Files
swift-mirror/stdlib/public/runtime/CrashHandlerLinux.cpp
Alastair Houghton 77de53b944 [Backtracing][Linux] Use syscall() to call gettid().
Older versions of Linux don't have gettid() in their headers, so
use syscall() to call it instead.

rdar://110417355
2023-06-07 21:24:32 +01:00

810 lines
19 KiB
C++

//===--- CrashHandlerLinux.cpp - Swift crash handler for Linux ----------- ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The Linux crash handler implementation.
//
//===----------------------------------------------------------------------===//
#ifdef __linux__
#include <linux/capability.h>
#include <linux/futex.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "swift/Runtime/Backtrace.h"
#include <cstring>
// Run the memserver in a thread (0) or separate process (1)
#define MEMSERVER_USE_PROCESS 0
#ifndef lengthof
#define lengthof(x) (sizeof(x) / sizeof(x[0]))
#endif
using namespace swift::runtime::backtrace;
namespace {
void handle_fatal_signal(int signum, siginfo_t *pinfo, void *uctx);
void suspend_other_threads(struct thread *self);
void resume_other_threads();
void take_thread_lock();
void release_thread_lock();
void notify_paused();
void wait_paused(uint32_t expected, const struct timespec *timeout);
int memserver_start();
int memserver_entry(void *);
bool run_backtracer(int fd);
ssize_t safe_read(int fd, void *buf, size_t len) {
uint8_t *ptr = (uint8_t *)buf;
uint8_t *end = ptr + len;
ssize_t total = 0;
while (ptr < end) {
ssize_t ret;
do {
ret = read(fd, buf, len);
} while (ret < 0 && errno == EINTR);
if (ret < 0)
return ret;
total += ret;
ptr += ret;
len -= ret;
}
return total;
}
ssize_t safe_write(int fd, const void *buf, size_t len) {
const uint8_t *ptr = (uint8_t *)buf;
const uint8_t *end = ptr + len;
ssize_t total = 0;
while (ptr < end) {
ssize_t ret;
do {
ret = write(fd, buf, len);
} while (ret < 0 && errno == EINTR);
if (ret < 0)
return ret;
total += ret;
ptr += ret;
len -= ret;
}
return total;
}
CrashInfo crashInfo;
const int signalsToHandle[] = {
SIGQUIT,
SIGABRT,
SIGBUS,
SIGFPE,
SIGILL,
SIGSEGV,
SIGTRAP
};
} // namespace
namespace swift {
namespace runtime {
namespace backtrace {
SWIFT_RUNTIME_STDLIB_INTERNAL int
_swift_installCrashHandler()
{
stack_t ss;
// See if an alternate signal stack already exists
if (sigaltstack(NULL, &ss) < 0)
return errno;
if (ss.ss_sp == 0) {
/* No, so set one up; note that if we end up having to do a PLT lookup
for a function we call from the signal handler, we need additional
stack space for the dynamic linker, or we'll just explode. That's
what the extra 16KB is for here. */
ss.ss_flags = 0;
ss.ss_size = SIGSTKSZ + 16384;
ss.ss_sp = mmap(0, ss.ss_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ss.ss_sp == MAP_FAILED)
return errno;
if (sigaltstack(&ss, NULL) < 0)
return errno;
}
// Now register signal handlers
struct sigaction sa;
sigfillset(&sa.sa_mask);
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
sigdelset(&sa.sa_mask, signalsToHandle[n]);
}
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_NODEFER;
sa.sa_sigaction = handle_fatal_signal;
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
struct sigaction osa;
// See if a signal handler for this signal is already installed
if (sigaction(signalsToHandle[n], NULL, &osa) < 0)
return errno;
if (osa.sa_handler == SIG_DFL) {
// No, so install ours
if (sigaction(signalsToHandle[n], &sa, NULL) < 0)
return errno;
}
}
return 0;
}
} // namespace backtrace
} // namespace runtime
} // namespace swift
namespace {
void
reset_signal(int signum)
{
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sigaction(signum, &sa, NULL);
}
void
handle_fatal_signal(int signum,
siginfo_t *pinfo,
void *uctx)
{
int old_err = errno;
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
// Prevent this from exploding if more than one thread gets here at once
suspend_other_threads(&self);
// Remove our signal handlers; crashes should kill us here
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n)
reset_signal(signalsToHandle[n]);
// Fill in crash info
crashInfo.crashing_thread = self.tid;
crashInfo.signal = signum;
crashInfo.fault_address = (uint64_t)pinfo->si_addr;
// Start the memory server
int fd = memserver_start();
// Actually start the backtracer
run_backtracer(fd);
#if !MEMSERVER_USE_PROCESS
/* If the memserver is in-process, it may have set signal handlers,
so reset SIGSEGV and SIGBUS again */
reset_signal(SIGSEGV);
reset_signal(SIGBUS);
#endif
// Restart the other threads
resume_other_threads();
// Restore errno and exit (to crash)
errno = old_err;
}
// .. Thread handling ..........................................................
