Files
swift-mirror/lib/IRGen/GenDistributed.cpp
Alejandro Alonso 75c2cbf593 Implement value generics
Some requirement machine work

Rename requirement to Value

Rename more things to Value

Fix integer checking for requirement

some docs and parser changes

Minor fixes
2024-09-04 15:13:25 -07:00

1026 lines
37 KiB
C++

//===--- GenDistributed.cpp - IRGen for distributed features --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2020 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for distributed features.
//
//===----------------------------------------------------------------------===//
#include "GenDistributed.h"
#include "BitPatternBuilder.h"
#include "CallEmission.h"
#include "Callee.h"
#include "ClassTypeInfo.h"
#include "ExtraInhabitants.h"
#include "GenCall.h"
#include "GenClass.h"
#include "GenDecl.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "ScalarPairTypeInfo.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ExtInfo.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ProtocolConformanceRef.h"
#include "swift/Basic/Assertions.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILFunction.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Alignment.h"
using namespace swift;
using namespace irgen;
llvm::Value *irgen::emitDistributedActorInitializeRemote(
IRGenFunction &IGF, SILType selfType, llvm::Value *actorMetatype, Explosion &out) {
auto &classTI = IGF.getTypeInfo(selfType).as<ClassTypeInfo>();
auto &classLayout = classTI.getClassLayout(IGF.IGM, selfType,
/*forBackwardDeployment=*/false);
llvm::Type *destType = classLayout.getType()->getPointerTo();
auto fn = IGF.IGM.getDistributedActorInitializeRemoteFunctionPointer();
actorMetatype =
IGF.Builder.CreateBitCast(actorMetatype, IGF.IGM.TypeMetadataPtrTy);
auto call = IGF.Builder.CreateCall(fn, {actorMetatype});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
auto result = IGF.Builder.CreateBitCast(call, destType);
out.add(result);
return result;
}
namespace {
using ThunkOrRequirement = llvm::PointerUnion<SILFunction *, AbstractFunctionDecl *>;
static LinkEntity
getAccessorLinking(ThunkOrRequirement accessorFor) {
if (auto *method = accessorFor.dyn_cast<SILFunction *>()) {
assert(method->isDistributed());
return LinkEntity::forDistributedTargetAccessor(method);
}
auto *requirement = accessorFor.get<AbstractFunctionDecl *>();
return LinkEntity::forDistributedTargetAccessor(requirement);
}
struct ArgumentDecoderInfo {
/// The instance of the decoder this information belongs to.
llvm::Value *Decoder;
/// The pointer to `decodeNextArgument` method which
/// could be used to form a call to it.
FunctionPointer MethodPtr;
/// The type of `decodeNextArgument` method.
CanSILFunctionType MethodType;
/// Witness metadata for conformance to DistributedTargetInvocationDecoder
/// protocol.
WitnessMetadata Witness;
/// Indicates whether `decodeNextArgument` is referenced through
/// a protocol witness thunk.
bool UsesWitnessDispatch;
ArgumentDecoderInfo(llvm::Value *decoder, llvm::Value *decoderType,
llvm::Value *decoderWitnessTable,
FunctionPointer decodeNextArgumentPtr,
CanSILFunctionType decodeNextArgumentTy,
bool usesWitnessDispatch)
: Decoder(decoder), MethodPtr(decodeNextArgumentPtr),
MethodType(decodeNextArgumentTy),
UsesWitnessDispatch(usesWitnessDispatch) {
Witness.SelfMetadata = decoderType;
Witness.SelfWitnessTable = decoderWitnessTable;
}
CanSILFunctionType getMethodType() const { return MethodType; }
WitnessMetadata *getWitnessMetadata() const {
return const_cast<WitnessMetadata *>(&Witness);
}
/// Protocol requirements associated with the generic
/// parameter `Argument` of this decode method.
GenericSignature::RequiredProtocols getProtocolRequirements() const {
if (UsesWitnessDispatch)
return {};
auto signature = MethodType->getInvocationGenericSignature();
auto genericParams = signature.getGenericParams();
// func decodeNextArgument<Arg : #SerializationRequirement#>() throws -> Arg
assert(genericParams.size() == 1);
return signature->getRequiredProtocols(genericParams.front());
}
/// Form a callee to a decode method - `decodeNextArgument`.
