mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is yet another waypoint on the path towards the final generic-metadata design. The immediate goal is to make the pattern a private implementation detail and to give the runtime more visibility into the allocation and caching of generic types.
1425 lines
49 KiB
C++
1425 lines
49 KiB
C++
//===--- MetadataReader.h - Abstract access to remote metadata --*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines operations for reading metadata from a remote process.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_REMOTE_METADATAREADER_H
|
|
#define SWIFT_REMOTE_METADATAREADER_H
|
|
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Remote/MemoryReader.h"
|
|
#include "swift/Demangling/Demangler.h"
|
|
#include "swift/Demangling/TypeDecoder.h"
|
|
#include "swift/Basic/Range.h"
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/Runtime/Unreachable.h"
|
|
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
namespace swift {
|
|
namespace remote {
|
|
|
|
template <typename BuiltType>
|
|
using FunctionParam = swift::Demangle::FunctionParam<BuiltType>;
|
|
|
|
template <typename BuilderType>
|
|
using TypeDecoder = swift::Demangle::TypeDecoder<BuilderType>;
|
|
|
|
/// A pointer to the local buffer of an object that also remembers the
|
|
/// address at which it was stored remotely.
|
|
template <typename Runtime, typename T>
|
|
class RemoteRef {
|
|
public:
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
private:
|
|
StoredPointer Address;
|
|
const T *LocalBuffer;
|
|
|
|
public:
|
|
/*implicit*/
|
|
RemoteRef(std::nullptr_t _)
|
|
: Address(0), LocalBuffer(nullptr) {}
|
|
|
|
explicit RemoteRef(StoredPointer address, const T *localBuffer)
|
|
: Address(address), LocalBuffer(localBuffer) {}
|
|
|
|
StoredPointer getAddress() const {
|
|
return Address;
|
|
}
|
|
|
|
const T *getLocalBuffer() const {
|
|
return LocalBuffer;
|
|
}
|
|
|
|
explicit operator bool() const {
|
|
return LocalBuffer != nullptr;
|
|
}
|
|
|
|
const T *operator->() const {
|
|
assert(LocalBuffer);
|
|
return LocalBuffer;
|
|
}
|
|
};
|
|
|
|
/// A structure, designed for use with std::unique_ptr, which destroys
|
|
/// a pointer by calling free on it (and not trying to call a destructor).
|
|
struct delete_with_free {
|
|
void operator()(const void *memory) {
|
|
free(const_cast<void*>(memory));
|
|
}
|
|
};
|
|
|
|
/// A generic reader of metadata.
|
|
///
|
|
/// BuilderType must implement a particular interface which is currently
|
|
/// too fluid to allow useful documentation; consult the actual
|
|
/// implementations. The chief thing is that it provides several member
|
|
/// types which should obey the following constraints:
|
|
/// - T() yields a value which is false when contextually converted to bool
|
|
/// - a false value signals that an error occurred when building a value
|
|
template <typename Runtime, typename BuilderType>
|
|
class MetadataReader {
|
|
public:
|
|
using BuiltType = typename BuilderType::BuiltType;
|
|
using BuiltNominalTypeDecl = typename BuilderType::BuiltNominalTypeDecl;
|
|
using BuiltProtocolDecl = typename BuilderType::BuiltProtocolDecl;
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
private:
|
|
/// A cache of built types, keyed by the address of the type.
|
|
std::unordered_map<StoredPointer, BuiltType> TypeCache;
|
|
|
|
using MetadataRef =
|
|
RemoteRef<Runtime, TargetMetadata<Runtime>>;
|
|
using OwnedMetadataRef =
|
|
std::unique_ptr<const TargetMetadata<Runtime>, delete_with_free>;
|
|
|
|
/// A cache of read type metadata, keyed by the address of the metadata.
|
|
std::unordered_map<StoredPointer, OwnedMetadataRef>
|
|
MetadataCache;
|
|
|
|
using ContextDescriptorRef =
|
|
RemoteRef<Runtime, TargetContextDescriptor<Runtime>>;
|
|
using OwnedContextDescriptorRef =
|
|
std::unique_ptr<const TargetContextDescriptor<Runtime>,
|
|
delete_with_free>;
|
|
|
|
/// A cache of read nominal type descriptors, keyed by the address of the
|
|
/// nominal type descriptor.
|
|
std::unordered_map<StoredPointer, OwnedContextDescriptorRef>
|
|
ContextDescriptorCache;
|
|
|
|
using OwnedProtocolDescriptorRef =
|
|
std::unique_ptr<const TargetProtocolDescriptor<Runtime>, delete_with_free>;
|
|
|
|
enum class IsaEncodingKind {
|
|
/// We haven't checked yet.
|
|
Unknown,
|
|
|
|
/// There was an error trying to find out the isa encoding.
|
|
Error,
|
|
|
|
/// There's no special isa encoding.
|
|
None,
|
|
|
|
/// There's an unconditional mask to apply to the isa pointer.
|
|
/// - IsaMask stores the mask.
|
|
Masked,
|
|
|
|
/// Isa pointers are indexed. If applying a mask yields a magic value,
|
|
/// applying a different mask and shifting yields an index into a global
|
|
/// array of class pointers. Otherwise, the isa pointer is just a raw
|
|
/// class pointer.
|
|
/// - IsaIndexMask stores the index mask.
|
|
/// - IsaIndexShift stores the index shift.
|
|
/// - IsaMagicMask stores the magic value mask.
|
|
/// - IsaMagicValue stores the magic value.
|
|
/// - IndexedClassesPointer stores the pointer to the start of the
|
|
/// indexed classes array; this is constant throughout the program.
|
|
/// - IndexedClassesCountPointer stores a pointer to the number
|
|
/// of elements in the indexed classes array.
|
|
Indexed
|
|
};
|
|
|
|
IsaEncodingKind IsaEncoding = IsaEncodingKind::Unknown;
|
|
union {
|
|
StoredPointer IsaMask;
|
|
StoredPointer IsaIndexMask;
|
|
};
|
|
StoredPointer IsaIndexShift;
|
|
StoredPointer IsaMagicMask;
|
|
StoredPointer IsaMagicValue;
|
|
StoredPointer IndexedClassesPointer;
|
|
StoredPointer IndexedClassesCountPointer;
|
|
StoredPointer LastIndexedClassesCount = 0;
|
|
|
|
Demangle::NodeFactory Factory;
|
|
|
|
Demangle::NodeFactory &getNodeFactory() { return Factory; }
|
|
|
|
public:
|
|
BuilderType Builder;
|
|
|
|
BuilderType &getBuilder() {
|
|
return this->Builder;
|
|
}
|
|
|
|
std::shared_ptr<MemoryReader> Reader;
|
|
|
|
template <class... T>
|
|
MetadataReader(std::shared_ptr<MemoryReader> reader, T &&... args)
|
|
: Builder(std::forward<T>(args)...),
|
|
Reader(std::move(reader)) {
|
|
|
|
}
|
|
|
|
MetadataReader(const MetadataReader &other) = delete;
|
|
MetadataReader &operator=(const MetadataReader &other) = delete;
|
|
|
|
/// Clear all of the caches in this reader.
|
|
void clear() {
|
|
TypeCache.clear();
|
|
MetadataCache.clear();
|
|
ContextDescriptorCache.clear();
|
|
}
|
|
|
|
/// Given a demangle tree, attempt to turn it into a type.
|
|
BuiltType decodeMangledType(const Demangle::NodePointer &Node) {
|
|
return swift::Demangle::decodeMangledType(Builder, Node);
|
|
}
|
|
|
|
/// Get the remote process's swift_isaMask.
