Files
swift-mirror/lib/SILOptimizer/Mandatory/PredictableMemOpt.cpp
Andrew Trick 755a146730 [NFC] rewrite PredictableMemOpts dead allocation elimination
Generalize the code that promotes the remaining uses of an allocation to make it
readable and extensible. We need to be able to promote allocations with more
interesting uses, namely mark_dependence.
2024-09-27 22:24:18 -07:00

2951 lines
114 KiB
C++

//===--- PredictableMemOpt.cpp - Perform predictable memory optzns --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "predictable-memopt"
#include "PMOMemoryUseCollector.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/BlotMapVector.h"
#include "swift/Basic/BlotSetVector.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumLoadPromoted, "Number of loads promoted");
STATISTIC(NumLoadTakePromoted, "Number of load takes promoted");
STATISTIC(NumDestroyAddrPromoted, "Number of destroy_addrs promoted");
STATISTIC(NumAllocRemoved, "Number of allocations completely removed");
//===----------------------------------------------------------------------===//
// Subelement Analysis
//===----------------------------------------------------------------------===//
// We can only analyze components of structs whose storage is fully accessible
// from Swift.
static StructDecl *
getFullyReferenceableStruct(SILType Ty) {
auto SD = Ty.getStructOrBoundGenericStruct();
if (!SD || SD->hasUnreferenceableStorage())
return nullptr;
return SD;
}
static unsigned getNumSubElements(SILType T, SILModule &M,
TypeExpansionContext context) {
if (auto TT = T.getAs<TupleType>()) {
unsigned NumElements = 0;
for (auto index : indices(TT.getElementTypes()))
NumElements +=
getNumSubElements(T.getTupleElementType(index), M, context);
return NumElements;
}
if (auto *SD = getFullyReferenceableStruct(T)) {
unsigned NumElements = 0;
for (auto *D : SD->getStoredProperties())
NumElements +=
getNumSubElements(T.getFieldType(D, M, context), M, context);
return NumElements;
}
// If this isn't a tuple or struct, it is a single element.
return 1;
}
/// getAccessPathRoot - Given an address, dive through any tuple/struct element
/// addresses to get the underlying value.
static SILValue getAccessPathRoot(SILValue pointer) {
while (true) {
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(pointer)) {
pointer = TEAI->getOperand();
continue;
}
if (auto *SEAI = dyn_cast<StructElementAddrInst>(pointer)) {
pointer = SEAI->getOperand();
continue;
}
if (auto *BAI = dyn_cast<BeginAccessInst>(pointer)) {
pointer = BAI->getSource();
continue;
}
return pointer;
}
}
/// Compute the subelement number indicated by the specified pointer (which is
/// derived from the root by a series of tuple/struct element addresses) by
/// treating the type as a linearized namespace with sequential elements. For
/// example, given:
///
/// root = alloc { a: { c: i64, d: i64 }, b: (i64, i64) }
/// tmp1 = struct_element_addr root, 1
/// tmp2 = tuple_element_addr tmp1, 0
///
/// This will return a subelement number of 2.
///
/// If this pointer is to within an existential projection, it returns ~0U.
static unsigned computeSubelement(SILValue Pointer,
SingleValueInstruction *RootInst) {
unsigned SubElementNumber = 0;
SILModule &M = RootInst->getModule();
while (1) {
// If we got to the root, we're done.
if (RootInst == Pointer)
return SubElementNumber;
if (auto *PBI = dyn_cast<ProjectBoxInst>(Pointer)) {
Pointer = PBI->getOperand();
continue;
}
if (auto *BAI = dyn_cast<BeginAccessInst>(Pointer)) {
Pointer = BAI->getSource();
continue;
}
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Pointer)) {
SILType TT = TEAI->getOperand()->getType();
// Keep track of what subelement is being referenced.
for (unsigned i = 0, e = TEAI->getFieldIndex(); i != e; ++i) {
SubElementNumber +=
getNumSubElements(TT.getTupleElementType(i), M,
TypeExpansionContext(*RootInst->getFunction()));
}
Pointer = TEAI->getOperand();
continue;
}
if (auto *SEAI = dyn_cast<StructElementAddrInst>(Pointer)) {
SILType ST = SEAI->getOperand()->getType();
// Keep track of what subelement is being referenced.
StructDecl *SD = SEAI->getStructDecl();
for (auto *D : SD->getStoredProperties()) {
if (D == SEAI->getField()) break;
auto context = TypeExpansionContext(*RootInst->getFunction());
SubElementNumber +=
getNumSubElements(ST.getFieldType(D, M, context), M, context);
}
Pointer = SEAI->getOperand();
continue;
}
// This fails when we visit unchecked_take_enum_data_addr. We should just
// add support for enums.
assert(isa<InitExistentialAddrInst>(Pointer) &&
"Unknown access path instruction");
// Cannot promote loads and stores from within an existential projection.
return ~0U;
}
}
//===----------------------------------------------------------------------===//
// Available Value
//===----------------------------------------------------------------------===//
namespace {
class AvailableValueAggregator;
struct AvailableValue {
friend class AvailableValueAggregator;
SILValue Value;
unsigned SubElementNumber;
/// If this gets too expensive in terms of copying, we can use an arena and a
/// FrozenPtrSet like we do in ARC.
llvm::SmallSetVector<StoreInst *, 1> InsertionPoints;
/// Just for updating.
SmallVectorImpl<PMOMemoryUse> *Uses;
public:
AvailableValue() = default;
/// Main initializer for available values.
///
/// *NOTE* We assume that all available values start with a singular insertion
/// point and insertion points are added by merging.
AvailableValue(SILValue Value, unsigned SubElementNumber,
StoreInst *InsertPoint)
: Value(Value), SubElementNumber(SubElementNumber), InsertionPoints() {
InsertionPoints.insert(InsertPoint);
}
/// Deleted copy constructor. This is a move only type.
AvailableValue(const AvailableValue &) = delete;
/// Deleted copy operator. This is a move only type.
AvailableValue &operator=(const AvailableValue &) = delete;
/// Move constructor.
AvailableValue(AvailableValue &&Other)
: Value(nullptr), SubElementNumber(~0), InsertionPoints() {
std::swap(Value, Other.Value);
std::swap(SubElementNumber, Other.SubElementNumber);
std::swap(InsertionPoints, Other.InsertionPoints);
}
/// Move operator.
AvailableValue &operator=(AvailableValue &&Other) {
std::swap(Value, Other.Value);
std::swap(SubElementNumber, Other.SubElementNumber);
std::swap(InsertionPoints, Other.InsertionPoints);
return *this;
}
operator bool() const { return bool(Value); }
bool operator==(const AvailableValue &Other) const {
return Value == Other.Value && SubElementNumber == Other.SubElementNumber;
}
bool operator!=(const AvailableValue &Other) const {
return !(*this == Other);
}
SILValue getValue() const { return Value; }
SILType getType() const { return Value->getType(); }
unsigned getSubElementNumber() const { return SubElementNumber; }
ArrayRef<StoreInst *> getInsertionPoints() const {
return InsertionPoints.getArrayRef();
}
void mergeInsertionPoints(const AvailableValue &Other) & {
assert(Value == Other.Value && SubElementNumber == Other.SubElementNumber);
InsertionPoints.set_union(Other.InsertionPoints);
}
void addInsertionPoint(StoreInst *si) & { InsertionPoints.insert(si); }
AvailableValue emitStructExtract(SILBuilder &B, SILLocation Loc, VarDecl *D,
unsigned SubElementNumber) const {
SILValue NewValue = B.emitStructExtract(Loc, Value, D);
return {NewValue, SubElementNumber, InsertionPoints};
}
AvailableValue emitTupleExtract(SILBuilder &B, SILLocation Loc,
unsigned EltNo,
unsigned SubElementNumber) const {
SILValue NewValue = B.emitTupleExtract(Loc, Value, EltNo);
return {NewValue, SubElementNumber, InsertionPoints};
}
AvailableValue emitBeginBorrow(SILBuilder &b, SILLocation loc) const {
// If we do not have ownership or already are guaranteed, just return a copy
// of our state.
if (!b.hasOwnership() ||
Value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed)) {
return {Value, SubElementNumber, InsertionPoints};
}
// Otherwise, return newValue.
return {b.createBeginBorrow(loc, Value), SubElementNumber, InsertionPoints};
}
void dump() const LLVM_ATTRIBUTE_USED;
void print(llvm::raw_ostream &os) const;
private:
/// Private constructor.
AvailableValue(SILValue Value, unsigned SubElementNumber,
const decltype(InsertionPoints) &InsertPoints)
: Value(Value), SubElementNumber(SubElementNumber),
InsertionPoints(InsertPoints) {}
};
} // end anonymous namespace
void AvailableValue::dump() const { print(llvm::dbgs()); }
void AvailableValue::print(llvm::raw_ostream &os) const {
os << "Available Value Dump. Value: ";
if (getValue()) {
os << getValue();
} else {
os << "NoValue;\n";
}
os << "SubElementNumber: " << getSubElementNumber() << "\n";
os << "Insertion Points:\n";
for (auto *I : getInsertionPoints()) {
os << *I;
}
}
namespace llvm {
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const AvailableValue &V) {
V.print(os);
return os;
}
} // end llvm namespace
//===----------------------------------------------------------------------===//
// Subelement Extraction
//===----------------------------------------------------------------------===//
static bool isFullyAvailable(SILType loadTy, unsigned firstElt,
ArrayRef<AvailableValue> AvailableValues) {
if (firstElt >= AvailableValues.size()) { // #Elements may be zero.
return false;
}
auto &firstVal = AvailableValues[firstElt];
// Make sure that the first element is available and is the correct type.
if (!firstVal || firstVal.getType() != loadTy)
return false;
auto *function = firstVal.getValue()->getFunction();
return llvm::all_of(
range(getNumSubElements(loadTy, function->getModule(),
TypeExpansionContext(*function))),
[&](unsigned index) -> bool {
auto &val = AvailableValues[firstElt + index];
return val.getValue() == firstVal.getValue() &&
val.getSubElementNumber() == index;
});
}
/// Given an aggregate value and an access path, non-destructively extract the
/// value indicated by the path.
static SILValue nonDestructivelyExtractSubElement(const AvailableValue &Val,
SILBuilder &B,
SILLocation Loc) {
SILType ValTy = Val.getType();
unsigned SubElementNumber = Val.SubElementNumber;
// Extract tuple elements.
if (auto TT = ValTy.getAs<TupleType>()) {
for (unsigned EltNo : indices(TT.getElementTypes())) {
// Keep track of what subelement is being referenced.
