCMethodLookup)[{selector, isInstanceMethod}].Methods;
// Check whether we have a duplicate. This only checks more than one
// element in ill-formed code, so the linear search is acceptable.
if (std::find(vec.begin(), vec.end(), method) != vec.end())
return;
if (auto *sf = method->getParentSourceFile()) {
if (vec.empty()) {
sf->ObjCMethodList.push_back(method);
} else if (shouldDiagnoseConflict(this, method, vec)) {
// We have a conflict.
sf->ObjCMethodConflicts.insert({ this, selector, isInstanceMethod });
}
}
vec.push_back(method);
}
/// Determine whether the given declaration is an acceptable lookup
/// result when searching from the given DeclContext.
static bool isAcceptableLookupResult(const DeclContext *dc,
NLOptions options,
ValueDecl *decl,
bool onlyCompleteObjectInits) {
// Filter out designated initializers, if requested.
if (onlyCompleteObjectInits) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (isa<ClassDecl>(ctor->getDeclContext()) && !ctor->isInheritable())
return false;
} else {
return false;
}
}
// Ignore stub implementations.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (ctor->hasStubImplementation())
return false;
}
// Check access.
if (!(options & NL_IgnoreAccessControl) &&
!dc->getASTContext().isAccessControlDisabled()) {
bool allowUsableFromInline = options & NL_IncludeUsableFromInline;
return decl->isAccessibleFrom(dc, /*forConformance*/ false,
allowUsableFromInline);
}
return true;
}
void namelookup::pruneLookupResultSet(const DeclContext *dc, NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) {
// If we're supposed to remove overridden declarations, do so now.
if (options & NL_RemoveOverridden)
removeOverriddenDecls(decls);
// If we're supposed to remove shadowed/hidden declarations, do so now.
if (options & NL_RemoveNonVisible)
removeShadowedDecls(decls, dc);
ModuleDecl *M = dc->getParentModule();
filterForDiscriminator(decls, M->getDebugClient());
}
// An unfortunate hack to kick the decl checker into adding semantic members to
// the current type before we attempt a semantic lookup. The places this method
// looks needs to be in sync with \c extractDirectlyReferencedNominalTypes.
// See the note in \c synthesizeSemanticMembersIfNeeded about a better, more
// just, and peaceful world.
void namelookup::installSemanticMembersIfNeeded(Type type, DeclNameRef name) {
// Look-through class-bound archetypes to ensure we synthesize e.g.
// inherited constructors.
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
if (auto super = archetypeTy->getSuperclass()) {
type = super;
}
}
if (type->isExistentialType()) {
auto layout = type->getExistentialLayout();
if (auto super = layout.explicitSuperclass) {
type = super;
}
}
if (auto *current = type->getAnyNominal()) {
current->synthesizeSemanticMembersIfNeeded(name.getFullName());
}
}
/// Inspect the given type to determine which nominal type declarations it
/// directly references, to facilitate name lookup into those types.
void namelookup::extractDirectlyReferencedNominalTypes(
Type type, SmallVectorImpl<NominalTypeDecl *> &decls) {
if (auto nominal = type->getAnyNominal()) {
decls.push_back(nominal);
return;
}
if (auto unbound = type->getAs<UnboundGenericType>()) {
if (auto nominal = dyn_cast<NominalTypeDecl>(unbound->getDecl()))
decls.push_back(nominal);
return;
}
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
// Look in the protocols to which the archetype conforms (always).
for (auto proto : archetypeTy->getConformsTo())
decls.push_back(proto);
// Look into the superclasses of this archetype.
if (auto superclass = archetypeTy->getSuperclass()) {
if (auto superclassDecl = superclass->getClassOrBoundGenericClass())
decls.push_back(superclassDecl);
}
return;
}
if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
auto layout = compositionTy->getExistentialLayout();
for (auto protoDecl : layout.getProtocols()) {
decls.push_back(protoDecl);
}
if (auto superclass = layout.explicitSuperclass) {
auto *superclassDecl = superclass->getClassOrBoundGenericClass();
if (superclassDecl)
decls.push_back(superclassDecl);
}
return;
}
if (auto existential = type->getAs<ExistentialType>()) {
extractDirectlyReferencedNominalTypes(
existential->getConstraintType(), decls);
return;
}
if (type->is<TupleType>()) {
decls.push_back(type->getASTContext().getBuiltinTupleDecl());
return;
}
llvm_unreachable("Not a type containing nominal types?");
}
void namelookup::tryExtractDirectlyReferencedNominalTypes(
Type type, SmallVectorImpl<NominalTypeDecl *> &decls) {
if (!type->is<ModuleType>() && type->mayHaveMembers())
namelookup::extractDirectlyReferencedNominalTypes(type, decls);
}
bool DeclContext::lookupQualified(Type type,
DeclNameRef member,
NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
using namespace namelookup;
assert(decls.empty() && "additive lookup not supported");
// Handle AnyObject lookup.
if (type->isAnyObject()) {
AnyObjectLookupRequest req(this, member, options);
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
// Handle lookup in a module.
if (auto moduleTy = type->getAs<ModuleType>())
return lookupQualified(moduleTy->getModule(), member, options, decls);
// Figure out which nominal types we will look into.
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
namelookup::extractDirectlyReferencedNominalTypes(type,
nominalTypesToLookInto);
return lookupQualified(nominalTypesToLookInto, member, options, decls);
}
static void installPropertyWrapperMembersIfNeeded(NominalTypeDecl *target,
DeclNameRef member) {
auto &Context = target->getASTContext();
auto baseName = member.getBaseName();
if (!member.isSimpleName() || baseName.isSpecial())
return;
if ((!baseName.getIdentifier().str().startswith("$") &&
!baseName.getIdentifier().str().startswith("_")) ||
baseName.getIdentifier().str().size() <= 1) {
return;
}
// $- and _-prefixed variables can be generated by properties that have
// attached property wrappers.
auto originalPropertyName =
Context.getIdentifier(baseName.getIdentifier().str().substr(1));
for (auto member : target->lookupDirect(originalPropertyName)) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (var->hasAttachedPropertyWrapper()) {
auto sourceFile = var->getDeclContext()->getParentSourceFile();
if (sourceFile && sourceFile->Kind != SourceFileKind::Interface) {
(void)var->getPropertyWrapperAuxiliaryVariables();
(void)var->getPropertyWrapperInitializerInfo();
}
}
}
}
}
bool DeclContext::lookupQualified(ArrayRef<NominalTypeDecl *> typeDecls,
DeclNameRef member,
NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
assert(decls.empty() && "additive lookup not supported");
QualifiedLookupRequest req{this, {typeDecls.begin(), typeDecls.end()},
member, options};
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
QualifiedLookupResult
QualifiedLookupRequest::evaluate(Evaluator &eval, const DeclContext *DC,
SmallVector<NominalTypeDecl *, 4> typeDecls,
DeclNameRef member, NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
// Tracking for the nominal types we'll visit.
