Files
swift-mirror/lib/SILOptimizer/Utils/StackNesting.cpp
Erik Eckstein 787c35f165 SILOptimizer: correctly handle unreachable blocks in StackNesting.
Instead of some special treatment of unreachable blocks, model unreachable as implicitly deallocating all alive stack locations at that point.
This requires an additional forward-dataflow pass. But it now correctly models the problem and fixes a compiler crash.

rdar://problem/47402694
2019-01-25 11:29:21 -08:00

439 lines
16 KiB
C++

//===--- StackNesting.cpp - Utility for stack nesting --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "llvm/Support/Debug.h"
using namespace swift;
bool swift::hasStackDifferencesAt(SILInstruction *start,
InstructionMatcher matcher) {
struct StackStatus {
/// The number of currently-active stack allocations on this path.
/// Because of the stack discipline, we only have to maintain a count.
unsigned depth;
/// Whether we've popped anything off of the stack that was active
/// at the start of the search.
bool hasPops;
bool hasDifferences() const { return hasPops || depth != 0; }
};
SmallPtrSet<SILBasicBlock*, 8> visited;
SmallVector<std::pair<SILInstruction *, StackStatus>, 8> worklist;
worklist.push_back({start, {0, false}});
while (!worklist.empty()) {
// Pull a block and depth off the worklist.
// Visitation order doesn't matter.
auto pair = worklist.pop_back_val();
auto status = pair.second;
auto firstInst = pair.first;
auto block = firstInst->getParent();
for (SILBasicBlock::iterator i(firstInst), e = block->end(); i != e; ++i) {
auto match = matcher(&*i);
// If this is an interesting instruction, check for stack
// differences here.
if (match.matches && status.hasDifferences())
return true;
// If we should halt, just go to the next work-list item, bypassing
// visiting the successors.
if (match.halt)
goto nextWorkListItem; // a labelled continue would be nice
// Otherwise, do stack-depth bookkeeping.
if (i->isAllocatingStack()) {
status.depth++;
} else if (i->isDeallocatingStack()) {
// If the stack depth is already zero, we're deallocating a stack
// allocation that was live into the search.
if (status.depth > 0) {
status.depth--;
} else {
status.hasPops = true;
}
}
}
// Add the successors to the worklist.
for (auto &succ : block->getSuccessors()) {
auto succBlock = succ.getBB();
auto insertResult = visited.insert(succBlock);
if (insertResult.second) {
worklist.push_back({&succBlock->front(), status});
}
}
nextWorkListItem: ;
}
return false;
}
void StackNesting::setup(SILFunction *F) {
SmallVector<BlockInfo *, 8> WorkList;
llvm::DenseMap<SILBasicBlock *, BlockInfo *> BlockMapping;
// We use pointers to BlockInfo structs. Therefore it's important that the
// BlockInfos vector is never re-allocated.
BlockInfos.reserve(F->size());
// Start with the function entry block and add blocks while walking down along
// the successor edges.
// This ensures a correct ordering of stack locations: an inner location has
// a higher bit-number than it's outer parent location.
// This ordering is only important for inserting multiple deallocation
// instructions (see below).
BlockInfos.emplace_back(F->getEntryBlock());
BlockInfo *EntryBI = &BlockInfos.back();
BlockMapping[F->getEntryBlock()] = EntryBI;
WorkList.push_back(EntryBI);
while (!WorkList.empty()) {
BlockInfo *BI = WorkList.pop_back_val();
for (SILInstruction &I : *BI->Block) {
if (I.isAllocatingStack()) {
auto Alloc = cast<SingleValueInstruction>(&I);
// Register this stack location.
unsigned CurrentBitNumber = StackLocs.size();
StackLoc2BitNumbers[Alloc] = CurrentBitNumber;
StackLocs.push_back(StackLoc(Alloc));
BI->StackInsts.push_back(Alloc);
} else if (I.isDeallocatingStack()) {
auto *AllocInst = cast<SingleValueInstruction>(I.getOperand(0));
if (!BI->StackInsts.empty() && BI->StackInsts.back() == AllocInst) {
// As an optimization, we ignore perfectly nested alloc-dealloc pairs
// inside a basic block.