SILType EltTy = ValTy.getTupleElementType(EltNo);
unsigned NumSubElt = getNumSubElements(
EltTy, B.getModule(), TypeExpansionContext(B.getFunction()));
if (SubElementNumber < NumSubElt) {
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
auto NewVal =
BorrowedVal.emitTupleExtract(B, Loc, EltNo, SubElementNumber);
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
// If our original value wasn't guaranteed and we did actually perform a
// borrow as a result, insert the end_borrow.
if (BorrowedVal.getValue() != Val.getValue())
B.createEndBorrow(Loc, BorrowedVal.getValue());
return result;
}
SubElementNumber -= NumSubElt;
}
llvm_unreachable("Didn't find field");
}
// Extract struct elements.
if (auto *SD = getFullyReferenceableStruct(ValTy)) {
for (auto *D : SD->getStoredProperties()) {
auto fieldType = ValTy.getFieldType(
D, B.getModule(), TypeExpansionContext(B.getFunction()));
unsigned NumSubElt = getNumSubElements(
fieldType, B.getModule(), TypeExpansionContext(B.getFunction()));
if (SubElementNumber < NumSubElt) {
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
auto NewVal =
BorrowedVal.emitStructExtract(B, Loc, D, SubElementNumber);
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
// If our original value wasn't guaranteed and we did actually perform a
// borrow as a result, insert the end_borrow.
if (BorrowedVal.getValue() != Val.getValue())
B.createEndBorrow(Loc, BorrowedVal.getValue());
return result;
}
SubElementNumber -= NumSubElt;
}
llvm_unreachable("Didn't find field");
}
// Otherwise, we're down to a scalar. If we have ownership enabled,
// we return a copy. Otherwise, there we can ignore ownership
// issues. This is ok since in [ossa] we are going to eliminate a
// load [copy] or a load [trivial], while in non-[ossa] SIL we will
// be replacing unqualified loads.
assert(SubElementNumber == 0 && "Miscalculation indexing subelements");
if (!B.hasOwnership())
return Val.getValue();
return B.emitCopyValueOperation(Loc, Val.getValue());
}
//===----------------------------------------------------------------------===//
// Available Value Aggregation
//===----------------------------------------------------------------------===//
static bool anyMissing(unsigned StartSubElt, unsigned NumSubElts,
ArrayRef<AvailableValue> &Values) {
while (NumSubElts) {
if (!Values[StartSubElt])
return true;
++StartSubElt;
--NumSubElts;
}
return false;
}
namespace {
enum class AvailableValueExpectedOwnership {
Take,
Borrow,
Copy,
};
/// A class that aggregates available values, loading them if they are not
/// available.
class AvailableValueAggregator {
SILModule &M;
SILBuilderWithScope B;
SILLocation Loc;
ArrayRef<AvailableValue> AvailableValueList;
SmallVectorImpl<PMOMemoryUse> &Uses;
DeadEndBlocks &deadEndBlocks;
AvailableValueExpectedOwnership expectedOwnership;
/// Keep track of all instructions that we have added. Once we are done
/// promoting a value, we need to make sure that if we need to balance any
/// copies (to avoid leaks), we do so. This is not used if we are performing a
/// take.
SmallVector<SILInstruction *, 16> insertedInsts;
/// The list of phi nodes inserted by the SSA updater.
SmallVector<SILPhiArgument *, 16> insertedPhiNodes;
/// A set of copy_values whose lifetime we balanced while inserting phi
/// nodes. This means that these copy_value must be skipped in
/// addMissingDestroysForCopiedValues.
SmallPtrSet<CopyValueInst *, 16> copyValueProcessedWithPhiNodes;
public:
AvailableValueAggregator(SILInstruction *Inst,
ArrayRef<AvailableValue> AvailableValueList,
SmallVectorImpl<PMOMemoryUse> &Uses,
DeadEndBlocks &deadEndBlocks,
AvailableValueExpectedOwnership expectedOwnership)
: M(Inst->getModule()), B(Inst), Loc(Inst->getLoc()),
AvailableValueList(AvailableValueList), Uses(Uses),
deadEndBlocks(deadEndBlocks), expectedOwnership(expectedOwnership) {}
// This is intended to be passed by reference only once constructed.
AvailableValueAggregator(const AvailableValueAggregator &) = delete;
AvailableValueAggregator(AvailableValueAggregator &&) = delete;
AvailableValueAggregator &
operator=(const AvailableValueAggregator &) = delete;
AvailableValueAggregator &operator=(AvailableValueAggregator &&) = delete;
SILValue aggregateValues(SILType LoadTy, SILValue Address, unsigned FirstElt,
bool isTopLevel = true);
bool canTake(SILType loadTy, unsigned firstElt) const;
void print(llvm::raw_ostream &os) const;
void dump() const LLVM_ATTRIBUTE_USED;
bool isTake() const {
return expectedOwnership == AvailableValueExpectedOwnership::Take;
}
bool isBorrow() const {
return expectedOwnership == AvailableValueExpectedOwnership::Borrow;
}
bool isCopy() const {
return expectedOwnership == AvailableValueExpectedOwnership::Copy;
}
/// Given a load_borrow that we have aggregated a new value for, fixup the
/// reference counts of the intermediate copies and phis to ensure that all
/// forwarding operations in the CFG are strongly control equivalent (i.e. run
/// the same number of times).
void fixupOwnership(SILInstruction *load, SILValue newVal) {
assert(isa<LoadBorrowInst>(load) || isa<LoadInst>(load));
addHandOffCopyDestroysForPhis(load, newVal);
addMissingDestroysForCopiedValues(load, newVal);
}
private:
SILValue aggregateFullyAvailableValue(SILType loadTy, unsigned firstElt);
SILValue aggregateTupleSubElts(TupleType *tt, SILType loadTy,
SILValue address, unsigned firstElt);
SILValue aggregateStructSubElts(StructDecl *sd, SILType loadTy,
SILValue address, unsigned firstElt);
SILValue handlePrimitiveValue(SILType loadTy, SILValue address,
unsigned firstElt);
/// If as a result of us copying values, we may have unconsumed destroys, find
/// the appropriate location and place the values there. Only used when
/// ownership is enabled.
void addMissingDestroysForCopiedValues(SILInstruction *load, SILValue newVal);
/// As a result of us using the SSA updater, insert hand off copy/destroys at
/// each phi and make sure that intermediate phis do not leak by inserting
/// destroys along paths that go through the intermediate phi that do not also
/// go through the
void addHandOffCopyDestroysForPhis(SILInstruction *load, SILValue newVal);
};
} // end anonymous namespace
void AvailableValueAggregator::dump() const { print(llvm::dbgs()); }
void AvailableValueAggregator::print(llvm::raw_ostream &os) const {
os << "Available Value List, N = " << AvailableValueList.size()
<< ". Elts:\n";
for (auto &V : AvailableValueList) {
os << V;
}
}
// We can only take if we never have to split a larger value to promote this
// address.
bool AvailableValueAggregator::canTake(SILType loadTy,
unsigned firstElt) const {
// If we do not have ownership, we can always take since we do not need to
// keep any ownership invariants up to date. In the future, we should be able
// to chop up larger values before they are being stored.
if (!B.hasOwnership())
return true;
// If we are trivially fully available, just return true.
if (isFullyAvailable(loadTy, firstElt, AvailableValueList))
return true;
// Otherwise see if we are an aggregate with fully available leaf types.
if (TupleType *tt = loadTy.getAs<TupleType>()) {
return llvm::all_of(indices(tt->getElements()), [&](unsigned eltNo) {
SILType eltTy = loadTy.getTupleElementType(eltNo);
unsigned numSubElt =
getNumSubElements(eltTy, M, TypeExpansionContext(B.getFunction()));
bool success = canTake(eltTy, firstElt);
firstElt += numSubElt;
return success;
});
}
if (auto *sd = getFullyReferenceableStruct(loadTy)) {
return llvm::all_of(sd->getStoredProperties(), [&](VarDecl *decl) -> bool {
auto context = TypeExpansionContext(B.getFunction());
SILType eltTy = loadTy.getFieldType(decl, M, context);
unsigned numSubElt = getNumSubElements(eltTy, M, context);
bool success = canTake(eltTy, firstElt);
firstElt += numSubElt;
return success;
});
}
// Otherwise, fail. The value is not fully available at its leafs. We can not
// perform a take.
return false;
}
/// Given a bunch of primitive subelement values, build out the right aggregate
/// type (LoadTy) by emitting tuple and struct instructions as necessary.
SILValue AvailableValueAggregator::aggregateValues(SILType LoadTy,
SILValue Address,
unsigned FirstElt,
bool isTopLevel) {
// If we are performing a take, make sure that we have available values for
// /all/ of our values. Otherwise, bail.
if (isTopLevel && isTake() && !canTake(LoadTy, FirstElt)) {
return SILValue();
}
// Check to see if the requested value is fully available, as an aggregate.
// This is a super-common case for single-element structs, but is also a
// general answer for arbitrary structs and tuples as well.
if (SILValue Result = aggregateFullyAvailableValue(LoadTy, FirstElt)) {
return Result;
}
// If we have a tuple type, then aggregate the tuple's elements into a full
// tuple value.
if (TupleType *tupleType = LoadTy.getAs<TupleType>()) {
SILValue result =
aggregateTupleSubElts(tupleType, LoadTy, Address, FirstElt);
if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) {
SILValue borrowedResult = result;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
result = builder.emitCopyValueOperation(Loc, borrowedResult);
SmallVector<BorrowedValue, 4> introducers;
bool foundIntroducers =
getAllBorrowIntroducingValues(borrowedResult, introducers);
(void)foundIntroducers;
assert(foundIntroducers);
for (auto value : introducers) {
builder.emitEndBorrowOperation(Loc, value.value);
}
}
return result;
}
// If we have a struct type, then aggregate the struct's elements into a full
// struct value.
if (auto *structDecl = getFullyReferenceableStruct(LoadTy)) {
SILValue result =
aggregateStructSubElts(structDecl, LoadTy, Address, FirstElt);
if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) {
SILValue borrowedResult = result;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
result = builder.emitCopyValueOperation(Loc, borrowedResult);
SmallVector<BorrowedValue, 4> introducers;
bool foundIntroducers =
getAllBorrowIntroducingValues(borrowedResult, introducers);
(void)foundIntroducers;
assert(foundIntroducers);
for (auto value : introducers) {
builder.emitEndBorrowOperation(Loc, value.value);
}
}
return result;
}
// Otherwise, we have a non-aggregate primitive. Load or extract the value.
//
// NOTE: We should never call this when taking since when taking we know that
// our underlying value is always fully available.
assert(!isTake());
return handlePrimitiveValue(LoadTy, Address, FirstElt);
}
// See if we have this value is fully available. In such a case, return it as an
// aggregate. This is a super-common case for single-element structs, but is
// also a general answer for arbitrary structs and tuples as well.
SILValue
AvailableValueAggregator::aggregateFullyAvailableValue(SILType loadTy,
unsigned firstElt) {
// Check if our underlying type is fully available. If it isn't, bail.
if (!isFullyAvailable(loadTy, firstElt, AvailableValueList))
return SILValue();
// Ok, grab out first value. (note: any actually will do).
auto &firstVal = AvailableValueList[firstElt];
// Ok, we know that all of our available values are all parts of the same
// value. Without ownership, we can just return the underlying first value.
if (!B.hasOwnership())
return firstVal.getValue();
// Otherwise, we need to put in a copy. This is b/c we only propagate along +1
// values and we are eliminating a load [copy].
ArrayRef<StoreInst *> insertPts = firstVal.getInsertionPoints();
if (insertPts.size() == 1) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
SILLocation loc = insertPts[0]->getLoc();
// If we have a take, just return the value.
if (isTake())
return firstVal.getValue();
// Otherwise, return a copy of the value.
return builder.emitCopyValueOperation(loc, firstVal.getValue());
}
// If we have multiple insertion points, put copies at each point and use the
// SSA updater to get a value. The reason why this is safe is that we can only
// have multiple insertion points if we are storing exactly the same value
// implying that we can just copy firstVal at each insertion point.
SILSSAUpdater updater(&insertedPhiNodes);
updater.initialize(&B.getFunction(), loadTy,
B.hasOwnership() ? OwnershipKind::Owned
: OwnershipKind::None);
std::optional<SILValue> singularValue;
for (auto *insertPt : insertPts) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPt, &insertedInsts);
SILLocation loc = insertPt->getLoc();
SILValue eltVal = firstVal.getValue();
// If we are not taking, copy the element value.
if (!isTake()) {
eltVal = builder.emitCopyValueOperation(loc, eltVal);
}
if (!singularValue.has_value()) {
singularValue = eltVal;
} else if (*singularValue != eltVal) {
singularValue = SILValue();
}
// And then put the value into the SSA updater.
updater.addAvailableValue(insertPt->getParent(), eltVal);
}
// If we only are tracking a singular value, we do not need to construct
// SSA. Just return that value.
if (auto val = singularValue.value_or(SILValue())) {
// This assert documents that we are expecting that if we are in ossa, have
// a non-trivial value, and are not taking, we should never go down this
// code path. If we did, we would need to insert a copy here. The reason why
// we know we will never go down this code path is since we have been
// inserting copy_values implying that our potential singular value would be
// of the copy_values which are guaranteed to all be different.
assert((!B.hasOwnership() || isTake() ||
val->getType().isTrivial(*B.getInsertionBB()->getParent())) &&
"Should never reach this code path if we are in ossa and have a "
"non-trivial value");
return val;
}
// Finally, grab the value from the SSA updater.