SmallVector<NominalTypeDecl *, 4> stack;
llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;
bool sawClassDecl = false;
// Add the given nominal type to the stack.
auto addNominalType = [&](NominalTypeDecl *nominal) {
if (!visited.insert(nominal).second)
return false;
if (isa<ClassDecl>(nominal))
sawClassDecl = true;
stack.push_back(nominal);
return true;
};
// Add all of the nominal types to the stack.
for (auto nominal : typeDecls) {
addNominalType(nominal);
}
// Whether we only want to return complete object initializers.
bool onlyCompleteObjectInits = false;
// Visit all of the nominal types we know about, discovering any others
// we need along the way.
bool wantProtocolMembers = (options & NL_ProtocolMembers);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
// Make sure we've resolved property wrappers, if we need them.
installPropertyWrapperMembersIfNeeded(current, member);
// Look for results within the current nominal type and its extensions.
bool currentIsProtocol = isa<ProtocolDecl>(current);
auto flags = OptionSet<NominalTypeDecl::LookupDirectFlags>();
if (options & NL_IncludeAttributeImplements)
flags |= NominalTypeDecl::LookupDirectFlags::IncludeAttrImplements;
if (options & NL_ExcludeMacroExpansions)
flags |= NominalTypeDecl::LookupDirectFlags::ExcludeMacroExpansions;
for (auto decl : current->lookupDirect(member.getFullName(), flags)) {
// If we're performing a type lookup, don't even attempt to validate
// the decl if its not a type.
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
continue;
if (isAcceptableLookupResult(DC, options, decl, onlyCompleteObjectInits))
decls.push_back(decl);
}
// Visit superclass.
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
// If we're looking for initializers, only look at the superclass if the
// current class permits inheritance. Even then, only find complete
// object initializers.
bool visitSuperclass = true;
if (member.getBaseName() == DeclBaseName::createConstructor()) {
if (classDecl->inheritsSuperclassInitializers())
onlyCompleteObjectInits = true;
else
visitSuperclass = false;
}
if (visitSuperclass) {
if (auto superclassDecl = classDecl->getSuperclassDecl())
if (visited.insert(superclassDecl).second)
stack.push_back(superclassDecl);
}
}
// If we're not looking at a protocol and we're not supposed to
// visit the protocols that this type conforms to, skip the next
// step.
if (!wantProtocolMembers && !currentIsProtocol)
continue;
if (auto *protoDecl = dyn_cast<ProtocolDecl>(current)) {
// If we haven't seen a class declaration yet, look into the protocol.
if (!sawClassDecl) {
if (auto superclassDecl = protoDecl->getSuperclassDecl()) {
visited.insert(superclassDecl);
stack.push_back(superclassDecl);
}
}
// Collect inherited protocols.
for (auto inheritedProto : protoDecl->getInheritedProtocols()) {
addNominalType(inheritedProto);
}
} else {
// Collect the protocols to which the nominal type conforms.
for (auto proto : current->getAllProtocols()) {
if (visited.insert(proto).second) {
stack.push_back(proto);
}
}
// For a class, we don't need to visit the protocol members of the
// superclass: that's already handled.
if (isa<ClassDecl>(current))
wantProtocolMembers = false;
}
}
pruneLookupResultSet(DC, options, decls);
if (auto *debugClient = DC->getParentModule()->getDebugClient()) {
debugClient->finishLookupInNominals(DC, typeDecls, member.getFullName(),
options, decls);
}
return decls;
}
bool DeclContext::lookupQualified(ModuleDecl *module, DeclNameRef member,
NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
assert(decls.empty() && "additive lookup not supported");
ModuleQualifiedLookupRequest req{this, module, member, options};
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
QualifiedLookupResult
ModuleQualifiedLookupRequest::evaluate(Evaluator &eval, const DeclContext *DC,
ModuleDecl *module, DeclNameRef member,
NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
auto kind = (options & NL_OnlyTypes
? ResolutionKind::TypesOnly
: ResolutionKind::Overloadable);
auto topLevelScope = DC->getModuleScopeContext();
if (module == topLevelScope->getParentModule()) {
lookupInModule(module, member.getFullName(), decls, NLKind::QualifiedLookup,
kind, topLevelScope, options);
} else {
// Note: This is a lookup into another module. Unless we're compiling
// multiple modules at once, or if the other module re-exports this one,
// it shouldn't be possible to have a dependency from that module on
// anything in this one.
// Perform the lookup in all imports of this module.
auto &ctx = DC->getASTContext();
auto accessPaths = ctx.getImportCache().getAllVisibleAccessPaths(
module, topLevelScope);
if (llvm::any_of(accessPaths,
[&](ImportPath::Access accessPath) {
return accessPath.matches(member.getFullName());
})) {
lookupInModule(module, member.getFullName(), decls,
NLKind::QualifiedLookup, kind, topLevelScope,
options);
}
}
pruneLookupResultSet(DC, options, decls);
if (auto *debugClient = DC->getParentModule()->getDebugClient()) {
debugClient->finishLookupInModule(DC, module, member.getFullName(),
options, decls);
}
return decls;
}
QualifiedLookupResult
AnyObjectLookupRequest::evaluate(Evaluator &evaluator, const DeclContext *dc,
DeclNameRef member, NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
// Type-only lookup won't find anything on AnyObject.
if (options & NL_OnlyTypes)
return decls;
// Collect all of the visible declarations.
SmallVector<ValueDecl *, 4> allDecls;
for (auto import : namelookup::getAllImports(dc)) {
import.importedModule->lookupClassMember(import.accessPath,
member.getFullName(), allDecls);
}
// For each declaration whose context is not something we've
// already visited above, add it to the list of declarations.
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
for (auto decl : allDecls) {
// If the declaration is not @objc, it cannot be called dynamically.
if (!decl->isObjC())
continue;
// If the declaration is objc_direct, it cannot be called dynamically.
if (auto clangDecl = decl->getClangDecl()) {
if (auto objCMethod = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
if (objCMethod->isDirectMethod())
continue;
} else if (auto objCProperty = dyn_cast<clang::ObjCPropertyDecl>(clangDecl)) {
if (objCProperty->isDirectProperty())
continue;
}
}
// If the declaration has an override, name lookup will also have
// found the overridden method. Skip this declaration, because we
// prefer the overridden method.
if (decl->getOverriddenDecl())
continue;
assert(decl->getDeclContext()->isTypeContext() &&
"Couldn't find nominal type?");
// If we didn't see this declaration before, and it's an acceptable
// result, add it to the list.
if (knownDecls.insert(decl).second &&
isAcceptableLookupResult(dc, options, decl,
/*onlyCompleteObjectInits=*/false))
decls.push_back(decl);
}
pruneLookupResultSet(dc, options, decls);
if (auto *debugClient = dc->getParentModule()->getDebugClient()) {
debugClient->finishLookupInAnyObject(dc, member.getFullName(), options,
decls);
}
return decls;
}
void DeclContext::lookupAllObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// Collect all of the methods with this selector.
for (auto import : namelookup::getAllImports(this)) {
import.importedModule->lookupObjCMethods(selector, results);
}
// Filter out duplicates.
llvm::SmallPtrSet<AbstractFunctionDecl *, 8> visited;
results.erase(
std::remove_if(results.begin(), results.end(),
[&](AbstractFunctionDecl *func) -> bool {
return !visited.insert(func).second;
}),
results.end());
}
/// Given a set of type declarations, find all of the nominal type declarations
/// that they reference, looking through typealiases as appropriate.
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject,
llvm::SmallPtrSetImpl<TypeAliasDecl *> &typealiases) {
SmallPtrSet<NominalTypeDecl *, 4> knownNominalDecls;
TinyPtrVector<NominalTypeDecl *> nominalDecls;
auto addNominalDecl = [&](NominalTypeDecl *nominal) {
if (knownNominalDecls.insert(nominal).second)
nominalDecls.push_back(nominal);
};
for (auto typeDecl : typeDecls) {
// Nominal type declarations get copied directly.
