Files
swift-mirror/SwiftCompilerSources/Sources/SIL/Utilities/AccessUtils.swift
Andrew Trick 7574c1fede Fix AccessUtils Value.referenceRoot to handle ForwardingInstructions.
This fixes all analyses that use AccessUtils in the presence of new
forwarding instructions. This is also needed for consistency with the
C++ source base. And for general sanity.

Utilities that walk the use-def chain should never hard-code a list of
opcodes that happened to work with some specific pass. Passes should
never assume that a basic SIL utility handles specific SIL operations
a certain way. Instead, the utility needs to be defined in terms of
SIL semantics. In this case, the utility is supposed to handle all
instructions that semantically forward ownership of a reference.
2024-02-26 00:20:46 -08:00

599 lines
22 KiB
Swift

//===--- AccessUtils.swift - Utilities for analyzing memory accesses ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This file provides a set of utilities for analyzing memory accesses.
// It defines the following concepts
// - `AccessBase`: represents the base address of a memory access.
// - `AccessPath`: a pair of an `AccessBase` and `SmallProjectionPath` with the
// the path describing the specific address (in terms of projections) of the
// access.
// - Access storage path (which is of type `ProjectedValue`): identifies the
// reference (or a value which contains a reference) an address originates from.
//
// The snippet below shows the relationship between the access concepts.
// ```
// %ref = struct_extract %value, #f1 access storage path
// %base = ref_element_addr %ref, #f2 AccessBase AccessPath |
// %scope = begin_access %base AccessScope | |
// %t = tuple_element_addr %scope, 0 | |
// %s = struct_element_addr %t, #f3 v v
// %l = load %s the access
// ```
//===----------------------------------------------------------------------===//
/// AccessBase describes the base address of a memory access (e.g. of a `load` or `store``).
/// The "base address" is defined as the address which is obtained from the access address by
/// looking through all address projections.
/// This means that the base address is either the same as the access address or:
/// the access address is a chain of address projections of the base address.
/// The following snippets show examples of memory accesses and their respective bases.
///
/// ```
/// %base1 = ref_element_addr %ref, #Obj.field // A `class` base
/// %base2 = alloc_stack $S // A `stack` base
/// %base3 = global_addr @gaddr // A `global` base
/// %addr1 = struct_element_addr %base1
/// %access1 = store %v1 to [trivial] %addr1 // accessed address is offset from base
/// %access2 = store %v2 to [trivial] %base2 // accessed address is base itself
/// ```
///
/// The base address is never inside an access scope.
public enum AccessBase : CustomStringConvertible, Hashable {
/// The address of a boxed variable, i.e. a field of an `alloc_box`.
case box(ProjectBoxInst)
/// The address of a stack-allocated value, i.e. an `alloc_stack`
case stack(AllocStackInst)
/// The address of a global variable.
case global(GlobalVariable)
/// The address of a stored property of a class instance.
case `class`(RefElementAddrInst)
/// The base address of the tail allocated elements of a class instance.
case tail(RefTailAddrInst)
/// An indirect function argument, like `@inout`.
case argument(FunctionArgument)
/// An indirect result of a `begin_apply`.
case yield(MultipleValueInstructionResult)
/// An address which is derived from a `Builtin.RawPointer`.
case pointer(PointerToAddressInst)
/// The access base is some SIL pattern which does not fit into any other case.
/// This should be a very rare situation.
case unidentified
public init(baseAddress: Value) {
switch baseAddress {
case let rea as RefElementAddrInst : self = .class(rea)
case let rta as RefTailAddrInst : self = .tail(rta)
case let pbi as ProjectBoxInst : self = .box(pbi)
case let asi as AllocStackInst : self = .stack(asi)
case let arg as FunctionArgument : self = .argument(arg)
case let ga as GlobalAddrInst : self = .global(ga.global)
case let mvr as MultipleValueInstructionResult:
if mvr.parentInstruction is BeginApplyInst && baseAddress.type.isAddress {
self = .yield(mvr)
} else {
self = .unidentified
}
default:
self = .unidentified
}
}
public var description: String {
switch self {
case .unidentified: return "?"