Callee getCallee() const;
};
struct AccessorTarget {
private:
IRGenFunction &IGF;
ThunkOrRequirement Target;
CanSILFunctionType Type;
mutable std::optional<WitnessMetadata> Witness;
public:
AccessorTarget(IRGenFunction &IGF, ThunkOrRequirement target)
: IGF(IGF), Target(target) {
if (auto *thunk = target.dyn_cast<SILFunction *>()) {
Type = thunk->getLoweredFunctionType();
} else {
auto *requirement = target.get<AbstractFunctionDecl *>();
Type = IGF.IGM.getSILTypes().getConstantFunctionType(
IGF.IGM.getMaximalTypeExpansionContext(),
SILDeclRef(requirement).asDistributed());
}
}
DeclContext *getDeclContext() const {
if (auto *thunk = Target.dyn_cast<SILFunction *>())
return thunk->getDeclContext();
return Target.get<AbstractFunctionDecl *>();
}
CanSILFunctionType getType() const { return Type; }
bool isGeneric() const {
auto sig = Type->getInvocationGenericSignature();
return sig && !sig->areAllParamsConcrete();
}
Callee getCallee(llvm::Value *actorSelf);
LinkEntity getLinking() const { return getAccessorLinking(Target); }
/// Witness metadata is computed lazily upon the first request.
WitnessMetadata *getWitnessMetadata(llvm::Value *actorSelf);
private:
FunctionPointer getPointerToTarget(llvm::Value *actorSelf);
llvm::Value *emitMetadataRef(llvm::Value *actorSelf) const;
};
class DistributedAccessor {
IRGenModule &IGM;
IRGenFunction &IGF;
/// Underlying distributed method for this accessor.
AccessorTarget Target;
/// The interface type of this accessor function.
CanSILFunctionType AccessorType;
/// The asynchronous context associated with this accessor.
AsyncContextLayout AsyncLayout;
/// The list of all arguments that were allocated on the stack.
SmallVector<StackAddress, 4> AllocatedArguments;
/// The list of all the arguments that were loaded.
SmallVector<std::pair<Address, /*type=*/llvm::Value *>, 4> LoadedArguments;
public:
DistributedAccessor(IRGenFunction &IGF, ThunkOrRequirement target,
CanSILFunctionType accessorTy);
CanSILFunctionType getTargetType() const { return Target.getType(); }
void emit();
private:
void decodeArguments(const ArgumentDecoderInfo &decoder,
llvm::Value *argumentTypes, Explosion &arguments);
/// Load an argument value from the given decoder \c decoder
/// to the given explosion \c arguments. Information describing
/// the type of argument comes from runtime metadata.
void decodeArgument(unsigned argumentIdx, const ArgumentDecoderInfo &decoder,
llvm::Value *argumentType, const SILParameterInfo &param,
Explosion &arguments);
void lookupWitnessTables(llvm::Value *value,
ArrayRef<ProtocolDecl *> protocols,
Explosion &witnessTables);
/// Load witness table addresses (if any) from the given buffer
/// into the given argument explosion.
///
/// Number of witnesses to load is provided by \c numTables but
/// it's checked against the number of \c expectedWitnessTables.
void emitLoadOfWitnessTables(llvm::Value *witnessTables,
llvm::Value *numTables,
unsigned expectedWitnessTables,
Explosion &arguments);
/// Emit an async return from accessor which does cleanup of
/// all the argument allocations.
void emitReturn(llvm::Value *errorValue);
/// Given an instance of invocation decoder, its type metadata,
/// and protocol witness table, find `decodeNextArgument`.
ArgumentDecoderInfo findArgumentDecoder(llvm::Value *decoder,
llvm::Value *decoderTy,
llvm::Value *witnessTable);
/// The result type of the accessor.
SILType getResultType() const;
/// The error type of this accessor.
SILType getErrorType() const;
};
} // end namespace
/// Compute a type of a distributed method accessor function based
/// on the provided distributed target.
static CanSILFunctionType getAccessorType(IRGenModule &IGM) {
auto &Context = IGM.Context;
// func __accessor__<D: DistributedTargetInvocationDecoder>(
// inout D, <- invocation decoder
// UnsafeRawPointer, <- argument types
// UnsafeRawPointer, <- result buffer
// UnsafeRawPointer?, <- generic parameter substitutions
// UnsafeRawPointer?, <- witness tables
// UInt, <- number of witness tables
// <actor>
// ) async throws
SmallVector<GenericFunctionType::Param, 8> parameters;
// A generic parameter that represents instance of invocation decoder.
