Files
swift-mirror/lib/SIL/SILModule.cpp
Slava Pestov 772cf3a2fa SIL Optimizer: More principled substitution remapping in devirtualizer
When devirtualizing witness method and class method calls, we
transform apply instructions operating on the result of a SIL
witness_method or class_method instruction to direct calls of
a function_ref.

The generic signature of the dynamic call site might not match
the generic signature of the static thunk, so the substitution
list from the dynamic apply instruction cannot be used directly;
instead, we must transform it to a substitution list suitable
for the static thunk.

- With witness methods, the method is called using the protocol
  requirement's signature, <Self : P, ...>, however the
  witness thunk has a generic signature derived from the
  concrete witness.

  For example, the requirement might have a signature
  <Self : P, T>, where the concrete witness thunk might
  have a signature <X, Y>, where the concrete conforming type
  is G<X, Y>.

  At the call site, we substitute Self := G<X', Y'>; however
  to be able to call the witness thunk directly, we need to
  form substitutions X := X' and Y := Y'.

- A similar situation occurs with class methods when the
  dynamically-dispatched call is performed against a derived
  class, but devirtualization actually finds the method on a
  base class of the derived class.

  The base class may have a different number of generic
  parameters than the derived class, either because the
  derived class makes some generic parameters of the base
  class concrete, or if the derived class introduces new
  generic parameters of its own.

In both cases, we need to consider the generic signature of the
dynamic call site (the protocol requirement or the derived
class method) as well as the generic signature of the static
thunk, and carefully remap the substitutions from one form
into another.

Previously the optimizer would implicitly rely on substitutions
being in AllArchetypes order, in particular that concatenating
outer substitutions with inner substitutions makes sense.

This assumption is about to go away, so this patch refactors
the optimizer to use some new abstractions for remapping
substitution lists.
2016-09-06 11:51:13 -07:00

774 lines
27 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-module"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Substitution.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "Linker.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include <functional>
using namespace swift;
using namespace Lowering;
class SILModule::SerializationCallback : public SerializedSILLoader::Callback {
void didDeserialize(Module *M, SILFunction *fn) override {
updateLinkage(fn);
}
void didDeserialize(Module *M, SILGlobalVariable *var) override {
updateLinkage(var);
// For globals we currently do not support available_externally.
// In the interpreter it would result in two instances for a single global:
// one in the imported module and one in the main module.
var->setDeclaration(true);
}
void didDeserialize(Module *M, SILVTable *vtable) override {
// TODO: should vtables get linkage?
//updateLinkage(vtable);
}
void didDeserialize(Module *M, SILWitnessTable *wt) override {
updateLinkage(wt);
}
template <class T> void updateLinkage(T *decl) {
switch (decl->getLinkage()) {
case SILLinkage::Public:
decl->setLinkage(SILLinkage::PublicExternal);
return;
case SILLinkage::Hidden:
decl->setLinkage(SILLinkage::HiddenExternal);
return;
case SILLinkage::Shared:
decl->setLinkage(SILLinkage::SharedExternal);
return;
case SILLinkage::Private:
decl->setLinkage(SILLinkage::PrivateExternal);
return;
case SILLinkage::PublicExternal:
case SILLinkage::HiddenExternal:
case SILLinkage::SharedExternal:
case SILLinkage::PrivateExternal:
return;
}
}
};
SILModule::SILModule(Module *SwiftModule, SILOptions &Options,
const DeclContext *associatedDC,
bool wholeModule)
: TheSwiftModule(SwiftModule), AssociatedDeclContext(associatedDC),
Stage(SILStage::Raw), Callback(new SILModule::SerializationCallback()),
wholeModule(wholeModule), Options(Options), Types(*this) {
}
SILModule::~SILModule() {
// Decrement ref count for each SILGlobalVariable with static initializers.
for (SILGlobalVariable &v : silGlobals)
if (v.getInitializer())
v.getInitializer()->decrementRefCount();
// Drop everything functions in this module reference.