SILValue result = updater.getValueInMiddleOfBlock(B.getInsertionBB());
assert(result->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
if (isTake() || !B.hasOwnership()) {
return result;
}
// Be careful with this value and insert a copy in our load block to prevent
// any weird control equivalence issues.
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.emitCopyValueOperation(Loc, result);
}
SILValue AvailableValueAggregator::aggregateTupleSubElts(TupleType *TT,
SILType LoadTy,
SILValue Address,
unsigned FirstElt) {
SmallVector<SILValue, 4> ResultElts;
for (unsigned EltNo : indices(TT->getElements())) {
SILType EltTy = LoadTy.getTupleElementType(EltNo);
unsigned NumSubElt =
getNumSubElements(EltTy, M, TypeExpansionContext(B.getFunction()));
// If we are missing any of the available values in this struct element,
// compute an address to load from.
SILValue EltAddr;
if (anyMissing(FirstElt, NumSubElt, AvailableValueList)) {
assert(!isTake() && "When taking, values should never be missing?!");
EltAddr =
B.createTupleElementAddr(Loc, Address, EltNo, EltTy.getAddressType());
}
ResultElts.push_back(
aggregateValues(EltTy, EltAddr, FirstElt, /*isTopLevel*/ false));
FirstElt += NumSubElt;
}
// If we are going to use this to promote a borrowed value, insert borrow
// operations. Eventually I am going to do this for everything, but this
// should make it easier to bring up.
if (!isTake()) {
for (unsigned i : indices(ResultElts)) {
ResultElts[i] = B.emitBeginBorrowOperation(Loc, ResultElts[i]);
}
}
return B.createTuple(Loc, LoadTy, ResultElts);
}
SILValue AvailableValueAggregator::aggregateStructSubElts(StructDecl *sd,
SILType loadTy,
SILValue address,
unsigned firstElt) {
SmallVector<SILValue, 4> resultElts;
for (auto *decl : sd->getStoredProperties()) {
auto context = TypeExpansionContext(B.getFunction());
SILType eltTy = loadTy.getFieldType(decl, M, context);
unsigned numSubElt = getNumSubElements(eltTy, M, context);
// If we are missing any of the available values in this struct element,
// compute an address to load from.
SILValue eltAddr;
if (anyMissing(firstElt, numSubElt, AvailableValueList)) {
assert(!isTake() && "When taking, values should never be missing?!");
eltAddr =
B.createStructElementAddr(Loc, address, decl, eltTy.getAddressType());
}
resultElts.push_back(
aggregateValues(eltTy, eltAddr, firstElt, /*isTopLevel*/ false));
firstElt += numSubElt;
}
if (!isTake()) {
for (unsigned i : indices(resultElts)) {
resultElts[i] = B.emitBeginBorrowOperation(Loc, resultElts[i]);
}
}
return B.createStruct(Loc, loadTy, resultElts);
}
// We have looked through all of the aggregate values and finally found a value
// that is not available without transforming, i.e. a "primitive value". If the
// value is available, use it (extracting if we need to), otherwise emit a load
// of the value with the appropriate qualifier.
SILValue AvailableValueAggregator::handlePrimitiveValue(SILType loadTy,
SILValue address,
unsigned firstElt) {
assert(!isTake() && "Should only take fully available values?!");
// If the value is not available, load the value and update our use list.
auto &val = AvailableValueList[firstElt];
if (!val) {
LoadInst *load = ([&]() {
if (B.hasOwnership()) {
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.createTrivialLoadOr(Loc, address,
LoadOwnershipQualifier::Copy);
}
return B.createLoad(Loc, address, LoadOwnershipQualifier::Unqualified);
}());
Uses.emplace_back(load, PMOUseKind::Load);
return load;
}
// If we have 1 insertion point, just extract the value and return.
//
// This saves us from having to spend compile time in the SSA updater in this
// case.
ArrayRef<StoreInst *> insertPts = val.getInsertionPoints();
if (insertPts.size() == 1) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
SILLocation loc = insertPts[0]->getLoc();
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
assert(!builder.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
if (!builder.hasOwnership()) {
return eltVal;
}
SILBuilderWithScope builder2(&*B.getInsertionPoint(), &insertedInsts);
return builder2.emitCopyValueOperation(Loc, eltVal);
}
// If we have an available value, then we want to extract the subelement from
// the borrowed aggregate before each insertion point. Note that since we have
// inserted copies at each of these insertion points, we know that we will
// never have the same value along all paths unless we have a trivial value
// meaning the SSA updater given a non-trivial value must /always/ be used.
SILSSAUpdater updater(&insertedPhiNodes);
updater.initialize(&B.getFunction(), loadTy,
B.hasOwnership() ? OwnershipKind::Owned
: OwnershipKind::None);
std::optional<SILValue> singularValue;
for (auto *i : insertPts) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(i, &insertedInsts);
SILLocation loc = i->getLoc();
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
assert(!builder.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
if (!singularValue.has_value()) {
singularValue = eltVal;
} else if (*singularValue != eltVal) {
singularValue = SILValue();
}
updater.addAvailableValue(i->getParent(), eltVal);
}
SILBasicBlock *insertBlock = B.getInsertionBB();
// If we are not in ossa and have a singular value or if we are in ossa and
// have a trivial singular value, just return that value.
//
// This can never happen for non-trivial values in ossa since we never should
// visit this code path if we have a take implying that non-trivial values
// /will/ have a copy and thus are guaranteed (since each copy yields a
// different value) to not be singular values.
if (auto val = singularValue.value_or(SILValue())) {
assert((!B.hasOwnership() ||
val->getType().isTrivial(*insertBlock->getParent())) &&
"Should have inserted copies for each insertion point, so shouldn't "
"have a singular value if non-trivial?!");
return val;
}
// Finally, grab the value from the SSA updater.
SILValue eltVal = updater.getValueInMiddleOfBlock(insertBlock);
assert(!B.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
if (!B.hasOwnership())
return eltVal;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.emitCopyValueOperation(Loc, eltVal);
}
static SILInstruction *
getNonPhiBlockIncomingValueDef(SILValue incomingValue,
SingleValueInstruction *phiCopy) {
assert(isa<CopyValueInst>(phiCopy));
auto *phiBlock = phiCopy->getParent();
if (phiBlock == incomingValue->getParentBlock()) {
return nullptr;
}
if (auto *cvi = dyn_cast<CopyValueInst>(incomingValue)) {
return cvi;
}
assert(isa<SILPhiArgument>(incomingValue));
// Otherwise, our copy_value may not be post-dominated by our phi. To
// work around that, we need to insert destroys along the other
// paths. So set base to the first instruction in our argument's block,
// so we can insert destroys for our base.
return &*incomingValue->getParentBlock()->begin();
}
static bool
terminatorHasAnyKnownPhis(TermInst *ti,
ArrayRef<SILPhiArgument *> insertedPhiNodesSorted) {
for (auto succArgList : ti->getSuccessorBlockArgumentLists()) {
if (llvm::any_of(succArgList, [&](SILArgument *arg) {
return binary_search(insertedPhiNodesSorted,
cast<SILPhiArgument>(arg));
})) {
return true;
}
}
return false;
}
namespace {
class PhiNodeCopyCleanupInserter {
llvm::SmallMapVector<SILValue, unsigned, 8> incomingValues;
/// Map from index -> (incomingValueIndex, copy).
///
/// We are going to stable_sort this array using the indices of
/// incomingValueIndex. This will ensure that we always visit in
/// insertion order our incoming values (since the indices we are
/// sorting by are the count of incoming values we have seen so far
/// when we see the incoming value) and maintain the internal
/// insertion sort within our range as well. This ensures that we
/// visit our incoming values in visitation order and that within
/// their own values, also visit them in visitation order with
/// respect to each other.
SmallFrozenMultiMap<unsigned, SingleValueInstruction *, 16> copiesToCleanup;
/// The lifetime frontier that we use to compute lifetime endpoints
/// when emitting cleanups.
ValueLifetimeAnalysis::Frontier lifetimeFrontier;
public:
PhiNodeCopyCleanupInserter() = default;
void trackNewCleanup(SILValue incomingValue, CopyValueInst *copy) {
auto entry = std::make_pair(incomingValue, incomingValues.size());
auto iter = incomingValues.insert(entry);
// If we did not succeed, then iter.first.second is the index of
// incoming value. Otherwise, it will be nextIndex.
copiesToCleanup.insert(iter.first->second, copy);
}
void emit(DeadEndBlocks &deadEndBlocks) &&;
};
} // end anonymous namespace
void PhiNodeCopyCleanupInserter::emit(DeadEndBlocks &deadEndBlocks) && {
// READ THIS: We are being very careful here to avoid allowing for
// non-determinism to enter here.
//
// 1. First we create a list of indices of our phi node data. Then we use a
// stable sort those indices into the order in which our phi node cleanups
// would be in if we compared just using incomingValues. We use a stable
// sort here to ensure that within the same "cohort" of values, our order
// is insertion order.
//
// 2. We go through the list of phiNodeCleanupStates in insertion order. We
// also maintain a set of already visited base values. When we visit the
// first phiNodeCleanupState for a specific phi, we process the phi
// then. This ensures that we always process the phis in insertion order as
// well.
copiesToCleanup.setFrozen();
for (auto keyValue : copiesToCleanup.getRange()) {
unsigned incomingValueIndex = keyValue.first;
auto copies = keyValue.second;
SILValue incomingValue =
std::next(incomingValues.begin(), incomingValueIndex)->first;
SingleValueInstruction *phiCopy = copies.front();
auto *insertPt = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy);
auto loc = RegularLocation::getAutoGeneratedLocation();
// Before we do anything, see if we have a single cleanup state. In such a
// case, we could have that we have a phi node as an incoming value and a
// copy_value in that same block. In such a case, we want to just insert the
// copy and continue. This means that
// cleanupState.getNonPhiBlockIncomingValueDef() should always return a
// non-null value in the code below.
if (copies.size() == 1 && isa<SILArgument>(incomingValue) && !insertPt) {
SILBasicBlock *phiBlock = phiCopy->getParent();
SILBuilderWithScope builder(phiBlock->getTerminator());
builder.createDestroyValue(loc, incomingValue);
continue;
}
// Otherwise, we know that we have for this incomingValue, multiple
// potential insert pts that we need to handle at the same time with our
// lifetime query. Lifetime extend our base over these copy_value uses.
assert(lifetimeFrontier.empty());
auto *def = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy);
assert(def && "Should never have a nullptr here since we handled all of "
"the single block cases earlier");
ValueLifetimeAnalysis analysis(def, copies);
bool foundCriticalEdges = !analysis.computeFrontier(
lifetimeFrontier, ValueLifetimeAnalysis::DontModifyCFG, &deadEndBlocks);
(void)foundCriticalEdges;
assert(!foundCriticalEdges);
while (!lifetimeFrontier.empty()) {
auto *insertPoint = lifetimeFrontier.pop_back_val();
SILBuilderWithScope builder(insertPoint);
builder.createDestroyValue(loc, incomingValue);
}
}
}
void AvailableValueAggregator::addHandOffCopyDestroysForPhis(
SILInstruction *load, SILValue newVal) {
assert(isa<LoadBorrowInst>(load) || isa<LoadInst>(load));
SmallVector<SILBasicBlock *, 8> leakingBlocks;
SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> incomingValues;
auto loc = RegularLocation::getAutoGeneratedLocation();
#ifndef NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Inserted Phis!\n");
for (auto *phi : insertedPhiNodes) {
LLVM_DEBUG(llvm::dbgs() << "Phi: " << *phi);
}
#endif
// Before we begin, identify the offset for all phis that are intermediate
// phis inserted by the SSA updater. We are taking advantage of the fact that
// the SSA updater just constructs the web without knowledge of ownership. So
// if a phi node is only used by another phi node that we inserted, then we
// have an intermediate phi node.
//
// TODO: There should be a better way of doing this than doing a copy + sort.