|
|
llvm::Optional<StoredPointer> readIsaMask() {
|
|
auto encoding = getIsaEncoding();
|
|
if (encoding != IsaEncodingKind::Masked) {
|
|
// Still return success if there's no isa encoding at all.
|
|
if (encoding == IsaEncodingKind::None)
|
|
return 0;
|
|
else
|
|
return llvm::None;
|
|
}
|
|
|
|
return IsaMask;
|
|
}
|
|
|
|
/// Given a remote pointer to metadata, attempt to discover its MetadataKind.
|
|
llvm::Optional<MetadataKind>
|
|
readKindFromMetadata(StoredPointer MetadataAddress) {
|
|
auto meta = readMetadata(MetadataAddress);
|
|
if (!meta) return llvm::None;
|
|
|
|
return meta->getKind();
|
|
}
|
|
|
|
/// Given a remote pointer to class metadata, attempt to read its superclass.
|
|
StoredPointer
|
|
readSuperClassFromClassMetadata(StoredPointer MetadataAddress) {
|
|
auto meta = readMetadata(MetadataAddress);
|
|
if (!meta || meta->getKind() != MetadataKind::Class)
|
|
return StoredPointer();
|
|
|
|
auto classMeta = cast<TargetClassMetadata<Runtime>>(meta);
|
|
return classMeta->SuperClass;
|
|
}
|
|
|
|
/// Given a remote pointer to class metadata, attempt to discover its class
|
|
/// instance size and whether fields should use the resilient layout strategy.
|
|
llvm::Optional<unsigned>
|
|
readInstanceStartAndAlignmentFromClassMetadata(StoredPointer MetadataAddress) {
|
|
auto meta = readMetadata(MetadataAddress);
|
|
if (!meta || meta->getKind() != MetadataKind::Class)
|
|
return llvm::None;
|
|
|
|
// The following algorithm only works on the non-fragile Apple runtime.
|
|
|
|
// Grab the RO-data pointer. This part is not ABI.
|
|
StoredPointer roDataPtr = readObjCRODataPtr(MetadataAddress);
|
|
if (!roDataPtr)
|
|
return llvm::None;
|
|
|
|
// Get the address of the InstanceStart field.
|
|
auto address = roDataPtr + sizeof(uint32_t) * 1;
|
|
|
|
unsigned start;
|
|
if (!Reader->readInteger(RemoteAddress(address), &start))
|
|
return llvm::None;
|
|
|
|
return start;
|
|
}
|
|
|
|
/// Given a remote pointer to metadata, attempt to turn it into a type.
|
|
BuiltType readTypeFromMetadata(StoredPointer MetadataAddress,
|
|
bool skipArtificialSubclasses = false) {
|
|
auto Cached = TypeCache.find(MetadataAddress);
|
|
if (Cached != TypeCache.end())
|
|
return Cached->second;
|
|
|
|
// If we see garbage data in the process of building a BuiltType, and get
|
|
// the same metadata address again, we will hit an infinite loop.
|
|
// Insert a negative result into the cache now so that, if we recur with
|
|
// the same address, we will return the negative result with the check
|
|
// just above.
|
|
TypeCache.insert({MetadataAddress, BuiltType()});
|
|
|
|
auto Meta = readMetadata(MetadataAddress);
|
|
if (!Meta) return BuiltType();
|
|
|
|
switch (Meta->getKind()) {
|
|
case MetadataKind::Class:
|
|
if (!cast<TargetClassMetadata<Runtime>>(Meta)->isTypeMetadata())
|
|
return BuiltType();
|
|
return readNominalTypeFromMetadata(Meta, skipArtificialSubclasses);
|
|
case MetadataKind::Struct:
|
|
return readNominalTypeFromMetadata(Meta);
|
|
case MetadataKind::Enum:
|
|
case MetadataKind::Optional:
|
|
return readNominalTypeFromMetadata(Meta);
|
|
case MetadataKind::Tuple: {
|
|
auto tupleMeta = cast<TargetTupleTypeMetadata<Runtime>>(Meta);
|
|
|
|
std::vector<BuiltType> elementTypes;
|
|
elementTypes.reserve(tupleMeta->NumElements);
|
|
|
|
for (unsigned i = 0, n = tupleMeta->NumElements; i != n; ++i) {
|
|
auto &element = tupleMeta->getElement(i);
|
|
if (auto elementType = readTypeFromMetadata(element.Type))
|
|
elementTypes.push_back(elementType);
|
|
else
|
|
return BuiltType();
|
|
}
|
|
|
|
// Read the labels string.
|
|
std::string labels;
|
|
if (tupleMeta->Labels &&
|
|
!Reader->readString(RemoteAddress(tupleMeta->Labels), labels))
|
|
return BuiltType();
|
|
|
|
auto BuiltTuple = Builder.createTupleType(elementTypes, std::move(labels),
|
|
/*variadic*/ false);
|
|
TypeCache[MetadataAddress] = BuiltTuple;
|
|
return BuiltTuple;
|
|
}
|
|
case MetadataKind::Function: {
|
|
auto Function = cast<TargetFunctionTypeMetadata<Runtime>>(Meta);
|
|
|
|
std::vector<FunctionParam<BuiltType>> Parameters;
|
|
for (unsigned i = 0, n = Function->getNumParameters(); i != n; ++i) {
|
|
auto ParamTypeRef = readTypeFromMetadata(Function->getParameter(i));
|
|
if (!ParamTypeRef)
|
|
return BuiltType();
|
|
|
|
FunctionParam<BuiltType> Param;
|
|
Param.setType(ParamTypeRef);
|
|
Param.setFlags(Function->getParameterFlags(i));
|
|
Parameters.push_back(std::move(Param));
|
|
}
|
|
|
|
auto Result = readTypeFromMetadata(Function->ResultType);
|
|
if (!Result)
|
|
return BuiltType();
|
|
|
|
auto flags = FunctionTypeFlags()
|
|
.withConvention(Function->getConvention())
|
|
.withThrows(Function->throws())
|
|
.withParameterFlags(Function->hasParameterFlags())
|
|
.withEscaping(Function->isEscaping());
|
|
auto BuiltFunction =
|
|
Builder.createFunctionType(Parameters, Result, flags);
|
|
TypeCache[MetadataAddress] = BuiltFunction;
|
|
return BuiltFunction;
|
|
}
|
|
case MetadataKind::Existential: {
|
|
auto Exist = cast<TargetExistentialTypeMetadata<Runtime>>(Meta);
|
|
|
|
bool HasExplicitAnyObject = false;
|
|
if (Exist->isClassBounded())
|
|
HasExplicitAnyObject = true;
|
|
|
|
BuiltType SuperclassType = BuiltType();
|
|
if (Exist->Flags.hasSuperclassConstraint()) {
|
|
// The superclass is stored after the list of protocols.