auto *decoderType =
GenericTypeParamType::get(/*isParameterPack=*/false,
/*isValue=*/ false, /*depth=*/0, /*index=*/0,
Context);
// decoder
parameters.push_back(GenericFunctionType::Param(
decoderType,
/*label=*/Identifier(),
/*flags=*/ParameterTypeFlags().withInOut(true)));
// argument type buffer
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// result buffer
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// generic parameter substitutions
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// witness tables
parameters.push_back(
GenericFunctionType::Param(Context.getUnsafeRawPointerType()));
// number of witness tables
parameters.push_back(GenericFunctionType::Param(Context.getUIntType()));
// actor
auto actorTypeParam = Context.getAnyObjectType();
parameters.push_back(
GenericFunctionType::Param(actorTypeParam));
auto decoderProtocolTy =
Context
.getProtocol(KnownProtocolKind::DistributedTargetInvocationDecoder)
->getDeclaredInterfaceType();
// Build generic signature that includes all contextual generic parameters.
GenericSignature signature;
{
SmallVector<GenericTypeParamType *, 4> genericParams;
SmallVector<Requirement, 4> genericRequirements;
// Add a generic parameter `D` which stands for decoder type in the
// accessor signature - `inout D`.
genericParams.push_back(decoderType);
// Add a requirement that decoder conforms to the expected protocol.
genericRequirements.push_back(
{RequirementKind::Conformance, decoderType, decoderProtocolTy});
signature = buildGenericSignature(Context, GenericSignature(),
std::move(genericParams),
std::move(genericRequirements),
/*allowInverses=*/true);
}
auto accessorTy = GenericFunctionType::get(
signature, parameters, Context.TheEmptyTupleType,
ASTExtInfoBuilder()
.withRepresentation(FunctionTypeRepresentation::Thin)
.withAsync()
.withThrows()
.build());
return IGM.getLoweredType(accessorTy).castTo<SILFunctionType>();
}
llvm::Function *
IRGenModule::getAddrOfDistributedTargetAccessor(LinkEntity accessor,
ForDefinition_t forDefinition) {
llvm::Function *&entry = GlobalFuncs[accessor];
if (entry) {
if (forDefinition)
updateLinkageForDefinition(*this, entry, accessor);
return entry;
}
Signature signature = getSignature(getAccessorType(*this));
LinkInfo link = LinkInfo::get(*this, accessor, forDefinition);
return createFunction(*this, link, signature);
}
void IRGenModule::emitDistributedTargetAccessor(ThunkOrRequirement target) {
LinkEntity accessorRef = getAccessorLinking(target);
auto *f = getAddrOfDistributedTargetAccessor(accessorRef,
ForDefinition);
if (!f->isDeclaration())
return;
IRGenFunction IGF(*this, f);
auto accessor = DistributedAccessor(IGF, target, getAccessorType(*this));
accessor.emit();
auto targetDecl = cast<AbstractFunctionDecl>(accessorRef.getDecl());
IRGenMangler mangler;
addAccessibleFunction(AccessibleFunction::forDistributed(
mangler.mangleDistributedThunkRecord(targetDecl),
mangler.mangleDistributedThunk(targetDecl),
accessor.getTargetType(),
getAddrOfAsyncFunctionPointer(accessorRef)));
}
DistributedAccessor::DistributedAccessor(IRGenFunction &IGF,
ThunkOrRequirement target,
CanSILFunctionType accessorTy)
: IGM(IGF.IGM), IGF(IGF), Target(IGF, target), AccessorType(accessorTy),
AsyncLayout(getAsyncContextLayout(IGM, AccessorType, AccessorType,
SubstitutionMap())) {
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, IGF.CurFn);
}
void DistributedAccessor::decodeArguments(const ArgumentDecoderInfo &decoder,
llvm::Value *argumentTypes,
Explosion &arguments) {
auto fnType = Target.getType();
// Cover all of the arguments except to `self` of the actor.
auto parameters = fnType->getParameters().drop_back();
// If there are no parameters to extract, we are done.
if (parameters.empty())
return;
// Cast type buffer to `swift.type**`
argumentTypes =
IGF.Builder.CreateBitCast(argumentTypes, IGM.TypeMetadataPtrPtrTy);
for (unsigned i = 0, n = parameters.size(); i != n; ++i) {
const auto &param = parameters[i];
auto paramTy = param.getSILStorageInterfaceType();
// Check whether the native representation is empty e.g.