SmallVector<SILPhiArgument *, 32> insertedPhiNodesSorted;
llvm::copy(insertedPhiNodes, std::back_inserter(insertedPhiNodesSorted));
llvm::sort(insertedPhiNodesSorted);
SmallBitVector intermediatePhiOffsets(insertedPhiNodes.size());
for (unsigned i : indices(insertedPhiNodes)) {
if (TermInst *termInst =
insertedPhiNodes[i]->getSingleUserOfType<TermInst>()) {
// Only set the value if we find termInst has a successor with a phi node
// in our insertedPhiNodes.
if (terminatorHasAnyKnownPhis(termInst, insertedPhiNodesSorted)) {
intermediatePhiOffsets.set(i);
}
}
}
// First go through all of our phi nodes doing the following:
//
// 1. If any of the phi node have a copy_value as an operand, we know that the
// copy_value does not dominate our final definition since otherwise the
// SSA updater would not have inserted a phi node here. In such a case
// since we may not have that the copy_value is post-dominated by the phi,
// we need to insert a copy_value at the phi to allow for post-domination
// and then use the ValueLifetimeChecker to determine the rest of the
// frontier for the base value.
//
// 2. If our phi node is used by another phi node, we run into a similar
// problem where we could have that our original phi node does not dominate
// our final definition (since the SSA updater would not have inserted the
// phi) and may not be strongly control dependent on our phi. To work
// around this problem, we insert at the phi a copy_value to allow for the
// phi to post_dominate its copy and then extend the lifetime of the phied
// value over that copy.
//
// As an extra complication to this, when we insert compensating releases for
// any copy_values from (1), we need to insert the destroy_value on "base
// values" (either a copy_value or the first instruction of a phi argument's
// block) /after/ we have found all of the base_values to ensure that if the
// same base value is used by multiple phis, we do not insert too many destroy
// value.
//
// NOTE: At first glance one may think that such a problem could not occur
// with phi nodes as well. Sadly if we allow for double backedge loops, it is
// possible (there may be more cases).
PhiNodeCopyCleanupInserter cleanupInserter;
for (unsigned i : indices(insertedPhiNodes)) {
auto *phi = insertedPhiNodes[i];
// If our phi is not owned, continue. No fixes are needed.
if (phi->getOwnershipKind() != OwnershipKind::Owned)
continue;
LLVM_DEBUG(llvm::dbgs() << "Visiting inserted phi: " << *phi);
// Otherwise, we have a copy_value that may not be strongly control
// equivalent with our phi node. In such a case, we need to use
// ValueLifetimeAnalysis to lifetime extend the copy such that we can
// produce a new copy_value at the phi. We insert destroys along the
// frontier.
leakingBlocks.clear();
incomingValues.clear();
phi->getIncomingPhiValues(incomingValues);
unsigned phiIndex = phi->getIndex();
for (auto pair : incomingValues) {
SILValue value = pair.second;
// If we had a non-trivial type with non-owned ownership, we will not see
// a copy_value, so skip them here.
if (value->getOwnershipKind() != OwnershipKind::Owned)
continue;
// Otherwise, value should be from a copy_value or a phi node.
assert(isa<CopyValueInst>(value) || isa<SILPhiArgument>(value));
// If we have a copy_value, remove it from the inserted insts set so we
// skip it when we start processing insertedInstrs.
if (auto *cvi = dyn_cast<CopyValueInst>(value)) {
copyValueProcessedWithPhiNodes.insert(cvi);
// Then check if our termInst is in the same block as our copy_value. In
// such a case, we can just use the copy_value as our phi's value
// without needing to worry about any issues around control equivalence.
if (pair.first == cvi->getParent())
continue;
} else {
assert(isa<SILPhiArgument>(value));
}
// Otherwise, insert a copy_value instruction right before the phi. We use
// that for our actual phi.
auto *termInst = pair.first->getTerminator();
SILBuilderWithScope builder(termInst);
CopyValueInst *phiCopy = builder.createCopyValue(loc, value);
termInst->setOperand(phiIndex, phiCopy);
// Now that we know our base, phi, phiCopy for this specific incoming
// value, append it to the phiNodeCleanupState so we can insert
// destroy_values late after we visit all insertedPhiNodes.
cleanupInserter.trackNewCleanup(value, phiCopy);
}
// Then see if our phi is an intermediate phi. If it is an intermediate phi,
// we know that this is not the phi node that is post-dominated by the
// load_borrow and that we will lifetime extend it via the child
// phi. Instead, we need to just ensure that our phi arg does not leak onto
// its set of post-dominating paths, subtracting from that set the path
// through our terminator use.
if (intermediatePhiOffsets[i]) {
continue;
}
// If we reach this point, then we know that we are a phi node that actually
// dominates our user so we need to lifetime extend it over the
// load_borrow. Thus insert copy_value along the incoming edges and then
// lifetime extend the phi node over the load_borrow.
//
// The linear lifetime checker doesn't care if the passed in load is
// actually a user of our copy_value. What we care about is that the load is
// guaranteed to be in the block where we have reformed the tuple in a
// consuming manner. This means if we add it as the consuming use of the
// copy, we can find the leaking places if any exist.
//
// Then perform the linear lifetime check. If we succeed, continue. We have
// no further work to do.
auto *loadOperand = &load->getAllOperands()[0];
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
phi, loadOperand, [&](SILBasicBlock::iterator iter) {
SILBuilderWithScope builder(iter);
builder.emitDestroyValueOperation(loc, phi);
});
// Ok, we found some leaking blocks and potentially that our load is
// "consumed" inside a different loop in the loop nest from cvi. If we are
// consumed in the loop, then our visit should have inserted all of the
// necessary destroys for us by inserting the destroys on the loop
// boundaries. So, continue.
//
// NOTE: This includes cases where due to an infinite loop, we did not
// insert /any/ destroys since the loop has no boundary in a certain sense.
if (consumedInLoop) {
continue;
}
// Otherwise, we need to insert one last destroy after the load for our phi.
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), phi);
}
// Alright! In summary, we just lifetime extended all of our phis,
// lifetime extended them to the load block, and inserted phi copies
// at all of our intermediate phi nodes. Now we need to cleanup and
// insert all of the compensating destroy_value that we need.
std::move(cleanupInserter).emit(deadEndBlocks);
// Clear the phi node array now that we are done.
insertedPhiNodes.clear();
}
void AvailableValueAggregator::addMissingDestroysForCopiedValues(
SILInstruction *load, SILValue newVal) {
assert(B.hasOwnership() &&
"We assume this is only called if we have ownership");
SmallVector<SILBasicBlock *, 8> leakingBlocks;
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto *inst : insertedInsts) {
// Otherwise, see if this is a load [copy]. It if it a load [copy], then we
// know that the load [copy] must be in the load block meaning we can just
// put a destroy_value /after/ the load_borrow to ensure that the value
// lives long enough for us to copy_value it or a derived value for the
// begin_borrow.
if (auto *li = dyn_cast<LoadInst>(inst)) {
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
assert(li->getParent() == load->getParent());
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), li);
continue;
}
}
// Our copy_value may have been unset above if it was used by a phi
// (implying it does not dominate our final user).
auto *cvi = dyn_cast<CopyValueInst>(inst);
if (!cvi)
continue;
// If we already handled this copy_value above when handling phi nodes, just
// continue.
if (copyValueProcessedWithPhiNodes.count(cvi))
continue;
// Clear our state.
leakingBlocks.clear();
// The linear lifetime checker doesn't care if the passed in load is
// actually a user of our copy_value. What we care about is that the load is
// guaranteed to be in the block where we have reformed the tuple in a
// consuming manner. This means if we add it as the consuming use of the
// copy, we can find the leaking places if any exist.
//
// Then perform the linear lifetime check. If we succeed, continue. We have
// no further work to do.
auto *loadOperand = &load->getAllOperands()[0];
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
cvi, loadOperand, [&](SILBasicBlock::iterator iter) {
SILBuilderWithScope builder(iter);
builder.emitDestroyValueOperation(loc, cvi);
});
// Ok, we found some leaking blocks and potentially that our load is
// "consumed" inside a different loop in the loop nest from cvi. If we are
// consumed in the loop, then our visit should have inserted all of the
// necessary destroys for us by inserting the destroys on the loop
// boundaries. So, continue.
//
// NOTE: This includes cases where due to an infinite loop, we did not
// insert /any/ destroys since the loop has no boundary in a certain sense.
if (consumedInLoop) {
continue;
}
// Otherwise, we need to insert one last destroy after the load for our phi.
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), cvi);
}
}
//===----------------------------------------------------------------------===//
// Available Value Dataflow
//===----------------------------------------------------------------------===//
namespace {
/// Given a piece of memory, the memory's uses, and destroys perform a single
/// round of semi-optimistic backwards dataflow for each use. The result is the
/// set of available values that reach the specific use of the field in the
/// allocated object.
///
/// The general form of the algorithm is that in our constructor, we analyze our
/// uses and determine available values. Then users call computeAvailableValues
/// which looks backwards up the control flow graph for available values that we
/// can use.
///
/// NOTE: The reason why we say that the algorithm is semi-optimistic is that we
/// assume that all incoming elements into a loopheader will be the same. If we
/// find a conflict, we record it and fail.
class AvailableValueDataflowContext {
/// The base memory we are performing dataflow upon.
AllocationInst *TheMemory;
/// The number of sub elements of our memory.
unsigned NumMemorySubElements;
/// The set of uses that we are tracking. This is only here so we can update
/// when exploding copy_addr. It would be great if we did not have to store
/// this.
SmallVectorImpl<PMOMemoryUse> &Uses;
InstructionDeleter &deleter;
/// The set of blocks with local definitions.
///
/// We use this to determine if we should visit a block or look at a block's
/// predecessors during dataflow for an available value.
BasicBlockFlag HasLocalDefinition;
/// The set of blocks that have definitions which specifically "kill" the
/// given value. If a block is in this set, there must be an instruction in
/// LoadTakeUse whose parent is the block. This is just used to speed up
/// computation.
///
/// NOTE: These are not considered escapes.
BasicBlockFlag HasLocalKill;
/// This is a set of load takes that we are tracking. HasLocalKill is the set
/// of parent blocks of these instructions.
llvm::SmallPtrSet<SILInstruction *, 8> LoadTakeUses;
/// This is a map of uses that are not loads (i.e., they are Stores,
/// InOutUses, and Escapes), to their entry in Uses.
llvm::SmallDenseMap<SILInstruction *, unsigned, 16> NonLoadUses;
/// Does this value escape anywhere in the function. We use this very
/// conservatively.
bool HasAnyEscape = false;
public:
AvailableValueDataflowContext(AllocationInst *TheMemory,
unsigned NumMemorySubElements,
SmallVectorImpl<PMOMemoryUse> &Uses,
InstructionDeleter &deleter);
// Find an available for for subelements of 'SrcAddr'.
// Return the SILType of the object in 'SrcAddr' and index of the first sub
// element in that object.