|
|
SuperclassType = readTypeFromMetadata(
|
|
Exist->Protocols[Exist->Protocols.NumProtocols]);
|
|
if (!SuperclassType) return BuiltType();
|
|
|
|
HasExplicitAnyObject = true;
|
|
}
|
|
|
|
std::vector<BuiltProtocolDecl> Protocols;
|
|
for (size_t i = 0; i < Exist->Protocols.NumProtocols; ++i) {
|
|
auto ProtocolAddress = Exist->Protocols[i];
|
|
auto ProtocolDescriptor = readProtocolDescriptor(ProtocolAddress);
|
|
if (!ProtocolDescriptor)
|
|
return BuiltType();
|
|
|
|
std::string MangledNameStr;
|
|
if (!Reader->readString(RemoteAddress(ProtocolDescriptor->Name),
|
|
MangledNameStr))
|
|
return BuiltType();
|
|
|
|
StringRef MangledName =
|
|
Demangle::dropSwiftManglingPrefix(MangledNameStr);
|
|
|
|
Demangle::Context DCtx;
|
|
auto Demangled = DCtx.demangleTypeAsNode(MangledName);
|
|
if (!Demangled)
|
|
return BuiltType();
|
|
|
|
auto Protocol = Builder.createProtocolDecl(Demangled);
|
|
if (!Protocol)
|
|
return BuiltType();
|
|
|
|
Protocols.push_back(Protocol);
|
|
}
|
|
auto BuiltExist = Builder.createProtocolCompositionType(
|
|
Protocols, SuperclassType, HasExplicitAnyObject);
|
|
TypeCache[MetadataAddress] = BuiltExist;
|
|
return BuiltExist;
|
|
}
|
|
case MetadataKind::Metatype: {
|
|
auto Metatype = cast<TargetMetatypeMetadata<Runtime>>(Meta);
|
|
auto Instance = readTypeFromMetadata(Metatype->InstanceType);
|
|
if (!Instance) return BuiltType();
|
|
auto BuiltMetatype = Builder.createMetatypeType(Instance);
|
|
TypeCache[MetadataAddress] = BuiltMetatype;
|
|
return BuiltMetatype;
|
|
}
|
|
case MetadataKind::ObjCClassWrapper: {
|
|
auto objcWrapper = cast<TargetObjCClassWrapperMetadata<Runtime>>(Meta);
|
|
auto classAddress = objcWrapper->Class;
|
|
|
|
std::string className;
|
|
if (!readObjCClassName(classAddress, className))
|
|
return BuiltType();
|
|
|
|
auto BuiltObjCClass = Builder.createObjCClassType(std::move(className));
|
|
TypeCache[MetadataAddress] = BuiltObjCClass;
|
|
return BuiltObjCClass;
|
|
}
|
|
case MetadataKind::ExistentialMetatype: {
|
|
auto Exist = cast<TargetExistentialMetatypeMetadata<Runtime>>(Meta);
|
|
auto Instance = readTypeFromMetadata(Exist->InstanceType);
|
|
if (!Instance) return BuiltType();
|
|
auto BuiltExist = Builder.createExistentialMetatypeType(Instance);
|
|
TypeCache[MetadataAddress] = BuiltExist;
|
|
return BuiltExist;
|
|
}
|
|
case MetadataKind::ForeignClass: {
|
|
auto Foreign = cast<TargetForeignClassMetadata<Runtime>>(Meta);
|
|
|
|
StoredPointer namePtr =
|
|
resolveRelativeField(Meta,
|
|
asFullMetadata(Foreign)->Name);
|
|
if (namePtr == 0)
|
|
return BuiltType();
|
|
std::string name;
|
|
if (!Reader->readString(RemoteAddress(namePtr), name))
|
|
return BuiltType();
|
|
auto BuiltForeign = Builder.createForeignClassType(std::move(name));
|
|
TypeCache[MetadataAddress] = BuiltForeign;
|
|
return BuiltForeign;
|
|
}
|
|
case MetadataKind::HeapLocalVariable:
|
|
case MetadataKind::HeapGenericLocalVariable:
|
|
case MetadataKind::ErrorObject:
|
|
// Treat these all as Builtin.NativeObject for type lowering purposes.
|
|
return Builder.createBuiltinType("Bo");
|
|
case MetadataKind::Opaque: {
|
|
auto BuiltOpaque = Builder.getOpaqueType();
|
|
TypeCache[MetadataAddress] = BuiltOpaque;
|
|
return BuiltOpaque;
|
|
}
|
|
}
|
|
|
|
swift_runtime_unreachable("Unhandled MetadataKind in switch");
|
|
}
|
|
|
|
BuiltType readTypeFromMangledName(const char *MangledTypeName,
|
|
size_t Length) {
|
|
Demangle::Demangler Dem;
|
|
Demangle::NodePointer Demangled =
|
|
Dem.demangleSymbol(StringRef(MangledTypeName, Length));
|
|
return decodeMangledType(Demangled);
|
|
}
|
|
|
|
/// Read a context descriptor from the given address and build a mangling
|
|
/// tree representing it.
|
|
Demangle::NodePointer
|
|
readDemanglingForContextDescriptor(StoredPointer contextAddress,
|
|
Demangler &Dem) {
|
|
auto context = readContextDescriptor(contextAddress);
|
|
if (!context)
|
|
return nullptr;
|
|
return buildNominalTypeMangling(context, Dem);
|
|
}
|
|
|
|
/// Read the isa pointer of a class or closure context instance and apply
|
|
/// the isa mask.
|
|
llvm::Optional<StoredPointer>
|
|
readMetadataFromInstance(StoredPointer objectAddress) {
|
|
StoredPointer isa;
|
|
if (!Reader->readInteger(RemoteAddress(objectAddress), &isa))
|
|
return llvm::None;
|
|
|
|
switch (getIsaEncoding()) {
|
|
case IsaEncodingKind::Unknown:
|
|
case IsaEncodingKind::Error:
|
|
return llvm::None;
|
|
|
|
case IsaEncodingKind::None:
|
|
return isa;
|
|
|
|
case IsaEncodingKind::Masked:
|
|
return isa & IsaMask;
|
|
|
|
case IsaEncodingKind::Indexed: {
|
|
// If applying the magic mask doesn't give us the magic value,
|
|
// it's not an indexed isa.
|
|
if ((isa & IsaMagicMask) != IsaMagicValue)
|
|
return isa;
|
|
|
|
// Extract the index.
|
|
auto classIndex = (isa & IsaIndexMask) >> IsaIndexShift;
|
|
|
|
// 0 is never a valid index.
|
|
if (classIndex == 0) {
|
|
return llvm::None;
|
|
|
|
// If the index is out of range, it's an error; but check for an
|
|
// update first. (This will also trigger the first time because
|
|
// we initialize LastIndexedClassesCount to 0).
|
|
} else if (classIndex >= LastIndexedClassesCount) {
|
|
StoredPointer count;
|
|
if (!Reader->readInteger(RemoteAddress(IndexedClassesCountPointer),
|
|
&count)) {
|
|
return llvm::None;
|
|
}
|
|
|
|
LastIndexedClassesCount = count;
|
|
if (classIndex >= count) {
|
|
return llvm::None;
|
|
}
|
|
}
|
|
|
|
// Find the address of the appropriate array element.
|
|
RemoteAddress eltPointer =
|
|
RemoteAddress(IndexedClassesPointer
|
|
+ classIndex * sizeof(StoredPointer));
|
|
StoredPointer metadataPointer;
|
|
if (!Reader->readInteger(eltPointer, &metadataPointer)) {
|
|
return llvm::None;
|
|
}
|
|
|
|
return metadataPointer;
|
|
}
|
|
}
|
|
|
|
swift_runtime_unreachable("Unhandled IsaEncodingKind in switch.");
|
|
}
|
|
|
|
/// Read the offset of the generic parameters of a class from the nominal
|
|
/// type descriptor. If the class has a resilient superclass, we also
|
|
/// have to read the superclass size and add that to the offset.
|
|
///
|
|
/// The offset is in units of words, from the start of the class's
|
|
/// metadata.
