Files
swift-mirror/lib/SILOptimizer/Transforms/CSE.cpp

720 lines
25 KiB
C++

//===--- CSE.cpp - Simple and fast CSE pass -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-cse"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
using namespace swift;
//===----------------------------------------------------------------------===//
// Simple Value
//===----------------------------------------------------------------------===//
namespace {
/// SimpleValue - Instances of this struct represent available values in the
/// scoped hash table.
struct SimpleValue {
SILInstruction *Inst;
SimpleValue(SILInstruction *I) : Inst(I) { }
bool isSentinel() const {
return Inst == llvm::DenseMapInfo<SILInstruction *>::getEmptyKey() ||
Inst == llvm::DenseMapInfo<SILInstruction *>::getTombstoneKey();
}
};
} // end anonymous namespace
namespace llvm {
template <> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<SILInstruction *>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<SILInstruction *>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
} // end namespace llvm
namespace {
class HashVisitor : public SILInstructionVisitor<HashVisitor, llvm::hash_code> {
using hash_code = llvm::hash_code;
public:
hash_code visitValueBase(ValueBase *) {
llvm_unreachable("No hash implemented for the given type");
}
hash_code visitBridgeObjectToRefInst(BridgeObjectToRefInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitBridgeObjectToWordInst(BridgeObjectToWordInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitRefToBridgeObjectInst(RefToBridgeObjectInst *X) {
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(
X->getKind(), X->getType(),
llvm::hash_combine_range(Operands.begin(), Operands.end()));
}
hash_code visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitUncheckedAddrCastInst(UncheckedAddrCastInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitFunctionRefInst(FunctionRefInst *X) {
return llvm::hash_combine(X->getKind(), X->getReferencedFunction());
}
hash_code visitGlobalAddrInst(GlobalAddrInst *X) {
return llvm::hash_combine(X->getKind(), X->getReferencedGlobal());
}
hash_code visitIntegerLiteralInst(IntegerLiteralInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getValue());
}
hash_code visitFloatLiteralInst(FloatLiteralInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getBits());
}
hash_code visitRefElementAddrInst(RefElementAddrInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getField());
}
hash_code visitProjectBoxInst(ProjectBoxInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitRefToRawPointerInst(RefToRawPointerInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitRawPointerToRefInst(RawPointerToRefInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitUnownedToRefInst(UnownedToRefInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitRefToUnownedInst(RefToUnownedInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitUnmanagedToRefInst(UnmanagedToRefInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitRefToUnmanagedInst(RefToUnmanagedInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitUpcastInst(UpcastInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitStringLiteralInst(StringLiteralInst *X) {
return llvm::hash_combine(X->getKind(), X->getEncoding(), X->getValue());
}
hash_code visitStructInst(StructInst *X) {
// This is safe since we are hashing the operands using the actual pointer
// values of the values being used by the operand.
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(X->getKind(), X->getStructDecl(),
llvm::hash_combine_range(Operands.begin(), Operands.end()));
}
hash_code visitStructExtractInst(StructExtractInst *X) {
return llvm::hash_combine(X->getKind(), X->getStructDecl(), X->getField(),
X->getOperand());
}
hash_code visitStructElementAddrInst(StructElementAddrInst *X) {
return llvm::hash_combine(X->getKind(), X->getStructDecl(), X->getField(),
X->getOperand());
}
hash_code visitCondFailInst(CondFailInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand());
}
hash_code visitClassMethodInst(ClassMethodInst *X) {
return llvm::hash_combine(X->getKind(),
X->getType(),
X->getOperand());
}
hash_code visitTupleInst(TupleInst *X) {
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(X->getKind(), X->getTupleType(),
llvm::hash_combine_range(Operands.begin(), Operands.end()));
}
hash_code visitTupleExtractInst(TupleExtractInst *X) {
return llvm::hash_combine(X->getKind(), X->getTupleType(), X->getFieldNo(),
X->getOperand());
}
hash_code visitTupleElementAddrInst(TupleElementAddrInst *X) {
return llvm::hash_combine(X->getKind(), X->getTupleType(), X->getFieldNo(),
X->getOperand());
}
hash_code visitMetatypeInst(MetatypeInst *X) {
return llvm::hash_combine(X->getKind(), X->getType());
}
hash_code visitValueMetatypeInst(ValueMetatypeInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitExistentialMetatypeInst(ExistentialMetatypeInst *X) {
return llvm::hash_combine(X->getKind(), X->getType());
}
hash_code visitObjCProtocolInst(ObjCProtocolInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getProtocol());
}
hash_code visitIndexRawPointerInst(IndexRawPointerInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getBase(),
X->getIndex());
}
hash_code visitPointerToAddressInst(PointerToAddressInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitAddressToPointerInst(AddressToPointerInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand());
}
hash_code visitApplyInst(ApplyInst *X) {
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(X->getKind(), X->getCallee(),
llvm::hash_combine_range(Operands.begin(),
Operands.end()),
X->hasSubstitutions());
}
hash_code visitBuiltinInst(BuiltinInst *X) {
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(X->getKind(), X->getName().get(),
llvm::hash_combine_range(Operands.begin(),
Operands.end()),
X->hasSubstitutions());
}
hash_code visitEnumInst(EnumInst *X) {
// We hash the enum by hashing its kind, element, and operand if it has one.