void
reset_threads(struct thread *first) {
__atomic_store_n(&crashInfo.thread_list, (uint64_t)first, __ATOMIC_RELEASE);
}
void
add_thread(struct thread *thread) {
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
do {
thread->next = next;
} while (!__atomic_compare_exchange_n(&crashInfo.thread_list, &next,
(uint64_t)thread,
false,
__ATOMIC_RELEASE, __ATOMIC_ACQUIRE));
}
bool
seen_thread(pid_t tid) {
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
while (next) {
struct thread *pthread = (struct thread *)next;
if (pthread->tid == tid)
return true;
next = pthread->next;
}
return false;
}
void
pause_thread(int signum __attribute__((unused)),
siginfo_t *pinfo __attribute__((unused)),
void *uctx)
{
int old_err = errno;
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
add_thread(&self);
notify_paused();
take_thread_lock();
release_thread_lock();
errno = old_err;
}
struct linux_dirent64 {
ino64_t d_ino;
off64_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256];
};
int
getdents(int fd, void *buf, size_t bufsiz)
{
return syscall(SYS_getdents64, fd, buf, bufsiz);
}
pid_t
gettid()
{
return (pid_t)syscall(SYS_gettid);
}
/* Stop all other threads in this process; we do this by establishing a
signal handler for SIGPROF, then iterating through the threads sending
SIGPROF.
Finding the other threads is a pain, because Linux has no actual API
for that; instead, you have to read /proc. Unfortunately, opendir()
and readdir() are not async signal safe, so we get to do this with
the getdents system call instead.
The SIGPROF signals also serve to build the thread list. */
void
suspend_other_threads(struct thread *self)
{
struct sigaction sa, sa_old;
// Take the lock
take_thread_lock();
// Start the thread list with this thread
reset_threads(self);
// Swap out the SIGPROF signal handler first
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_NODEFER;
sa.sa_handler = NULL;
sa.sa_sigaction = pause_thread;
sigaction(SIGPROF, &sa, &sa_old);
/* Now scan /proc/self/task to get the tids of the threads in this
process. We need to ignore our own thread. */
int fd = open("/proc/self/task",
O_RDONLY|O_NDELAY|O_DIRECTORY|O_LARGEFILE|O_CLOEXEC);
int our_pid = getpid();
char buffer[4096];
size_t offset = 0;
size_t count = 0;
uint32_t thread_count = 0;
uint32_t old_thread_count;
do {
old_thread_count = thread_count;
lseek(fd, 0, SEEK_SET);
for (;;) {
if (offset >= count) {
ssize_t bytes = getdents(fd, buffer, sizeof(buffer));
if (bytes <= 0)
break;
count = (size_t)bytes;
offset = 0;
}
struct linux_dirent64 *dp = (struct linux_dirent64 *)&buffer[offset];
offset += dp->d_reclen;
if (strcmp(dp->d_name, ".") == 0
|| strcmp(dp->d_name, "..") == 0)
continue;
int tid = atoi(dp->d_name);
if ((int64_t)tid != self->tid && !seen_thread(tid)) {
tgkill(our_pid, tid, SIGPROF);
++thread_count;
}
}
// Wait up to 5 seconds for the threads to pause
struct timespec timeout = { 5, 0 };
wait_paused(thread_count, &timeout);
} while (old_thread_count != thread_count);
// Close the directory
close(fd);
// Finally, reset the signal handler
sigaction(SIGPROF, &sa_old, NULL);
}
void
resume_other_threads()
{
// All we need to do here is release the lock.
release_thread_lock();
}
// .. Locking ..................................................................
/* We use a futex to block the threads; we also use one to let us work out
when all the threads we've asked to pause have actually paused. */
int
futex(uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{
return syscall(SYS_futex, uaddr, futex_op, val, timeout, uaddr2, val3);
}
uint32_t thread_lock = 0;
void
take_thread_lock()
{
do {
uint32_t zero = 0;
if (__atomic_compare_exchange_n(&thread_lock,
&zero,
1,
true,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED))
return;
} while (!futex(&thread_lock, FUTEX_WAIT, 1, NULL, NULL, 0)
|| errno == EAGAIN);
}
void
release_thread_lock()
{
__atomic_store_n(&thread_lock, 0, __ATOMIC_RELEASE);
futex(&thread_lock, FUTEX_WAKE, 1, NULL, NULL, 0);
}
uint32_t threads_paused = 0;
void
notify_paused()
{
__atomic_fetch_add(&threads_paused, 1, __ATOMIC_RELEASE);
futex(&threads_paused, FUTEX_WAKE, 1, NULL, NULL, 0);
}
void
wait_paused(uint32_t expected, const struct timespec *timeout)
{
uint32_t current;
do {
current = __atomic_load_n(&threads_paused, __ATOMIC_ACQUIRE);
if (current == expected)
return;
} while (!futex(&threads_paused, FUTEX_WAIT, current, timeout, NULL, 0)
|| errno == EAGAIN);
}
// .. Memory server ............................................................