|
|
llvm::Optional<uint32_t>
|
|
readGenericArgsOffset(MetadataRef metadata,
|
|
ContextDescriptorRef descriptor) {
|
|
switch (descriptor->getKind()) {
|
|
case ContextDescriptorKind::Class: {
|
|
auto type = cast<TargetClassDescriptor<Runtime>>(descriptor);
|
|
|
|
auto *classMetadata = dyn_cast<TargetClassMetadata<Runtime>>(metadata);
|
|
if (!classMetadata)
|
|
return llvm::None;
|
|
|
|
if (!classMetadata->SuperClass)
|
|
return type->getGenericArgumentOffset(nullptr, nullptr);
|
|
|
|
auto superMetadata = readMetadata(classMetadata->SuperClass);
|
|
if (!superMetadata)
|
|
return llvm::None;
|
|
|
|
auto superClassMetadata =
|
|
dyn_cast<TargetClassMetadata<Runtime>>(superMetadata);
|
|
if (!superClassMetadata)
|
|
return llvm::None;
|
|
|
|
auto result =
|
|
type->getGenericArgumentOffset(classMetadata, superClassMetadata);
|
|
return result;
|
|
}
|
|
|
|
case ContextDescriptorKind::Enum: {
|
|
auto type = cast<TargetEnumDescriptor<Runtime>>(descriptor);
|
|
return type->getGenericArgumentOffset();
|
|
}
|
|
|
|
case ContextDescriptorKind::Struct: {
|
|
auto type = cast<TargetStructDescriptor<Runtime>>(descriptor);
|
|
return type->getGenericArgumentOffset();
|
|
}
|
|
|
|
default:
|
|
return llvm::None;
|
|
}
|
|
}
|
|
|
|
/// Read a single generic type argument from a bound generic type
|
|
/// metadata.
|
|
llvm::Optional<StoredPointer>
|
|
readGenericArgFromMetadata(StoredPointer metadata, unsigned index) {
|
|
auto Meta = readMetadata(metadata);
|
|
if (!Meta)
|
|
return llvm::None;
|
|
|
|
auto descriptorAddress = readAddressOfNominalTypeDescriptor(Meta);
|
|
if (!descriptorAddress)
|
|
return llvm::None;
|
|
|
|
// Read the nominal type descriptor.
|
|
auto descriptor = readContextDescriptor(descriptorAddress);
|
|
if (!descriptor)
|
|
return llvm::None;
|
|
|
|
auto generics = descriptor->getGenericContext();
|
|
if (!generics)
|
|
return llvm::None;
|
|
|
|
auto offsetToGenericArgs = readGenericArgsOffset(Meta, descriptor);
|
|
if (!offsetToGenericArgs)
|
|
return llvm::None;
|
|
|
|
auto addressOfGenericArgAddress =
|
|
(Meta.getAddress() +
|
|
*offsetToGenericArgs * sizeof(StoredPointer) +
|
|
index * sizeof(StoredPointer));
|
|
|
|
if (index >= generics->getGenericContextHeader().getNumArguments())
|
|
return llvm::None;
|
|
|
|
StoredPointer genericArgAddress;
|
|
if (!Reader->readInteger(RemoteAddress(addressOfGenericArgAddress),
|
|
&genericArgAddress))
|
|
return llvm::None;
|
|
|
|
return genericArgAddress;
|
|
}
|
|
|
|
/// Given the address of a nominal type descriptor, attempt to resolve
|
|
/// its nominal type declaration.
|
|
BuiltNominalTypeDecl readNominalTypeFromDescriptor(StoredPointer address) {
|
|
auto descriptor = readContextDescriptor(address);
|
|
if (!descriptor)
|
|
return BuiltNominalTypeDecl();
|
|
|
|
return buildNominalTypeDecl(descriptor);
|
|
}
|
|
|
|
/// Try to read the offset of a tuple element from a tuple metadata.
|
|
bool readTupleElementOffset(StoredPointer metadataAddress, unsigned eltIndex,
|
|
StoredSize *offset) {
|
|
// Read the metadata.
|
|
auto metadata = readMetadata(metadataAddress);
|
|
if (!metadata)
|
|
return false;
|
|
|
|
// Ensure that the metadata actually is tuple metadata.
|
|
auto tupleMetadata = dyn_cast<TargetTupleTypeMetadata<Runtime>>(metadata);
|
|
if (!tupleMetadata)
|
|
return false;
|
|
|
|
// Ensure that the element is in-bounds.
|
|
if (eltIndex >= tupleMetadata->NumElements)
|
|
return false;
|
|
|
|
// Read the offset.
|
|
const auto &element = tupleMetadata->getElement(eltIndex);
|
|
*offset = element.Offset;
|
|
return true;
|
|
}
|
|
|
|
/// Given a remote pointer to class metadata, attempt to read its superclass.
|
|
llvm::Optional<StoredPointer>
|
|
readOffsetToFirstCaptureFromMetadata(StoredPointer MetadataAddress) {
|
|
auto meta = readMetadata(MetadataAddress);
|
|
if (!meta || meta->getKind() != MetadataKind::HeapLocalVariable)
|
|
return llvm::None;
|
|
|
|
auto heapMeta = cast<TargetHeapLocalVariableMetadata<Runtime>>(meta);
|
|
return heapMeta->OffsetToFirstCapture;
|
|
}
|
|
|
|
/// Given a remote pointer to class metadata, attempt to read its superclass.
|
|
llvm::Optional<StoredPointer>
|
|
readCaptureDescriptorFromMetadata(StoredPointer MetadataAddress) {
|
|
auto meta = readMetadata(MetadataAddress);
|
|
if (!meta || meta->getKind() != MetadataKind::HeapLocalVariable)
|
|
return llvm::None;
|
|
|
|
auto heapMeta = cast<TargetHeapLocalVariableMetadata<Runtime>>(meta);
|
|
return heapMeta->CaptureDescription;
|
|
}
|
|
|
|
protected:
|
|
template<typename Offset>
|
|
StoredPointer resolveRelativeOffset(StoredPointer targetAddress) {
|
|
Offset relative;
|
|
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
|
|
return 0;
|
|
using SignedOffset = typename std::make_signed<Offset>::type;
|
|
using SignedPointer = typename std::make_signed<StoredPointer>::type;
|
|
auto signext = (SignedPointer)(SignedOffset)relative;
|
|
return targetAddress + signext;
|
|
}
|
|
|
|
template<typename Offset>
|
|
llvm::Optional<StoredPointer>
|
|
resolveNullableRelativeOffset(StoredPointer targetAddress) {
|
|
Offset relative;
|
|
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
|
|
return llvm::None;
|
|
if (relative == 0)
|
|
return 0;
|
|
using SignedOffset = typename std::make_signed<Offset>::type;
|
|
using SignedPointer = typename std::make_signed<StoredPointer>::type;
|
|
auto signext = (SignedPointer)(SignedOffset)relative;
|
|
return targetAddress + signext;
|
|
}
|
|
|
|
template<typename Offset>
|
|
llvm::Optional<StoredPointer>
|
|
resolveNullableRelativeIndirectableOffset(StoredPointer targetAddress) {
|
|
Offset relative;
|
|
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
|
|
return llvm::None;
|
|
if (relative == 0)
|
|
return 0;
|
|
bool indirect = relative & 1;
|
|
relative &= ~1u;
|
|
|
|
using SignedOffset = typename std::make_signed<Offset>::type;
|
|
using SignedPointer = typename std::make_signed<StoredPointer>::type;
|
|
auto signext = (SignedPointer)(SignedOffset)relative;
|
|
|
|
StoredPointer resultAddress = targetAddress + signext;
|
|
|
|
// Low bit set in the offset indicates that the offset leads to the absolute
|
|
// address in memory.