// If not all subelements are availab, return nullopt.
std::optional<std::pair<SILType, unsigned>>
computeAvailableValues(SILValue SrcAddr, SILInstruction *Inst,
SmallVectorImpl<AvailableValue> &AvailableValues);
/// Try to compute available values for "TheMemory" at the instruction \p
/// StartingFrom. We only compute the values for set bits in \p
/// RequiredElts. We return the vailable values in \p Result. If any available
/// values were found, return true. Otherwise, return false.
bool computeAvailableValues(SILInstruction *StartingFrom,
unsigned FirstEltOffset,
unsigned NumLoadSubElements,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result);
/// Return true if the box has escaped at the specified instruction. We are
/// not
/// allowed to do load promotion in an escape region.
bool hasEscapedAt(SILInstruction *I);
/// Explode a copy_addr, updating the Uses at the same time.
void explodeCopyAddr(CopyAddrInst *CAI);
private:
SILModule &getModule() const { return TheMemory->getModule(); }
void updateAvailableValues(SILInstruction *Inst,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
SmallBitVector &ConflictingValues);
void computeAvailableValuesFrom(
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
&VisitedBlocks,
SmallBitVector &ConflictingValues);
};
} // end anonymous namespace
AvailableValueDataflowContext::AvailableValueDataflowContext(
AllocationInst *InputTheMemory, unsigned NumMemorySubElements,
SmallVectorImpl<PMOMemoryUse> &InputUses, InstructionDeleter &deleter)
: TheMemory(InputTheMemory), NumMemorySubElements(NumMemorySubElements),
Uses(InputUses), deleter(deleter),
HasLocalDefinition(InputTheMemory->getFunction()),
HasLocalKill(InputTheMemory->getFunction()) {
// The first step of processing an element is to collect information about the
// element into data structures we use later.
for (unsigned ui : indices(Uses)) {
auto &Use = Uses[ui];
assert(Use.Inst && "No instruction identified?");
// If we have a load...
if (Use.Kind == PMOUseKind::Load) {
// Skip load borrow use and open_existential_addr.
if (isa<LoadBorrowInst>(Use.Inst) || isa<OpenExistentialAddrInst>(Use.Inst))
continue;
// That is not a load take, continue. Otherwise, stash the load [take].
if (auto *LI = dyn_cast<LoadInst>(Use.Inst)) {
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LoadTakeUses.insert(LI);
HasLocalKill.set(LI->getParent());
}
continue;
}
// If we have a copy_addr as our load, it means we are processing a source
// of the value. If the copy_addr is taking from the source, we need to
// treat it like a load take use.
if (auto *CAI = dyn_cast<CopyAddrInst>(Use.Inst)) {
if (CAI->isTakeOfSrc() == IsTake) {
LoadTakeUses.insert(CAI);
HasLocalKill.set(CAI->getParent());
}
continue;
}
llvm_unreachable("Unhandled SILInstructionKind for PMOUseKind::Load?!");
}
// Keep track of all the uses that aren't loads.
NonLoadUses[Use.Inst] = ui;
HasLocalDefinition.set(Use.Inst->getParent());
if (Use.Kind == PMOUseKind::Escape) {
// Determine which blocks the value can escape from. We aren't allowed to
// promote loads in blocks reachable from an escape point.
HasAnyEscape = true;
}
}
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
// as a use so we see it in our dataflow walks.
NonLoadUses[TheMemory] = ~0U;
HasLocalDefinition.set(TheMemory->getParent());
}
std::optional<std::pair<SILType, unsigned>>
AvailableValueDataflowContext::computeAvailableValues(
SILValue SrcAddr, SILInstruction *Inst,
SmallVectorImpl<AvailableValue> &AvailableValues) {
// If the box has escaped at this instruction, we can't safely promote the
// load.
if (hasEscapedAt(Inst))
return std::nullopt;
SILType LoadTy = SrcAddr->getType().getObjectType();
// If this is a load/copy_addr from a struct field that we want to promote,
// compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned FirstElt = computeSubelement(SrcAddr, TheMemory);
// If this is a load from within an enum projection, we can't promote it since
// we don't track subelements in a type that could be changing.
if (FirstElt == ~0U)
return std::nullopt;
unsigned NumLoadSubElements = getNumSubElements(
LoadTy, getModule(), TypeExpansionContext(*TheMemory->getFunction()));
// Set up the bitvector of elements being demanded by the load.
SmallBitVector RequiredElts(NumMemorySubElements);
RequiredElts.set(FirstElt, FirstElt + NumLoadSubElements);
AvailableValues.resize(NumMemorySubElements);
// Find out if we have any available values. If no bits are demanded, we
// trivially succeed. This can happen when there is a load of an empty struct.
if (NumLoadSubElements != 0
&& !computeAvailableValues(
Inst, FirstElt, NumLoadSubElements, RequiredElts, AvailableValues))
return std::nullopt;
return std::make_pair(LoadTy, FirstElt);
}
// This function takes in the current (potentially uninitialized) available
// values for theMemory and for the subset of AvailableValues corresponding to
// \p address either:
//
// 1. If uninitialized, optionally initialize the available value with a new
// SILValue. It is optional since in certain cases, (for instance when
// invalidating one just wants to skip empty available values).
//
// 2. Given an initialized value, either add the given instruction as an
// insertion point or state that we have a conflict.
static inline void updateAvailableValuesHelper(
SingleValueInstruction *theMemory, SILInstruction *inst, SILValue address,
SmallBitVector &requiredElts, SmallVectorImpl<AvailableValue> &result,
SmallBitVector &conflictingValues,
function_ref<std::optional<AvailableValue>(unsigned)> defaultFunc,
function_ref<bool(AvailableValue &, unsigned)> isSafeFunc) {
auto &mod = theMemory->getModule();
unsigned startSubElt = computeSubelement(address, theMemory);
// TODO: Is this needed now?
assert(startSubElt != ~0U && "Store within enum projection not handled");
for (unsigned i : range(getNumSubElements(
address->getType().getObjectType(), mod,
TypeExpansionContext(*theMemory->getFunction())))) {
// If this element is not required, don't fill it in.
if (!requiredElts[startSubElt + i])
continue;
// At this point we know that we will either mark the value as conflicting
// or give it a value.
requiredElts[startSubElt + i] = false;
// First see if we have an entry at all.
auto &entry = result[startSubElt + i];
// If we don't...
if (!entry) {
// and we are told to initialize it, do so.
if (auto defaultValue = defaultFunc(i)) {
entry = std::move(defaultValue.value());
} else {
// Otherwise, mark this as a conflicting value. There is some available
// value here, we just do not know what it is at this point. This
// ensures that if we visit a kill where we do not have an entry yet, we
// properly invalidate our state.
conflictingValues[startSubElt + i] = true;
}
continue;
}
// Check if our caller thinks that the value currently in entry is
// compatible with \p inst. If not, mark the values as conflicting and
// continue.
if (!isSafeFunc(entry, i)) {
conflictingValues[startSubElt + i] = true;
continue;
}
// Otherwise, we found another insertion point for our available
// value. Today this will always be a Store.
entry.addInsertionPoint(cast<StoreInst>(inst));
}
}
void AvailableValueDataflowContext::updateAvailableValues(
SILInstruction *Inst, SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
SmallBitVector &ConflictingValues) {
// If we are visiting a load [take], it invalidates the underlying available
// values.
//
// NOTE: Since we are always looking back from the instruction to promote,
// when we attempt to promote the load [take] itself, we will never hit this
// code since.
if (auto *LI = dyn_cast<LoadInst>(Inst)) {
// First see if this is a load inst that we are tracking.
if (LoadTakeUses.count(LI)) {
updateAvailableValuesHelper(
TheMemory, LI, LI->getOperand(), RequiredElts, Result,
ConflictingValues,
/*default*/
[](unsigned) -> std::optional<AvailableValue> {
// We never initialize values. We only
// want to invalidate.
return std::nullopt;
},
/*isSafe*/
[](AvailableValue &, unsigned) -> bool {
// Always assume values conflict.
return false;
});
return;
}
}
// Handle store.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
updateAvailableValuesHelper(
TheMemory, SI, SI->getDest(), RequiredElts, Result, ConflictingValues,
/*default*/
[&](unsigned ResultOffset) -> std::optional<AvailableValue> {
std::optional<AvailableValue> Result;
Result.emplace(SI->getSrc(), ResultOffset, SI);
return Result;
},
/*isSafe*/
[&](AvailableValue &Entry, unsigned ResultOffset) -> bool {
// TODO: This is /really/, /really/, conservative. This basically
// means that if we do not have an identical store, we will not
// promote.
return Entry.getValue() == SI->getSrc() &&
Entry.getSubElementNumber() == ResultOffset;
});
return;
}
// If we got here from an apply, we must either be initializing the element
// via an @out parameter or we are trying to model an invalidating load of the
// value (e.x.: indirect_in, indirect_inout).
// If we get here with a copy_addr, we must either be storing into the element
// or tracking some sort of take of the src. First check if we are taking (in
// which case, we just track invalidation of src) and continue. Otherwise we
// must be storing into the copy_addr so see which loaded subelements are
// being used, and if so, explode the copy_addr to its individual pieces.
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// If we have a load take use, we must be tracking a store of CAI.
if (LoadTakeUses.count(CAI)) {
updateAvailableValuesHelper(
TheMemory, CAI, CAI->getSrc(), RequiredElts, Result,
ConflictingValues,
/*default*/
[](unsigned) -> std::optional<AvailableValue> {
// We never give values default initialized
// values. We only want to invalidate.
return std::nullopt;
},
/*isSafe*/
[](AvailableValue &, unsigned) -> bool {
// Always assume values conflict.
return false;
});
return;
}
unsigned StartSubElt = computeSubelement(CAI->getDest(), TheMemory);
assert(StartSubElt != ~0U && "Store within enum projection not handled");
SILType ValTy = CAI->getDest()->getType();
bool AnyRequired = false;
for (unsigned i : range(getNumSubElements(
ValTy, getModule(), TypeExpansionContext(*CAI->getFunction())))) {
// If this element is not required, don't fill it in.
AnyRequired = RequiredElts[StartSubElt+i];
if (AnyRequired) break;
}
// If this is a copy addr that doesn't intersect the loaded subelements,
// just continue with an unmodified load mask.
if (!AnyRequired)
return;
// If the copyaddr is of a non-loadable type, we can't promote it. Just
// consider it to be a clobber.
if (CAI->getSrc()->getType().isLoadable(*CAI->getFunction())) {
// Otherwise, some part of the copy_addr's value is demanded by a load, so
// we need to explode it to its component pieces. This only expands one
// level of the copyaddr.
explodeCopyAddr(CAI);
// The copy_addr doesn't provide any values, but we've arranged for our
// iterators to visit the newly generated instructions, which do.
return;
}
}
// TODO: inout apply's should only clobber pieces passed in.
// Otherwise, this is some unknown instruction, conservatively assume that all
// values are clobbered.
RequiredElts.clear();
ConflictingValues = SmallBitVector(Result.size(), true);
return;
}
bool AvailableValueDataflowContext::computeAvailableValues(
SILInstruction *StartingFrom, unsigned FirstEltOffset,
unsigned NumLoadSubElements, SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result) {
llvm::SmallDenseMap<SILBasicBlock*, SmallBitVector, 32> VisitedBlocks;
SmallBitVector ConflictingValues(Result.size());
computeAvailableValuesFrom(StartingFrom->getIterator(),
StartingFrom->getParent(), RequiredElts, Result,
VisitedBlocks, ConflictingValues);
// If there are no values available at this load point, then we fail to
// promote this load and there is nothing to do.
SmallBitVector AvailableValueIsPresent(NumMemorySubElements);
for (unsigned i :
range(FirstEltOffset, FirstEltOffset + NumLoadSubElements)) {
AvailableValueIsPresent[i] = Result[i].getValue();
}
// If we do not have any values available, bail.
if (AvailableValueIsPresent.none())
return false;
// Otherwise, if we have any conflicting values, explicitly mask them out of
// the result, so we don't pick one arbitrary available value.
if (ConflictingValues.none()) {
return true;
}
// At this point, we know that we have /some/ conflicting values and some
// available values.
if (AvailableValueIsPresent.reset(ConflictingValues).none())
return false;
// Otherwise, mask out the available values and return true. We have at least
// 1 available value.
int NextIter = ConflictingValues.find_first();
while (NextIter != -1) {
assert(NextIter >= 0 && "Int can not be represented?!");
unsigned Iter = NextIter;
Result[Iter] = {};
NextIter = ConflictingValues.find_next(Iter);
}
return true;
}
void AvailableValueDataflowContext::computeAvailableValuesFrom(
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
SmallBitVector &RequiredElts, SmallVectorImpl<AvailableValue> &Result,
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
&VisitedBlocks,
SmallBitVector &ConflictingValues) {
assert(!RequiredElts.none() && "Scanning with a goal of finding nothing?");
// If there is a potential modification in the current block, scan the block
// to see if the store, escape, or load [take] is before or after the load. If
// it is before, check to see if it produces the value we are looking for.
bool shouldCheckBlock =
HasLocalDefinition.get(BB) || HasLocalKill.get(BB);
if (shouldCheckBlock) {
for (SILBasicBlock::iterator BBI = StartingFrom; BBI != BB->begin();) {
SILInstruction *TheInst = &*std::prev(BBI);
// If this instruction is unrelated to the element, ignore it.
if (!NonLoadUses.count(TheInst) && !LoadTakeUses.count(TheInst)) {
--BBI;
continue;
}
// Given an interesting instruction, incorporate it into the set of
// results, and filter down the list of demanded subelements that we still
// need.
updateAvailableValues(TheInst, RequiredElts, Result, ConflictingValues);
// If this satisfied all of the demanded values, we're done.
if (RequiredElts.none())
return;
// Otherwise, keep scanning the block. If the instruction we were looking
// at just got exploded, don't skip the next instruction.
if (&*std::prev(BBI) == TheInst)
--BBI;
}
}
// Otherwise, we need to scan up the CFG looking for available values.
for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) {
SILBasicBlock *PredBB = *PI;
// If the predecessor block has already been visited (potentially due to a
// cycle in the CFG), don't revisit it. We can do this safely because we
// are optimistically assuming that all incoming elements in a cycle will be
// the same. If we ever detect a conflicting element, we record it and do
// not look at the result.
auto Entry = VisitedBlocks.insert({PredBB, RequiredElts});
if (!Entry.second) {
// If we are revisiting a block and asking for different required elements
// then anything that isn't agreeing is in conflict.
const auto &PrevRequired = Entry.first->second;
if (PrevRequired != RequiredElts) {
ConflictingValues |= (PrevRequired ^ RequiredElts);
RequiredElts &= ~ConflictingValues;
if (RequiredElts.none())
return;
}
continue;
}
// Make sure to pass in the same set of required elements for each pred.