// Actually, this catches most of the cases and keeps our bitsets
// small.
assert(StackLocs.back().Alloc == AllocInst);
StackLocs.pop_back();
BI->StackInsts.pop_back();
} else {
// Register the stack deallocation.
BI->StackInsts.push_back(&I);
}
}
}
for (auto *SuccBB : BI->Block->getSuccessorBlocks()) {
BlockInfo *&SuccBI = BlockMapping[SuccBB];
if (!SuccBI) {
// Push the next reachable block onto the WorkList.
BlockInfos.emplace_back(SuccBB);
SuccBI = &BlockInfos.back();
WorkList.push_back(SuccBI);
}
// Cache the successors in our own list.
BI->Successors.push_back(SuccBI);
}
}
assert(EntryBI == &BlockInfos[0] &&
"BlockInfo vector should not re-allocate");
unsigned NumLocs = StackLocs.size();
for (unsigned Idx = 0; Idx < NumLocs; ++Idx) {
StackLocs[Idx].AliveLocs.resize(NumLocs);
// Initially each location gets it's own alive-bit.
StackLocs[Idx].AliveLocs.set(Idx);
}
}
bool StackNesting::solve() {
bool changed = false;
bool isNested = false;
BitVector Bits(StackLocs.size());
// Initialize all bit fields to 1s, expect 0s for the entry block.
bool initVal = false;
for (BlockInfo &BI : BlockInfos) {
BI.AliveStackLocsAtEntry.resize(StackLocs.size(), initVal);
initVal = false;
}
// First step: do a forward dataflow analysis to get the live stack locations
// at the block exits.
// This is necessary to get the live locations at blocks which end in
// unreachable instructions (otherwise the backward data flow would be
// sufficient). The special thing about unreachable-blocks is that it's
// okay to have alive locations at that point, i.e. locations which are never
// dealloced. We cannot get such locations with a purly backward dataflow.
do {
changed = false;
for (BlockInfo &BI : BlockInfos) {
Bits = BI.AliveStackLocsAtEntry;
for (SILInstruction *StackInst : BI.StackInsts) {
if (StackInst->isAllocatingStack()) {
Bits.set(bitNumberForAlloc(StackInst));
} else if (StackInst->isDeallocatingStack()) {
Bits.reset(bitNumberForDealloc(StackInst));
}
}
if (Bits != BI.AliveStackLocsAtExit) {
BI.AliveStackLocsAtExit = Bits;
assert(!(BI.Block->getTerminator()->isFunctionExiting() && Bits.any())
&& "stack location is missing dealloc");
changed = true;
}
// Merge the bits into the successors.
for (BlockInfo *SuccBI : BI.Successors) {
SuccBI->AliveStackLocsAtEntry &= Bits;
}
}
} while (changed);
// Second step: do a backward dataflow analysis to extend the lifetimes of
// no properly nested allocations.
do {
changed = false;
// It's a backward dataflow problem.
for (BlockInfo &BI : reversed(BlockInfos)) {
// Collect the alive-bits (at the block exit) from the successor blocks.
for (BlockInfo *SuccBI : BI.Successors) {
BI.AliveStackLocsAtExit |= SuccBI->AliveStackLocsAtEntry;
}
Bits = BI.AliveStackLocsAtExit;
if (isa<UnreachableInst>(BI.Block->getTerminator())) {
// We treat unreachable as an implicit deallocation for all locations
// which are still alive at this point.
for (int BitNr = Bits.find_first(); BitNr >= 0;
BitNr = Bits.find_next(BitNr)) {
// For each alive location extend the lifetime of all locations which
// are alive at the allocation point. This is the same as we do for
// a "real" deallocation instruction (see below).