// this happens for empty enums, and if so - continue to
// the next argument.
if (paramTy.isObject()) {
auto &typeInfo = IGM.getTypeInfo(paramTy);
auto &nativeSchema = typeInfo.nativeParameterValueSchema(IGM);
if (nativeSchema.empty())
continue;
}
Size offset =
Size(i * IGM.DataLayout.getTypeAllocSize(IGM.TypeMetadataPtrTy));
llvm::Align alignment = IGM.DataLayout.getABITypeAlign(IGM.TypeMetadataPtrTy);
// Load metadata describing argument value from argument types buffer.
auto typeLoc = IGF.emitAddressAtOffset(
argumentTypes, Offset(offset), IGM.TypeMetadataPtrTy,
Alignment(alignment.value()), "arg_type_loc");
auto *argumentTy = IGF.Builder.CreateLoad(typeLoc, "arg_type");
// Decode and load argument value using loaded type metadata.
decodeArgument(i, decoder, argumentTy, param, arguments);
}
}
void DistributedAccessor::decodeArgument(unsigned argumentIdx,
const ArgumentDecoderInfo &decoder,
llvm::Value *argumentType,
const SILParameterInfo &param,
Explosion &arguments) {
auto &paramInfo = IGM.getTypeInfo(param.getSILStorageInterfaceType());
// TODO: `emitLoad*` would actually load value witness table every
// time it's called, which is sub-optimal but all of the APIs that
// deal with value witness tables are currently hidden in GenOpaque.cpp
llvm::Value *valueSize = emitLoadOfSize(IGF, argumentType);
Callee callee = decoder.getCallee();
std::unique_ptr<CallEmission> emission =
getCallEmission(IGF, callee.getSwiftContext(), std::move(callee));
StackAddress resultValue = IGF.emitDynamicAlloca(
IGM.Int8Ty, valueSize, paramInfo.getBestKnownAlignment());
llvm::Value *resultAddr = resultValue.getAddress().getAddress();
resultAddr = IGF.Builder.CreateBitCast(resultAddr, IGM.OpaquePtrTy);
Explosion decodeArgs;
// indirect result buffer as `swift.opaque*`
decodeArgs.add(resultAddr);
// substitution Argument -> <argument metadata>
decodeArgs.add(argumentType);
// Lookup witness tables for the requirement on the argument type.
lookupWitnessTables(argumentType, decoder.getProtocolRequirements(),
decodeArgs);
Address calleeErrorSlot;
llvm::Value *decodeError = nullptr;
emission->begin();
{
emission->setArgs(decodeArgs, /*isOutlined=*/false,
decoder.UsesWitnessDispatch ? decoder.getWitnessMetadata()
: nullptr);
Explosion result;
emission->emitToExplosion(result, /*isOutlined=*/false);
assert(result.empty());
// Load error from the slot to emit an early return if necessary.
{
SILFunctionConventions conv(decoder.getMethodType(), IGM.getSILModule());
SILType errorType =
conv.getSILErrorType(IGM.getMaximalTypeExpansionContext());
calleeErrorSlot =
emission->getCalleeErrorSlot(errorType, /*isCalleeAsync=*/true);
decodeError = IGF.Builder.CreateLoad(calleeErrorSlot);
}
}
emission->end();
// Remember to deallocate later.
AllocatedArguments.push_back(resultValue);
// Check whether the error slot has been set and if so
// emit an early return from accessor.
{
auto contBB = IGF.createBasicBlock("");
auto errorBB = IGF.createBasicBlock("on-error");
auto nullError = llvm::Constant::getNullValue(decodeError->getType());
auto hasError = IGF.Builder.CreateICmpNE(decodeError, nullError);
IGF.Builder.CreateCondBr(hasError, errorBB, contBB);
{
IGF.Builder.emitBlock(errorBB);
// Emit an early return if argument decoding failed.
emitReturn(decodeError);
}
IGF.Builder.emitBlock(contBB);
// Reset value of the slot back to `null`
IGF.Builder.CreateStore(nullError, calleeErrorSlot);
}
switch (param.getConvention()) {
case ParameterConvention::Indirect_In_CXX:
case ParameterConvention::Indirect_In: {
// The only way to load opaque type is to allocate a temporary
// variable on the stack for it and initialize from the given address
// either at +0 or +1 depending on convention.
auto stackAddr =
IGF.emitDynamicAlloca(IGM.Int8Ty, valueSize, Alignment(16));
emitInitializeWithCopyCall(IGF, argumentType, stackAddr.getAddress(),
resultValue.getAddress());
// Remember to deallocate a copy.