case .box(let pbi): return "box - \(pbi)"
case .stack(let asi): return "stack - \(asi)"
case .global(let gl): return "global - @\(gl.name)"
case .class(let rea): return "class - \(rea)"
case .tail(let rta): return "tail - \(rta.instance)"
case .argument(let arg): return "argument - \(arg)"
case .yield(let result): return "yield - \(result)"
case .pointer(let p): return "pointer - \(p)"
}
}
/// True, if this is an access to a class instance.
public var isObjectAccess: Bool {
switch self {
case .class, .tail:
return true
case .box, .stack, .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// The reference value if this is an access to a referenced object (class, box, tail).
public var reference: Value? {
switch self {
case .box(let pbi): return pbi.box
case .class(let rea): return rea.instance
case .tail(let rta): return rta.instance
case .stack, .global, .argument, .yield, .pointer, .unidentified:
return nil
}
}
/// True if this access base may be derived from a reference that is only valid within a locally
/// scoped OSSA lifetime. For example:
///
/// %reference = begin_borrow %1
/// %base = ref_tail_addr %reference <- %base must not be used outside the borrow scope
/// end_borrow %reference
///
/// This is not true for scoped storage such as alloc_stack and @in arguments.
///
public var hasLocalOwnershipLifetime: Bool {
if let reference = reference {
// Conservatively assume that everything which is a ref-counted object is within an ownership scope.
// TODO: we could e.g. exclude guaranteed function arguments.
return reference.ownership != .none
}
return false
}
/// True, if the baseAddress is of an immutable property or global variable
public var isLet: Bool {
switch self {
case .class(let rea): return rea.fieldIsLet
case .global(let g): return g.isLet
case .box, .stack, .tail, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// True, if the address is immediately produced by an allocation in its function.
public var isLocal: Bool {
switch self {
case .box(let pbi): return pbi.box is AllocBoxInst
case .class(let rea): return rea.instance is AllocRefInstBase
case .tail(let rta): return rta.instance is AllocRefInstBase
case .stack: return true
case .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// True, if the kind of storage of the access is known (e.g. a class property, or global variable).
public var hasKnownStorageKind: Bool {
switch self {
case .box, .class, .tail, .stack, .global:
return true
case .argument, .yield, .pointer, .unidentified:
return false
}
}
/// Returns true if it's guaranteed that this access has the same base address as the `other` access.
///
/// `isEqual` abstracts away the projection instructions that are included as part of the AccessBase:
/// multiple `project_box` and `ref_element_addr` instructions are equivalent bases as long as they
/// refer to the same variable or class property.
public func isEqual(to other: AccessBase) -> Bool {
switch (self, other) {
case (.box(let pb1), .box(let pb2)):
return pb1.box.referenceRoot == pb2.box.referenceRoot
case (.class(let rea1), .class(let rea2)):
return rea1.fieldIndex == rea2.fieldIndex &&
rea1.instance.referenceRoot == rea2.instance.referenceRoot
case (.tail(let rta1), .tail(let rta2)):
return rta1.instance.referenceRoot == rta2.instance.referenceRoot &&
rta1.type == rta2.type
case (.stack(let as1), .stack(let as2)):
return as1 == as2
case (.global(let gl1), .global(let gl2)):
return gl1 == gl2
case (.argument(let arg1), .argument(let arg2)):
return arg1 == arg2
case (.yield(let baResult1), .yield(let baResult2)):
return baResult1 == baResult2
case (.pointer(let p1), .pointer(let p2)):
return p1 == p2
default:
return false
}
}
/// Returns `true` if the two access bases do not alias.
public func isDistinct(from other: AccessBase) -> Bool {
func isDifferentAllocation(_ lhs: Value, _ rhs: Value) -> Bool {
switch (lhs, rhs) {
case (is Allocation, is Allocation):
return lhs != rhs
case (is Allocation, is FunctionArgument),
(is FunctionArgument, is Allocation):
// A local allocation cannot alias with something passed to the function.
