Files
swift-mirror/SwiftCompilerSources/Sources/SIL/Function.swift
2025-11-17 14:13:09 +03:00

743 lines
27 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- Function.swift - Defines the Function class ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import Basic
import AST
import SILBridging
@_semantics("arc.immortal")
final public class Function : CustomStringConvertible, HasShortDescription, Hashable {
public private(set) var effects = FunctionEffects()
public var name: StringRef {
return StringRef(bridged: bridged.getName())
}
public var location: Location {
return Location(bridged: bridged.getLocation())
}
public var declRef: DeclRef { DeclRef(bridged: bridged.getDeclRef()) }
public var sourceFile: SourceFile? { declRef.sourceFile }
final public var description: String {
return String(taking: bridged.getDebugDescription())
}
public var shortDescription: String { name.string }
public func hash(into hasher: inout Hasher) {
hasher.combine(ObjectIdentifier(self))
}
/// True if this function is referenced from anywhere within the module,
/// e.g. from a `function_ref` instruction.
public var isReferencedInModule: Bool { bridged.isReferencedInModule() }
/// True if this function should be optimized, i.e. the module is compiled with optimizations
/// and the function has no `@_optimize(none)` attribute.
public var shouldOptimize: Bool { bridged.shouldOptimize() }
public var wasDeserializedCanonical: Bool { bridged.wasDeserializedCanonical() }
public var isTrapNoReturn: Bool { bridged.isTrapNoReturn() }
public var isAutodiffVJP: Bool { bridged.isAutodiffVJP() }
public var isConvertPointerToPointerArgument: Bool { bridged.isConvertPointerToPointerArgument() }
public var isAddressor: Bool { bridged.isAddressor() }
public var specializationLevel: Int { bridged.specializationLevel() }
public var isSpecialization: Bool { bridged.isSpecialization() }
public var hasOwnership: Bool { bridged.hasOwnership() }
public var hasLoweredAddresses: Bool { bridged.hasLoweredAddresses() }
public var loweredFunctionType: CanonicalType {
CanonicalType(bridged: bridged.getLoweredFunctionType())
}
/// The lowered function type, with opaque archetypes erased.
///
/// For example:
/// @substituted <τ_0_0> () -> @out τ_0_0 for <some P>
/// is lowered to this inside its module:
/// @substituted <τ_0_0> () -> @out τ_0_0 for <ActualResultType>
/// and this outside its module
/// @substituted <τ_0_0> () -> @out τ_0_0 for <some P>
public var loweredFunctionTypeInContext: CanonicalType {
CanonicalType(bridged: bridged.getLoweredFunctionTypeInContext())
}
public var genericSignature: GenericSignature {
GenericSignature(bridged: bridged.getGenericSignature())
}
public var forwardingSubstitutionMap: SubstitutionMap {
SubstitutionMap(bridged: bridged.getForwardingSubstitutionMap())
}
public func mapTypeIntoEnvironment(_ type: AST.`Type`) -> AST.`Type` {
return AST.`Type`(bridged: bridged.mapTypeIntoEnvironment(type.bridged))
}
public func mapTypeIntoEnvironment(_ type: Type) -> Type {
return Type(bridged: bridged.mapTypeIntoEnvironment(type.bridged))
}
/// Returns true if the function is a definition and not only an external declaration.
///
/// This is the case if the function contains a body, i.e. some basic blocks.
public var isDefinition: Bool { blocks.first != nil }
public var blocks : BasicBlockList { BasicBlockList(first: bridged.getFirstBlock().block) }
public var entryBlock: BasicBlock { blocks.first! }
public func appendNewBlock(_ context: some MutatingContext) -> BasicBlock {
context.notifyBranchesChanged()
return context._bridged.appendBlock(bridged).block
}
public var arguments: LazyMapSequence<ArgumentArray, FunctionArgument> {
entryBlock.arguments.lazy.map { $0 as! FunctionArgument }
}
public func argument(at index: Int) -> FunctionArgument {
entryBlock.arguments[index] as! FunctionArgument
}
/// All instructions of all blocks.
public var instructions: LazySequence<FlattenSequence<LazyMapSequence<BasicBlockList, InstructionList>>> {
blocks.lazy.flatMap { $0.instructions }
}
public var reversedInstructions: LazySequence<FlattenSequence<LazyMapSequence<ReverseBasicBlockList, ReverseInstructionList>>> {
blocks.reversed().lazy.flatMap { $0.instructions.reversed() }
}
public var returnInstruction: ReturnInstruction? {
for block in blocks.reversed() {
if let retInst = block.terminator as? ReturnInstruction { return retInst }
}
return nil
}
/// True if the callee function is annotated with @_semantics("programtermination_point").