|
|
if (indirect) {
|
|
if (!Reader->readBytes(RemoteAddress(resultAddress),
|
|
(uint8_t *)&resultAddress,
|
|
sizeof(StoredPointer)))
|
|
return llvm::None;
|
|
}
|
|
return resultAddress;
|
|
}
|
|
|
|
template<typename Base, typename Field>
|
|
StoredPointer resolveRelativeField(
|
|
RemoteRef<Runtime, Base> base, const Field &field) {
|
|
// Map the offset from within our local buffer to the remote address.
|
|
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
|
|
return resolveRelativeOffset<int32_t>(base.getAddress() + distance);
|
|
}
|
|
|
|
template<typename Base, typename Field>
|
|
llvm::Optional<StoredPointer> resolveNullableRelativeField(
|
|
RemoteRef<Runtime, Base> base, const Field &field) {
|
|
// Map the offset from within our local buffer to the remote address.
|
|
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
|
|
|
|
return resolveNullableRelativeOffset<int32_t>(base.getAddress() + distance);
|
|
}
|
|
|
|
template<typename Base, typename Field>
|
|
llvm::Optional<StoredPointer> resolveNullableRelativeIndirectableField(
|
|
RemoteRef<Runtime, Base> base, const Field &field) {
|
|
// Map the offset from within our local buffer to the remote address.
|
|
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
|
|
|
|
return resolveNullableRelativeIndirectableOffset<int32_t>(
|
|
base.getAddress() + distance);
|
|
}
|
|
|
|
/// Given a pointer to an Objective-C class, try to read its class name.
|
|
bool readObjCClassName(StoredPointer classAddress, std::string &className) {
|
|
// The following algorithm only works on the non-fragile Apple runtime.
|
|
|
|
// Grab the RO-data pointer. This part is not ABI.
|
|
StoredPointer roDataPtr = readObjCRODataPtr(classAddress);
|
|
if (!roDataPtr) return false;
|
|
|
|
// This is ABI.
|
|
static constexpr auto OffsetToName =
|
|
roundUpToAlignment(size_t(12), sizeof(StoredPointer))
|
|
+ sizeof(StoredPointer);
|
|
|
|
// Read the name pointer.
|
|
StoredPointer namePtr;
|
|
if (!Reader->readInteger(RemoteAddress(roDataPtr + OffsetToName), &namePtr))
|
|
return false;
|
|
|
|
// If the name pointer is null, treat that as an error.
|
|
if (!namePtr)
|
|
return false;
|
|
|
|
return Reader->readString(RemoteAddress(namePtr), className);
|
|
}
|
|
|
|
MetadataRef readMetadata(StoredPointer address) {
|
|
auto cached = MetadataCache.find(address);
|
|
if (cached != MetadataCache.end())
|
|
return MetadataRef(address, cached->second.get());
|
|
|
|
StoredPointer KindValue = 0;
|
|
if (!Reader->readInteger(RemoteAddress(address), &KindValue))
|
|
return nullptr;
|
|
|
|
switch (getEnumeratedMetadataKind(KindValue)) {
|
|
case MetadataKind::Class:
|
|
return _readMetadata<TargetClassMetadata>(address);
|
|
case MetadataKind::Enum:
|
|
return _readMetadata<TargetEnumMetadata>(address);
|
|
case MetadataKind::ErrorObject:
|
|
return _readMetadata<TargetEnumMetadata>(address);
|
|
case MetadataKind::Existential: {
|
|
StoredPointer flagsAddress = address +
|
|
sizeof(StoredPointer);
|
|
|
|
StoredPointer flags;
|
|
if (!Reader->readInteger(RemoteAddress(flagsAddress),
|
|
&flags))
|
|
return nullptr;
|
|
|
|
StoredPointer numProtocolsAddress = address +
|
|
TargetExistentialTypeMetadata<Runtime>::OffsetToNumProtocols;
|
|
StoredPointer numProtocols;
|
|
if (!Reader->readInteger(RemoteAddress(numProtocolsAddress),
|
|
&numProtocols))
|
|
return nullptr;
|
|
|
|
// Make sure the number of protocols is reasonable
|
|
if (numProtocols >= 256)
|
|
return nullptr;
|
|
|
|
auto totalSize = sizeof(TargetExistentialTypeMetadata<Runtime>)
|
|
+ numProtocols *
|
|
sizeof(ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor>);
|
|
|
|
if (ExistentialTypeFlags(flags).hasSuperclassConstraint())
|
|
totalSize += sizeof(StoredPointer);
|
|
|
|
return _readMetadata(address, totalSize);
|
|
}
|
|
case MetadataKind::ExistentialMetatype:
|
|
return _readMetadata<TargetExistentialMetatypeMetadata>(address);
|
|
case MetadataKind::ForeignClass:
|
|
return _readMetadata<TargetForeignClassMetadata>(address);
|
|
case MetadataKind::Function: {
|
|
StoredSize flagsValue;
|
|
auto flagsAddr =
|
|
address + TargetFunctionTypeMetadata<Runtime>::OffsetToFlags;
|
|
if (!Reader->readInteger(RemoteAddress(flagsAddr), &flagsValue))
|
|
return nullptr;
|
|
|
|
auto flags =
|
|
TargetFunctionTypeFlags<StoredSize>::fromIntValue(flagsValue);
|
|
|
|
auto totalSize =
|
|
sizeof(TargetFunctionTypeMetadata<Runtime>) +
|
|
flags.getNumParameters() * sizeof(FunctionTypeMetadata::Parameter);
|
|
|
|
if (flags.hasParameterFlags())
|
|
totalSize += flags.getNumParameters() * sizeof(uint32_t);
|
|
|
|
return _readMetadata(address,
|
|
roundUpToAlignment(totalSize, sizeof(void *)));
|
|
}
|
|
case MetadataKind::HeapGenericLocalVariable:
|
|
return _readMetadata<TargetGenericBoxHeapMetadata>(address);
|
|
case MetadataKind::HeapLocalVariable:
|
|
return _readMetadata<TargetHeapLocalVariableMetadata>(address);
|
|
case MetadataKind::Metatype:
|
|
return _readMetadata<TargetMetatypeMetadata>(address);
|
|
case MetadataKind::ObjCClassWrapper:
|
|
return _readMetadata<TargetObjCClassWrapperMetadata>(address);
|
|
case MetadataKind::Opaque:
|
|
return _readMetadata<TargetOpaqueMetadata>(address);
|
|
case MetadataKind::Optional:
|
|
return _readMetadata<TargetEnumMetadata>(address);
|
|
case MetadataKind::Struct:
|
|
return _readMetadata<TargetStructMetadata>(address);
|
|
case MetadataKind::Tuple: {
|
|
auto numElementsAddress = address +
|
|
TargetTupleTypeMetadata<Runtime>::OffsetToNumElements;
|
|
StoredSize numElements;
|
|
if (!Reader->readInteger(RemoteAddress(numElementsAddress),
|
|
&numElements))
|
|
return nullptr;
|
|
auto totalSize = sizeof(TargetTupleTypeMetadata<Runtime>) +
|
|
numElements * sizeof(TupleTypeMetadata::Element);
|
|
|
|
// Make sure the number of elements is reasonable
|
|
if (numElements >= 256)
|
|
return nullptr;
|
|
|
|
return _readMetadata(address, totalSize);
|
|
}
|
|
}
|
|
|
|
// We can fall out here if the value wasn't actually a valid
|
|
// MetadataKind.