AllocatedArguments.push_back(stackAddr);
// Don't forget to actually store the argument
arguments.add(stackAddr.getAddressPointer());
break;
}
case ParameterConvention::Indirect_In_Guaranteed: {
// The argument is +0, so we can use the address of the param in
// the context directly.
arguments.add(resultAddr);
LoadedArguments.push_back(std::make_pair(resultValue.getAddress(), argumentType));
break;
}
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("indirect 'inout' parameters are not supported");
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("pack parameters are not supported");
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned: {
auto paramTy = param.getSILStorageInterfaceType();
Address eltPtr = IGF.Builder.CreateElementBitCast(
resultValue.getAddress(), IGM.getStorageType(paramTy));
cast<LoadableTypeInfo>(paramInfo).loadAsTake(IGF, eltPtr, arguments);
LoadedArguments.push_back(std::make_pair(eltPtr, argumentType));
break;
}
case ParameterConvention::Direct_Owned: {
// Copy the value out at +1.
cast<LoadableTypeInfo>(paramInfo).loadAsCopy(IGF, resultValue.getAddress(),
arguments);
LoadedArguments.push_back(
std::make_pair(resultValue.getAddress(), argumentType));
break;
}
}
}
static llvm::Value *lookupWitnessTable(IRGenFunction &IGF, llvm::Value *witness,
ProtocolDecl *protocol) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol));
auto &IGM = IGF.IGM;
auto *protocolDescriptor = IGM.getAddrOfProtocolDescriptor(protocol);
auto *witnessTable = IGF.Builder.CreateCall(
IGM.getConformsToProtocolFunctionPointer(), {witness, protocolDescriptor});
auto failBB = IGF.createBasicBlock("missing-witness");
auto contBB = IGF.createBasicBlock("");
auto isNull = IGF.Builder.CreateICmpEQ(
witnessTable, llvm::ConstantPointerNull::get(IGM.WitnessTablePtrTy));
IGF.Builder.CreateCondBr(isNull, failBB, contBB);
// This operation shouldn't fail because the compiler should have
// checked that the given witness conforms to the protocol. If it
// does fail then accessor should trap.
{
IGF.Builder.emitBlock(failBB);
IGF.emitTrap("missing witness table", /*EmitUnreachable=*/true);
}
IGF.Builder.emitBlock(contBB);
return witnessTable;
}
void DistributedAccessor::lookupWitnessTables(
llvm::Value *value, ArrayRef<ProtocolDecl *> protocols,
Explosion &witnessTables) {
if (protocols.empty())
return;
auto conformsToProtocol = IGM.getConformsToProtocolFunctionPointer();
for (auto *protocol : protocols) {
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
continue;
witnessTables.add(lookupWitnessTable(IGF, value, protocol));
}
}
void DistributedAccessor::emitLoadOfWitnessTables(llvm::Value *witnessTables,
llvm::Value *numTables,
unsigned expectedWitnessTables,
Explosion &arguments) {
auto contBB = IGF.createBasicBlock("");
auto unreachableBB = IGF.createBasicBlock("incorrect-witness-tables");
auto incorrectNum = IGF.Builder.CreateICmpNE(
numTables, llvm::ConstantInt::get(IGM.SizeTy, expectedWitnessTables));
// Make sure that we have a correct number of witness tables provided to us.
IGF.Builder.CreateCondBr(incorrectNum, unreachableBB, contBB);
{
IGF.Builder.emitBlock(unreachableBB);
IGF.Builder.CreateUnreachable();
}
IGF.Builder.emitBlock(contBB);
witnessTables = IGF.Builder.CreateBitCast(witnessTables,
IGM.Int8PtrPtrTy->getPointerTo());
for (unsigned i = 0, n = expectedWitnessTables; i != n; ++i) {
auto offset = Size(i * IGM.getPointerSize());
auto alignment = IGM.getPointerAlignment();
auto witnessTableAddr = IGF.emitAddressAtOffset(
witnessTables, Offset(offset), IGM.Int8PtrPtrTy, Alignment(alignment));
arguments.add(IGF.Builder.CreateLoad(witnessTableAddr));
}
}
void DistributedAccessor::emitReturn(llvm::Value *errorValue) {
// Destroy loaded arguments.
// This MUST be done before deallocating, as otherwise we'd try to
// swift_release freed memory, which will be a no-op, however that also would
// mean we never drop retain counts to 0 and miss to run deinitializers of
// classes!
llvm::for_each(LoadedArguments, [&](const auto &argInfo) {
emitDestroyCall(IGF, argInfo.second, argInfo.first);
});
// Deallocate all of the copied arguments. Since allocations happened
// on stack they have to be deallocated in reverse order.