/// This means that the function terminates the program.
public var isProgramTerminationPoint: Bool { hasSemanticsAttribute("programtermination_point") }
public var isTransparent: Bool { bridged.isTransparent() }
public var isAsync: Bool { bridged.isAsync() }
/// True if this is a `[global_init]` function.
///
/// Such a function is typically a global addressor which calls the global's
/// initializer (`[global_init_once_fn]`) via a `builtin "once"`.
public var isGlobalInitFunction: Bool { bridged.isGlobalInitFunction() }
/// True if this is a `[global_init_once_fn]` function.
///
/// Such a function allocates a global and stores the global's init value.
/// It's called from a `[global_init]` function via a `builtin "once"`.
public var isGlobalInitOnceFunction: Bool { bridged.isGlobalInitOnceFunction() }
public var isDestructor: Bool { bridged.isDestructor() }
public var isGeneric: Bool { bridged.isGeneric() }
public var linkage: Linkage { bridged.getLinkage().linkage }
/// True, if the linkage of the function indicates that it is visible outside the current
/// compilation unit and therefore not all of its uses are known.
///
/// For example, `public` linkage.
public var isPossiblyUsedExternally: Bool {
return bridged.isPossiblyUsedExternally()
}
/// True, if the linkage of the function indicates that it has a definition outside the
/// current compilation unit.
///
/// For example, `public_external` linkage.
public var isDefinedExternally: Bool { linkage.isExternal }
public func hasSemanticsAttribute(_ attr: StaticString) -> Bool {
attr.withUTF8Buffer { (buffer: UnsafeBufferPointer<UInt8>) in
bridged.hasSemanticsAttr(BridgedStringRef(data: buffer.baseAddress!, count: buffer.count))
}
}
public var isSerialized: Bool {
switch serializedKind {
case .notSerialized, .serializedForPackage:
return false
case .serialized:
return true
}
}
public var isAnySerialized: Bool {
switch serializedKind {
case .notSerialized:
return false
case .serialized, .serializedForPackage:
return true
}
}
public enum SerializedKind {
case notSerialized, serialized, serializedForPackage
}
public var serializedKind: SerializedKind {
switch bridged.getSerializedKind() {
case .IsNotSerialized: return .notSerialized
case .IsSerialized: return .serialized
case .IsSerializedForPackage: return .serializedForPackage
@unknown default: fatalError()
}
}
private func serializedKindBridged(_ arg: SerializedKind) -> BridgedFunction.SerializedKind {
switch arg {
case .notSerialized: return .IsNotSerialized
case .serialized: return .IsSerialized
case .serializedForPackage: return .IsSerializedForPackage
}
}
public func canBeInlinedIntoCaller(withSerializedKind callerSerializedKind: SerializedKind) -> Bool {
switch serializedKind {
// If both callee and caller are not_serialized, the callee can be inlined into the caller
// during SIL inlining passes even if it (and the caller) might contain private symbols.
case .notSerialized:
return callerSerializedKind == .notSerialized;
// If Package-CMO is enabled, we serialize package, public, and @usableFromInline decls as
// [serialized_for_package].
// Their bodies must not, however, leak into @inlinable functions (that are [serialized])
// since they are inlined outside of their defining module.
//
// If this callee is [serialized_for_package], the caller must be either non-serialized
// or [serialized_for_package] for this callee's body to be inlined into the caller.