/* The memory server exists so that we can gain access to the crashing
process's memory space from the backtracer without having to use ptrace()
or process_vm_readv(), both of which need CAP_SYS_PTRACE.
We don't want to require CAP_SYS_PTRACE because we're potentially being
used inside of a Docker container, which won't have that enabled. */
char memserver_stack[4096];
char memserver_buffer[4096];
int memserver_fd;
bool memserver_has_ptrace;
sigjmp_buf memserver_fault_buf;
pid_t memserver_pid;
int
memserver_start()
{
int ret;
int fds[2];
ret = socketpair(AF_UNIX, SOCK_STREAM, 0, fds);
if (ret < 0)
return ret;
memserver_fd = fds[0];
ret = clone(memserver_entry, memserver_stack + sizeof(memserver_stack),
#if MEMSERVER_USE_PROCESS
0,
#else
CLONE_THREAD | CLONE_VM | CLONE_FILES
| CLONE_FS | CLONE_IO | CLONE_SIGHAND,
#endif
NULL);
if (ret < 0)
return ret;
#if MEMSERVER_USE_PROCESS
memserver_pid = ret;
/* Tell the Yama LSM module, if it's running, that it's OK for
the memserver to read process memory */
prctl(PR_SET_PTRACER, ret);
close(fds[0]);
#else
memserver_pid = getpid();
#endif
return fds[1];
}
void
memserver_fault(int sig) {
(void)sig;
siglongjmp(memserver_fault_buf, -1);
}
ssize_t __attribute__((noinline))
memserver_read(void *to, const void *from, size_t len) {
if (memserver_has_ptrace) {
struct iovec local = { to, len };
struct iovec remote = { const_cast<void *>(from), len };
return process_vm_readv(memserver_pid, &local, 1, &remote, 1, 0);
} else {
if (!sigsetjmp(memserver_fault_buf, 1)) {
memcpy(to, from, len);
return len;
} else {
return 1;
}
}
}
int
memserver_entry(void *dummy __attribute__((unused))) {
int fd = memserver_fd;
int result = 1;
#if MEMSERVER_USE_PROCESS
prctl(PR_SET_NAME, "[backtrace]");
#endif
memserver_has_ptrace = !!prctl(PR_CAPBSET_READ, CAP_SYS_PTRACE);
if (!memserver_has_ptrace) {
struct sigaction sa;
sigfillset(&sa.sa_mask);
sa.sa_handler = memserver_fault;
sa.sa_flags = SA_NODEFER;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
for (;;) {
struct memserver_req req;
ssize_t ret;
ret = safe_read(fd, &req, sizeof(req));
if (ret != sizeof(req))
break;
uint64_t addr = req.addr;
uint64_t bytes = req.len;
while (bytes) {
uint64_t todo = (bytes < sizeof(memserver_buffer)
? bytes : sizeof(memserver_buffer));
ret = memserver_read(memserver_buffer, (void *)addr, (size_t)todo);
struct memserver_resp resp;
resp.addr = addr;
resp.len = ret;
ret = safe_write(fd, &resp, sizeof(resp));
if (ret != sizeof(resp))
goto fail;
if (resp.len < 0)
break;
ret = safe_write(fd, memserver_buffer, resp.len);
if (ret != resp.len)
goto fail;
addr += resp.len;
bytes -= resp.len;
}
}
result = 0;
fail:
close(fd);
return result;
}
// .. Starting the backtracer ..................................................
char addr_buf[18];
char timeout_buf[22];
char limit_buf[22];
char top_buf[22];
const char *backtracer_argv[] = {
"swift-backtrace", // 0
"--unwind", // 1
"precise", // 2
"--demangle", // 3
"true", // 4
"--interactive", // 5
"true", // 6
"--color", // 7
"true", // 8
"--timeout", // 9
timeout_buf, // 10
"--preset", // 11
"friendly", // 12
"--crashinfo", // 13
addr_buf, // 14
"--threads", // 15
"preset", // 16
"--registers", // 17
"preset", // 18
"--images", // 19
"preset", // 20
"--limit", // 21
limit_buf, // 22
"--top", // 23
top_buf, // 24
"--sanitize", // 25
"preset", // 26
"--cache", // 27
"true", // 28
"--output-to", // 29
"stdout", // 30
NULL
};
// We can't call sprintf() here because we're in a signal handler,
// so we need to be async-signal-safe.