return true
default:
return false
}
}
func argIsDistinct(_ arg: FunctionArgument, from other: AccessBase) -> Bool {
if arg.convention.isExclusiveIndirect {
// Exclusive indirect arguments cannot alias with an address for which we know that it
// is not derived from that argument (which might be the case for `pointer` and `yield`).
return other.hasKnownStorageKind
}
// Non-exclusive argument still cannot alias with anything allocated locally in the function.
return other.isLocal
}
switch (self, other) {
// First handle all pairs of the same kind (except `yield` and `pointer`).
case (.box(let pb), .box(let otherPb)):
return pb.fieldIndex != otherPb.fieldIndex ||
isDifferentAllocation(pb.box, otherPb.box)
case (.stack(let asi), .stack(let otherAsi)):
return asi != otherAsi
case (.global(let global), .global(let otherGlobal)):
return global != otherGlobal
case (.class(let rea), .class(let otherRea)):
return rea.fieldIndex != otherRea.fieldIndex ||
isDifferentAllocation(rea.instance, otherRea.instance)
case (.tail(let rta), .tail(let otherRta)):
return isDifferentAllocation(rta.instance, otherRta.instance)
case (.argument(let arg), .argument(let otherArg)):
return (arg.convention.isExclusiveIndirect || otherArg.convention.isExclusiveIndirect) && arg != otherArg
// Handle arguments vs non-arguments
case (.argument(let arg), _):
return argIsDistinct(arg, from: other)
case (_, .argument(let otherArg)):
return argIsDistinct(otherArg, from: self)
default:
// As we already handled pairs of the same kind, here we handle pairs with different kinds.
// Different storage kinds cannot alias, regardless where the storage comes from.
// E.g. a class property address cannot alias with a global variable address.
return hasKnownStorageKind && other.hasKnownStorageKind
}
}
}
/// An `AccessPath` is a pair of a `base: AccessBase` and a `projectionPath: Path`
/// which denotes the offset of the access from the base in terms of projections.
public struct AccessPath : CustomStringConvertible {
public let base: AccessBase
/// address projections only
public let projectionPath: SmallProjectionPath
public static func unidentified() -> AccessPath {
return AccessPath(base: .unidentified, projectionPath: SmallProjectionPath())
}
public var description: String {
"\(projectionPath): \(base)"
}
public func isDistinct(from other: AccessPath) -> Bool {
if base.isDistinct(from: other.base) {
// We can already derived from the bases that there is no alias.
// No need to look at the projection paths.
return true
}
if base == other.base ||
(base.hasKnownStorageKind && other.base.hasKnownStorageKind) {
if !projectionPath.mayOverlap(with: other.projectionPath) {
return true
}
}
return false
}
/// Returns true if this access addresses the same memory location as `other` or if `other`
/// is a sub-field of this access.
/// Note that this access _contains_ `other` if `other` has a _larger_ projection path than this acccess.
/// For example:
/// `%value.s0` contains `%value.s0.s1`
public func isEqualOrContains(_ other: AccessPath) -> Bool {
return getProjection(to: other) != nil
}
public var materializableProjectionPath: SmallProjectionPath? {
if projectionPath.isMaterializable {
return projectionPath
}
return nil
}
/// Returns the projection path to `other` if this access path is equal or contains `other`.
///
/// For example,
/// `%value.s0`.getProjection(to: `%value.s0.s1`)
/// yields
/// `s1`
public func getProjection(to other: AccessPath) -> SmallProjectionPath? {
if !base.isEqual(to: other.base) {
return nil
}
if let resultPath = projectionPath.subtract(from: other.projectionPath),
// Indexing is not a projection where the base overlaps the projected address.
!resultPath.pop().kind.isIndexedElement
{
return resultPath
}
return nil
}
/// Like `getProjection`, but also requires that the resulting projection path is materializable.
public func getMaterializableProjection(to other: AccessPath) -> SmallProjectionPath? {
if let projectionPath = getProjection(to: other),
projectionPath.isMaterializable {
return projectionPath
}
return nil
}
}
private func canBeOperandOfIndexAddr(_ value: Value) -> Bool {
switch value {
case is IndexAddrInst, is RefTailAddrInst, is PointerToAddressInst:
return true
default:
return false
}
}
/// Tries to identify from which address the pointer operand originates from.