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
template <template <class R> class M>
|
|
MetadataRef _readMetadata(StoredPointer address) {
|
|
return _readMetadata(address, sizeof(M<Runtime>));
|
|
}
|
|
|
|
MetadataRef _readMetadata(StoredPointer address, size_t sizeAfter) {
|
|
auto size = sizeAfter;
|
|
uint8_t *buffer = (uint8_t *) malloc(size);
|
|
if (!Reader->readBytes(RemoteAddress(address), buffer, size)) {
|
|
free(buffer);
|
|
return nullptr;
|
|
}
|
|
|
|
auto metadata = reinterpret_cast<TargetMetadata<Runtime>*>(buffer);
|
|
MetadataCache.insert(std::make_pair(address, OwnedMetadataRef(metadata)));
|
|
return MetadataRef(address, metadata);
|
|
}
|
|
|
|
StoredPointer
|
|
readAddressOfNominalTypeDescriptor(MetadataRef &metadata,
|
|
bool skipArtificialSubclasses = false) {
|
|
switch (metadata->getKind()) {
|
|
case MetadataKind::Class: {
|
|
auto classMeta = cast<TargetClassMetadata<Runtime>>(metadata);
|
|
while (true) {
|
|
auto descriptorAddress = classMeta->getDescription();
|
|
|
|
// If this class has a null descriptor, it's artificial,
|
|
// and we need to skip it upon request. Otherwise, we're done.
|
|
if (descriptorAddress || !skipArtificialSubclasses)
|
|
return static_cast<StoredPointer>(descriptorAddress);
|
|
|
|
auto superclassMetadataAddress = classMeta->SuperClass;
|
|
if (!superclassMetadataAddress)
|
|
return 0;
|
|
|
|
auto superMeta = readMetadata(superclassMetadataAddress);
|
|
if (!superMeta)
|
|
return 0;
|
|
|
|
auto superclassMeta = dyn_cast<TargetClassMetadata<Runtime>>(superMeta);
|
|
if (!superclassMeta)
|
|
return 0;
|
|
|
|
classMeta = superclassMeta;
|
|
metadata = superMeta;
|
|
}
|
|
}
|
|
|
|
case MetadataKind::Struct:
|
|
case MetadataKind::Optional:
|
|
case MetadataKind::Enum: {
|
|
auto valueMeta = cast<TargetValueMetadata<Runtime>>(metadata);
|
|
return valueMeta->getDescription();
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// Given the address of a nominal type descriptor, attempt to read it.
|
|
ContextDescriptorRef
|
|
readContextDescriptor(StoredPointer address) {
|
|
if (address == 0)
|
|
return nullptr;
|
|
|
|
auto cached = ContextDescriptorCache.find(address);
|
|
if (cached != ContextDescriptorCache.end())
|
|
return ContextDescriptorRef(address, cached->second.get());
|
|
|
|
// Read the flags to figure out how much space we should read.
|
|
ContextDescriptorFlags flags;
|
|
if (!Reader->readBytes(RemoteAddress(address), (uint8_t*)&flags,
|
|
sizeof(flags)))
|
|
return nullptr;
|
|
|
|
unsigned baseSize = 0;
|
|
unsigned genericHeaderSize = sizeof(GenericContextDescriptorHeader);
|
|
bool hasVTable = false;
|
|
switch (auto kind = flags.getKind()) {
|
|
case ContextDescriptorKind::Module:
|
|
baseSize = sizeof(TargetModuleContextDescriptor<Runtime>);
|
|
break;
|
|
// TODO: Should we include trailing generic arguments in this load?
|
|
case ContextDescriptorKind::Extension:
|
|
baseSize = sizeof(TargetExtensionContextDescriptor<Runtime>);
|
|
break;
|
|
case ContextDescriptorKind::Anonymous:
|
|
baseSize = sizeof(TargetAnonymousContextDescriptor<Runtime>);
|
|
break;
|
|
case ContextDescriptorKind::Class:
|
|
baseSize = sizeof(TargetClassDescriptor<Runtime>);
|
|
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
|
|
hasVTable = flags.getKindSpecificFlags()
|
|
& (uint16_t)TypeContextDescriptorFlags::HasVTable;
|
|
break;
|
|
case ContextDescriptorKind::Enum:
|
|
baseSize = sizeof(TargetEnumDescriptor<Runtime>);
|
|
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
|
|
break;
|
|
case ContextDescriptorKind::Struct:
|
|
baseSize = sizeof(TargetStructDescriptor<Runtime>);
|
|
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
|
|
break;
|
|
default:
|
|
// We don't know about this kind of context.
|
|
return nullptr;
|
|
}
|
|
|
|
// Determine the full size of the descriptor. This is reimplementing a fair
|
|
// bit of TrailingObjects but for out-of-process; maybe there's a way to
|
|
// factor the layout stuff out...
|
|
unsigned genericsSize = 0;
|
|
if (flags.isGeneric()) {
|
|
GenericContextDescriptorHeader header;
|
|
auto headerAddr = address
|
|
+ baseSize
|
|
+ genericHeaderSize
|
|
- sizeof(header);
|
|
|
|
if (!Reader->readBytes(RemoteAddress(headerAddr),
|
|
(uint8_t*)&header, sizeof(header)))
|
|
return nullptr;
|
|
|
|
genericsSize = genericHeaderSize
|
|
+ (header.NumParams + 3u & ~3u)
|
|
+ header.NumRequirements
|
|
* sizeof(TargetGenericRequirementDescriptor<Runtime>);
|
|
}
|
|
|
|
unsigned vtableSize = 0;
|
|
if (hasVTable) {
|
|
TargetVTableDescriptorHeader<Runtime> header;
|
|
auto headerAddr = address
|
|
+ baseSize
|
|
+ genericsSize;
|
|
|
|
if (!Reader->readBytes(RemoteAddress(headerAddr),
|
|
(uint8_t*)&header, sizeof(header)))
|
|
return nullptr;
|
|
|
|
vtableSize = sizeof(header)
|
|
+ header.VTableSize * sizeof(TargetMethodDescriptor<Runtime>);
|
|
}
|
|
|
|
unsigned size = baseSize + genericsSize + vtableSize;
|
|
auto buffer = (uint8_t *)malloc(size);
|
|
if (!Reader->readBytes(RemoteAddress(address), buffer, size)) {
|
|
free(buffer);
|
|
return nullptr;
|
|
}
|
|
|
|
auto descriptor
|
|
= reinterpret_cast<TargetContextDescriptor<Runtime> *>(buffer);
|
|
|
|
ContextDescriptorCache.insert(
|
|
std::make_pair(address, OwnedContextDescriptorRef(descriptor)));
|
|
return ContextDescriptorRef(address, descriptor);
|
|
}
|
|
|
|
ContextDescriptorRef
|
|
readParentContextDescriptor(ContextDescriptorRef base) {
|
|
auto parentAddress =
|
|
resolveNullableRelativeIndirectableField(base, base->Parent);
|
|
|
|
if (parentAddress) {
|
|
return readContextDescriptor(*parentAddress);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given a read nominal type descriptor, attempt to build a demangling tree
|
|
/// for it.