// It can however be referenced by [serialized] caller.
case .serializedForPackage:
return callerSerializedKind != .serialized;
case .serialized:
return true;
}
}
public func hasValidLinkageForFragileRef(_ kind: SerializedKind) -> Bool {
bridged.hasValidLinkageForFragileRef(serializedKindBridged(kind))
}
public enum ThunkKind {
case noThunk, thunk, reabstractionThunk, signatureOptimizedThunk
}
public var thunkKind: ThunkKind {
switch bridged.isThunk() {
case .IsNotThunk: return .noThunk
case .IsThunk: return .thunk
case .IsReabstractionThunk: return .reabstractionThunk
case .IsSignatureOptimizedThunk: return .signatureOptimizedThunk
default:
fatalError()
}
}
public func set(thunkKind: ThunkKind, _ context: some MutatingContext) {
context.notifyEffectsChanged()
switch thunkKind {
case .noThunk: bridged.setThunk(.IsNotThunk)
case .thunk: bridged.setThunk(.IsThunk)
case .reabstractionThunk: bridged.setThunk(.IsReabstractionThunk)
case .signatureOptimizedThunk: bridged.setThunk(.IsSignatureOptimizedThunk)
}
}
public var accessorKindName: String? {
guard bridged.isAccessor() else {
return nil
}
return StringRef(bridged: bridged.getAccessorName()).string
}
public var isInitializer: Bool {
return bridged.isInitializer()
}
public var isDeinitializer: Bool {
return bridged.isDeinitializer()
}
public var isImplicit: Bool {
return bridged.isImplicit()
}
/// True, if the function runs with a swift 5.1 runtime.
/// Note that this is function specific, because inlinable functions are de-serialized
/// in a client module, which might be compiled with a different deployment target.
public var isSwift51RuntimeAvailable: Bool {
bridged.isSwift51RuntimeAvailable()
}
public var needsStackProtection: Bool {
bridged.needsStackProtection()
}
public func set(needStackProtection: Bool, _ context: some MutatingContext) {
context.notifyEffectsChanged()
bridged.setNeedStackProtection(needStackProtection)
}
public var isDeinitBarrier: Bool {
effects.sideEffects?.global.isDeinitBarrier ?? true
}
public enum PerformanceConstraints {
case none
case noAllocations
case noLocks
case noRuntime
case noExistentials
case noObjCRuntime
case manualOwnership
}
public var performanceConstraints: PerformanceConstraints {
switch bridged.getPerformanceConstraints() {
case .None: return .none
case .NoAllocation: return .noAllocations
case .NoLocks: return .noLocks
case .NoRuntime: return .noRuntime
case .NoExistentials: return .noExistentials
case .NoObjCBridging: return .noObjCRuntime
case .ManualOwnership: return .manualOwnership
default: fatalError("unknown performance constraint")
}
}
public func set(isPerformanceConstraint: Bool, _ context: some MutatingContext) {
context.notifyEffectsChanged()
bridged.setIsPerformanceConstraint(isPerformanceConstraint)
}
public enum InlineStrategy {
case automatic
case never
case heuristicAlways
case always
}
public var inlineStrategy: InlineStrategy {
switch bridged.getInlineStrategy() {
case .InlineDefault: return .automatic
case .NoInline: return .never
case .HeuristicAlwaysInline: return .heuristicAlways
case .AlwaysInline: return .always
default:
fatalError()
}
}
public enum ABILanguage {
case C
case Swift
}
public var abi: ABILanguage {
switch bridged.getSILFunctionLanguage() {
case .C: return .C
case .Swift: return .Swift
default:
fatalError()
}
}
public enum SourceFileKind {
case library /// A normal .swift file.
case main /// A .swift file that can have top-level code.
case sil /// Came from a .sil file.
case interface /// Came from a .swiftinterface file, representing another module.
case macroExpansion /// Came from a macro expansion.
case defaultArgument /// Came from default argument at caller side
};
public var sourceFileKind: SourceFileKind? {
switch bridged.getSourceFileKind() {
case .Library: return .library
case .Main: return .main
case .SIL: return .sil
case .Interface: return .interface
case .MacroExpansion: return .macroExpansion
case .DefaultArgument: return .defaultArgument
case .None: return nil
@unknown default:
fatalError("unknown enum case")
}
}
}
public func == (lhs: Function, rhs: Function) -> Bool { lhs === rhs }
public func != (lhs: Function, rhs: Function) -> Bool { lhs !== rhs }
// Function conventions.
extension Function {
public var convention: FunctionConvention {
FunctionConvention(for: loweredFunctionTypeInContext, in: self)
}
public var argumentConventions: ArgumentConventions {
ArgumentConventions(convention: convention)
}
// FIXME: Change this to argumentConventions.indirectSILResultCount.