/// This is useful to identify patterns like
/// ```
/// %orig_addr = global_addr @...
/// %ptr = address_to_pointer %orig_addr
/// %addr = pointer_to_address %ptr
/// ```
private extension PointerToAddressInst {
var originatingAddress: Value? {
struct Walker : ValueUseDefWalker {
let addrType: Type
var result: Value?
var walkUpCache = WalkerCache<Path>()
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
if let atp = value as? AddressToPointerInst {
if let res = result, atp.address != res {
return .abortWalk
}
if addrType != atp.address.type { return .abortWalk }
if !path.isEmpty { return .abortWalk }
self.result = atp.address
return .continueWalk
}
return .abortWalk
}
mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
switch value {
case is Argument, is MarkDependenceInst, is CopyValueInst,
is StructExtractInst, is TupleExtractInst, is StructInst, is TupleInst, is AddressToPointerInst:
return walkUpDefault(value: value, path: path)
default:
return .abortWalk
}
}
}
var walker = Walker(addrType: type)
if walker.walkUp(value: pointer, path: SmallProjectionPath()) == .abortWalk {
return nil
}
return walker.result
}
}
/// The `EnclosingScope` of an access is the innermost `begin_access`
/// instruction that checks for exclusivity of the access.
/// If there is no `begin_access` instruction found, then the scope is
/// the base itself.
///
/// The access scopes for the snippet below are:
/// (l1, .base(%addr)), (l2, .scope(%a2)), (l3, .scope(%a3))
///
/// ````
/// %addr = ... : $*Int64
/// %l1 = load %addr : $*Int64
/// %a1 = begin_access [read] [dynamic] %addr : $*Int64
/// %a2 = begin_access [read] [dynamic] %addr : $*Int64
/// %l2 = load %a2 : $*Int64
/// end_access %a2 : $*Int64
/// end_access %a1 : $*Int64
/// %a3 = begin_access [read] [dynamic] [no_nested_conflict] %addr : $*Int64
/// %l3 = load %a3 : $*Int64
/// end_access %a3 : $*Int64
/// ```
public enum EnclosingScope {
case scope(BeginAccessInst)
case base(AccessBase)
}
private struct AccessPathWalker : AddressUseDefWalker {
var result = AccessPath.unidentified()
var foundBeginAccess: BeginAccessInst?
mutating func walk(startAt address: Value, initialPath: SmallProjectionPath = SmallProjectionPath()) {
if walkUp(address: address, path: Path(projectionPath: initialPath)) == .abortWalk {
assert(result.base == .unidentified,
"shouldn't have set an access base in an aborted walk")
}
}
struct Path : SmallProjectionWalkingPath {
let projectionPath: SmallProjectionPath
// Tracks whether an `index_addr` instruction was crossed.
// It should be (FIXME: check if it's enforced) that operands
// of `index_addr` must be `tail_addr` or other `index_addr` results.