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(typeDecl)) {
addNominalDecl(nominalDecl);
continue;
}
// Recursively resolve typealiases.
if (auto typealias = dyn_cast<TypeAliasDecl>(typeDecl)) {
// FIXME: Ad hoc recursion breaking, so we don't look through the
// same typealias multiple times.
if (!typealiases.insert(typealias).second)
continue;
auto underlyingTypeReferences = evaluateOrDefault(evaluator,
UnderlyingTypeDeclsReferencedRequest{typealias}, {});
auto underlyingNominalReferences
= resolveTypeDeclsToNominal(evaluator, ctx, underlyingTypeReferences,
modulesFound, anyObject, typealiases);
std::for_each(underlyingNominalReferences.begin(),
underlyingNominalReferences.end(),
addNominalDecl);
// Recognize Swift.AnyObject directly.
if (typealias->getName().is("AnyObject")) {
// TypeRepr version: Builtin.AnyObject
if (auto typeRepr = typealias->getUnderlyingTypeRepr()) {
if (auto memberTR = dyn_cast<MemberTypeRepr>(typeRepr)) {
if (auto identBase =
dyn_cast<IdentTypeRepr>(memberTR->getBaseComponent())) {
auto memberComps = memberTR->getMemberComponents();
if (memberComps.size() == 1 &&
identBase->getNameRef().isSimpleName("Builtin") &&
memberComps.front()->getNameRef().isSimpleName("AnyObject")) {
anyObject = true;
}
}
}
}
// Type version: an empty class-bound existential.
if (typealias->hasInterfaceType()) {
if (auto type = typealias->getUnderlyingType())
if (type->isAnyObject())
anyObject = true;
}
}
continue;
}
// Keep track of modules we see.
if (auto module = dyn_cast<ModuleDecl>(typeDecl)) {
modulesFound.push_back(module);
continue;
}
// Make sure we didn't miss some interesting kind of type declaration.
assert(isa<GenericTypeParamDecl>(typeDecl) ||
isa<AssociatedTypeDecl>(typeDecl));
}
return nominalDecls;
}
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject) {
llvm::SmallPtrSet<TypeAliasDecl *, 4> typealiases;
return resolveTypeDeclsToNominal(evaluator, ctx, typeDecls, modulesFound,
anyObject, typealiases);
}
/// Perform unqualified name lookup for types at the given location.
static DirectlyReferencedTypeDecls
directReferencesForUnqualifiedTypeLookup(DeclNameRef name,
SourceLoc loc, DeclContext *dc,
LookupOuterResults lookupOuter,
bool allowUsableFromInline=false) {
// In a protocol or protocol extension, the 'where' clause can refer to
// associated types without 'Self' qualification:
//
// protocol MyProto where AssocType : Q { ... }
//
// extension MyProto where AssocType == Int { ... }
//
// For this reason, ASTScope maps source locations inside the 'where'
// clause to a scope that performs the lookup into the protocol or
// protocol extension.
//
// However, protocol and protocol extensions can also put bounds on 'Self',
// for example:
//
// protocol MyProto where Self : MyClass { ... }
//
// We must start searching for 'MyClass' at the top level, otherwise
// we end up with a cycle, because qualified lookup wants to resolve
// 'Self' bounds to build the set of declarations to search inside of.
//
// To make this work, we handle the top-level lookup case explicitly
// here, bypassing unqualified lookup and ASTScope altogether.
if (dc->isModuleScopeContext())
loc = SourceLoc();
DirectlyReferencedTypeDecls results;
UnqualifiedLookupOptions options =
UnqualifiedLookupFlags::TypeLookup |
UnqualifiedLookupFlags::AllowProtocolMembers;
if (lookupOuter == LookupOuterResults::Included)
options |= UnqualifiedLookupFlags::IncludeOuterResults;
if (allowUsableFromInline)
options |= UnqualifiedLookupFlags::IncludeUsableFromInline;
auto &ctx = dc->getASTContext();
auto descriptor = UnqualifiedLookupDescriptor(name, dc, loc, options);
auto lookup = evaluateOrDefault(ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
unsigned nominalTypeDeclCount = 0;
for (const auto &result : lookup.allResults()) {
auto typeDecl = cast<TypeDecl>(result.getValueDecl());
if (isa<NominalTypeDecl>(typeDecl))
nominalTypeDeclCount++;
results.push_back(typeDecl);
}
// If we saw multiple nominal type declarations with the same name,
// the result of the lookup is definitely ambiguous.
if (nominalTypeDeclCount > 1)
results.clear();
return results;
}
/// Perform qualified name lookup for types.
static DirectlyReferencedTypeDecls
directReferencesForQualifiedTypeLookup(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> baseTypes,
DeclNameRef name,
DeclContext *dc,
bool allowUsableFromInline=false) {
DirectlyReferencedTypeDecls result;
auto addResults = [&result](ArrayRef<ValueDecl *> found){
for (auto decl : found){
assert(isa<TypeDecl>(decl) &&
"Lookup should only have found type declarations");
result.push_back(cast<TypeDecl>(decl));
}
};
{
// Look into the base types.
SmallVector<ValueDecl *, 4> members;
auto options = NL_RemoveNonVisible | NL_OnlyTypes;
if (allowUsableFromInline)
options |= NL_IncludeUsableFromInline;
// Look through the type declarations we were given, resolving them down
// to nominal type declarations, module declarations, and
SmallVector<ModuleDecl *, 2> moduleDecls;
bool anyObject = false;
auto nominalTypeDecls =
resolveTypeDeclsToNominal(ctx.evaluator, ctx, baseTypes, moduleDecls,
anyObject);
dc->lookupQualified(nominalTypeDecls, name, options, members);
// Search all of the modules.
for (auto module : moduleDecls) {
auto innerOptions = options;
innerOptions &= ~NL_RemoveOverridden;
innerOptions &= ~NL_RemoveNonVisible;
SmallVector<ValueDecl *, 4> moduleMembers;
dc->lookupQualified(module, name, innerOptions, moduleMembers);
members.append(moduleMembers.begin(), moduleMembers.end());
}
addResults(members);
}
return result;
}
/// Determine the types directly referenced by the given identifier type.
static DirectlyReferencedTypeDecls
directReferencesForDeclRefTypeRepr(Evaluator &evaluator, ASTContext &ctx,
DeclRefTypeRepr *repr, DeclContext *dc,
bool allowUsableFromInline) {
DirectlyReferencedTypeDecls current;
auto *baseComp = repr->getBaseComponent();
if (auto *identBase = dyn_cast<IdentTypeRepr>(baseComp)) {
// If we already set a declaration, use it.
if (auto *typeDecl = identBase->getBoundDecl()) {
current = {1, typeDecl};
} else {
// For the base component, perform unqualified name lookup.
current = directReferencesForUnqualifiedTypeLookup(
identBase->getNameRef(), identBase->getLoc(), dc,
LookupOuterResults::Excluded, allowUsableFromInline);
}
} else {
current = directReferencesForTypeRepr(evaluator, ctx, baseComp, dc,
allowUsableFromInline);
}
auto *memberTR = dyn_cast<MemberTypeRepr>(repr);
if (!memberTR)
return current;
// If we didn't find anything, fail now.
if (current.empty())
return current;
for (const auto &component : memberTR->getMemberComponents()) {
// If we already set a declaration, use it.
if (auto typeDecl = component->getBoundDecl()) {
current = {1, typeDecl};
continue;
}
// For subsequent components, perform qualified name lookup.