if (!X->hasOperand())
return llvm::hash_combine(X->getKind(), X->getElement());
return llvm::hash_combine(X->getKind(), X->getElement(), X->getOperand());
}
hash_code visitUncheckedEnumDataInst(UncheckedEnumDataInst *X) {
// We hash the enum by hashing its kind, element, and operand.
return llvm::hash_combine(X->getKind(), X->getElement(), X->getOperand());
}
hash_code visitIndexAddrInst(IndexAddrInst *X) {
return llvm::hash_combine(X->getKind(), X->getType(), X->getBase(),
X->getIndex());
}
hash_code visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitUncheckedRefCastInst(UncheckedRefCastInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitSelectEnumInstBase(SelectEnumInstBase *X) {
auto hash = llvm::hash_combine(X->getKind(),
X->getEnumOperand(),
X->getType(),
X->hasDefault());
for (unsigned i = 0, e = X->getNumCases(); i < e; ++i) {
hash = llvm::hash_combine(hash, X->getCase(i).first,
X->getCase(i).second);
}
if (X->hasDefault())
hash = llvm::hash_combine(hash, X->getDefaultResult());
return hash;
}
hash_code visitSelectEnumInst(SelectEnumInst *X) {
return visitSelectEnumInstBase(X);
}
hash_code visitSelectEnumAddrInst(SelectEnumAddrInst *X) {
return visitSelectEnumInstBase(X);
}
hash_code visitSelectValueInst(SelectValueInst *X) {
auto hash = llvm::hash_combine(X->getKind(),
X->getOperand(),
X->getType(),
X->hasDefault());
for (unsigned i = 0, e = X->getNumCases(); i < e; ++i) {
hash = llvm::hash_combine(hash, X->getCase(i).first,
X->getCase(i).second);
}
if (X->hasDefault())
hash = llvm::hash_combine(hash, X->getDefaultResult());
return hash;
}
hash_code visitIsNonnullInst(IsNonnullInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitThinFunctionToPointerInst(ThinFunctionToPointerInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitPointerToThinFunctionInst(PointerToThinFunctionInst *X) {
return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType());
}
hash_code visitWitnessMethodInst(WitnessMethodInst *X) {
OperandValueArrayRef Operands(X->getAllOperands());
return llvm::hash_combine(X->getKind(),
X->getLookupType().getPointer(),
X->getMember().getHashCode(),
X->getConformance(),
X->getType(),
X->hasOperand(),
llvm::hash_combine_range(
Operands.begin(),
Operands.end()));
}
};
} // end anonymous namespace
unsigned llvm::DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
return HashVisitor().visit(Val.Inst);
}
bool llvm::DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS,
SimpleValue RHS) {
SILInstruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
return LHSI->getKind() == RHSI->getKind() && LHSI->isIdenticalTo(RHSI);
}
//===----------------------------------------------------------------------===//
// CSE Interface
//===----------------------------------------------------------------------===//
namespace {
/// CSE - This pass does a simple depth-first walk over the dominator tree,
/// eliminating trivially redundant instructions and using simplifyInstruction
/// to canonicalize things as it goes. It is intended to be fast and catch
/// obvious cases so that SILCombine and other passes are more effective.
class CSE {
public:
typedef llvm::ScopedHashTableVal<SimpleValue, ValueBase *> SimpleValueHTType;
typedef llvm::RecyclingAllocator<llvm::BumpPtrAllocator, SimpleValueHTType>
AllocatorTy;
typedef llvm::ScopedHashTable<SimpleValue, ValueBase *,
llvm::DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// AvailableValues - This scoped hash table contains the current values of
/// all of our simple scalar expressions. As we walk down the domtree, we
/// look to see if instructions are in this: if so, we replace them with what
/// we find, otherwise we insert them so that dominated values can succeed in
/// their lookup.