|
|
Demangle::NodePointer
|
|
buildNominalTypeMangling(ContextDescriptorRef descriptor,
|
|
Demangle::NodeFactory &nodeFactory) {
|
|
std::vector<std::pair<Demangle::Node::Kind, std::string>>
|
|
nameComponents;
|
|
ContextDescriptorRef parent = descriptor;
|
|
|
|
while (parent) {
|
|
std::string nodeName;
|
|
Demangle::Node::Kind nodeKind;
|
|
|
|
auto getTypeName = [&]() -> bool {
|
|
auto typeBuffer =
|
|
reinterpret_cast<const TargetTypeContextDescriptor<Runtime> *>
|
|
(parent.getLocalBuffer());
|
|
auto nameAddress = resolveRelativeField(parent, typeBuffer->Name);
|
|
return Reader->readString(RemoteAddress(nameAddress), nodeName);
|
|
};
|
|
|
|
switch (auto contextKind = parent->getKind()) {
|
|
case ContextDescriptorKind::Class:
|
|
if (!getTypeName())
|
|
return nullptr;
|
|
nodeKind = Demangle::Node::Kind::Class;
|
|
break;
|
|
case ContextDescriptorKind::Struct:
|
|
if (!getTypeName())
|
|
return nullptr;
|
|
nodeKind = Demangle::Node::Kind::Structure;
|
|
break;
|
|
case ContextDescriptorKind::Enum:
|
|
if (!getTypeName())
|
|
return nullptr;
|
|
nodeKind = Demangle::Node::Kind::Enum;
|
|
break;
|
|
|
|
case ContextDescriptorKind::Extension:
|
|
// TODO: Remangle something about the extension context here.
|
|
return nullptr;
|
|
|
|
case ContextDescriptorKind::Anonymous:
|
|
// TODO: Remangle something about the anonymous context here.
|
|
return nullptr;
|
|
|
|
case ContextDescriptorKind::Module: {
|
|
nodeKind = Demangle::Node::Kind::Module;
|
|
auto moduleBuffer =
|
|
reinterpret_cast<const TargetModuleContextDescriptor<Runtime> *>(
|
|
parent.getLocalBuffer());
|
|
auto nameAddress
|
|
= resolveRelativeField(parent, moduleBuffer->Name);
|
|
if (!Reader->readString(RemoteAddress(nameAddress), nodeName))
|
|
return nullptr;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Not a kind of context we know about.
|
|
return nullptr;
|
|
}
|
|
|
|
// Override the node kind if this was a Clang-imported type.
|
|
auto flags = parent->Flags.getKindSpecificFlags();
|
|
if (flags & (uint16_t)TypeContextDescriptorFlags::IsCTag)
|
|
nodeKind = Demangle::Node::Kind::Structure;
|
|
else if (flags & (uint16_t)TypeContextDescriptorFlags::IsCTypedef)
|
|
nodeKind = Demangle::Node::Kind::TypeAlias;
|
|
|
|
nameComponents.emplace_back(nodeKind, nodeName);
|
|
|
|
parent = readParentContextDescriptor(parent);
|
|
}
|
|
|
|
// We should have made our way up to a module context.
|
|
if (nameComponents.empty())
|
|
return nullptr;
|
|
if (nameComponents.back().first != Node::Kind::Module)
|
|
return nullptr;
|
|
auto moduleInfo = std::move(nameComponents.back());
|
|
nameComponents.pop_back();
|
|
auto demangling =
|
|
nodeFactory.createNode(Node::Kind::Module, moduleInfo.second);
|
|
for (auto &component : reversed(nameComponents)) {
|
|
auto name = nodeFactory.createNode(Node::Kind::Identifier,
|
|
component.second);
|
|
auto parent = nodeFactory.createNode(component.first);
|
|
parent->addChild(demangling, nodeFactory);
|
|
parent->addChild(name, nodeFactory);
|
|
demangling = parent;
|
|
}
|
|
|
|
auto top = nodeFactory.createNode(Node::Kind::Type);
|
|
top->addChild(demangling, nodeFactory);
|
|
return top;
|
|
}
|
|
|
|
/// Given a read nominal type descriptor, attempt to build a
|
|
/// nominal type decl from it.
|
|
BuiltNominalTypeDecl
|
|
buildNominalTypeDecl(ContextDescriptorRef descriptor) {
|
|
// Build the demangling tree from the context tree.
|
|
Demangle::NodeFactory nodeFactory;
|
|
auto node = buildNominalTypeMangling(descriptor, nodeFactory);
|
|
if (!node)
|
|
return BuiltNominalTypeDecl();
|
|
BuiltNominalTypeDecl decl = Builder.createNominalTypeDecl(node);
|
|
return decl;
|
|
}
|
|
|
|
OwnedProtocolDescriptorRef
|
|
readProtocolDescriptor(StoredPointer Address) {
|
|
auto Size = sizeof(TargetProtocolDescriptor<Runtime>);
|
|
auto Buffer = (uint8_t *)malloc(Size);
|
|
if (!Reader->readBytes(RemoteAddress(Address), Buffer, Size)) {
|
|
free(Buffer);
|
|
return nullptr;
|
|
}
|
|
auto Casted
|
|
= reinterpret_cast<TargetProtocolDescriptor<Runtime> *>(Buffer);
|
|
return OwnedProtocolDescriptorRef(Casted);
|
|
}
|
|
|
|
// TODO: We need to be able to produce protocol conformances for each
|
|
// substitution type as well in order to accurately rebuild bound generic
|
|
// types or types in protocol-constrained inner contexts.
|
|
std::vector<BuiltType>
|
|
getGenericSubst(MetadataRef metadata, ContextDescriptorRef descriptor) {
|
|
auto generics = descriptor->getGenericContext();
|
|
if (!generics)
|
|
return {};
|
|
|
|
auto numGenericArgs =
|
|
generics->getGenericContextHeader().getNumArguments();
|
|
|
|
auto offsetToGenericArgs = readGenericArgsOffset(metadata, descriptor);
|
|
if (!offsetToGenericArgs)
|
|
return {};
|
|
|
|
auto genericArgsAddr = metadata.getAddress()
|
|
+ sizeof(StoredPointer) * *offsetToGenericArgs;
|
|
|
|
std::vector<BuiltType> builtSubsts;
|
|
for (auto param : generics->getGenericParams()) {
|
|
switch (param.getKind()) {
|
|
case GenericParamKind::Type:
|
|
// We don't know about type parameters with extra arguments.
|
|
if (param.hasExtraArgument()) {
|
|
return {};
|
|
}
|
|
|
|
// The type should have a key argument unless it's been same-typed
|
|
// to another type.
|
|
if (param.hasKeyArgument()) {
|
|
if (numGenericArgs == 0)
|
|
return {};
|
|
--numGenericArgs;
|
|
|
|
StoredPointer arg;
|
|
if (!Reader->readBytes(RemoteAddress(genericArgsAddr),
|
|
(uint8_t*)&arg, sizeof(arg))) {
|
|
return {};
|
|
}
|
|
genericArgsAddr += sizeof(StoredPointer);
|
|
|
|
auto builtArg = readTypeFromMetadata(arg);
|
|
if (!builtArg)
|
|
return {};
|
|
builtSubsts.push_back(builtArg);
|
|
} else {
|
|
// TODO: If the key argument has been concretized by a same-type
|
|
// constraint, that should be reflected in the built nominal type
|
|
// decl's generic constraints. This isn't handled correctly yet.
|
|
return {};
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// We don't know about this kind of parameter.