current =
directReferencesForQualifiedTypeLookup(evaluator, ctx, current,
component->getNameRef(), dc,
allowUsableFromInline);
if (current.empty())
return current;
}
return current;
}
static DirectlyReferencedTypeDecls
directReferencesForTypeRepr(Evaluator &evaluator,
ASTContext &ctx, TypeRepr *typeRepr,
DeclContext *dc, bool allowUsableFromInline) {
switch (typeRepr->getKind()) {
case TypeReprKind::Array:
return {1, ctx.getArrayDecl()};
case TypeReprKind::Attributed: {
auto attributed = cast<AttributedTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
attributed->getTypeRepr(), dc,
allowUsableFromInline);
}
case TypeReprKind::Composition: {
DirectlyReferencedTypeDecls result;
auto composition = cast<CompositionTypeRepr>(typeRepr);
for (auto component : composition->getTypes()) {
auto componentResult =
directReferencesForTypeRepr(evaluator, ctx, component, dc,
allowUsableFromInline);
result.insert(result.end(),
componentResult.begin(),
componentResult.end());
}
return result;
}
case TypeReprKind::Member:
case TypeReprKind::GenericIdent:
case TypeReprKind::SimpleIdent:
return directReferencesForDeclRefTypeRepr(evaluator, ctx,
cast<DeclRefTypeRepr>(typeRepr),
dc, allowUsableFromInline);
case TypeReprKind::Dictionary:
return { 1, ctx.getDictionaryDecl()};
case TypeReprKind::Tuple: {
auto tupleRepr = cast<TupleTypeRepr>(typeRepr);
if (tupleRepr->isParenType()) {
return directReferencesForTypeRepr(evaluator, ctx,
tupleRepr->getElementType(0), dc,
allowUsableFromInline);
}
return { };
}
case TypeReprKind::Vararg: {
auto packExpansionRepr = cast<VarargTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packExpansionRepr->getElementType(), dc,
allowUsableFromInline);
}
case TypeReprKind::PackExpansion: {
auto packExpansionRepr = cast<PackExpansionTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packExpansionRepr->getPatternType(), dc,
allowUsableFromInline);
}
case TypeReprKind::PackElement: {
auto packReferenceRepr = cast<PackElementTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packReferenceRepr->getPackType(), dc,
allowUsableFromInline);
}
case TypeReprKind::Error:
case TypeReprKind::Function:
case TypeReprKind::Ownership:
case TypeReprKind::Isolated:
case TypeReprKind::CompileTimeConst:
case TypeReprKind::Metatype:
case TypeReprKind::Protocol:
case TypeReprKind::SILBox:
case TypeReprKind::Placeholder:
case TypeReprKind::Pack:
return { };
case TypeReprKind::OpaqueReturn:
case TypeReprKind::NamedOpaqueReturn:
case TypeReprKind::Existential:
return { };
case TypeReprKind::Fixed:
llvm_unreachable("Cannot get fixed TypeReprs in name lookup");
case TypeReprKind::Optional:
case TypeReprKind::ImplicitlyUnwrappedOptional:
return { 1, ctx.getOptionalDecl() };
}
llvm_unreachable("unhandled kind");
}
static DirectlyReferencedTypeDecls directReferencesForType(Type type) {
// If it's a typealias, return that.
if (auto aliasType = dyn_cast<TypeAliasType>(type.getPointer()))
return { 1, aliasType->getDecl() };
// If there is a generic declaration, return it.
if (auto genericDecl = type->getAnyGeneric())
return { 1, genericDecl };
if (type->isExistentialType()) {
DirectlyReferencedTypeDecls result;
const auto &layout = type->getExistentialLayout();
// Superclass.
if (auto superclassType = layout.explicitSuperclass) {
if (auto superclassDecl = superclassType->getAnyGeneric()) {
result.push_back(superclassDecl);
}
}
// Protocols.
for (auto protoDecl : layout.getProtocols())
result.push_back(protoDecl);
return result;
}
return { };
}
DirectlyReferencedTypeDecls InheritedDeclsReferencedRequest::evaluate(
Evaluator &evaluator,
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
unsigned index) const {
// Prefer syntactic information when we have it.
const TypeLoc &typeLoc = getInheritedTypeLocAtIndex(decl, index);
if (auto typeRepr = typeLoc.getTypeRepr()) {
// Figure out the context in which name lookup will occur.
DeclContext *dc;
if (auto typeDecl = decl.dyn_cast<const TypeDecl *>())
dc = typeDecl->getInnermostDeclContext();
else
dc = (DeclContext *)decl.get<const ExtensionDecl *>();
return directReferencesForTypeRepr(evaluator, dc->getASTContext(), typeRepr,
const_cast<DeclContext *>(dc));
}
// Fall back to semantic types.
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
// should be cached.
if (auto type = typeLoc.getType()) {
return directReferencesForType(type);
}
return { };
}
DirectlyReferencedTypeDecls UnderlyingTypeDeclsReferencedRequest::evaluate(
Evaluator &evaluator,
TypeAliasDecl *typealias) const {
// Prefer syntactic information when we have it.
if (auto typeRepr = typealias->getUnderlyingTypeRepr()) {
return directReferencesForTypeRepr(evaluator, typealias->getASTContext(),
typeRepr, typealias);
}
// Fall back to semantic types.
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
// should be cached.
if (auto type = typealias->getUnderlyingType()) {
return directReferencesForType(type);
}
return { };
}
/// Evaluate a superclass declaration request.
ClassDecl *
SuperclassDeclRequest::evaluate(Evaluator &evaluator,
NominalTypeDecl *subject) const {
auto &Ctx = subject->getASTContext();
// Protocols may get their superclass bound from a `where Self : Superclass`
// clause.
if (auto *proto = dyn_cast<ProtocolDecl>(subject)) {
// If the protocol came from a serialized module, compute the superclass via
// its generic signature.
if (proto->wasDeserialized()) {
auto superTy = proto->getGenericSignature()
->getSuperclassBound(proto->getSelfInterfaceType());
if (superTy)
return superTy->getClassOrBoundGenericClass();
}
// Otherwise check the where clause.
auto selfBounds = getSelfBoundsFromWhereClause(proto);
for (auto inheritedNominal : selfBounds.decls)
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal))
return classDecl;
}
for (unsigned i : indices(subject->getInherited())) {
// Find the inherited declarations referenced at this position.
auto inheritedTypes = evaluateOrDefault(evaluator,
InheritedDeclsReferencedRequest{subject, i}, {});
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto inheritedNominalTypes
= resolveTypeDeclsToNominal(evaluator, Ctx,
inheritedTypes, modulesFound, anyObject);
// Look for a class declaration.