//
// This is necessary since the functions may reference each other. We don't
// need to worry about sil_witness_tables since witness tables reference each
// other via protocol conformances and sil_vtables don't reference each other
// at all.
for (SILFunction &F : *this)
F.dropAllReferences();
}
void *SILModule::allocate(unsigned Size, unsigned Align) const {
if (getASTContext().LangOpts.UseMalloc)
return AlignedAlloc(Size, Align);
return BPA.Allocate(Size, Align);
}
void *SILModule::allocateInst(unsigned Size, unsigned Align) const {
return AlignedAlloc(Size, Align);
}
void SILModule::deallocateInst(SILInstruction *I) {
AlignedFree(I);
}
SILWitnessTable *
SILModule::createWitnessTableDeclaration(ProtocolConformance *C,
SILLinkage linkage) {
// If we are passed in a null conformance (a valid value), just return nullptr
// since we cannot map a witness table to it.
if (!C)
return nullptr;
// Extract the base NormalProtocolConformance.
NormalProtocolConformance *NormalC = C->getRootNormalConformance();
return SILWitnessTable::create(*this, linkage, NormalC);
}
SILWitnessTable *
SILModule::lookUpWitnessTable(ProtocolConformanceRef C,
bool deserializeLazily) {
// If we have an abstract conformance passed in (a legal value), just return
// nullptr.
if (!C.isConcrete())
return nullptr;
return lookUpWitnessTable(C.getConcrete());
}
SILWitnessTable *
SILModule::lookUpWitnessTable(const ProtocolConformance *C,
bool deserializeLazily) {
assert(C && "null conformance passed to lookUpWitnessTable");
const NormalProtocolConformance *NormalC = C->getRootNormalConformance();
// Attempt to lookup the witness table from the table.
auto found = WitnessTableMap.find(NormalC);
if (found == WitnessTableMap.end()) {
#ifndef NDEBUG
// Make sure that all witness tables are in the witness table lookup
// cache.
//
// This code should not be hit normally since we add witness tables to the
// lookup cache when we create them. We don't just assert here since there
// is the potential for a conformance without a witness table to be passed
// to this function.
for (SILWitnessTable &WT : witnessTables)
assert(WT.getConformance() != NormalC &&
"Found witness table that is not"
" in the witness table lookup cache.");
#endif
return nullptr;
}
SILWitnessTable *wtable = found->second;
assert(wtable != nullptr && "Should never map a conformance to a null witness"
" table.");
// If we have a definition, return it.
if (wtable->isDefinition())
return wtable;
// Otherwise try to deserialize it. If we succeed return the deserialized
// function.
//
// *NOTE* In practice, wtable will be deserializedTable, but I do not want to rely
// on that behavior for now.
if (deserializeLazily)
if (auto deserialized = getSILLoader()->lookupWitnessTable(wtable))
return deserialized;
// If we fail, just return the declaration.
return wtable;
}
SILDefaultWitnessTable *
SILModule::lookUpDefaultWitnessTable(const ProtocolDecl *Protocol,
bool deserializeLazily) {
// Note: we only ever look up default witness tables in the translation unit
// that is currently being compiled, since they SILGen generates them when it
// visits the protocol declaration, and IRGen emits them when emitting the
// protocol descriptor metadata for the protocol.
auto found = DefaultWitnessTableMap.find(Protocol);
if (found == DefaultWitnessTableMap.end()) {
if (deserializeLazily) {
SILLinkage linkage =
getSILLinkage(getDeclLinkage(Protocol), ForDefinition);
SILDefaultWitnessTable *wtable =
SILDefaultWitnessTable::create(*this, linkage, Protocol);
wtable = getSILLoader()->lookupDefaultWitnessTable(wtable);
if (wtable)
DefaultWitnessTableMap[Protocol] = wtable;
return wtable;
}
return nullptr;
}
return found->second;
}
SILDefaultWitnessTable *
SILModule::createDefaultWitnessTableDeclaration(const ProtocolDecl *Protocol,
SILLinkage Linkage) {
return SILDefaultWitnessTable::create(*this, Linkage, Protocol);
}
SILFunction *SILModule::getOrCreateFunction(SILLocation loc,
StringRef name,
SILLinkage linkage,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent,
IsFragile_t isFragile,
IsThunk_t isThunk,
SILFunction::ClassVisibility_t CV) {
if (auto fn = lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == type);
assert(fn->getLinkage() == linkage ||
stripExternalFromLinkage(fn->getLinkage()) == linkage);
return fn;
}
auto fn = SILFunction::create(*this, linkage, name, type, nullptr,
loc, isBareSILFunction, isTransparent,
isFragile, isThunk, CV);
fn->setDebugScope(new (*this) SILDebugScope(loc, fn));
return fn;
}
static SILFunction::ClassVisibility_t getClassVisibility(SILDeclRef constant) {
if (!constant.hasDecl())
return SILFunction::NotRelevant;
// If this declaration is a function which goes into a vtable, then it's
// symbol must be as visible as its class. Derived classes even have to put
// all less visible methods of the base class into their vtables.