Bits |= StackLocs[BitNr].AliveLocs;
}
BI.AliveStackLocsAtExit = Bits;
}
for (SILInstruction *StackInst : reversed(BI.StackInsts)) {
if (StackInst->isAllocatingStack()) {
int BitNr = bitNumberForAlloc(StackInst);
if (Bits != StackLocs[BitNr].AliveLocs) {
// More locations are alive around the StackInst's location.
// Update the AlivaLocs bitset, which contains all those alive
// locations.
assert(Bits.test(BitNr) && "no dealloc found for alloc stack");
StackLocs[BitNr].AliveLocs = Bits;
changed = true;
isNested = true;
}
// The allocation ends the lifetime of it's stack location (in reverse
// order)
Bits.reset(BitNr);
} else if (StackInst->isDeallocatingStack()) {
// A stack deallocation begins the lifetime of its location (in
// reverse order). And it also begins the lifetime of all other
// locations which are alive at the allocation point.
Bits |= StackLocs[bitNumberForDealloc(StackInst)].AliveLocs;
}
}
if (Bits != BI.AliveStackLocsAtEntry) {
BI.AliveStackLocsAtEntry = Bits;
changed = true;
}
}
} while (changed);
return isNested;
}
static SILInstruction *createDealloc(SingleValueInstruction *Alloc,
SILInstruction *InsertionPoint,
SILLocation Location) {
SILBuilderWithScope B(InsertionPoint);
switch (Alloc->getKind()) {
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::AllocStackInst:
assert((isa<AllocStackInst>(Alloc) ||
cast<PartialApplyInst>(Alloc)->isOnStack()) &&
"wrong instruction");
return B.createDeallocStack(Location, Alloc);
case SILInstructionKind::AllocRefInst:
assert(cast<AllocRefInst>(Alloc)->canAllocOnStack());
return B.createDeallocRef(Location, Alloc, /*canBeOnStack*/true);
default:
llvm_unreachable("unknown stack allocation");
}
}
bool StackNesting::insertDeallocs(const BitVector &AliveBefore,
const BitVector &AliveAfter,
SILInstruction *InsertionPoint,
Optional<SILLocation> Location) {
if (!AliveBefore.test(AliveAfter))
return false;
// The order matters here if we have to insert more than one
// deallocation. We already ensured in setup() that the bit numbers
// are allocated in the right order.
bool changesMade = false;
for (int LocNr = AliveBefore.find_first(); LocNr >= 0;
LocNr = AliveBefore.find_next(LocNr)) {
if (!AliveAfter.test(LocNr)) {
auto *Alloc = StackLocs[LocNr].Alloc;
InsertionPoint = createDealloc(Alloc, InsertionPoint,
Location.hasValue() ? Location.getValue() : Alloc->getLoc());
changesMade = true;
}
}
return changesMade;
}
StackNesting::Changes StackNesting::adaptDeallocs() {
bool InstChanged = false;
bool CFGChanged = false;
BitVector Bits(StackLocs.size());
// Visit all blocks. Actually the order doesn't matter, but let's to it in
// the same order as in solve().
for (const BlockInfo &BI : reversed(BlockInfos)) {
// Collect the alive-bits (at the block exit) from the successor blocks.
Bits = BI.AliveStackLocsAtExit;
// Insert deallocations at block boundaries.
// This can be necessary for unreachable blocks. Example:
//
// %1 = alloc_stack
// %2 = alloc_stack
// cond_br %c, bb2, bb3
// bb2: <--- need to insert a dealloc_stack %2 at the begin of bb2
// dealloc_stack %1
// unreachable
// bb3:
// dealloc_stack %2
// dealloc_stack %1
//
for (unsigned SuccIdx = 0, NumSuccs = BI.Successors.size();
SuccIdx < NumSuccs; ++ SuccIdx) {
BlockInfo *SuccBI = BI.Successors[SuccIdx];
if (SuccBI->AliveStackLocsAtEntry == Bits)
continue;
// Insert deallocations for all locations which are alive at the end of
// the current block, but not at the begin of the successor block.