SmallBitVector Elts = RequiredElts;
computeAvailableValuesFrom(PredBB->end(), PredBB, Elts, Result,
VisitedBlocks, ConflictingValues);
// If we have any conflicting values, don't bother searching for them.
RequiredElts &= ~ConflictingValues;
if (RequiredElts.none())
return;
}
}
/// Explode a copy_addr instruction of a loadable type into lower level
/// operations like loads, stores, retains, releases, retain_value, etc.
void AvailableValueDataflowContext::explodeCopyAddr(CopyAddrInst *CAI) {
LLVM_DEBUG(llvm::dbgs() << " -- Exploding copy_addr: " << *CAI << "\n");
SILType ValTy = CAI->getDest()->getType().getObjectType();
SILFunction *F = CAI->getFunction();
auto &TL = F->getTypeLowering(ValTy);
// Keep track of the new instructions emitted.
SmallVector<SILInstruction *, 4> NewInsts;
SILBuilder B(CAI, &NewInsts);
B.setCurrentDebugScope(CAI->getDebugScope());
// Use type lowering to lower the copyaddr into a load sequence + store
// sequence appropriate for the type.
SILValue StoredValue =
TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(), CAI->isTakeOfSrc());
TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(),
CAI->isInitializationOfDest());
// Update our internal state for this being gone.
NonLoadUses.erase(CAI);
LoadTakeUses.erase(CAI);
// NOTE: We do not need to update HasLocalKill since the copy_addr
// and the loads/stores will have the same parent block.
// Remove the copy_addr from Uses. A single copy_addr can appear multiple
// times if the source and dest are to elements within a single aggregate, but
// we only want to pick up the CopyAddrKind from the store.
PMOMemoryUse LoadUse, StoreUse;
for (auto &Use : Uses) {
if (Use.Inst != CAI)
continue;
if (Use.Kind == PMOUseKind::Load) {
assert(LoadUse.isInvalid());
LoadUse = Use;
} else {
assert(StoreUse.isInvalid());
StoreUse = Use;
}
Use.Inst = nullptr;
// Keep scanning in case the copy_addr appears multiple times.
}
assert((LoadUse.isValid() || StoreUse.isValid()) &&
"we should have a load or a store, possibly both");
assert(StoreUse.isInvalid() || StoreUse.Kind == Assign ||
StoreUse.Kind == Initialization || StoreUse.Kind == InitOrAssign);
// Now that we've emitted a bunch of instructions, including a load and store
// but also including other stuff, update the internal state of
// LifetimeChecker to reflect them.
// Update the instructions that touch the memory. NewInst can grow as this
// iterates, so we can't use a foreach loop.
for (auto *NewInst : NewInsts) {
switch (NewInst->getKind()) {
default:
NewInst->dump();
llvm_unreachable("Unknown instruction generated by copy_addr lowering");
case SILInstructionKind::StoreInst:
// If it is a store to the memory object (as oppose to a store to
// something else), track it as an access.
if (StoreUse.isValid()) {
StoreUse.Inst = NewInst;
// If our store use by the copy_addr is an assign, then we know that
// before we store the new value, we loaded the old value implying that
// our store is technically initializing memory when it occurs. So
// change the kind to Initialization.
if (StoreUse.Kind == Assign)
StoreUse.Kind = Initialization;
NonLoadUses[NewInst] = Uses.size();
Uses.push_back(StoreUse);
}
continue;
case SILInstructionKind::LoadInst:
// If it is a load from the memory object (as oppose to a load from
// something else), track it as an access. We need to explicitly check to
// see if the load accesses "TheMemory" because it could either be a load
// for the copy_addr source, or it could be a load corresponding to the
// "assign" operation on the destination of the copyaddr.
if (LoadUse.isValid() &&
getAccessPathRoot(NewInst->getOperand(0)) == TheMemory) {
if (auto *LI = dyn_cast<LoadInst>(NewInst)) {
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LoadTakeUses.insert(LI);
HasLocalKill.set(LI->getParent());
}
}
LoadUse.Inst = NewInst;
Uses.push_back(LoadUse);
}
continue;
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::ReleaseValueInst: // Destroy overwritten value
// These are ignored.
continue;
}
}
// Next, remove the copy_addr itself.
deleter.forceDelete(CAI);
}
bool AvailableValueDataflowContext::hasEscapedAt(SILInstruction *I) {
// Return true if the box has escaped at the specified instruction. We are
// not allowed to do load promotion in an escape region.
// FIXME: This is not an aggressive implementation. :)
// TODO: At some point, we should special case closures that just *read* from
// the escaped value (by looking at the body of the closure). They should not
// prevent load promotion, and will allow promoting values like X in regions
// dominated by "... && X != 0".
return HasAnyEscape;
}
//===----------------------------------------------------------------------===//
// Optimize loads
//===----------------------------------------------------------------------===//
static SILType getMemoryType(AllocationInst *memory) {
// Compute the type of the memory object.
if (auto *abi = dyn_cast<AllocBoxInst>(memory)) {
assert(abi->getBoxType()->getLayout()->getFields().size() == 1 &&
"optimizing multi-field boxes not implemented");
return getSILBoxFieldType(TypeExpansionContext(*abi->getFunction()),
abi->getBoxType(), abi->getModule().Types, 0);
}
assert(isa<AllocStackInst>(memory));
return cast<AllocStackInst>(memory)->getElementType();
}
namespace {
/// This performs load promotion and deletes synthesized allocations if all
/// loads can be removed.
class OptimizeAllocLoads {
SILModule &Module;
/// This is either an alloc_box or alloc_stack instruction.
AllocationInst *TheMemory;
/// This is the SILType of the memory object.
SILType MemoryType;
/// The number of primitive subelements across all elements of this memory
/// value.
unsigned NumMemorySubElements;
SmallVectorImpl<PMOMemoryUse> &Uses;
DeadEndBlocks &deadEndBlocks;
InstructionDeleter &deleter;
/// A structure that we use to compute our available values.
AvailableValueDataflowContext DataflowContext;
public:
OptimizeAllocLoads(AllocationInst *memory,
SmallVectorImpl<PMOMemoryUse> &uses,
DeadEndBlocks &deadEndBlocks,
InstructionDeleter &deleter)
: Module(memory->getModule()), TheMemory(memory),
MemoryType(getMemoryType(memory)),
NumMemorySubElements(getNumSubElements(
MemoryType, Module, TypeExpansionContext(*memory->getFunction()))),
Uses(uses), deadEndBlocks(deadEndBlocks), deleter(deleter),
DataflowContext(TheMemory, NumMemorySubElements, uses, deleter) {}
bool optimize();
private:
bool promoteLoadCopy(LoadInst *li);
bool promoteLoadBorrow(LoadBorrowInst *lbi);
bool promoteCopyAddr(CopyAddrInst *cai);
};
} // end anonymous namespace
/// If we are able to optimize \p Inst, return the source address that
/// instruction is loading from. If we can not optimize \p Inst, then just
/// return an empty SILValue.
static SILValue tryFindSrcAddrForLoad(SILInstruction *i) {
// We can always promote a load_borrow.
if (auto *lbi = dyn_cast<LoadBorrowInst>(i))
return lbi->getOperand();
// We only handle load [copy], load [trivial], load and copy_addr right
// now. Notably we do not support load [take] when promoting loads.
if (auto *li = dyn_cast<LoadInst>(i))
if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Take)
return li->getOperand();
// If this is a CopyAddr, verify that the element type is loadable. If not,
// we can't explode to a load.
auto *cai = dyn_cast<CopyAddrInst>(i);
if (!cai || !cai->getSrc()->getType().isLoadable(*cai->getFunction()))
return SILValue();
return cai->getSrc();
}
/// At this point, we know that this element satisfies the definitive init
/// requirements, so we can try to promote loads to enable SSA-based dataflow
/// analysis. We know that accesses to this element only access this element,
/// cross element accesses have been scalarized.
///
/// This returns true if the load has been removed from the program.
bool OptimizeAllocLoads::promoteLoadCopy(LoadInst *li) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(li);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = DataflowContext.computeAvailableValues(srcAddr, li, availableValues);
if (!result.has_value())
return false;
SILType loadTy = result->first;
unsigned firstElt = result->second;
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller loads for any subelements that were
// not available. We are "propagating" a +1 available value from the store
// points.
AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Copy);
SILValue newVal = agg.aggregateValues(loadTy, li->getOperand(), firstElt);
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *li);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
++NumLoadPromoted;
// If we did not have ownership, we did not insert extra copies at our stores,
// so we can just RAUW and return.
if (!li->getFunction()->hasOwnership()) {
li->replaceAllUsesWith(newVal);
SILValue addr = li->getOperand();
deleter.forceDelete(li);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
// If we inserted any copies, we created the copies at our stores. We know
// that in our load block, we will reform the aggregate as appropriate at the
// load implying that the value /must/ be fully consumed. If we promoted a +0
// value, we created dominating destroys along those paths. Thus any leaking
// blocks that we may have can be found by performing a linear lifetime check
// over all copies that we found using the load as the "consuming uses" (just
// for the purposes of identifying the consuming block).
agg.fixupOwnership(li, newVal);
// Now that we have fixed up all of our missing destroys, insert the copy
// value for our actual load and RAUW.
newVal = SILBuilderWithScope(li).emitCopyValueOperation(li->getLoc(), newVal);
li->replaceAllUsesWith(newVal);
SILValue addr = li->getOperand();
deleter.forceDelete(li);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
bool OptimizeAllocLoads::promoteCopyAddr(CopyAddrInst *cai) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(cai);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = DataflowContext.computeAvailableValues(srcAddr, cai,
availableValues);
if (!result.has_value())
return false;
// Ok, we have some available values. If we have a copy_addr, explode it now,
// exposing the load operation within it. Subsequent optimization passes will
// see the load and propagate the available values into it.
DataflowContext.explodeCopyAddr(cai);
// This is removing the copy_addr, but explodeCopyAddr takes care of
// removing the instruction from Uses for us, so we return false.
return false;
}
/// At this point, we know that this element satisfies the definitive init
/// requirements, so we can try to promote loads to enable SSA-based dataflow
/// analysis. We know that accesses to this element only access this element,
/// cross element accesses have been scalarized.
///
/// This returns true if the load has been removed from the program.
bool OptimizeAllocLoads::promoteLoadBorrow(LoadBorrowInst *lbi) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(lbi);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = DataflowContext.computeAvailableValues(srcAddr, lbi,
availableValues);
if (!result.has_value())
return false;
// Bail if the load_borrow has reborrows. In this case it's not so easy to
// find the insertion points for the destroys.
if (!lbi->getUsersOfType<BranchInst>().empty()) {
return false;
}
++NumLoadPromoted;
SILType loadTy = result->first;
unsigned firstElt = result->second;
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller loads for any subelements that were
// not available. We are "propagating" a +1 available value from the store
// points.