auto *FD = dyn_cast<AbstractFunctionDecl>(constant.getDecl());
if (!FD)
return SILFunction::NotRelevant;
DeclContext *context = FD->getDeclContext();
// Methods from extensions don't go into vtables (yet).
if (context->isExtensionContext())
return SILFunction::NotRelevant;
auto *classType = context->getAsClassOrClassExtensionContext();
if (!classType || classType->isFinal())
return SILFunction::NotRelevant;
if (FD->isFinal() && !FD->getOverriddenDecl())
return SILFunction::NotRelevant;
assert(FD->getEffectiveAccess() <= classType->getEffectiveAccess() &&
"class must be as visible as its members");
switch (classType->getEffectiveAccess()) {
case Accessibility::Private:
case Accessibility::FilePrivate:
return SILFunction::NotRelevant;
case Accessibility::Internal:
return SILFunction::InternalClass;
case Accessibility::Public:
case Accessibility::Open:
return SILFunction::PublicClass;
}
}
static bool verifySILSelfParameterType(SILDeclRef DeclRef,
SILFunction *F, CanSILFunctionType FTy) {
SILModule &M = F->getModule();
SILParameterInfo PInfo = FTy->getSelfParameter();
CanType CTy = PInfo.getType();
SILType Ty = SILType::getPrimitiveObjectType(CTy);
// We do not care about trivial parameters (for now). There seem to be
// cases where we lower them as unowned.
//
// *NOTE* We do not run this check when we have a generic type since
// *generic types do not have type lowering and are always treated as
// *non-trivial since we do not know the type.
if (CTy->hasArchetype() || CTy->hasTypeParameter() ||
M.getTypeLowering(Ty).isTrivial())
return true;
// If this function is a constructor or destructor, bail. These have @owned
// parameters.
if (DeclRef.isConstructor() || DeclRef.isDestructor())
return true;
// Otherwise, if this function type has a guaranteed self parameter type,
// make sure that we have a +0 self param.
return !FTy->getExtInfo().hasGuaranteedSelfParam() ||
PInfo.isGuaranteed() || PInfo.isIndirectMutating();
}
SILFunction *SILModule::getOrCreateFunction(SILLocation loc,
SILDeclRef constant,
ForDefinition_t forDefinition) {
auto name = constant.mangle();
auto constantType = Types.getConstantType(constant).castTo<SILFunctionType>();
SILLinkage linkage = constant.getLinkage(forDefinition);
if (auto fn = lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == constantType);
assert(fn->getLinkage() == linkage ||
(forDefinition == ForDefinition_t::NotForDefinition &&
fn->getLinkage() ==
constant.getLinkage(ForDefinition_t::ForDefinition)));
if (forDefinition) {
// In all the cases where getConstantLinkage returns something
// different for ForDefinition, it returns an available-externally
// linkage.