ClassDecl *superclass = nullptr;
for (auto inheritedNominal : inheritedNominalTypes) {
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal)) {
superclass = classDecl;
break;
}
}
// If we found a superclass, ensure that we don't have a circular
// inheritance hierarchy by evaluating its superclass. This forces the
// diagnostic at this point and then suppresses the superclass failure.
if (superclass) {
auto result = Ctx.evaluator(SuperclassDeclRequest{superclass});
bool hadCycle = false;
if (auto err = result.takeError()) {
llvm::handleAllErrors(std::move(err),
[&hadCycle](const CyclicalRequestError<SuperclassDeclRequest> &E) {
hadCycle = true;
});
if (hadCycle)
return nullptr;
}
return superclass;
}
}
return nullptr;
}
ArrayRef<ProtocolDecl *>
InheritedProtocolsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *PD) const {
llvm::SmallVector<ProtocolDecl *, 2> result;
SmallPtrSet<const ProtocolDecl *, 2> known;
known.insert(PD);
bool anyObject = false;
for (const auto &found : getDirectlyInheritedNominalTypeDecls(PD, anyObject)) {
if (auto proto = dyn_cast<ProtocolDecl>(found.Item)) {
if (known.insert(proto).second)
result.push_back(proto);
}
}
return PD->getASTContext().AllocateCopy(result);
}
ArrayRef<ValueDecl *>
ProtocolRequirementsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *PD) const {
SmallVector<ValueDecl *, 4> requirements;
for (auto *member : PD->getABIMembers()) {
auto *VD = dyn_cast<ValueDecl>(member);
if (VD && VD->isProtocolRequirement())
requirements.push_back(VD);
}
return PD->getASTContext().AllocateCopy(requirements);
}
NominalTypeDecl *
ExtendedNominalRequest::evaluate(Evaluator &evaluator,
ExtensionDecl *ext) const {
auto typeRepr = ext->getExtendedTypeRepr();
if (!typeRepr)
// We must've seen 'extension { ... }' during parsing.
return nullptr;
ASTContext &ctx = ext->getASTContext();
DirectlyReferencedTypeDecls referenced =
directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext->getParent(),
ext->isInSpecializeExtensionContext());
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominalTypes
= resolveTypeDeclsToNominal(evaluator, ctx, referenced, modulesFound,
anyObject);
// If there is more than 1 element, we will emit a warning or an error
// elsewhere, so don't handle that case here.
if (nominalTypes.empty())
return nullptr;
// Diagnose experimental tuple extensions.
if (isa<BuiltinTupleDecl>(nominalTypes[0]) &&
!ctx.LangOpts.hasFeature(Feature::TupleConformances)) {
ext->diagnose(diag::experimental_tuple_extension);
}
return nominalTypes[0];
}
/// Whether there are only associated types in the set of declarations.
static bool declsAreAssociatedTypes(ArrayRef<TypeDecl *> decls) {
if (decls.empty())
return false;
for (auto decl : decls) {
if (!isa<AssociatedTypeDecl>(decl))
return false;
}
return true;
}
/// Verify there is at least one protocols in the set of declarations.
static bool declsAreProtocols(ArrayRef<TypeDecl *> decls) {
if (decls.empty())
return false; // Below, check outer type repr is a protocol, if not bail early
return llvm::any_of(decls, [&](const TypeDecl *decl) {
if (auto *alias = dyn_cast<TypeAliasDecl>(decl)) {
auto ty = alias->getUnderlyingType();
decl = ty->getNominalOrBoundGenericNominal();
if (decl == nullptr || ty->is<ExistentialType>())
return false;
}
return isa<ProtocolDecl>(decl);
});
}
bool TypeRepr::isProtocolOrProtocolComposition(DeclContext *dc){
auto &ctx = dc->getASTContext();
return declsAreProtocols(directReferencesForTypeRepr(ctx.evaluator, ctx, this, dc));
}
static GenericParamList *
createExtensionGenericParams(ASTContext &ctx,
ExtensionDecl *ext,
NominalTypeDecl *nominal) {
// Collect generic parameters from all outer contexts.
SmallVector<GenericParamList *, 2> allGenericParams;
nominal->forEachGenericContext([&](GenericParamList *gpList) {
allGenericParams.push_back(gpList->clone(ext));
});
GenericParamList *toParams = nullptr;
for (auto *gpList : llvm::reverse(allGenericParams)) {
gpList->setOuterParameters(toParams);
toParams = gpList;
}
return toParams;
}
CollectedOpaqueReprs swift::collectOpaqueTypeReprs(TypeRepr *r, ASTContext &ctx,
DeclContext *d) {
class Walker : public ASTWalker {
CollectedOpaqueReprs &Reprs;
ASTContext &Ctx;
DeclContext *dc;
public:
explicit Walker(CollectedOpaqueReprs &reprs, ASTContext &ctx, DeclContext *d) : Reprs(reprs), Ctx(ctx), dc(d) {}
/// Walk everything that's available.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PreWalkAction walkToTypeReprPre(TypeRepr *repr) override {
// Don't allow variadic opaque parameter or return types.
if (isa<PackExpansionTypeRepr>(repr) || isa<VarargTypeRepr>(repr))
return Action::SkipChildren();
if (auto opaqueRepr = dyn_cast<OpaqueReturnTypeRepr>(repr)) {
Reprs.push_back(opaqueRepr);
if (Ctx.LangOpts.hasFeature(Feature::ImplicitSome))
return Action::SkipChildren();
}
if (!Ctx.LangOpts.hasFeature(Feature::ImplicitSome))
return Action::Continue();
if (auto existential = dyn_cast<ExistentialTypeRepr>(repr)) {
return Action::SkipChildren();
} else if (auto composition = dyn_cast<CompositionTypeRepr>(repr)) {
if (!composition->isTypeReprAny())
Reprs.push_back(composition);
return Action::SkipChildren();
} else if (auto generic = dyn_cast<GenericIdentTypeRepr>(repr)) {
if (generic->isProtocolOrProtocolComposition(dc)){
Reprs.push_back(generic);
return Action::SkipChildren();
}
return Action::Continue();
} else if (auto declRef = dyn_cast<DeclRefTypeRepr>(repr)) {
if (declRef->isProtocolOrProtocolComposition(dc))
Reprs.push_back(declRef);
}
return Action::Continue();
}
};
CollectedOpaqueReprs reprs;
r->walk(Walker(reprs, ctx, d));
return reprs;
}
/// If there are opaque parameters in the given declaration, create the
/// generic parameters associated with them.
static SmallVector<GenericTypeParamDecl *, 2>
createOpaqueParameterGenericParams(GenericContext *genericContext, GenericParamList *parsedGenericParams) {
ASTContext &ctx = genericContext->getASTContext();
auto value = dyn_cast_or_null<ValueDecl>(genericContext->getAsDecl());
if (!value)
return { };
// Functions, initializers, and subscripts can contain opaque parameters.
ParameterList *params = nullptr;
if (auto func = dyn_cast<AbstractFunctionDecl>(value))
params = func->getParameters();
else if (auto subscript = dyn_cast<SubscriptDecl>(value))
params = subscript->getIndices();
else
return { };
// Look for parameters that have "some" types in them.
unsigned index = parsedGenericParams ? parsedGenericParams->size() : 0;
SmallVector<GenericTypeParamDecl *, 2> implicitGenericParams;
auto dc = value->getInnermostDeclContext();
for (auto param : *params) {
auto typeRepr = param->getTypeRepr();
if (!typeRepr)
continue;
// Plain protocols should imply 'some' with experimetal feature
CollectedOpaqueReprs typeReprs;
typeReprs = collectOpaqueTypeReprs(typeRepr, ctx, dc);
for (auto repr : typeReprs) {
// Allocate a new generic parameter to represent this opaque type.
auto *gp = GenericTypeParamDecl::createImplicit(
dc, Identifier(), GenericTypeParamDecl::InvalidDepth, index++,
/*isParameterPack*/ false, /*isOpaqueType*/ true, repr,
/*nameLoc*/ repr->getStartLoc());
// Use the underlying constraint as the constraint on the generic parameter.