let indexAddr: Bool
init(projectionPath: SmallProjectionPath = SmallProjectionPath(), indexAddr: Bool = false) {
self.projectionPath = projectionPath
self.indexAddr = indexAddr
}
func with(projectionPath: SmallProjectionPath) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func with(indexAddr: Bool) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func merge(with other: Self) -> Self {
return Self(
projectionPath: projectionPath.merge(with: other.projectionPath),
indexAddr: indexAddr || other.indexAddr
)
}
}
mutating func rootDef(address: Value, path: Path) -> WalkResult {
assert(result.base == .unidentified, "rootDef should only called once")
// Try identifying the address a pointer originates from
if let p2ai = address as? PointerToAddressInst {
if let originatingAddr = p2ai.originatingAddress {
return walkUp(address: originatingAddr, path: path)
} else {
self.result = AccessPath(base: .pointer(p2ai), projectionPath: path.projectionPath)
return .continueWalk
}
}
let base = AccessBase(baseAddress: address)
self.result = AccessPath(base: base, projectionPath: path.projectionPath)
return .continueWalk
}
mutating func walkUp(address: Value, path: Path) -> WalkResult {
if address is IndexAddrInst {
// Track that we crossed an `index_addr` during the walk-up
return walkUpDefault(address: address, path: path.with(indexAddr: true))
} else if path.indexAddr && !canBeOperandOfIndexAddr(address) {
// An `index_addr` instruction cannot be derived from an address
// projection. Bail out
return .abortWalk
} else if let ba = address as? BeginAccessInst, foundBeginAccess == nil {
foundBeginAccess = ba
}
return walkUpDefault(address: address, path: path.with(indexAddr: false))
}
}
extension Value {
// Convenient properties to avoid instantiating an explicit AccessPathWalker.
//
// Although an AccessPathWalker is created for each call of these properties,
// it's very unlikely that this will end up in memory allocations.
// Only in the rare case of `pointer_to_address` -> `address_to_pointer` pairs, which
// go through phi-arguments, the AccessPathWalker will allocate memnory in its cache.
/// Computes the access base of this address value.
public var accessBase: AccessBase { accessPath.base }
/// Computes the access path of this address value.
public var accessPath: AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return walker.result
}
public func getAccessPath(fromInitialPath: SmallProjectionPath) -> AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self, initialPath: fromInitialPath)
return walker.result
}
/// Computes the access path of this address value and also returns the scope.
public var accessPathWithScope: (AccessPath, scope: BeginAccessInst?) {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return (walker.result, walker.foundBeginAccess)
}
/// Computes the enclosing access scope of this address value.
public var enclosingAccessScope: EnclosingScope {
var walker = AccessPathWalker()
walker.walk(startAt: self)
if let ba = walker.foundBeginAccess {
return .scope(ba)
}
return .base(walker.result.base)
}
/// The root definition of a reference, obtained by skipping casts, etc.
public var referenceRoot: Value {
var value: Value = self
while true {
if let forward = value.forwardingInstruction, forward.preservesIdentity,
let operand = forward.singleForwardedOperand {
value = operand.value
continue
}
if let transition = value.definingInstruction as? OwnershipTransitionInstruction {
value = transition.operand.value
continue
}
return value
}
}
}
/// A ValueUseDef walker that that visits access storage paths of an address.
///
/// An access storage path is the reference (or a value which contains a reference)
/// an address originates from.
/// In the following example the `storage` is `contains_ref` with `path` `"s0.c0.s0"`
/// ```
/// %ref = struct_extract %contains_ref : $S, #S.l
/// %base = ref_element_addr %ref : $List, #List.x
/// %addr = struct_element_addr %base : $X, #X.e
/// store %v to [trivial] %addr : $*Int
/// ```
///
/// Warning: This does not find the correct storage root of the
/// lifetime of an object projection, such as .box or .class because
/// ValueUseDefWalker ignores ownership and, for example, walks past copies.
extension ValueUseDefWalker where Path == SmallProjectionPath {
/// The main entry point.
/// Given an `accessPath` where the access base is a reference (class, tail, box), call
/// the `visit` function for all storage roots with a the corresponding path.
/// Returns true on success.
/// Returns false if not all storage roots could be identified or if `accessPath` has not a "reference" base.
public mutating func visitAccessStorageRoots(of accessPath: AccessPath) -> Bool {
walkUpCache.clear()
let path = accessPath.projectionPath
switch accessPath.base {
case .box(let pbi):
return walkUp(value: pbi.box, path: path.push(.classField, index: pbi.fieldIndex)) != .abortWalk
case .class(let rea):
return walkUp(value: rea.instance, path: path.push(.classField, index: rea.fieldIndex)) != .abortWalk
case .tail(let rta):
return walkUp(value: rta.instance, path: path.push(.tailElements, index: 0)) != .abortWalk
case .stack, .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
}