AvailableValueAggregator agg(lbi, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Borrow);
SILValue newVal = agg.aggregateValues(loadTy, lbi->getOperand(), firstElt);
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *lbi);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
// If we inserted any copies, we created the copies at our
// stores. We know that in our load block, we will reform the
// aggregate as appropriate, will borrow the value there and give us
// a whole pristine new value. Now in this routine, we go through
// all of the copies and phis that we inserted and ensure that:
//
// 1. Phis are always strongly control equivalent to the copies that
// produced their incoming values.
//
// 2. All intermediate copies are properly lifetime extended to the
// load block and all leaking blocks are filled in as appropriate
// with destroy_values.
agg.fixupOwnership(lbi, newVal);
// Now that we have fixed up the lifetimes of all of our incoming copies so
// that they are alive over the load point, copy, borrow newVal and insert
// destroy_value after the end_borrow and then RAUW.
SILBuilderWithScope builder(lbi);
SILValue copiedVal = builder.emitCopyValueOperation(lbi->getLoc(), newVal);
newVal = builder.createBeginBorrow(lbi->getLoc(), copiedVal);
for (auto *ebi : lbi->getUsersOfType<EndBorrowInst>()) {
auto next = std::next(ebi->getIterator());
SILBuilderWithScope(next).emitDestroyValueOperation(ebi->getLoc(),
copiedVal);
}
lbi->replaceAllUsesWith(newVal);
SILValue addr = lbi->getOperand();
deleter.forceDelete(lbi);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
bool OptimizeAllocLoads::optimize() {
bool changed = false;
// If we've successfully checked all of the definitive initialization
// requirements, try to promote loads. This can explode copy_addrs, so the
// use list may change size.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &use = Uses[i];
// Ignore entries for instructions that got expanded along the way.
if (use.Inst && use.Kind == PMOUseKind::Load) {
if (auto *cai = dyn_cast<CopyAddrInst>(use.Inst)) {
if (promoteCopyAddr(cai)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
if (auto *lbi = dyn_cast<LoadBorrowInst>(use.Inst)) {
if (promoteLoadBorrow(lbi)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
if (auto *li = dyn_cast<LoadInst>(use.Inst)) {
if (promoteLoadCopy(li)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
}
}
return changed;
}
//===----------------------------------------------------------------------===//
// Optimize dead allocation:
// Fully promote each access
//===----------------------------------------------------------------------===//
namespace {
class PromotableInstructions {
// All promotable instructions share a vector of available values.
SmallVectorImpl<AvailableValue> &allAvailableValues;
SmallVector<SILInstruction *> promotableInsts;
SmallVector<unsigned, 8> availableValueStartOffsets;
public:
PromotableInstructions(SmallVectorImpl<AvailableValue> &allAvailableValues)
: allAvailableValues(allAvailableValues) {}
unsigned size() const { return promotableInsts.size(); }
void push(SILInstruction *instruction) {
promotableInsts.push_back(instruction);
}
// Available values must be initialized in the same order that the
// instructions are pushed. Return the instruction's index.
unsigned
initializeAvailableValues(SILInstruction *instruction,
SmallVectorImpl<AvailableValue> &&availableValues) {
unsigned nextInstIdx = availableValueStartOffsets.size();
assert(instruction == promotableInsts[nextInstIdx]);
availableValueStartOffsets.push_back(allAvailableValues.size());
std::move(availableValues.begin(), availableValues.end(),
std::back_inserter(allAvailableValues));
return nextInstIdx;
}
ArrayRef<SILInstruction *> instructions() const { return promotableInsts; }
ArrayRef<AvailableValue> availableValues(unsigned index) {
return mutableAvailableValues(index);
}
MutableArrayRef<AvailableValue> mutableAvailableValues(unsigned index) {
unsigned startOffset = availableValueStartOffsets[index];
unsigned endOffset = allAvailableValues.size();
if (index + 1 < size()) {
endOffset = availableValueStartOffsets[index + 1];
}
return {allAvailableValues.begin() + startOffset,
allAvailableValues.begin() + endOffset};
}
#ifndef NDEBUG
void verify() {
for (unsigned i : range(promotableInsts.size())) {
promotableInsts[i]->verifyOperandOwnership();
assert(!availableValues(i).empty()
&& "Value without any available values?!");
}
}
#endif
};
} // end anonymous namespace
namespace {
struct Promotions {
SmallVector<AvailableValue, 32> allAvailableValues;
PromotableInstructions loadTakes;
PromotableInstructions destroys;
Promotions()
: loadTakes(allAvailableValues), destroys(allAvailableValues) {}
#ifndef NDEBUG
void verify() {
loadTakes.verify();
destroys.verify();
}
#endif
};
} // end anonymous namespace
namespace {
/// This performs load promotion and deletes synthesized allocations if all
/// loads can be removed.
class OptimizeDeadAlloc {
SILModule &Module;
/// This is either an alloc_box or alloc_stack instruction.
AllocationInst *TheMemory;
/// This is the SILType of the memory object.
SILType MemoryType;
/// The number of primitive subelements across all elements of this memory
/// value.
unsigned NumMemorySubElements;
SmallVectorImpl<PMOMemoryUse> &Uses;
SmallVectorImpl<SILInstruction *> &Releases;
DeadEndBlocks &deadEndBlocks;
InstructionDeleter &deleter;
DominanceInfo *domInfo;
/// A structure that we use to compute our available values.
AvailableValueDataflowContext DataflowContext;
Promotions promotions;
SmallBlotSetVector<SILValue, 32> valuesNeedingLifetimeCompletion;
public:
SILFunction *getFunction() const { return TheMemory->getFunction(); }
bool isTrivial() const { return MemoryType.isTrivial(getFunction()); }
OptimizeDeadAlloc(AllocationInst *memory,
SmallVectorImpl<PMOMemoryUse> &uses,
SmallVectorImpl<SILInstruction *> &releases,
DeadEndBlocks &deadEndBlocks, InstructionDeleter &deleter,
DominanceInfo *domInfo)
: Module(memory->getModule()), TheMemory(memory),
MemoryType(getMemoryType(memory)),
NumMemorySubElements(getNumSubElements(
MemoryType, Module, TypeExpansionContext(*memory->getFunction()))),
Uses(uses), Releases(releases), deadEndBlocks(deadEndBlocks),
deleter(deleter), domInfo(domInfo),
DataflowContext(TheMemory, NumMemorySubElements, uses, deleter) {}
/// If the allocation is an autogenerated allocation that is only stored to
/// (after load promotion) then remove it completely.
bool tryToRemoveDeadAllocation();
private:
SILInstruction *collectUsesForPromotion();
/// Return true if a load [take] or destroy_addr can be promoted. If so, this
/// initializes the available values in promotions.
bool canPromoteTake(SILInstruction *i,
PromotableInstructions &promotableInsts);
/// Promote a load take cleaning up everything except for RAUWing the
/// instruction with the aggregated result. The routine returns the new
/// aggregated result to the caller and expects the caller to eventually RAUW
/// \p inst with the return value. The reason why we do this is to allow for
/// the caller to work around invalidation issues by not deleting the load
/// [take] until after all load [take] have been cleaned up.
///
/// \returns the value that the caller will RAUW with \p inst.
SILValue promoteLoadTake(LoadInst *inst,
ArrayRef<AvailableValue> availableValues);
void promoteDestroyAddr(DestroyAddrInst *dai,
ArrayRef<AvailableValue> availableValues);
void removeDeadAllocation();
};
} // end anonymous namespace
// We don't want to remove allocations that are required for useful debug
// information at -O0. As such, we only remove allocations if:
//
// 1. They are in a transparent function.
// 2. They are in a normal function, but didn't come from a VarDecl, or came
// from one that was autogenerated or inlined from a transparent function.
static bool isRemovableAutogeneratedAllocation(AllocationInst *TheMemory) {
SILLocation loc = TheMemory->getLoc();
return TheMemory->getFunction()->isTransparent() ||
!loc.getAsASTNode<VarDecl>() || loc.isAutoGenerated() ||
loc.is<MandatoryInlinedLocation>();
}
bool OptimizeDeadAlloc::tryToRemoveDeadAllocation() {
assert(TheMemory->getFunction()->hasOwnership() &&
"Can only eliminate dead allocations with ownership enabled");
assert((isa<AllocBoxInst>(TheMemory) || isa<AllocStackInst>(TheMemory)) &&
"Unhandled allocation case");
if (!isRemovableAutogeneratedAllocation(TheMemory))
return false;
// Check the uses list to see if there are any non-store uses left over after
// load promotion and other things PMO does.
if (auto *badUser = collectUsesForPromotion()) {
LLVM_DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: "
"kept alive by: "
<< *badUser);
return false;
}
if (isTrivial()) {
removeDeadAllocation();
return true;
}
for (auto *load : promotions.loadTakes.instructions()) {
if (!canPromoteTake(load, promotions.loadTakes))
return false;
}
for (auto *destroy : promotions.destroys.instructions()) {
if (!canPromoteTake(destroy, promotions.destroys))
return false;
}
// Gather up all found available values before promoting anything so we can
// fix up lifetimes later if we need to.
for (auto pmoMemUse : Uses) {
if (pmoMemUse.Inst && pmoMemUse.Kind == PMOUseKind::Initialization) {
// Today if we promote, this is always a store, since we would have
// blown up the copy_addr otherwise. Given that, always make sure we
// clean up the src as appropriate after we optimize.
auto *si = dyn_cast<StoreInst>(pmoMemUse.Inst);
if (!si)
return false;
auto src = si->getSrc();
// Bail if src has any uses that are forwarding unowned uses. This
// allows us to know that we never have to deal with forwarding unowned
// instructions like br. These are corner cases that complicate the
// logic below.
for (auto *use : src->getUses()) {
if (use->getOperandOwnership() == OperandOwnership::ForwardingUnowned)
return false;
}
valuesNeedingLifetimeCompletion.insert(src);
}
}
removeDeadAllocation();
return true;
}
// Collect all uses that require promotion before this allocation can be
// eliminated. Returns nullptr on success. Upon failure, return the first
// instruction corresponding to a use that cannot be promoted.
//
// Populates 'loadTakeList'.
SILInstruction *OptimizeDeadAlloc::collectUsesForPromotion() {
for (auto &u : Uses) {
// Ignore removed instructions.
if (u.Inst == nullptr)
continue;
switch (u.Kind) {
case PMOUseKind::Assign:
// Until we can promote the value being destroyed by the assign, we can
// not remove deallocations with such assigns.
return u.Inst;
case PMOUseKind::InitOrAssign:
continue; // These don't prevent removal.
case PMOUseKind::Load:
// For now only handle takes from alloc_stack.
//
// TODO: It should be implementable, but it has not been needed yet.
if (auto *li = dyn_cast<LoadInst>(u.Inst)) {
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
promotions.loadTakes.push(li);
continue;
}
}
return u.Inst;
case PMOUseKind::Initialization:
if (!isa<ApplyInst>(u.Inst) &&
// A copy_addr that is not a take affects the retain count
// of the source.
(!isa<CopyAddrInst>(u.Inst)
|| cast<CopyAddrInst>(u.Inst)->isTakeOfSrc())) {
continue;
}
LLVM_FALLTHROUGH;
case PMOUseKind::IndirectIn:
case PMOUseKind::InOutUse:
case PMOUseKind::Escape:
return u.Inst; // These do prevent removal.
}
}
// Ignore destroys of trivial values. They are destroy_value instructions
// that only destroy the dead box itself.
if (!isTrivial()) {
// Non-trivial allocations require ownership cleanup. We only promote
// alloc_stack in that case--all releases must be destroy_addr.
for (auto *release : Releases) {
// We stash all of the destroy_addr that we see.
if (auto *dai = dyn_cast_or_null<DestroyAddrInst>(release)) {
promotions.destroys.push(dai);
continue;
}
return release;
}
}
return nullptr;
}
/// Return true if we can promote the given destroy.
bool OptimizeDeadAlloc::canPromoteTake(
SILInstruction *inst, PromotableInstructions &promotableInsts) {
SILValue address = inst->getOperand(0);
// We cannot promote destroys of address-only types, because we can't expose
// the load.
