mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
4823 lines
174 KiB
C++
4823 lines
174 KiB
C++
//===--- ASTContext.cpp - ASTContext Implementation -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ASTContext class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "ForeignRepresentationInfo.h"
|
|
#include "swift/AST/ConcreteDeclRef.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsSema.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/ForeignErrorConvention.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignatureBuilder.h"
|
|
#include "swift/AST/KnownProtocols.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/ModuleLoader.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/RawComment.h"
|
|
#include "swift/AST/SILLayout.h"
|
|
#include "swift/AST/TypeCheckerDebugConsumer.h"
|
|
#include "swift/Basic/Compiler.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/Basic/StringExtras.h"
|
|
#include "swift/Parse/Lexer.h" // bad dependency
|
|
#include "swift/Syntax/SyntaxArena.h"
|
|
#include "swift/Strings.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Lex/HeaderSearch.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
|
|
using namespace swift;
|
|
|
|
#define DEBUG_TYPE "ASTContext"
|
|
STATISTIC(NumRegisteredGenericSignatureBuilders,
|
|
"# of generic signature builders successfully registered");
|
|
STATISTIC(NumRegisteredGenericSignatureBuildersAlready,
|
|
"# of generic signature builders already registered");
|
|
STATISTIC(NumCollapsedSpecializedProtocolConformances,
|
|
"# of specialized protocol conformances collapsed");
|
|
|
|
/// Define this to 1 to enable expensive assertions of the
|
|
/// GenericSignatureBuilder.
|
|
#define SWIFT_GSB_EXPENSIVE_ASSERTIONS 0
|
|
|
|
LazyResolver::~LazyResolver() = default;
|
|
DelegatingLazyResolver::~DelegatingLazyResolver() = default;
|
|
void ModuleLoader::anchor() {}
|
|
void ClangModuleLoader::anchor() {}
|
|
|
|
llvm::StringRef swift::getProtocolName(KnownProtocolKind kind) {
|
|
switch (kind) {
|
|
#define PROTOCOL_WITH_NAME(Id, Name) \
|
|
case KnownProtocolKind::Id: \
|
|
return Name;
|
|
#include "swift/AST/KnownProtocols.def"
|
|
}
|
|
llvm_unreachable("bad KnownProtocolKind");
|
|
}
|
|
|
|
namespace {
|
|
typedef std::tuple<ClassDecl *, ObjCSelector, bool> ObjCMethodConflict;
|
|
|
|
/// An unsatisfied, optional @objc requirement in a protocol conformance.
|
|
typedef std::pair<DeclContext *, AbstractFunctionDecl *>
|
|
ObjCUnsatisfiedOptReq;
|
|
|
|
enum class SearchPathKind : uint8_t {
|
|
Import = 1 << 0,
|
|
Framework = 1 << 1
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
using AssociativityCacheType =
|
|
llvm::DenseMap<std::pair<PrecedenceGroupDecl *, PrecedenceGroupDecl *>,
|
|
Associativity>;
|
|
|
|
#define FOR_KNOWN_FOUNDATION_TYPES(MACRO) \
|
|
MACRO(NSError) \
|
|
MACRO(NSNumber) \
|
|
MACRO(NSValue)
|
|
|
|
struct ASTContext::Implementation {
|
|
Implementation();
|
|
~Implementation();
|
|
|
|
llvm::BumpPtrAllocator Allocator; // used in later initializations
|
|
|
|
/// The set of cleanups to be called when the ASTContext is destroyed.
|
|
std::vector<std::function<void(void)>> Cleanups;
|
|
|
|
/// The last resolver.
|
|
LazyResolver *Resolver = nullptr;
|
|
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator&> IdentifierTable;
|
|
|
|
/// The declaration of Swift.AssignmentPrecedence.
|
|
PrecedenceGroupDecl *AssignmentPrecedence = nullptr;
|
|
|
|
/// The declaration of Swift.CastingPrecedence.
|
|
PrecedenceGroupDecl *CastingPrecedence = nullptr;
|
|
|
|
/// The declaration of Swift.FunctionArrowPrecedence.
|
|
PrecedenceGroupDecl *FunctionArrowPrecedence = nullptr;
|
|
|
|
/// The declaration of Swift.TernaryPrecedence.
|
|
PrecedenceGroupDecl *TernaryPrecedence = nullptr;
|
|
|
|
/// The declaration of Swift.DefaultPrecedence.
|
|
PrecedenceGroupDecl *DefaultPrecedence = nullptr;
|
|
|
|
/// The AnyObject type.
|
|
CanType AnyObjectType;
|
|
|
|
#define KNOWN_STDLIB_TYPE_DECL(NAME, DECL_CLASS, NUM_GENERIC_PARAMS) \
|
|
/** The declaration of Swift.NAME. */ \
|
|
DECL_CLASS *NAME##Decl = nullptr;
|
|
#include "swift/AST/KnownStdlibTypes.def"
|
|
|
|
/// The declaration of '+' function for two RangeReplaceableCollection.
|
|
FuncDecl *PlusFunctionOnRangeReplaceableCollection = nullptr;
|
|
|
|
/// The declaration of '+' function for two String.
|
|
FuncDecl *PlusFunctionOnString = nullptr;
|
|
|
|
/// The declaration of Swift.Optional<T>.Some.
|
|
EnumElementDecl *OptionalSomeDecl = nullptr;
|
|
|
|
/// The declaration of Swift.Optional<T>.None.
|
|
EnumElementDecl *OptionalNoneDecl = nullptr;
|
|
|
|
/// The declaration of Swift.UnsafeMutableRawPointer.memory.