// The underlying constraint is only present for OpaqueReturnTypeReprs
if (auto opaque = dyn_cast<OpaqueReturnTypeRepr>(repr)) {
InheritedEntry inherited[1] = {
{ TypeLoc(opaque->getConstraint()) }
};
gp->setInherited(ctx.AllocateCopy(inherited));
} else {
InheritedEntry inherited[1] = {
{ TypeLoc(repr) }
};
gp->setInherited(ctx.AllocateCopy(inherited));
}
implicitGenericParams.push_back(gp);
}
}
return implicitGenericParams;
}
GenericParamList *
GenericParamListRequest::evaluate(Evaluator &evaluator, GenericContext *value) const {
if (auto *tupleDecl = dyn_cast<BuiltinTupleDecl>(value)) {
auto &ctx = value->getASTContext();
// Builtin.TheTupleType has a single pack generic parameter: <Elements...>
auto *genericParam = GenericTypeParamDecl::createImplicit(
tupleDecl->getDeclContext(), ctx.Id_Elements, /*depth*/ 0, /*index*/ 0,
/*isParameterPack*/ true);
return GenericParamList::create(ctx, SourceLoc(), genericParam,
SourceLoc());
}
if (auto *ext = dyn_cast<ExtensionDecl>(value)) {
// Create the generic parameter list for the extension by cloning the
// generic parameter lists of the nominal and any of its parent types.
auto &ctx = value->getASTContext();
auto *nominal = ext->getExtendedNominal();
if (!nominal) {
return nullptr;
}
auto *genericParams = createExtensionGenericParams(ctx, ext, nominal);
// Protocol extensions need an inheritance clause due to how name lookup
// is implemented.
if (auto *proto = ext->getExtendedProtocolDecl()) {
auto protoType = proto->getDeclaredInterfaceType();
InheritedEntry selfInherited[1] = {
InheritedEntry(TypeLoc::withoutLoc(protoType)) };
genericParams->getParams().front()->setInherited(
ctx.AllocateCopy(selfInherited));
}
// Set the depth of every generic parameter.
unsigned depth = nominal->getGenericContextDepth();
for (auto *outerParams = genericParams;
outerParams != nullptr;
outerParams = outerParams->getOuterParameters())
outerParams->setDepth(depth--);
return genericParams;
}
if (auto *proto = dyn_cast<ProtocolDecl>(value)) {
// The generic parameter 'Self'.
auto &ctx = value->getASTContext();
auto selfId = ctx.Id_Self;
auto selfDecl = GenericTypeParamDecl::createImplicit(
proto, selfId, /*depth*/ 0, /*index*/ 0);
auto protoType = proto->getDeclaredInterfaceType();
InheritedEntry selfInherited[1] = {
InheritedEntry(TypeLoc::withoutLoc(protoType)) };
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
auto result = GenericParamList::create(ctx, SourceLoc(), selfDecl,
SourceLoc());
return result;
}
// AccessorDecl generic parameter list is the same of its storage
// context.
if (auto *AD = dyn_cast<AccessorDecl>(value)) {
auto *GC = AD->getStorage()->getAsGenericContext();
if (!GC)
return nullptr;
auto *GP = GC->getGenericParams();
if (!GP)
return nullptr;
return GP->clone(AD->getDeclContext());
}
auto parsedGenericParams = value->getParsedGenericParams();
// Create implicit generic parameters due to opaque parameters, if we need
// them.
auto implicitGenericParams =
createOpaqueParameterGenericParams(value, parsedGenericParams);
if (implicitGenericParams.empty())
return parsedGenericParams;
// If there were no parsed generic parameters, create a fully-implicit
// generic parameter list.
ASTContext &ctx = value->getASTContext();
if (!parsedGenericParams) {
return GenericParamList::create(
ctx, SourceLoc(), implicitGenericParams, SourceLoc());
}
// Combine the existing generic parameters with the implicit ones.
SmallVector<GenericTypeParamDecl *, 4> allGenericParams;
allGenericParams.reserve(
parsedGenericParams->size() + implicitGenericParams.size());
allGenericParams.append(parsedGenericParams->begin(),
parsedGenericParams->end());
allGenericParams.append(implicitGenericParams);
return GenericParamList::create(
ctx, parsedGenericParams->getLAngleLoc(), allGenericParams,
parsedGenericParams->getWhereLoc(),
parsedGenericParams->getRequirements(),
parsedGenericParams->getRAngleLoc());
}
void swift::findMacroForCustomAttr(CustomAttr *attr, DeclContext *dc,
llvm::TinyPtrVector<ValueDecl *> &macros) {
auto *identTypeRepr = dyn_cast_or_null<IdentTypeRepr>(attr->getTypeRepr());
if (!identTypeRepr)
return;
// Look for macros at module scope. They can only occur at module scope, and
// we need to be sure not to trigger name lookup into type contexts along
// the way.
auto moduleScopeDC = dc->getModuleScopeContext();
ASTContext &ctx = moduleScopeDC->getASTContext();
UnqualifiedLookupDescriptor descriptor(
identTypeRepr->getNameRef(), moduleScopeDC
);
auto lookup = evaluateOrDefault(
ctx.evaluator, UnqualifiedLookupRequest{descriptor}, {});
for (const auto &result : lookup.allResults()) {
// Only keep attached macros, which can be spelled as custom attributes.
if (auto macro = dyn_cast<MacroDecl>(result.getValueDecl()))
if (isAttachedMacro(macro->getMacroRoles()))
macros.push_back(macro);
}
}
NominalTypeDecl *
CustomAttrNominalRequest::evaluate(Evaluator &evaluator,
CustomAttr *attr, DeclContext *dc) const {
// Look for names at module scope, so we don't trigger name lookup for
// nested scopes. At this point, we're looking to see whether there are
// any suitable macros.
llvm::TinyPtrVector<ValueDecl *> macros;
findMacroForCustomAttr(attr, dc, macros);
if (!macros.empty())
return nullptr;
// Find the types referenced by the custom attribute.
auto &ctx = dc->getASTContext();
DirectlyReferencedTypeDecls decls;
if (auto *typeRepr = attr->getTypeRepr()) {
decls = directReferencesForTypeRepr(
evaluator, ctx, typeRepr, dc);
} else if (Type type = attr->getType()) {
decls = directReferencesForType(type);
}
// Dig out the nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominals = resolveTypeDeclsToNominal(evaluator, ctx, decls,
modulesFound, anyObject);
if (nominals.size() == 1 && !isa<ProtocolDecl>(nominals.front()))
return nominals.front();
// If we found declarations that are associated types, look outside of
// the current context to see if we can recover.
if (declsAreAssociatedTypes(decls)) {
if (auto typeRepr = attr->getTypeRepr()) {
if (auto identTypeRepr = dyn_cast<SimpleIdentTypeRepr>(typeRepr)) {
auto assocType = cast<AssociatedTypeDecl>(decls.front());
modulesFound.clear();
anyObject = false;
decls = directReferencesForUnqualifiedTypeLookup(
identTypeRepr->getNameRef(), identTypeRepr->getLoc(), dc,
LookupOuterResults::Included);
nominals = resolveTypeDeclsToNominal(evaluator, ctx, decls,
modulesFound, anyObject);
if (nominals.size() == 1 && !isa<ProtocolDecl>(nominals.front())) {
auto nominal = nominals.front();
if (nominal->getDeclContext()->isModuleScopeContext()) {
// Complain, producing module qualification in a Fix-It.