ScopedHTType *AvailableValues;
SideEffectAnalysis *SEA;
CSE(bool RunsOnHighLevelSil, SideEffectAnalysis *SEA)
: SEA(SEA), RunsOnHighLevelSil(RunsOnHighLevelSil) {}
bool processFunction(SILFunction &F, DominanceInfo *DT);
bool canHandle(SILInstruction *Inst);
private:
/// True if CSE is done on high-level SIL, i.e. semantic calls are not inlined
/// yet. In this case some semantic calls can be CSEd.
bool RunsOnHighLevelSil;
// NodeScope - almost a POD, but needs to call the constructors for the
// scoped hash tables so that a new scope gets pushed on. These are RAII so
// that the scope gets popped when the NodeScope is destroyed.
class NodeScope {
public:
NodeScope(ScopedHTType *availableValues) : Scope(*availableValues) {}
private:
NodeScope(const NodeScope &) = delete;
void operator=(const NodeScope &) = delete;
ScopedHTType::ScopeTy Scope;
};
// StackNode - contains all the needed information to create a stack for doing
// a depth first traversal of the tree. This includes scopes for values and
// loads as well as the generation. There is a child iterator so that the
// children do not need to be store separately.
class StackNode {
public:
StackNode(ScopedHTType *availableValues, DominanceInfoNode *n,
DominanceInfoNode::iterator child,
DominanceInfoNode::iterator end)
: Node(n), ChildIter(child), EndIter(end), Scopes(availableValues),
Processed(false) {}
// Accessors.
DominanceInfoNode *node() { return Node; }
DominanceInfoNode::iterator childIter() { return ChildIter; }
DominanceInfoNode *nextChild() {
DominanceInfoNode *child = *ChildIter;
++ChildIter;
return child;
}
DominanceInfoNode::iterator end() { return EndIter; }
bool isProcessed() { return Processed; }
void process() { Processed = true; }
private:
StackNode(const StackNode &) = delete;
void operator=(const StackNode &) = delete;
// Members.
DominanceInfoNode *Node;
DominanceInfoNode::iterator ChildIter;
DominanceInfoNode::iterator EndIter;
NodeScope Scopes;
bool Processed;
};
bool processNode(DominanceInfoNode *Node);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// CSE Implementation
//===----------------------------------------------------------------------===//
bool CSE::processFunction(SILFunction &Fm, DominanceInfo *DT) {
std::vector<StackNode *> nodesToProcess;
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
AvailableValues = &AVTable;
bool Changed = false;
// Process the root node.
nodesToProcess.push_back(new StackNode(AvailableValues, DT->getRootNode(),
DT->getRootNode()->begin(),
DT->getRootNode()->end()));
// Process the stack.
while (!nodesToProcess.empty()) {
// Grab the first item off the stack. Set the current generation, remove
// the node from the stack, and process it.
StackNode *NodeToProcess = nodesToProcess.back();
// Check if the node needs to be processed.
if (!NodeToProcess->isProcessed()) {
// Process the node.
Changed |= processNode(NodeToProcess->node());
NodeToProcess->process();
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
// Push the next child onto the stack.
DominanceInfoNode *child = NodeToProcess->nextChild();
nodesToProcess.push_back(
new StackNode(AvailableValues, child, child->begin(), child->end()));
} else {
// It has been processed, and there are no more children to process,
// so delete it and pop it off the stack.
delete NodeToProcess;
nodesToProcess.pop_back();
}
} // while (!nodes...)
return Changed;
}
bool CSE::processNode(DominanceInfoNode *Node) {
SILBasicBlock *BB = Node->getBlock();
bool Changed = false;
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
for (SILBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
SILInstruction *Inst = &*I;
++I;
DEBUG(llvm::dbgs() << "SILCSE VISITING: " << *Inst << "\n");
// Dead instructions should just be removed.
if (isInstructionTriviallyDead(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE DCE: " << *Inst << '\n');
eraseFromParentWithDebugInsts(Inst, I);
Changed = true;
++NumSimplify;
continue;
}
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
if (SILValue V = simplifyInstruction(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE SIMPLIFY: " << *Inst << " to: " << *V
<< '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If this is not a simple instruction that we can value number, skip it.