void
format_address(uintptr_t addr, char buffer[18])
{
char *ptr = buffer + 18;
*--ptr = '\0';
while (ptr > buffer) {
char digit = '0' + (addr & 0xf);
if (digit > '9')
digit += 'a' - '0' - 10;
*--ptr = digit;
addr >>= 4;
if (!addr)
break;
}
// Left-justify in the buffer
if (ptr > buffer) {
char *pt2 = buffer;
while (*ptr)
*pt2++ = *ptr++;
*pt2++ = '\0';
}
}
void
format_address(const void *ptr, char buffer[18])
{
format_address(reinterpret_cast<uintptr_t>(ptr), buffer);
}
// See above; we can't use sprintf() here.
void
format_unsigned(unsigned u, char buffer[22])
{
char *ptr = buffer + 22;
*--ptr = '\0';
while (ptr > buffer) {
char digit = '0' + (u % 10);
*--ptr = digit;
u /= 10;
if (!u)
break;
}
// Left-justify in the buffer
if (ptr > buffer) {
char *pt2 = buffer;
while (*ptr)
*pt2++ = *ptr++;
*pt2++ = '\0';
}
}
const char *
trueOrFalse(bool b) {
return b ? "true" : "false";
}
const char *
trueOrFalse(OnOffTty oot) {
return trueOrFalse(oot == OnOffTty::On);
}
bool
run_backtracer(int memserver_fd)
{
// Set-up the backtracer's command line arguments
switch (_swift_backtraceSettings.algorithm) {
case UnwindAlgorithm::Fast:
backtracer_argv[2] = "fast";
break;
default:
backtracer_argv[2] = "precise";
break;
}
// (The TTY option has already been handled at this point, so these are
// all either "On" or "Off".)
backtracer_argv[4] = trueOrFalse(_swift_backtraceSettings.demangle);
backtracer_argv[6] = trueOrFalse(_swift_backtraceSettings.interactive);
backtracer_argv[8] = trueOrFalse(_swift_backtraceSettings.color);
switch (_swift_backtraceSettings.threads) {
case ThreadsToShow::Preset:
backtracer_argv[16] = "preset";
break;
case ThreadsToShow::All:
backtracer_argv[16] = "all";
break;
case ThreadsToShow::Crashed:
backtracer_argv[16] = "crashed";
break;
}
switch (_swift_backtraceSettings.registers) {
case RegistersToShow::Preset:
backtracer_argv[18] = "preset";
break;
case RegistersToShow::None:
backtracer_argv[18] = "none";
break;
case RegistersToShow::All:
backtracer_argv[18] = "all";
break;
case RegistersToShow::Crashed:
backtracer_argv[18] = "crashed";
break;
}
switch (_swift_backtraceSettings.images) {
case ImagesToShow::Preset:
backtracer_argv[20] = "preset";
break;
case ImagesToShow::None:
backtracer_argv[20] = "none";
break;
case ImagesToShow::All:
backtracer_argv[20] = "all";
break;
case ImagesToShow::Mentioned:
backtracer_argv[20] = "mentioned";
break;
}
switch (_swift_backtraceSettings.preset) {
case Preset::Friendly:
backtracer_argv[12] = "friendly";
break;
case Preset::Medium:
backtracer_argv[12] = "medium";
break;
default:
backtracer_argv[12] = "full";
break;
}
switch (_swift_backtraceSettings.sanitize) {
case SanitizePaths::Preset:
backtracer_argv[26] = "preset";
break;
case SanitizePaths::Off:
backtracer_argv[26] = "false";
break;
case SanitizePaths::On:
backtracer_argv[26] = "true";
break;
}
switch (_swift_backtraceSettings.outputTo) {
case OutputTo::Stdout:
backtracer_argv[30] = "stdout";
break;
case OutputTo::Auto: // Shouldn't happen, but if it does pick stderr
case OutputTo::Stderr:
backtracer_argv[30] = "stderr";
break;
}
backtracer_argv[28] = trueOrFalse(_swift_backtraceSettings.cache);
format_unsigned(_swift_backtraceSettings.timeout, timeout_buf);
if (_swift_backtraceSettings.limit < 0)
std::strcpy(limit_buf, "none");
else
format_unsigned(_swift_backtraceSettings.limit, limit_buf);
format_unsigned(_swift_backtraceSettings.top, top_buf);
format_address(&crashInfo, addr_buf);
// Actually execute it
return _swift_spawnBacktracer(backtracer_argv, memserver_fd);
}
} // namespace
#endif // __linux__