{
for (auto alloca = AllocatedArguments.rbegin();
alloca != AllocatedArguments.rend(); ++alloca) {
IGF.emitDeallocateDynamicAlloca(*alloca);
}
}
Explosion voidResult;
Explosion error;
error.add(errorValue);
emitAsyncReturn(IGF, AsyncLayout, getResultType(), AccessorType, voidResult,
error);
}
void DistributedAccessor::emit() {
auto targetTy = Target.getType();
SILFunctionConventions targetConv(targetTy, IGF.getSILModule());
TypeExpansionContext expansionContext = IGM.getMaximalTypeExpansionContext();
auto params = IGF.collectParameters();
GenericContextScope scope(IGM, targetTy->getInvocationGenericSignature());
auto directResultTy = targetConv.getSILResultType(expansionContext);
const auto &directResultTI = IGM.getTypeInfo(directResultTy);
Explosion arguments;
unsigned numAsyncContextParams =
(unsigned)AsyncFunctionArgumentIndex::Context + 1;
(void)params.claim(numAsyncContextParams);
// A container that produces argument values based on the given set of
// argument types (supplied as a next argument).
auto *argDecoder = params.claimNext();
// `swift.type**` that holds the argument types that correspond to values.
auto *argTypes = params.claimNext();
// UnsafeRawPointer that is used to store the result.
auto *resultBuffer = params.claimNext();
// UnsafeRawPointer that represents a list of substitutions
auto *substitutions = params.claimNext();
// UnsafeRawPointer that represents a list of witness tables
auto *witnessTables = params.claimNext();
// Integer that represented the number of witness tables
auto *numWitnessTables = params.claimNext();
// Reference to a `self` of the actor to be called.
auto *actorSelf = params.claimNext();
// Metadata that represents passed in the invocation decoder.
auto *decoderType = params.claimNext();
// Witness table for decoder conformance to DistributedTargetInvocationDecoder
auto *decoderProtocolWitness = params.claimNext();
// Preliminary: Setup async context for this accessor.
{
auto fpKind = FunctionPointerKind::defaultAsync();
auto asyncContextIdx =
Signature::forAsyncEntry(IGM, AccessorType, fpKind)
.getAsyncContextIndex();
auto entity = Target.getLinking();
emitAsyncFunctionEntry(IGF, AsyncLayout, entity, asyncContextIdx);
emitAsyncFunctionPointer(IGM, IGF.CurFn, entity, AsyncLayout.getSize());
}
auto *typedResultBuffer = IGF.Builder.CreateBitCast(
resultBuffer, IGM.getStoragePointerType(directResultTy));
if (targetConv.getNumIndirectSILResults()) {
// Since tuples are not allowed as valid result types (because they cannot
// conform to protocols), there could be only a single indirect result type
// associated with distributed method.
assert(targetConv.getNumIndirectSILResults() == 1);
arguments.add(typedResultBuffer);
}
// There is always at least one parameter associated with accessor - `self`
// of the distributed actor.
if (targetTy->getNumParameters() > 1) {
/// The argument decoder associated with the distributed actor
/// this accessor belong to.
ArgumentDecoderInfo decoder =
findArgumentDecoder(argDecoder, decoderType, decoderProtocolWitness);
// Step one is to load all of the data from argument buffer,
// so it could be forwarded to the distributed method.
decodeArguments(decoder, argTypes, arguments);
}
// Add all of the substitutions to the explosion
if (Target.isGeneric()) {
// swift.type **
llvm::Value *substitutionBuffer =
IGF.Builder.CreateBitCast(substitutions, IGM.TypeMetadataPtrPtrTy);
// Collect the generic arguments expected by the distributed thunk.
// We need this to determine the expected number of witness tables
// to load from the buffer provided by the caller.
llvm::SmallVector<llvm::Type *, 4> targetGenericArguments;
auto expandedSignature =
expandPolymorphicSignature(IGM, targetTy, targetGenericArguments);
assert(expandedSignature.numShapes == 0 &&
"Distributed actors don't support variadic generics");
// Generic arguments associated with the distributed thunk directly
// e.g. `distributed func echo<T, U>(...)`
for (unsigned index = 0; index < expandedSignature.numTypeMetadataPtrs; ++index) {
auto offset =
Size(index * IGM.DataLayout.getTypeAllocSize(IGM.TypeMetadataPtrTy));
llvm::Align alignment =
IGM.DataLayout.getABITypeAlign(IGM.TypeMetadataPtrTy);
auto substitution = IGF.emitAddressAtOffset(
substitutionBuffer, Offset(offset), IGM.TypeMetadataPtrTy,
Alignment(alignment.value()));
arguments.add(IGF.Builder.CreateLoad(substitution, "substitution"));
}
emitLoadOfWitnessTables(witnessTables, numWitnessTables,
expandedSignature.numWitnessTablePtrs, arguments);
}
// Step two, let's form and emit a call to the distributed method
// using computed argument explosion.