auto moduleName = nominal->getParentModule()->getName();
ctx.Diags.diagnose(typeRepr->getLoc(),
diag::warn_property_wrapper_module_scope,
identTypeRepr->getNameRef(),
moduleName)
.fixItInsert(typeRepr->getLoc(),
moduleName.str().str() + ".");
ctx.Diags.diagnose(assocType, diag::kind_declname_declared_here,
assocType->getDescriptiveKind(),
assocType->getName());
auto *baseComp = new (ctx) SimpleIdentTypeRepr(
identTypeRepr->getNameLoc(), DeclNameRef(moduleName));
auto *newTE = new (ctx) TypeExpr(
MemberTypeRepr::create(ctx, baseComp, {identTypeRepr}));
attr->resetTypeInformation(newTE);
return nominal;
}
}
}
}
}
return nullptr;
}
void swift::getDirectlyInheritedNominalTypeDecls(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
unsigned i, llvm::SmallVectorImpl<InheritedNominalEntry> &result,
bool &anyObject) {
auto typeDecl = decl.dyn_cast<const TypeDecl *>();
auto extDecl = decl.dyn_cast<const ExtensionDecl *>();
ASTContext &ctx = typeDecl ? typeDecl->getASTContext()
: extDecl->getASTContext();
// Find inherited declarations.
auto referenced = evaluateOrDefault(ctx.evaluator,
InheritedDeclsReferencedRequest{decl, i}, {});
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
auto nominalTypes
= resolveTypeDeclsToNominal(ctx.evaluator, ctx, referenced, modulesFound,
anyObject);
// Dig out the source location
// FIXME: This is a hack. We need cooperation from
// InheritedDeclsReferencedRequest to make this work.
SourceLoc loc;
SourceLoc uncheckedLoc;
if (TypeRepr *typeRepr = typeDecl ? typeDecl->getInherited()[i].getTypeRepr()
: extDecl->getInherited()[i].getTypeRepr()){
loc = typeRepr->getLoc();
uncheckedLoc = typeRepr->findUncheckedAttrLoc();
}
// Form the result.
for (auto nominal : nominalTypes) {
result.push_back({nominal, loc, uncheckedLoc});
}
}
SmallVector<InheritedNominalEntry, 4>
swift::getDirectlyInheritedNominalTypeDecls(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
bool &anyObject) {
auto typeDecl = decl.dyn_cast<const TypeDecl *>();
auto extDecl = decl.dyn_cast<const ExtensionDecl *>();
// Gather results from all of the inherited types.
unsigned numInherited = typeDecl ? typeDecl->getInherited().size()
: extDecl->getInherited().size();
SmallVector<InheritedNominalEntry, 4> result;
for (unsigned i : range(numInherited)) {
getDirectlyInheritedNominalTypeDecls(decl, i, result, anyObject);
}
auto *protoDecl = dyn_cast_or_null<ProtocolDecl>(typeDecl);
if (protoDecl == nullptr)
return result;
// FIXME: Refactor SelfBoundsFromWhereClauseRequest to dig out
// the source location.
SourceLoc loc = SourceLoc();
// For a deserialized protocol, the where clause isn't going to tell us
// anything. Ask the requirement signature instead.
if (protoDecl->wasDeserialized()) {
auto protoSelfTy = protoDecl->getSelfInterfaceType();
for (auto &req : protoDecl->getRequirementSignature().getRequirements()) {
// Dig out a conformance requirement...
if (req.getKind() != RequirementKind::Conformance)
continue;
// constraining Self.
if (!req.getFirstType()->isEqual(protoSelfTy))
continue;
result.emplace_back(req.getProtocolDecl(), loc, SourceLoc());
}
return result;
}
// Else we have access to this information on the where clause.
auto selfBounds = getSelfBoundsFromWhereClause(decl);
anyObject |= selfBounds.anyObject;
for (auto inheritedNominal : selfBounds.decls)
result.emplace_back(inheritedNominal, loc, SourceLoc());
return result;
}
bool IsCallAsFunctionNominalRequest::evaluate(Evaluator &evaluator,
NominalTypeDecl *decl,
DeclContext *dc) const {
auto &ctx = dc->getASTContext();
// Do a qualified lookup for `callAsFunction`. We want to ignore access, as
// that will be checked when we actually try to solve with a `callAsFunction`
// member access.
SmallVector<ValueDecl *, 4> results;
auto opts = NL_QualifiedDefault | NL_ProtocolMembers | NL_IgnoreAccessControl;
dc->lookupQualified(decl, DeclNameRef(ctx.Id_callAsFunction), opts, results);
return llvm::any_of(results, [](ValueDecl *decl) -> bool {
if (auto *fd = dyn_cast<FuncDecl>(decl))
return fd->isCallAsFunctionMethod();
return false;
});
}
bool TypeBase::isCallAsFunctionType(DeclContext *dc) {
// We can perform the lookup at module scope to allow us to better cache the
// result across different contexts. Given we'll be doing a qualified lookup,
// this shouldn't make a difference.
dc = dc->getModuleScopeContext();
// Note this excludes AnyObject.
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = dc->getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
IsCallAsFunctionNominalRequest req(decl, dc);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
template <class DynamicAttribute, class Req>
static bool checkForDynamicAttribute(Evaluator &eval, NominalTypeDecl *decl) {
// If this type has the attribute on it, then yes!
if (decl->getAttrs().hasAttribute<DynamicAttribute>())
return true;
auto hasAttribute = [&](NominalTypeDecl *decl) -> bool {
return evaluateOrDefault(eval, Req{decl}, false);
};
if (auto *proto = dyn_cast<ProtocolDecl>(decl)) {
// Check inherited protocols of a protocol.
for (auto *otherProto : proto->getInheritedProtocols())
if (hasAttribute(otherProto))
return true;
} else {
// Check the protocols the type conforms to.
for (auto *otherProto : decl->getAllProtocols()) {
if (hasAttribute(otherProto))
return true;
}
}
// Check the superclass if present.
if (auto *classDecl = dyn_cast<ClassDecl>(decl)) {
if (auto *superclass = classDecl->getSuperclassDecl()) {
if (hasAttribute(superclass))
return true;
}
}
return false;
}
bool HasDynamicMemberLookupAttributeRequest::evaluate(
Evaluator &eval, NominalTypeDecl *decl) const {
using Req = HasDynamicMemberLookupAttributeRequest;
return checkForDynamicAttribute<DynamicMemberLookupAttr, Req>(eval, decl);
}
bool TypeBase::hasDynamicMemberLookupAttribute() {
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
HasDynamicMemberLookupAttributeRequest req(decl);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
bool HasDynamicCallableAttributeRequest::evaluate(Evaluator &eval,
NominalTypeDecl *decl) const {
using Req = HasDynamicCallableAttributeRequest;
return checkForDynamicAttribute<DynamicCallableAttr, Req>(eval, decl);
}
bool TypeBase::hasDynamicCallableAttribute() {
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
HasDynamicCallableAttributeRequest req(decl);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
ProtocolDecl *ImplementsAttrProtocolRequest::evaluate(
Evaluator &evaluator, const ImplementsAttr *attr, DeclContext *dc) const {
auto typeRepr = attr->getProtocolTypeRepr();
ASTContext &ctx = dc->getASTContext();
DirectlyReferencedTypeDecls referenced =
directReferencesForTypeRepr(evaluator, ctx, typeRepr, dc);
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominalTypes
= resolveTypeDeclsToNominal(evaluator, ctx, referenced, modulesFound,
anyObject);
if (nominalTypes.empty())
return nullptr;
return dyn_cast<ProtocolDecl>(nominalTypes.front());
}
void FindLocalVal::checkPattern(const Pattern *Pat, DeclVisibilityKind Reason) {
Pat->forEachVariable([&](VarDecl *VD) { checkValueDecl(VD, Reason); });
}
void FindLocalVal::checkValueDecl(ValueDecl *D, DeclVisibilityKind Reason) {
if (!D)
return;
if (auto var = dyn_cast<VarDecl>(D)) {
auto dc = var->getDeclContext();
if ((isa<AbstractFunctionDecl>(dc) || isa<ClosureExpr>(dc)) &&
var->hasAttachedPropertyWrapper()) {
// FIXME: This is currently required to set the interface type of the
// auxiliary variables (unless 'var' is a closure param).