// This is incorrect in two cases: it does not include the indirect
// error result, and, prior to address lowering, does not include
// pack results.
public var numIndirectResultArguments: Int { bridged.getNumIndirectFormalResults() }
public var hasIndirectErrorArgument: Bool { bridged.hasIndirectErrorResult() }
/// The number of arguments which correspond to parameters (and not to indirect results).
public var numParameterArguments: Int { convention.parameters.count }
/// The slice of arguments starting at argumentConventions.firstParameterIndex.
public var parameters: LazyMapSequence<Slice<ArgumentArray>, FunctionArgument> {
let args = arguments
return args[argumentConventions.firstParameterIndex..<args.count]
}
/// The total number of arguments.
///
/// This is the sum of indirect result arguments and parameter arguments.
/// If the function is a definition (i.e. it has at least an entry block), this is the
/// number of arguments of the function's entry block.
public var numArguments: Int { argumentConventions.count }
public var hasSelfArgument: Bool { argumentConventions.selfIndex != nil }
public var selfArgumentIndex: Int? { argumentConventions.selfIndex }
public var selfArgument: FunctionArgument? {
if let selfArgIdx = selfArgumentIndex {
return arguments[selfArgIdx]
}
return nil
}
public var dynamicSelfMetadata: FunctionArgument? {
if bridged.hasDynamicSelfMetadata() {
return arguments.last!
}
return nil
}
public var argumentTypes: ArgumentTypeArray { ArgumentTypeArray(function: self) }
public var resultType: Type { bridged.getSILResultType().type }
public var hasUnsafeNonEscapableResult: Bool {
return bridged.hasUnsafeNonEscapableResult()
}
public var hasResultDependence: Bool {
convention.resultDependencies != nil
}
}
public struct ArgumentTypeArray : RandomAccessCollection, FormattedLikeArray {
fileprivate let function: Function
public var startIndex: Int { return 0 }
public var endIndex: Int { function.bridged.getNumSILArguments() }
public subscript(_ index: Int) -> Type {
function.bridged.getSILArgumentType(index).type
}
}
// Function effects.
extension Function {
/// Kinds of effect attributes which can be defined for a Swift function.
public enum EffectAttribute {
/// No effect attribute is specified.
case none
/// `[readnone]`
///
/// A readnone function does not have any observable memory read or write operations.
/// This does not mean that the function cannot read or write at all. For example,
/// its allowed to allocate and write to local objects inside the function.
///
/// A function can be marked as readnone if two calls of the same function with the
/// same parameters can be simplified to one call (e.g. by the CSE optimization).
/// Some conclusions:
/// * A readnone function must not return a newly allocated class instance.
/// * A readnone function can return a newly allocated copy-on-write object,
/// like an Array, because COW data types conceptually behave like value types.
/// * A readnone function must not release any parameter or any object indirectly
/// referenced from a parameter.
/// * Any kind of observable side-effects are not allowed, like `print`, file IO, etc.
case readNone
/// `[readonly]`
///
/// A readonly function does not have any observable memory write operations.
/// Similar to readnone, a readonly function is allowed to contain writes to e.g. local objects, etc.
///
/// A function can be marked as readonly if its save to eliminate a call to such
/// a function if its return value is not used.
/// The same conclusions as for readnone also apply to readonly.
case readOnly
/// `[releasenone]`
///
/// A releasenone function must not perform any observable release-operation on an object.
/// This means, it must not do anything which might let the caller observe any decrement of
/// a reference count or any deallocations.