{
Explosion result;
llvm::Value *targetError = nullptr;
auto callee = Target.getCallee(actorSelf);
auto emission =
getCallEmission(IGF, callee.getSwiftContext(), std::move(callee));
emission->begin();
emission->setArgs(arguments, /*isOutlined=*/false,
Target.getWitnessMetadata(actorSelf));
// Load result of the thunk into the location provided by the caller.
// This would only generate code for direct results, if thunk has an
// indirect result (e.g. large struct) it result buffer would be passed
// as an argument.
{
Address resultAddr(typedResultBuffer, directResultTI.getStorageType(),
directResultTI.getBestKnownAlignment());
emission->emitToMemory(resultAddr, cast<LoadableTypeInfo>(directResultTI),
/*isOutlined=*/false);
}
// Both accessor and distributed method are always `async throws`
// so we need to load error value (if any) from the slot.
{
assert(targetTy->hasErrorResult());
Address calleeErrorSlot =
emission->getCalleeErrorSlot(getErrorType(), /*isCalleeAsync=*/true);
targetError = IGF.Builder.CreateLoad(calleeErrorSlot);
}
emission->end();
// Emit an async return that does allocation cleanup and propagates error
// (if any) back to the caller.
emitReturn(targetError);
}
}
FunctionPointer AccessorTarget::getPointerToTarget(llvm::Value *actorSelf) {
auto &IGM = IGF.IGM;
if (auto *thunk = Target.dyn_cast<SILFunction *>()) {
auto fpKind = classifyFunctionPointerKind(thunk);
auto signature = IGM.getSignature(Type, fpKind);
auto *fnPtr =
llvm::ConstantExpr::getBitCast(IGM.getAddrOfAsyncFunctionPointer(thunk),
signature.getType()->getPointerTo());
return FunctionPointer::forDirect(
FunctionPointer::Kind(Type), fnPtr,
IGM.getAddrOfSILFunction(thunk, NotForDefinition), signature);
}
auto *requirementDecl = Target.get<AbstractFunctionDecl *>();
auto *protocol = requirementDecl->getDeclContext()->getSelfProtocolDecl();
SILDeclRef requirementRef = SILDeclRef(requirementDecl).asDistributed();
if (!IGM.isResilient(protocol, ResilienceExpansion::Maximal)) {
auto *witness = getWitnessMetadata(actorSelf);
return emitWitnessMethodValue(IGF, witness->SelfWitnessTable,
requirementRef);
}
auto fnPtr = IGM.getAddrOfDispatchThunk(requirementRef, NotForDefinition);
auto sig = IGM.getSignature(Type);
return FunctionPointer::forDirect(Type, fnPtr,
/*secondaryValue=*/nullptr, sig, true);
}
llvm::Value *AccessorTarget::emitMetadataRef(llvm::Value *actorSelf) const {
auto &IGM = IGF.IGM;
if (!IGM.ObjCInterop) {
llvm::Value *slot =
IGF.Builder.CreateBitCast(actorSelf, IGM.TypeMetadataPtrPtrTy);
return IGF.Builder.CreateLoad(
Address(slot, IGM.TypeMetadataPtrTy, IGM.getPointerAlignment()));
}
return emitHeapMetadataRefForUnknownHeapObject(IGF, actorSelf);
}
Callee AccessorTarget::getCallee(llvm::Value *actorSelf) {
CalleeInfo info{Type, Type, SubstitutionMap()};
return {std::move(info), getPointerToTarget(actorSelf), actorSelf};
}
WitnessMetadata *AccessorTarget::getWitnessMetadata(llvm::Value *actorSelf) {
if (Target.is<SILFunction *>())
return nullptr;
if (!Witness) {
WitnessMetadata witness;
auto *requirement = Target.get<AbstractFunctionDecl *>();
auto *protocol = requirement->getDeclContext()->getSelfProtocolDecl();
assert(protocol);
witness.SelfMetadata = actorSelf;
witness.SelfWitnessTable =
lookupWitnessTable(IGF, emitMetadataRef(actorSelf), protocol);
Witness = witness;
}
return &(*Witness);
}
ArgumentDecoderInfo DistributedAccessor::findArgumentDecoder(
llvm::Value *decoder, llvm::Value *decoderTy, llvm::Value *witnessTable) {
auto &C = IGM.Context;
auto *thunk = cast<AbstractFunctionDecl>(Target.getDeclContext());
auto expansionContext = IGM.getMaximalTypeExpansionContext();
/// If the context was a function, unwrap it and look for the decode method
/// based off a concrete class; If we're not in a concrete class, we'll be
/// using a witness for the decoder so returning null is okey.