|
|
return {};
|
|
}
|
|
}
|
|
return builtSubsts;
|
|
}
|
|
|
|
BuiltType readNominalTypeFromMetadata(MetadataRef origMetadata,
|
|
bool skipArtificialSubclasses = false) {
|
|
auto metadata = origMetadata;
|
|
auto descriptorAddress =
|
|
readAddressOfNominalTypeDescriptor(metadata,
|
|
skipArtificialSubclasses);
|
|
if (!descriptorAddress)
|
|
return BuiltType();
|
|
|
|
// If we've skipped an artificial subclasses, check the cache at
|
|
// the superclass. (This also protects against recursion.)
|
|
if (skipArtificialSubclasses &&
|
|
metadata.getAddress() != origMetadata.getAddress()) {
|
|
auto it = TypeCache.find(metadata.getAddress());
|
|
if (it != TypeCache.end())
|
|
return it->second;
|
|
}
|
|
|
|
// Read the nominal type descriptor.
|
|
ContextDescriptorRef descriptor = readContextDescriptor(descriptorAddress);
|
|
if (!descriptor)
|
|
return BuiltType();
|
|
|
|
// From that, attempt to resolve a nominal type.
|
|
BuiltNominalTypeDecl typeDecl = buildNominalTypeDecl(descriptor);
|
|
if (!typeDecl)
|
|
return BuiltType();
|
|
|
|
// Build the nominal type.
|
|
BuiltType nominal;
|
|
if (descriptor->isGeneric()) {
|
|
// Resolve the generic arguments.
|
|
auto builtGenerics = getGenericSubst(metadata, descriptor);
|
|
if (builtGenerics.empty())
|
|
return BuiltType();
|
|
nominal = Builder.createBoundGenericType(typeDecl, builtGenerics);
|
|
} else {
|
|
nominal = Builder.createNominalType(typeDecl);
|
|
}
|
|
|
|
if (!nominal)
|
|
return BuiltType();
|
|
|
|
TypeCache[metadata.getAddress()] = nominal;
|
|
|
|
// If we've skipped an artificial subclass, remove the
|
|
// recursion-protection entry we made for it.
|
|
if (skipArtificialSubclasses &&
|
|
metadata.getAddress() != origMetadata.getAddress()) {
|
|
TypeCache.erase(origMetadata.getAddress());
|
|
}
|
|
|
|
return nominal;
|
|
}
|
|
|
|
/// Given that the remote process is running the non-fragile Apple runtime,
|
|
/// grab the ro-data from a class pointer.
|
|
StoredPointer readObjCRODataPtr(StoredPointer classAddress) {
|
|
// WARNING: the following algorithm works on current modern Apple
|
|
// runtimes but is not actually ABI. But it is pretty reliable.
|
|
|
|
StoredPointer dataPtr;
|
|
if (!Reader->readInteger(RemoteAddress(classAddress +
|
|
TargetClassMetadata<Runtime>::offsetToData()),
|
|
&dataPtr))
|
|
return StoredPointer();
|
|
|
|
// Apply the data-pointer mask.
|
|
// These values have been stolen from the runtime source.
|
|
static constexpr uint64_t DataPtrMask =
|
|
(Runtime::PointerSize == 8 ? 0x00007ffffffffff8ULL : 0xfffffffcULL);
|
|
dataPtr &= StoredPointer(DataPtrMask);
|
|
if (!dataPtr)
|
|
return StoredPointer();
|
|
|
|
// Read the flags, which is a 32-bit header on both formats.
|
|
uint32_t flags;
|
|
if (!Reader->readInteger(RemoteAddress(dataPtr), &flags))
|
|
return StoredPointer();
|
|
|
|
// If the type is not realized, this is the RO-data.
|
|
static constexpr uint32_t RO_REALIZED = 0x80000000U;
|
|
if (!(flags & RO_REALIZED))
|
|
return dataPtr;
|
|
|
|
// Otherwise, it's the RW-data; read the RO-data pointer from a
|
|
// well-known position within the RW-data.
|
|
static constexpr uint32_t OffsetToROPtr = 8;
|
|
if (!Reader->readInteger(RemoteAddress(dataPtr + OffsetToROPtr), &dataPtr))
|
|
return StoredPointer();
|
|
|
|
return dataPtr;
|
|
}
|
|
|
|
IsaEncodingKind getIsaEncoding() {
|
|
if (IsaEncoding != IsaEncodingKind::Unknown)
|
|
return IsaEncoding;
|
|
|
|
auto finish = [&](IsaEncodingKind result) -> IsaEncodingKind {
|
|
IsaEncoding = result;
|
|
return result;
|
|
};
|
|
|
|
/// Look up the given global symbol and bind 'varname' to its
|
|
/// address if its exists.
|
|
# define tryFindSymbol(varname, symbolName) \
|
|
auto varname = Reader->getSymbolAddress(symbolName); \
|
|
if (!varname) \
|
|
return finish(IsaEncodingKind::Error)
|
|
/// Read from the given pointer into 'dest'.
|
|
# define tryReadSymbol(varname, dest) do { \
|
|
if (!Reader->readInteger(varname, &dest)) \
|
|
return finish(IsaEncodingKind::Error); \
|
|
} while (0)
|
|
/// Read from the given global symbol into 'dest'.
|
|
# define tryFindAndReadSymbol(dest, symbolName) do { \
|
|
tryFindSymbol(_address, symbolName); \
|
|
tryReadSymbol(_address, dest); \
|
|
} while (0)
|
|
|
|
// Check for the magic-mask symbol that indicates that the ObjC
|
|
// runtime is using indexed ISAs.
|
|
if (auto magicMaskAddress =
|
|
Reader->getSymbolAddress("objc_debug_indexed_isa_magic_mask")) {
|
|
tryReadSymbol(magicMaskAddress, IsaMagicMask);
|
|
if (IsaMagicMask != 0) {
|
|
tryFindAndReadSymbol(IsaMagicValue,
|
|
"objc_debug_indexed_isa_magic_value");
|
|
tryFindAndReadSymbol(IsaIndexMask,
|
|
"objc_debug_indexed_isa_index_mask");
|
|
tryFindAndReadSymbol(IsaIndexShift,
|
|
"objc_debug_indexed_isa_index_shift");
|
|
tryFindSymbol(indexedClasses, "objc_indexed_classes");
|
|
IndexedClassesPointer = indexedClasses.getAddressData();
|
|
tryFindSymbol(indexedClassesCount, "objc_indexed_classes_count");
|
|
IndexedClassesCountPointer = indexedClassesCount.getAddressData();
|
|
|
|
return finish(IsaEncodingKind::Indexed);
|
|
}
|
|
}
|
|
|
|
// Check for the ISA mask symbol. This has to come second because
|
|
// the standard library will define this even if the ObjC runtime
|
|
// doesn't use it.
|
|
if (auto maskAddress = Reader->getSymbolAddress("swift_isaMask")) {
|
|
tryReadSymbol(maskAddress, IsaMask);
|
|
if (IsaMask != 0) {
|
|
return finish(IsaEncodingKind::Masked);
|
|
}
|
|
}
|
|
|
|
return finish(IsaEncodingKind::None);
|
|
}
|
|
|
|
template <class T>
|
|
static constexpr T roundUpToAlignment(T offset, T alignment) {
|
|
return (offset + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
};
|
|
|
|
} // end namespace remote
|
|
} // end namespace swift
|
|
|
|
namespace llvm {
|
|
template<typename Runtime, typename T>
|
|
struct simplify_type<swift::remote::RemoteRef<Runtime, T>> {
|
|
typedef const T *SimpleType;
|
|
static SimpleType
|
|
getSimplifiedValue(swift::remote::RemoteRef<Runtime, T> value) {
|
|
return value.getLocalBuffer();
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif // SWIFT_REFLECTION_READER_H
|