/// Note that it's allowed to release an object if the release is balancing a retain in the
/// same function. Also, it's allowed to release (and deallocate) local objects which were
/// allocated in the same function.
case releaseNone
}
/// The effect attribute which is specified in the source code (if any).
public var effectAttribute: EffectAttribute {
switch bridged.getEffectAttribute() {
case .ReadNone: return .readNone
case .ReadOnly: return .readOnly
case .ReleaseNone: return .releaseNone
default: return .none
}
}
public func modifyEffects(_ context: some MutatingContext, _ body: (inout FunctionEffects) -> ()) {
context.notifyEffectsChanged()
body(&effects)
}
}
// Bridging utilities
extension Function {
public var bridged: BridgedFunction {
BridgedFunction(obj: SwiftObject(self))
}
static func register() {
func checkLayout(_ p: UnsafeMutablePointer<FunctionEffects>,
data: UnsafeMutableRawPointer, size: Int) {
assert(MemoryLayout<FunctionEffects>.size <= size, "wrong FunctionInfo size")
assert(UnsafeMutableRawPointer(p) == data, "wrong FunctionInfo layout")
}
let metatype = unsafeBitCast(Function.self, to: SwiftMetatype.self)
BridgedFunction.registerBridging(metatype,
// initFn
{ (f: BridgedFunction, data: UnsafeMutableRawPointer, size: Int) in
checkLayout(&f.function.effects, data: data, size: size)
data.initializeMemory(as: FunctionEffects.self, repeating: FunctionEffects(), count: 1)
},
// destroyFn
{ (f: BridgedFunction, data: UnsafeMutableRawPointer, size: Int) in
checkLayout(&f.function.effects, data: data, size: size)
data.assumingMemoryBound(to: FunctionEffects.self).deinitialize(count: 1)
},
// writeFn
{ (f: BridgedFunction, os: BridgedOStream, idx: Int) in
let s: String
let effects = f.function.effects
if idx >= 0 {
if idx < effects.escapeEffects.arguments.count {
s = effects.escapeEffects.arguments[idx].bodyDescription
} else {
let globalIdx = idx - effects.escapeEffects.arguments.count
if globalIdx == 0 {
s = effects.sideEffects!.global.description
} else {
let seIdx = globalIdx - 1
s = effects.sideEffects!.getArgumentEffects(for: seIdx).bodyDescription
}
}
} else {
s = effects.description
}
s._withBridgedStringRef { $0.write(os) }
},
// parseFn:
{ (f: BridgedFunction, str: BridgedStringRef, mode: BridgedFunction.ParseEffectsMode, argumentIndex: Int, paramNames: BridgedArrayRef) -> BridgedFunction.ParsingError in
do {
var parser = StringParser(String(str))
let function = f.function
switch mode {
case .argumentEffectsFromSource:
let paramToIdx = paramNames.withElements(ofType: BridgedStringRef.self) {
(buffer: UnsafeBufferPointer<BridgedStringRef>) -> Dictionary<String, Int> in
let keyValPairs = buffer.enumerated().lazy.map { (String($0.1), $0.0) }
return Dictionary(uniqueKeysWithValues: keyValPairs)
}
let effect = try parser.parseEffectFromSource(for: function, params: paramToIdx)
function.effects.escapeEffects.arguments.append(effect)
case .argumentEffectsFromSIL:
try parser.parseEffectsFromSIL(argumentIndex: argumentIndex, to: &function.effects)
case .globalEffectsFromSIL:
try parser.parseGlobalSideEffectsFromSIL(to: &function.effects)
case .multipleEffectsFromSIL:
try parser.parseEffectsFromSIL(to: &function.effects)
default:
fatalError("invalid ParseEffectsMode")
}
if !parser.isEmpty() { try parser.throwError("syntax error") }
} catch let error as ParsingError {
return BridgedFunction.ParsingError(message: error.message.utf8Start, position: error.position)
} catch {
fatalError()
}
return BridgedFunction.ParsingError(message: nil, position: 0)
},
// copyEffectsFn
{ (toFunc: BridgedFunction, fromFunc: BridgedFunction) -> Int in
let srcFunc = fromFunc.function
let destFunc = toFunc.function
let srcResultArgs = srcFunc.numIndirectResultArguments
let destResultArgs = destFunc.numIndirectResultArguments
// We only support reabstraction (indirect -> direct) of a single
// return value.