if (isAvailableExternally(fn->getLinkage())) {
fn->setLinkage(constant.getLinkage(ForDefinition));
}
}
return fn;
}
IsTransparent_t IsTrans = constant.isTransparent()
? IsTransparent
: IsNotTransparent;
IsFragile_t IsFrag = constant.isFragile()
? IsFragile
: IsNotFragile;
EffectsKind EK = constant.hasEffectsAttribute()
? constant.getEffectsAttribute()
: EffectsKind::Unspecified;
Inline_t inlineStrategy = InlineDefault;
if (constant.isNoinline())
inlineStrategy = NoInline;
else if (constant.isAlwaysInline())
inlineStrategy = AlwaysInline;
auto *F = SILFunction::create(*this, linkage, name,
constantType, nullptr,
None, IsNotBare, IsTrans, IsFrag, IsNotThunk,
getClassVisibility(constant),
inlineStrategy, EK);
if (forDefinition == ForDefinition_t::ForDefinition)
F->setDebugScope(new (*this) SILDebugScope(loc, F));
F->setGlobalInit(constant.isGlobal());
if (constant.hasDecl()) {
auto decl = constant.getDecl();
if (constant.isForeign && decl->hasClangNode())
F->setClangNodeOwner(decl);
auto Attrs = decl->getAttrs();
for (auto *A : Attrs.getAttributes<SemanticsAttr, false /*AllowInvalid*/>())
F->addSemanticsAttr(cast<SemanticsAttr>(A)->Value);
for (auto *A :
Attrs.getAttributes<SpecializeAttr, false /*AllowInvalid*/>()) {
auto *SA = cast<SpecializeAttr>(A);
auto subs = SA->getConcreteDecl().getSubstitutions();
F->addSpecializeAttr(SILSpecializeAttr::create(*this, subs));
}
}
F->setDeclContext(constant.hasDecl() ? constant.getDecl() : nullptr);
// If this function has a self parameter, make sure that it has a +0 calling
// convention. This cannot be done for general function types, since
// function_ref's SILFunctionTypes do not have archetypes associated with
// it.
CanSILFunctionType FTy = F->getLoweredFunctionType();
if (FTy->hasSelfParam()) {
(void)verifySILSelfParameterType;
assert(verifySILSelfParameterType(constant, F, FTy) &&
"Invalid signature for SIL Self parameter type");
}
return F;
}
SILFunction *SILModule::getOrCreateSharedFunction(SILLocation loc,
StringRef name,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent,
IsFragile_t isFragile,
IsThunk_t isThunk) {
return getOrCreateFunction(loc, name, SILLinkage::Shared,
type, isBareSILFunction, isTransparent, isFragile,
isThunk, SILFunction::NotRelevant);
}
SILFunction *SILModule::createFunction(
SILLinkage linkage, StringRef name, CanSILFunctionType loweredType,
GenericEnvironment *genericEnv, Optional<SILLocation> loc,
IsBare_t isBareSILFunction, IsTransparent_t isTrans, IsFragile_t isFragile,
IsThunk_t isThunk, SILFunction::ClassVisibility_t classVisibility,
Inline_t inlineStrategy, EffectsKind EK, SILFunction *InsertBefore,
const SILDebugScope *DebugScope, DeclContext *DC) {
return SILFunction::create(*this, linkage, name, loweredType,
genericEnv, loc, isBareSILFunction,
isTrans, isFragile, isThunk, classVisibility,
inlineStrategy, EK, InsertBefore, DebugScope, DC);
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID =
(llvm::Intrinsic::ID)getLLVMIntrinsicID(NameRef, !Info.Types.empty());
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.startswith("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.startswith("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.startswith("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else if (OperationName.startswith("atomicload_"))
Info.ID = BuiltinValueKind::AtomicLoad;
else if (OperationName.startswith("atomicstore_"))
Info.ID = BuiltinValueKind::AtomicStore;
else {
// Switch through the rest of builtins.
Info.ID = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(ID, Name, Attrs) \
.Case(Name, BuiltinValueKind::ID)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
}
return Info;
}
SILFunction *SILModule::lookUpFunction(SILDeclRef fnRef) {
auto name = fnRef.mangle();
return lookUpFunction(name);
}
bool SILModule::linkFunction(SILFunction *Fun, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, getSILLoader(), Mode).processFunction(Fun);
}
bool SILModule::linkFunction(SILDeclRef Decl, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, getSILLoader(), Mode).processDeclRef(Decl);
}
bool SILModule::linkFunction(StringRef Name, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, getSILLoader(), Mode).processFunction(Name);
}
SILFunction *SILModule::hasFunction(StringRef Name, SILLinkage Linkage) {
assert((Linkage == SILLinkage::Public ||
Linkage == SILLinkage::PublicExternal) &&
"Only a lookup of public functions is supported currently");
SILFunction *F = nullptr;
// First, check if there is a function with a required name in the
// current module.