(void)var->getPropertyWrapperBackingPropertyType();
auto vars = var->getPropertyWrapperAuxiliaryVariables();
if (vars.backingVar) {
Consumer.foundDecl(vars.backingVar, Reason);
}
if (vars.projectionVar) {
Consumer.foundDecl(vars.projectionVar, Reason);
}
if (vars.localWrappedValueVar) {
Consumer.foundDecl(vars.localWrappedValueVar, Reason);
// If 'localWrappedValueVar' exists, the original var is shadowed.
return;
}
}
}
Consumer.foundDecl(D, Reason);
}
void FindLocalVal::checkParameterList(const ParameterList *params) {
for (auto param : *params) {
checkValueDecl(param, DeclVisibilityKind::FunctionParameter);
}
}
void FindLocalVal::checkGenericParams(GenericParamList *Params) {
if (!Params)
return;
for (auto P : *Params) {
if (P->isOpaqueType()) {
// Generic param for 'some' parameter type is not "visible".
continue;
}
checkValueDecl(P, DeclVisibilityKind::GenericParameter);
}
}
void FindLocalVal::checkSourceFile(const SourceFile &SF) {
for (Decl *D : SF.getTopLevelDecls())
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D))
visitBraceStmt(TLCD->getBody(), /*isTopLevel=*/true);
}
void FindLocalVal::checkStmtCondition(const StmtCondition &Cond) {
SourceLoc start = SourceLoc();
for (auto entry : Cond) {
if (start.isInvalid())
start = entry.getStartLoc();
if (auto *P = entry.getPatternOrNull()) {
SourceRange previousConditionsToHere = SourceRange(start, entry.getEndLoc());
if (!isReferencePointInRange(previousConditionsToHere))
checkPattern(P, DeclVisibilityKind::LocalVariable);
}
}
}
void FindLocalVal::visitIfStmt(IfStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
if (!S->getElseStmt() ||
!isReferencePointInRange(S->getElseStmt()->getSourceRange())) {
checkStmtCondition(S->getCond());
}
visit(S->getThenStmt());
if (S->getElseStmt())
visit(S->getElseStmt());
}
void FindLocalVal::visitGuardStmt(GuardStmt *S) {
if (SM.isBeforeInBuffer(Loc, S->getStartLoc()))
return;
// Names in the guard aren't visible until after the body.
if (S->getBody()->isImplicit() ||
!isReferencePointInRange(S->getBody()->getSourceRange()))
checkStmtCondition(S->getCond());
visit(S->getBody());
}
void FindLocalVal::visitWhileStmt(WhileStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
checkStmtCondition(S->getCond());
visit(S->getBody());
}
void FindLocalVal::visitRepeatWhileStmt(RepeatWhileStmt *S) {
visit(S->getBody());
}
void FindLocalVal::visitDoStmt(DoStmt *S) {
visit(S->getBody());
}
void FindLocalVal::visitForEachStmt(ForEachStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
visit(S->getBody());
if (!isReferencePointInRange(S->getParsedSequence()->getSourceRange()))
checkPattern(S->getPattern(), DeclVisibilityKind::LocalVariable);
}
void FindLocalVal::visitBraceStmt(BraceStmt *S, bool isTopLevelCode) {
if (isTopLevelCode) {
if (SM.isBeforeInBuffer(Loc, S->getStartLoc()))
return;
} else {
SourceRange CheckRange = S->getSourceRange();
if (S->isImplicit()) {
// If the brace statement is implicit, it doesn't have an explicit '}'
// token. Thus, the last token in the brace stmt could be a string
// literal token, which can *contain* its interpolation segments.
// If one of these interpolation segments is the reference point, we'd
// return false from `isReferencePointInRange` because the string
// literal token's start location is before the interpolation token.
// To fix this, adjust the range we are checking to range until the end of
// the potential string interpolation token.
CheckRange.End = Lexer::getLocForEndOfToken(SM, CheckRange.End);
}
if (!isReferencePointInRange(CheckRange))
return;
}
for (auto elem : S->getElements()) {
// If we have a SingleValueStmtExpr, there may be local bindings in the
// wrapped statement.
if (auto *E = elem.dyn_cast<Expr *>()) {
if (auto *SVE = dyn_cast<SingleValueStmtExpr>(E))
visit(SVE->getStmt());
}
if (auto *S = elem.dyn_cast<Stmt*>())
visit(S);
}
for (auto elem : S->getElements()) {
if (auto *D = elem.dyn_cast<Decl*>()) {
if (auto *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD, DeclVisibilityKind::LocalVariable);
}
}
}
void FindLocalVal::visitSwitchStmt(SwitchStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
for (CaseStmt *C : S->getCases()) {
visit(C);
}
}
void FindLocalVal::visitCaseStmt(CaseStmt *S) {
// The last token in a case stmt can be a string literal token, which can
// *contain* its interpolation segments. If one of these interpolation
// segments is the reference point, we'd return false from
// `isReferencePointInRange` because the string literal token's start location
// is before the interpolation token. To fix this, adjust the range we are
// checking to range until the end of the potential string interpolation
// token.
SourceRange CheckRange = {S->getStartLoc(),
Lexer::getLocForEndOfToken(SM, S->getEndLoc())};
if (!isReferencePointInRange(CheckRange))
return;
// Pattern names aren't visible in the patterns themselves,
// just in the body or in where guards.
bool inPatterns = isReferencePointInRange(S->getLabelItemsRange());
auto items = S->getCaseLabelItems();
if (inPatterns) {
for (const auto &CLI : items) {
auto guard = CLI.getGuardExpr();
if (guard && isReferencePointInRange(guard->getSourceRange())) {
checkPattern(CLI.getPattern(), DeclVisibilityKind::LocalVariable);
break;
}
}
}
if (!inPatterns && !items.empty()) {
for (auto *vd : S->getCaseBodyVariablesOrEmptyArray()) {
checkValueDecl(vd, DeclVisibilityKind::LocalVariable);
}
}
visit(S->getBody());
}
void FindLocalVal::visitDoCatchStmt(DoCatchStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
visit(S->getBody());
for (CaseStmt *C : S->getCatches()) {
visit(C);
}
}
void swift::simple_display(llvm::raw_ostream &out, NLKind kind) {
switch (kind) {
case NLKind::QualifiedLookup:
out << "QualifiedLookup";
return;
case NLKind::UnqualifiedLookup:
out << "UnqualifiedLookup";
return;
}
llvm_unreachable("Unhandled case in switch");
}
void swift::simple_display(llvm::raw_ostream &out, NLOptions options) {
using Flag = std::pair<NLOptions, StringRef>;
Flag possibleFlags[] = {
#define FLAG(Name) {Name, #Name},
FLAG(NL_ProtocolMembers)
FLAG(NL_RemoveNonVisible)
FLAG(NL_RemoveOverridden)
FLAG(NL_IgnoreAccessControl)
FLAG(NL_OnlyTypes)
FLAG(NL_IncludeAttributeImplements)
#undef FLAG
};
auto flagsToPrint = llvm::make_filter_range(
possibleFlags, [&](Flag flag) { return options & flag.first; });
out << "{ ";
interleave(
flagsToPrint, [&](Flag flag) { out << flag.second; },
[&] { out << ", "; });
out << " }";
}