SILType loadTy = address->getType().getObjectType();
if (loadTy.isAddressOnly(*inst->getFunction()))
return false;
// If the box has escaped at this instruction, we can't safely promote the
// load.
if (DataflowContext.hasEscapedAt(inst))
return false;
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
assert(firstElt != ~0U && "destroy within enum projection is not valid");
auto expansionContext = TypeExpansionContext(*inst->getFunction());
unsigned numLoadSubElements =
getNumSubElements(loadTy, Module, expansionContext);
// Find out if we have any available values. If no bits are demanded, we
// trivially succeed. This can happen when there is a load of an empty struct.
if (numLoadSubElements == 0)
return true;
// Set up the bitvector of elements being demanded by the load.
SmallBitVector requiredElts(NumMemorySubElements);
requiredElts.set(firstElt, firstElt + numLoadSubElements);
// Compute our available values. If we do not have any available values,
// return false. We have nothing further to do.
SmallVector<AvailableValue, 8> availableValues;
availableValues.resize(NumMemorySubElements);
if (!DataflowContext.computeAvailableValues(
inst, firstElt, numLoadSubElements, requiredElts, availableValues))
return false;
// Now check that we can perform a take upon our available values. This
// implies today that our value is fully available. If the value is not fully
// available, we would need to split stores to promote this destroy_addr. We
// do not support that yet.
AvailableValueAggregator agg(inst, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
if (!agg.canTake(loadTy, firstElt))
return false;
// As a final check, make sure that we have an available value for each value,
// if not bail.
for (const auto &av : availableValues)
if (!av.Value)
return false;
// Ok, we can promote this destroy_addr... move the temporary lists contents
// into the final AvailableValues list.
promotableInsts.initializeAvailableValues(inst, std::move(availableValues));
return true;
}
void OptimizeDeadAlloc::removeDeadAllocation() {
// If our memory is trivially typed, we can just remove it without needing to
// consider if the stored value needs to be destroyed. So at this point,
// delete the memory!
if (isTrivial()) {
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated trivial allocation: "
<< *TheMemory);
// If it is safe to remove, do it. Recursively remove all instructions
// hanging off the allocation instruction, then return success. Let the
// caller remove the allocation itself to avoid iterator invalidation.
deleter.forceDeleteWithUsers(TheMemory);
return;
}
// Since our load [take] may be available values for our
// destroy_addr/load [take], we promote the destroy_addr first and then handle
// load [take] with extra rigour later to handle that possibility.
for (auto idxVal : llvm::enumerate(promotions.destroys.instructions())) {
auto *dai = cast<DestroyAddrInst>(idxVal.value());
auto vals = promotions.destroys.availableValues(idxVal.index());
promoteDestroyAddr(dai, vals);
// We do not need to unset releases, since we are going to exit here.
}
llvm::SmallMapVector<LoadInst *, SILValue, 32> loadsToDelete;
for (auto idxVal : llvm::enumerate(promotions.loadTakes.instructions())) {
for (auto &availableVal :
promotions.loadTakes.mutableAvailableValues(idxVal.index())) {
auto *availableLoad = dyn_cast<LoadInst>(availableVal.Value);
if (!availableLoad)
continue;
auto iter = loadsToDelete.find(availableLoad);
if (iter == loadsToDelete.end())
continue;
SILValue newValue = iter->second;
assert(newValue && "We should neer store a nil SILValue into this map");
availableVal.Value = newValue;
}
auto *loadTake = cast<LoadInst>(idxVal.value());
auto vals = promotions.loadTakes.availableValues(idxVal.index());
SILValue result = promoteLoadTake(loadTake, vals);
assert(result);
// We need to erase liCast here before we erase it since a load [take] that
// we are promoting could be an available value for another load
// [take]. Consider the following SIL:
//
// %mem = alloc_stack
// store %arg to [init] %mem
// %0 = load [take] %mem
// store %0 to [init] %mem
// %1 = load [take] %mem
// destroy_value %1
// dealloc_stack %mem
//
// In such a case, we are going to delete %0 here, but %0 is an available
// value for %1, so we will
auto insertIter = loadsToDelete.insert({loadTake, result});
valuesNeedingLifetimeCompletion.erase(loadTake);
(void)insertIter;
assert(insertIter.second && "loadTakeState doesn't have unique loads?!");
}
// Now that we have promoted all of our load [take], perform the actual
// RAUW/removal.
for (auto p : loadsToDelete) {
LoadInst *li = p.first;
SILValue newValue = p.second;
li->replaceAllUsesWith(newValue);
deleter.forceDelete(li);
}
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated non-trivial alloc: "
<< *TheMemory);
// If it is safe to remove, do it. Recursively remove all instructions
// hanging off the allocation instruction, then return success.
deleter.forceDeleteWithUsers(TheMemory);
// Now look at all of our available values and complete any of their
// post-dominating consuming use sets. This can happen if we have an enum that
// is known dynamically none along a path. This is dynamically correct, but
// can not be represented in OSSA so we insert these destroys along said path.
OSSALifetimeCompletion completion(TheMemory->getFunction(), domInfo,
deadEndBlocks);
while (!valuesNeedingLifetimeCompletion.empty()) {
auto optV = valuesNeedingLifetimeCompletion.pop_back_val();
if (!optV)
continue;
SILValue v = *optV;
// Lexical enums can have incomplete lifetimes in non payload paths that
// don't end in unreachable. Force their lifetime to end immediately after
// the last use instead.
auto boundary = v->getType().isOrHasEnum()
? OSSALifetimeCompletion::Boundary::Liveness
: OSSALifetimeCompletion::Boundary::Availability;
LLVM_DEBUG(llvm::dbgs() << "Completing lifetime of: ");
LLVM_DEBUG(v->dump());
completion.completeOSSALifetime(v, boundary);
}
}
SILValue
OptimizeDeadAlloc::promoteLoadTake(LoadInst *li,
ArrayRef<AvailableValue> availableValues) {
assert(li->getOwnershipQualifier() == LoadOwnershipQualifier::Take &&
"load [copy], load [trivial], load should be handled by "
"promoteLoadCopy");
SILValue address = li->getOperand();
SILType loadTy = address->getType().getObjectType();
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller) loads for any subelements that were
// not available.
AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
SILValue newVal = agg.aggregateValues(loadTy, address, firstElt);
assert(newVal);
++NumLoadTakePromoted;
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load_take: " << *li);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
// Our parent RAUWs with newVal/erases li.
return newVal;
}
// DestroyAddr is a composed operation merging load [take] + destroy_value. If
// the implicit load's value is available, explode it.
//
// NOTE: We only do this if we have a fully available value.
//
// Note that we handle the general case of a destroy_addr of a piece of the
// memory object, not just destroy_addrs of the entire thing.
void OptimizeDeadAlloc::promoteDestroyAddr(
DestroyAddrInst *dai, ArrayRef<AvailableValue> availableValues) {
SILValue address = dai->getOperand();
SILType loadTy = address->getType().getObjectType();
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller) loads for any subelements that were
// not available.
AvailableValueAggregator agg(dai, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
SILValue newVal = agg.aggregateValues(loadTy, address, firstElt);
++NumDestroyAddrPromoted;
LLVM_DEBUG(llvm::dbgs() << " *** Promoting destroy_addr: " << *dai);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
SILBuilderWithScope(dai).emitDestroyValueOperation(dai->getLoc(), newVal);
deleter.forceDelete(dai);
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
static AllocationInst *getOptimizableAllocation(SILInstruction *i) {
if (!isa<AllocBoxInst>(i) && !isa<AllocStackInst>(i)) {
return nullptr;
}
auto *alloc = cast<AllocationInst>(i);
// If our aggregate has unreferencable storage, we can't optimize. Return
// nullptr.
if (getMemoryType(alloc).aggregateHasUnreferenceableStorage())
return nullptr;
// Do not perform this on move only values since we introduce copies to
// promote things.
if (getMemoryType(alloc).isMoveOnly())
return nullptr;
// Otherwise we are good to go. Lets try to optimize this memory!
return alloc;
}
bool swift::optimizeMemoryAccesses(SILFunction *fn) {
bool changed = false;
DeadEndBlocks deadEndBlocks(fn);
InstructionDeleter deleter;
for (auto &bb : *fn) {
for (SILInstruction &inst : bb.deletableInstructions()) {
// First see if i is an allocation that we can optimize. If not, skip it.
AllocationInst *alloc = getOptimizableAllocation(&inst);
if (!alloc) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "*** PMO Optimize Memory Accesses looking at: " << *alloc);
PMOMemoryObjectInfo memInfo(alloc);
// Set up the datastructure used to collect the uses of the allocation.
SmallVector<PMOMemoryUse, 16> uses;
// Walk the use list of the pointer, collecting them. If we are not able
// to optimize, skip this value. *NOTE* We may still scalarize values
// inside the value.
if (!collectPMOElementUsesFrom(memInfo, uses)) {
// Avoid advancing this iterator until after collectPMOElementUsesFrom()
// runs. It creates and deletes instructions other than alloc.
continue;
}
OptimizeAllocLoads optimizeAllocLoads(alloc, uses, deadEndBlocks,
deleter);
changed |= optimizeAllocLoads.optimize();
// Move onto the next instruction. We know this is safe since we do not
// eliminate allocations here.
}
}
return changed;
}
bool swift::eliminateDeadAllocations(SILFunction *fn, DominanceInfo *domInfo) {
if (!fn->hasOwnership())
return false;
bool changed = false;
DeadEndBlocks deadEndBlocks(fn);
for (auto &bb : *fn) {
InstructionDeleter deleter;
for (SILInstruction &inst : bb.deletableInstructions()) {
// First see if i is an allocation that we can optimize. If not, skip it.
AllocationInst *alloc = getOptimizableAllocation(&inst);
if (!alloc) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "*** PMO Dead Allocation Elimination looking at: "
<< *alloc);
PMOMemoryObjectInfo memInfo(alloc);
// Set up the datastructure used to collect the uses of the allocation.
SmallVector<PMOMemoryUse, 16> uses;
SmallVector<SILInstruction *, 4> destroys;
// Walk the use list of the pointer, collecting them. If we are not able
// to optimize, skip this value. *NOTE* We may still scalarize values
// inside the value.
if (!collectPMOElementUsesAndDestroysFrom(memInfo, uses, destroys)) {
continue;
}
OptimizeDeadAlloc optimizeDeadAlloc(alloc, uses, destroys, deadEndBlocks,
deleter, domInfo);
if (optimizeDeadAlloc.tryToRemoveDeadAllocation()) {
deleter.cleanupDeadInstructions();
++NumAllocRemoved;
changed = true;
}
}
}
return changed;
}
namespace {
class PredictableMemoryAccessOptimizations : public SILFunctionTransform {
/// The entry point to the transformation.
///
/// FIXME: This pass should not need to rerun on deserialized
/// functions. Nothing should have changed in the upstream pipeline after
/// deserialization. However, rerunning does improve some benchmarks. This
/// either indicates that this pass missing some opportunities the first time,
/// or has a pass order dependency on other early passes.
void run() override {
auto *func = getFunction();
LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n");
// TODO: Can we invalidate here just instructions?
if (optimizeMemoryAccesses(func))
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
class PredictableDeadAllocationElimination : public SILFunctionTransform {
void run() override {
auto *func = getFunction();
LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n");
auto *da = getAnalysis<DominanceAnalysis>();
// If we are already canonical or do not have ownership, just bail.
if (func->wasDeserializedCanonical() || !func->hasOwnership())
return;
if (eliminateDeadAllocations(func, da->get(func)))
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
} // end anonymous namespace
SILTransform *swift::createPredictableMemoryAccessOptimizations() {
return new PredictableMemoryAccessOptimizations();
}
SILTransform *swift::createPredictableDeadAllocationElimination() {
return new PredictableDeadAllocationElimination();
}