SILFunction *CurF = lookUpFunction(Name);
// Nothing to do if the current module has a required function
// with a proper linkage already.
if (CurF && CurF->getLinkage() == Linkage) {
F = CurF;
} else {
assert((!CurF || CurF->getLinkage() != Linkage) &&
"hasFunction should be only called for functions that are not "
"contained in the SILModule yet or do not have a required linkage");
}
if (!F) {
SILLinkerVisitor Visitor(*this, getSILLoader(),
SILModule::LinkingMode::LinkNormal);
if (CurF) {
// Perform this lookup only if a function with a given
// name is present in the current module.
// This is done to reduce the amount of IO from the
// swift module file.
if (!Visitor.hasFunction(Name, Linkage))
return nullptr;
// The function in the current module will be changed.
F = CurF;
}
// If function with a given name wasn't seen anywhere yet
// or if it is known to exist, perform a lookup.
if (!F) {
// Try to load the function from other modules.
F = Visitor.lookupFunction(Name, Linkage);
// Bail if nothing was found and we are not sure if
// this function exists elsewhere.
if (!F)
return nullptr;
assert(F && "SILFunction should be present in one of the modules");
assert(F->getLinkage() == Linkage && "SILFunction has a wrong linkage");
}
}
// If a function exists already and it is a non-optimizing
// compilation, simply convert it into an external declaration,
// so that a compiled version from the shared library is used.
if (F->isDefinition() &&
F->getModule().getOptions().Optimization <
SILOptions::SILOptMode::Optimize) {
F->convertToDeclaration();
}
if (F->isExternalDeclaration())
F->setFragile(IsFragile_t::IsNotFragile);
F->setLinkage(Linkage);
return F;
}
void SILModule::linkAllWitnessTables() {
getSILLoader()->getAllWitnessTables();
}
void SILModule::linkAllVTables() {
getSILLoader()->getAllVTables();
}
void SILModule::invalidateSILLoaderCaches() {
getSILLoader()->invalidateCaches();
}
void SILModule::removeFromZombieList(StringRef Name) {
if (auto *Zombie = ZombieFunctionTable.lookup(Name)) {
ZombieFunctionTable.erase(Name);
zombieFunctions.remove(Zombie);
}
}
/// Erase a function from the module.
void SILModule::eraseFunction(SILFunction *F) {
assert(! F->isZombie() && "zombie function is in list of alive functions");
if (F->isInlined() || F->isExternallyUsedSymbol()) {
// The owner of the function's Name is the FunctionTable key. As we remove
// the function from the table we have to store the name string elsewhere:
// in zombieFunctionNames.
StringRef copiedName = F->getName().copy(zombieFunctionNames);
FunctionTable.erase(F->getName());
F->Name = copiedName;
// The function is dead, but we need it later (at IRGen) for debug info
// or vtable stub generation. So we move it into the zombie list.
getFunctionList().remove(F);
zombieFunctions.push_back(F);
ZombieFunctionTable[copiedName] = F;
F->setZombie();
// This opens dead-function-removal opportunities for called functions.
// (References are not needed anymore.)
F->dropAllReferences();
} else {
FunctionTable.erase(F->getName());
getFunctionList().erase(F);
}
}
void SILModule::invalidateFunctionInSILCache(SILFunction *F) {
getSILLoader()->invalidateFunction(F);
}
/// Erase a global SIL variable from the module.
void SILModule::eraseGlobalVariable(SILGlobalVariable *G) {
GlobalVariableMap.erase(G->getName());
getSILGlobalList().erase(G);
}
SILVTable *SILModule::lookUpVTable(const ClassDecl *C) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto R = VTableMap.find(C);
if (R != VTableMap.end())
return R->second;
// If that fails, try to deserialize it. If that fails, return nullptr.
SILVTable *Vtbl =
SILLinkerVisitor(*this, getSILLoader(), SILModule::LinkingMode::LinkAll)
.processClassDecl(C);
if (!Vtbl)
return nullptr;
// If we succeeded, map C -> VTbl in the table and return VTbl.