SILBasicBlock *InsertionBlock = SuccBI->Block;
if (!InsertionBlock->getSinglePredecessorBlock()) {
// If the current block is not the only predecessor of the successor
// block, we have to insert a new block where we can add the
// deallocations.
InsertionBlock = splitEdge(BI.Block->getTerminator(), SuccIdx);
CFGChanged = true;
}
InstChanged |= insertDeallocs(Bits, SuccBI->AliveStackLocsAtEntry,
&InsertionBlock->front(), None);
}
// Insert/remove deallocations inside blocks.
for (SILInstruction *StackInst : reversed(BI.StackInsts)) {
if (StackInst->isAllocatingStack()) {
// For allocations we just update the bit-set.
int BitNr = bitNumberForAlloc(StackInst);
assert(Bits == StackLocs[BitNr].AliveLocs &&
"dataflow didn't converge");
Bits.reset(BitNr);
} else if (StackInst->isDeallocatingStack()) {
// Handle deallocations.
SILLocation Loc = StackInst->getLoc();
int BitNr = bitNumberForDealloc(StackInst);
SILInstruction *InsertionPoint = &*std::next(StackInst->getIterator());
if (Bits.test(BitNr)) {
// The location of StackInst is alive after StackInst. So we have to
// remove this deallocation.
StackInst->eraseFromParent();
InstChanged = true;
} else {
// Avoid inserting another deallocation for BitNr (which is already
// StackInst).
Bits.set(BitNr);
}
// Insert deallocations for all locations which are not alive after
// StackInst but _are_ alive at the StackInst.
InstChanged |= insertDeallocs(StackLocs[BitNr].AliveLocs, Bits,
InsertionPoint, Loc);
Bits |= StackLocs[BitNr].AliveLocs;
}
}
assert(Bits == BI.AliveStackLocsAtEntry && "dataflow didn't converge");
}
if (CFGChanged)
return Changes::CFG;
if (InstChanged)
return Changes::Instructions;
return Changes::None;
}
StackNesting::Changes StackNesting::correctStackNesting(SILFunction *F) {
setup(F);
if (solve()) {
return adaptDeallocs();
}
return Changes::None;
}
void StackNesting::dump() const {
for (const BlockInfo &BI : BlockInfos) {
if (!BI.Block)
continue;
llvm::dbgs() << "Block " << BI.Block->getDebugID();
llvm::dbgs() << ": entry-bits=";
dumpBits(BI.AliveStackLocsAtEntry);
llvm::dbgs() << ": exit-bits=";
dumpBits(BI.AliveStackLocsAtExit);
llvm::dbgs() << '\n';
for (SILInstruction *StackInst : BI.StackInsts) {
if (StackInst->isAllocatingStack()) {
auto AllocInst = cast<SingleValueInstruction>(StackInst);
int BitNr = StackLoc2BitNumbers.lookup(AllocInst);
llvm::dbgs() << " alloc #" << BitNr << ": alive=";
dumpBits(StackLocs[BitNr].AliveLocs);
llvm::dbgs() << ", " << *StackInst;
} else if (StackInst->isDeallocatingStack()) {
auto *AllocInst = cast<SingleValueInstruction>(StackInst->getOperand(0));
int BitNr = StackLoc2BitNumbers.lookup(AllocInst);
llvm::dbgs() << " dealloc for #" << BitNr << "\n"
" " << *StackInst;
}
}
llvm::dbgs() << " successors:";
for (BlockInfo *SuccBI : BI.Successors) {
llvm::dbgs() << ' ' << SuccBI->Block->getDebugID();
}
llvm::dbgs() << '\n';
}
}
void StackNesting::dumpBits(const BitVector &Bits) {
llvm::dbgs() << '<';
const char *separator = "";
for (int Bit = Bits.find_first(); Bit >= 0; Bit = Bits.find_next(Bit)) {
llvm::dbgs() << separator << Bit;
separator = ",";
}
llvm::dbgs() << '>';
}