if (!canHandle(Inst))
continue;
// If an instruction can be handled here, then it must also be handled
// in isIdenticalTo, otherwise looking up a key in the map with fail to
// match itself.
assert(Inst->isIdenticalTo(Inst) &&
"Inst must match itself for map to work");
// Now that we know we have an instruction we understand see if the
// instruction has an available value. If so, use it.
if (ValueBase *V = AvailableValues->lookup(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE CSE: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues->insert(Inst, Inst);
DEBUG(llvm::dbgs() << "SILCSE Adding to value table: " << *Inst << " -> "
<< *Inst << "\n");
}
return Changed;
}
bool CSE::canHandle(SILInstruction *Inst) {
if (auto *AI = dyn_cast<ApplyInst>(Inst)) {
if (!AI->mayReadOrWriteMemory())
return true;
if (RunsOnHighLevelSil) {
ArraySemanticsCall SemCall(AI);
switch (SemCall.getKind()) {
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kCheckSubscript:
if (SemCall.hasGuaranteedSelf()) {
return true;
}
return false;
default:
return false;
}
}
// We can CSE function calls which do not read or write memory and don't
// have any other side effects.
SideEffectAnalysis::FunctionEffects Effects;
SEA->getEffects(Effects, AI);
// Note that the function also may not contain any retains. And there are
// functions which are read-none and have a retain, e.g. functions which
// _convert_ a global_addr to a reference and retain it.
auto MB = Effects.getMemBehavior(RetainObserveKind::ObserveRetains);
if (MB == SILInstruction::MemoryBehavior::None)
return true;
return false;
}
if (auto *BI = dyn_cast<BuiltinInst>(Inst)) {
return !BI->mayReadOrWriteMemory();
}
if (auto *CMI = dyn_cast<ClassMethodInst>(Inst)) {
return !CMI->isVolatile();
}
if (auto *WMI = dyn_cast<WitnessMethodInst>(Inst)) {
return !WMI->isVolatile();
}
if (auto *EMI = dyn_cast<ExistentialMetatypeInst>(Inst)) {
return !EMI->getOperand()->getType().isAddress();
}
switch (Inst->getKind()) {
case ValueKind::FunctionRefInst:
case ValueKind::GlobalAddrInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
case ValueKind::StructInst:
case ValueKind::StructExtractInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleInst:
case ValueKind::TupleExtractInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::MetatypeInst:
case ValueKind::ValueMetatypeInst:
case ValueKind::ObjCProtocolInst:
case ValueKind::RefElementAddrInst:
case ValueKind::ProjectBoxInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::IndexAddrInst:
case ValueKind::PointerToAddressInst:
case ValueKind::AddressToPointerInst:
case ValueKind::CondFailInst:
case ValueKind::EnumInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::IsNonnullInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedBitwiseCastInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefToUnownedInst:
case ValueKind::UnownedToRefInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::UpcastInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::ObjCMetatypeToObjectInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::SelectEnumInst:
case ValueKind::SelectValueInst:
case ValueKind::RefToBridgeObjectInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::BridgeObjectToWordInst:
case ValueKind::ThinFunctionToPointerInst:
case ValueKind::PointerToThinFunctionInst:
return true;
default:
return false;
}
}
namespace {
class SILCSE : public SILFunctionTransform {
/// True if CSE is done on high-level SIL, i.e. semantic calls are not inlined
/// yet. In this case some semantic calls can be CSEd.
/// We only CSE semantic calls on high-level SIL because we can be sure that
/// e.g. an Array as SILValue is really immutable (including its content).
bool RunsOnHighLevelSil;
void run() override {
DEBUG(llvm::dbgs() << "***** CSE on function: " << getFunction()->getName()
<< " *****\n");
DominanceAnalysis* DA = getAnalysis<DominanceAnalysis>();
auto *SEA = PM->getAnalysis<SideEffectAnalysis>();
CSE C(RunsOnHighLevelSil, SEA);
if (C.processFunction(*getFunction(), DA->get(getFunction()))) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
StringRef getName() override {
return RunsOnHighLevelSil ? "High-level CSE" : "CSE";
}
public:
SILCSE(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}
};
} // end anonymous namespace
SILTransform *swift::createCSE() {
return new SILCSE(false);
}
SILTransform *swift::createHighLevelCSE() {
return new SILCSE(true);
}