FuncDecl *decodeFn = getDistributedActorArgumentDecodingMethod(
thunk->getDeclContext()->getSelfNominalTypeDecl());
// If distributed actor is generic over actor system, we have to
// use witness to reference `decodeNextArgument`.
if (!decodeFn) {
auto decoderProtocol = C.getDistributedTargetInvocationDecoderDecl();
auto decodeNextArgRequirement =
decoderProtocol->getSingleRequirement(C.Id_decodeNextArgument);
assert(decodeNextArgRequirement);
SILDeclRef decodeNextArgumentRef(decodeNextArgRequirement);
llvm::Constant *fnPtr =
IGM.getAddrOfDispatchThunk(decodeNextArgumentRef, NotForDefinition);
auto fnType = IGM.getSILTypes().getConstantFunctionType(
IGM.getMaximalTypeExpansionContext(), decodeNextArgumentRef);
auto sig = IGM.getSignature(fnType);
auto fn = FunctionPointer::forDirect(fnType, fnPtr,
/*secondaryValue=*/nullptr, sig, true);
return {decoder, decoderTy, witnessTable,
fn, fnType, /*usesWitnessDispatch=*/true};
}
auto methodTy = IGM.getSILTypes().getConstantFunctionType(
expansionContext, SILDeclRef(decodeFn));
auto fpKind = FunctionPointerKind::defaultAsync();
auto signature = IGM.getSignature(methodTy, fpKind);
// If the decoder class is `final`, let's emit a direct reference.
auto *decoderDecl = decodeFn->getDeclContext()->getSelfNominalTypeDecl();
// If decoder is a class, need to load it first because generic parameter
// is passed indirectly. This is good for structs and enums because
// `decodeNextArgument` is a mutating method, but not for classes because
// in that case heap object is mutated directly.
bool usesDispatchThunk = false;
if (auto classDecl = dyn_cast<ClassDecl>(decoderDecl)) {
auto selfTy = methodTy->getSelfParameter().getSILStorageType(
IGM.getSILModule(), methodTy, expansionContext);
auto &classTI = IGM.getTypeInfo(selfTy).as<ClassTypeInfo>();
auto &classLayout = classTI.getClassLayout(IGM, selfTy,
/*forBackwardDeployment=*/false);
llvm::Value *typedDecoderPtr = IGF.Builder.CreateBitCast(
decoder, classLayout.getType()->getPointerTo()->getPointerTo());
Explosion instance;
classTI.loadAsTake(IGF,
{typedDecoderPtr, classTI.getStorageType(),
classTI.getBestKnownAlignment()},
instance);
decoder = instance.claimNext();
/// When using library evolution functions have another "dispatch thunk"
/// so we must use this instead of the decodeFn directly.
usesDispatchThunk =
getMethodDispatch(decodeFn) == swift::MethodDispatch::Class &&
classDecl->hasResilientMetadata();
}
FunctionPointer methodPtr;
if (usesDispatchThunk) {
auto fnPtr = IGM.getAddrOfDispatchThunk(SILDeclRef(decodeFn), NotForDefinition);
methodPtr = FunctionPointer::createUnsigned(
methodTy, fnPtr, signature, /*useSignature=*/true);
} else {
SILFunction *decodeSILFn = IGM.getSILModule().lookUpFunction(SILDeclRef(decodeFn));
auto fnPtr = IGM.getAddrOfSILFunction(decodeSILFn, NotForDefinition,
/*isDynamicallyReplaceable=*/false);
methodPtr = FunctionPointer::forDirect(
classifyFunctionPointerKind(decodeSILFn), fnPtr,
/*secondaryValue=*/nullptr, signature);
}
return {decoder, decoderTy, witnessTable,
methodPtr, methodTy, /*usesWitnessDispatch=*/false};
}
SILType DistributedAccessor::getResultType() const {
SILFunctionConventions conv(AccessorType, IGF.getSILModule());
return conv.getSILResultType(IGM.getMaximalTypeExpansionContext());
}
SILType DistributedAccessor::getErrorType() const {
SILFunctionConventions conv(AccessorType, IGF.getSILModule());
return conv.getSILErrorType(IGM.getMaximalTypeExpansionContext());
}
Callee ArgumentDecoderInfo::getCallee() const {
CalleeInfo info(MethodType, MethodType, SubstitutionMap());
return {std::move(info), MethodPtr, Decoder};
}