if srcResultArgs != destResultArgs &&
(srcResultArgs > 1 || destResultArgs > 1) {
return 0
}
destFunc.effects =
FunctionEffects(copiedFrom: srcFunc.effects,
resultArgDelta: destResultArgs - srcResultArgs)
return 1
},
// getEffectInfo
{ (f: BridgedFunction, idx: Int) -> BridgedFunction.EffectInfo in
let effects = f.function.effects
if idx < effects.escapeEffects.arguments.count {
let effect = effects.escapeEffects.arguments[idx]
return BridgedFunction.EffectInfo(argumentIndex: effect.argumentIndex,
isDerived: effect.isDerived, isEmpty: false, isValid: true)
}
if let sideEffects = effects.sideEffects {
let globalIdx = idx - effects.escapeEffects.arguments.count
if globalIdx == 0 {
return BridgedFunction.EffectInfo(argumentIndex: -1, isDerived: true, isEmpty: false, isValid: true)
}
let seIdx = globalIdx - 1
if seIdx < sideEffects.arguments.count {
return BridgedFunction.EffectInfo(argumentIndex: seIdx, isDerived: true,
isEmpty: sideEffects.arguments[seIdx].isEmpty, isValid: true)
}
}
return BridgedFunction.EffectInfo(argumentIndex: -1, isDerived: false, isEmpty: true, isValid: false)
},
// getMemBehaviorFn
{ (f: BridgedFunction, observeRetains: Bool) -> BridgedMemoryBehavior in
let e = f.function.getSideEffects()
return e.getMemBehavior(observeRetains: observeRetains)
},
// argumentMayRead (used by the MemoryLifetimeVerifier)
{ (f: BridgedFunction, bridgedArgOp: BridgedOperand, bridgedAddr: BridgedValue) -> Bool in
let argOp = Operand(bridged: bridgedArgOp)
let addr = bridgedAddr.value
let applySite = argOp.instruction as! FullApplySite
let addrPath = addr.accessPath
let calleeArgIdx = applySite.calleeArgumentIndex(of: argOp)!
let convention = applySite.convention(of: argOp)!
assert(convention.isIndirectIn || convention.isInout)
let argPath = argOp.value.accessPath
assert(!argPath.isDistinct(from: addrPath))
let path = argPath.getProjection(to: addrPath) ?? SmallProjectionPath()
let effects = f.function.getSideEffects(forArgument: argOp.value.at(path),
atIndex: calleeArgIdx,
withConvention: convention)
return effects.memory.read
},
// isDeinitBarrier
{ (f: BridgedFunction) -> Bool in
return f.function.getSideEffects().isDeinitBarrier
}
)
}
}
extension BridgedFunction {
public var function: Function { obj.getAs(Function.self) }
}
extension OptionalBridgedFunction {
public var function: Function? { obj.getAs(Function.self) }
}
public extension SideEffects.GlobalEffects {
func getMemBehavior(observeRetains: Bool) -> BridgedMemoryBehavior {
if allocates || ownership.destroy || (ownership.copy && observeRetains) {
return .MayHaveSideEffects
}
switch (memory.read, memory.write) {
case (false, false): return .None
case (true, false): return .MayRead
case (false, true): return .MayWrite
case (true, true): return .MayReadWrite
}
}
}
public struct BasicBlockList : CollectionLikeSequence, IteratorProtocol {
private var currentBlock: BasicBlock?
public init(first: BasicBlock?) { currentBlock = first }
public mutating func next() -> BasicBlock? {
if let block = currentBlock {
currentBlock = block.next
return block
}
return nil
}
public var first: BasicBlock? { currentBlock }
public func reversed() -> ReverseBasicBlockList {
if let block = currentBlock {
let lastBlock = block.parentFunction.bridged.getLastBlock().block
return ReverseBasicBlockList(first: lastBlock)
}
return ReverseBasicBlockList(first: nil)
}
}
public struct ReverseBasicBlockList : CollectionLikeSequence, IteratorProtocol {
private var currentBlock: BasicBlock?
public init(first: BasicBlock?) { currentBlock = first }
public mutating func next() -> BasicBlock? {
if let block = currentBlock {
currentBlock = block.previous
return block
}
return nil
}
public var first: BasicBlock? { currentBlock }
}