VTableMap[C] = Vtbl;
return Vtbl;
}
SerializedSILLoader *SILModule::getSILLoader() {
// If the SILLoader is null, create it.
if (!SILLoader)
SILLoader = SerializedSILLoader::create(getASTContext(), this,
Callback.get());
// Return the SerializedSILLoader.
return SILLoader.get();
}
/// \brief Given a conformance \p C and a protocol requirement \p Requirement,
/// search the witness table for the conformance and return the witness thunk
/// for the requirement.
std::pair<SILFunction *, SILWitnessTable *>
SILModule::lookUpFunctionInWitnessTable(ProtocolConformanceRef C,
SILDeclRef Requirement) {
// Look up the witness table associated with our protocol conformance from the
// SILModule.
auto Ret = lookUpWitnessTable(C);
// If no witness table was found, bail.
if (!Ret) {
DEBUG(llvm::dbgs() << " Failed speculative lookup of witness for: ";
C.dump(); Requirement.dump());
return std::make_pair(nullptr, nullptr);
}
// Okay, we found the correct witness table. Now look for the method.
for (auto &Entry : Ret->getEntries()) {
// Look at method entries only.
if (Entry.getKind() != SILWitnessTable::WitnessKind::Method)
continue;
SILWitnessTable::MethodWitness MethodEntry = Entry.getMethodWitness();
// Check if this is the member we were looking for.
if (MethodEntry.Requirement != Requirement)
continue;
return std::make_pair(MethodEntry.Witness, Ret);
}
return std::make_pair(nullptr, nullptr);
}
/// \brief Given a protocol \p Protocol and a requirement \p Requirement,
/// search the protocol's default witness table and return the default
/// witness thunk for the requirement.
std::pair<SILFunction *, SILDefaultWitnessTable *>
SILModule::lookUpFunctionInDefaultWitnessTable(const ProtocolDecl *Protocol,
SILDeclRef Requirement,
bool deserializeLazily) {
// Look up the default witness table associated with our protocol from the
// SILModule.
auto Ret = lookUpDefaultWitnessTable(Protocol, deserializeLazily);
// If no default witness table was found, bail.
//
// FIXME: Could be an assert if we fix non-single-frontend mode to link
// together serialized SIL emitted by each translation unit.
if (!Ret) {
DEBUG(llvm::dbgs() << " Failed speculative lookup of default "
"witness for " << Protocol->getName() << " ";
Requirement.dump());
return std::make_pair(nullptr, nullptr);
}
// Okay, we found the correct default witness table. Now look for the method.
for (auto &Entry : Ret->getEntries()) {
// Ignore dummy entries semitted for non-method requirements, as well as
// requirements without default implementations.
if (!Entry.isValid())
continue;
// Check if this is the member we were looking for.
if (Entry.getRequirement() != Requirement)
continue;
return std::make_pair(Entry.getWitness(), Ret);
}
// This requirement doesn't have a default implementation.
return std::make_pair(nullptr, nullptr);
}
static ClassDecl *getClassDeclSuperClass(ClassDecl *Class) {
Type T = Class->getSuperclass();
if (!T)
return nullptr;
return T->getCanonicalType()->getClassOrBoundGenericClass();
}
SILFunction *
SILModule::
lookUpFunctionInVTable(ClassDecl *Class, SILDeclRef Member) {
// Until we reach the top of the class hierarchy...
while (Class) {
// Try to lookup a VTable for Class from the module...
auto *Vtbl = lookUpVTable(Class);
// Bail, if the lookup of VTable fails.
if (!Vtbl) {
return nullptr;
}
// Ok, we have a VTable. Try to lookup the SILFunction implementation from
// the VTable.
if (SILFunction *F = Vtbl->getImplementation(*this, Member))
return F;
// If we fail to lookup the SILFunction, again skip Class and attempt to
// resolve the method in the VTable of the super class of Class if such a
// super class exists.
Class = getClassDeclSuperClass(Class);
}
return nullptr;
}
void SILModule::
registerDeleteNotificationHandler(DeleteNotificationHandler* Handler) {
// Ask the handler (that can be an analysis, a pass, or some other data
// structure) if it wants to receive delete notifications.
if (Handler->needsNotifications()) {
NotificationHandlers.insert(Handler);
}
}
void SILModule::
removeDeleteNotificationHandler(DeleteNotificationHandler* Handler) {
NotificationHandlers.remove(Handler);
}
void SILModule::notifyDeleteHandlers(ValueBase *V) {
for (auto *Handler : NotificationHandlers) {
Handler->handleDeleteNotification(V);
}
}