|
|
VarDecl *UnsafeMutableRawPointerMemoryDecl = nullptr;
|
|
|
|
/// The declaration of Swift.UnsafeRawPointer.memory.
|
|
VarDecl *UnsafeRawPointerMemoryDecl = nullptr;
|
|
|
|
/// The declaration of Swift.UnsafeMutablePointer<T>.memory.
|
|
VarDecl *UnsafeMutablePointerMemoryDecl = nullptr;
|
|
|
|
/// The declaration of Swift.UnsafePointer<T>.memory.
|
|
VarDecl *UnsafePointerMemoryDecl = nullptr;
|
|
|
|
/// The declaration of Swift.AutoreleasingUnsafeMutablePointer<T>.memory.
|
|
VarDecl *AutoreleasingUnsafeMutablePointerMemoryDecl = nullptr;
|
|
|
|
/// The declaration of Swift.Void.
|
|
TypeAliasDecl *VoidDecl = nullptr;
|
|
|
|
/// The declaration of ObjectiveC.ObjCBool.
|
|
StructDecl *ObjCBoolDecl = nullptr;
|
|
|
|
#define CACHE_FOUNDATION_DECL(NAME) \
|
|
/** The declaration of Foundation.NAME. */ \
|
|
ClassDecl *NAME##Decl = nullptr;
|
|
FOR_KNOWN_FOUNDATION_TYPES(CACHE_FOUNDATION_DECL)
|
|
#undef CACHE_FOUNDATION_DECL
|
|
|
|
// Declare cached declarations for each of the known declarations.
|
|
#define FUNC_DECL(Name, Id) FuncDecl *Get##Name = nullptr;
|
|
#include "swift/AST/KnownDecls.def"
|
|
|
|
/// func _getBool(Builtin.Int1) -> Bool
|
|
FuncDecl *GetBoolDecl = nullptr;
|
|
|
|
/// func ==(Int, Int) -> Bool
|
|
FuncDecl *EqualIntDecl = nullptr;
|
|
|
|
/// func _combineHashValues(Int, Int) -> Int
|
|
FuncDecl *CombineHashValuesDecl = nullptr;
|
|
|
|
/// func _mixInt(Int) -> Int
|
|
FuncDecl *MixIntDecl = nullptr;
|
|
|
|
/// func append(Element) -> void
|
|
FuncDecl *ArrayAppendElementDecl = nullptr;
|
|
|
|
/// func reserveCapacityForAppend(newElementsCount: Int)
|
|
FuncDecl *ArrayReserveCapacityDecl = nullptr;
|
|
|
|
/// func _unimplementedInitializer(className: StaticString).
|
|
FuncDecl *UnimplementedInitializerDecl = nullptr;
|
|
|
|
/// func _undefined<T>(msg: StaticString, file: StaticString, line: UInt) -> T
|
|
FuncDecl *UndefinedDecl = nullptr;
|
|
|
|
/// func _stdlib_isOSVersionAtLeast(Builtin.Word,Builtin.Word, Builtin.word)
|
|
// -> Builtin.Int1
|
|
FuncDecl *IsOSVersionAtLeastDecl = nullptr;
|
|
|
|
/// \brief The set of known protocols, lazily populated as needed.
|
|
ProtocolDecl *KnownProtocols[NumKnownProtocols] = { };
|
|
|
|
/// \brief The various module loaders that import external modules into this
|
|
/// ASTContext.
|
|
SmallVector<std::unique_ptr<swift::ModuleLoader>, 4> ModuleLoaders;
|
|
|
|
/// \brief The module loader used to load Clang modules.
|
|
ClangModuleLoader *TheClangModuleLoader = nullptr;
|
|
|
|
/// \brief Map from Swift declarations to raw comments.
|
|
llvm::DenseMap<const Decl *, RawComment> RawComments;
|
|
|
|
/// \brief Map from Swift declarations to brief comments.
|
|
llvm::DenseMap<const Decl *, StringRef> BriefComments;
|
|
|
|
/// \brief Map from local declarations to their discriminators.
|
|
/// Missing entries implicitly have value 0.
|
|
llvm::DenseMap<const ValueDecl *, unsigned> LocalDiscriminators;
|
|
|
|
/// \brief Map from declarations to foreign error conventions.
|
|
/// This applies to both actual imported functions and to @objc functions.
|
|
llvm::DenseMap<const AbstractFunctionDecl *,
|
|
ForeignErrorConvention> ForeignErrorConventions;
|
|
|
|
/// Cache of previously looked-up precedence queries.
|
|
AssociativityCacheType AssociativityCache;
|
|
|
|
/// Map from normal protocol conformances to diagnostics that have
|
|
/// been delayed until the conformance is fully checked.
|
|
llvm::DenseMap<NormalProtocolConformance *,
|
|
std::vector<ASTContext::DelayedConformanceDiag>>
|
|
DelayedConformanceDiags;
|
|
|
|
/// Map from normal protocol conformances to missing witnesses that have
|
|
/// been delayed until the conformance is fully checked, so that we can
|
|
/// issue a fixit that fills the entire protocol stub.
|
|
llvm::DenseMap<NormalProtocolConformance *, std::vector<ValueDecl*>>
|
|
DelayedMissingWitnesses;
|
|
|
|
/// Stores information about lazy deserialization of various declarations.
|
|
llvm::DenseMap<const DeclContext *, LazyContextData *> LazyContexts;
|
|
|
|
/// Stored generic signature builders for canonical generic signatures.
|
|
llvm::DenseMap<GenericSignature *, std::unique_ptr<GenericSignatureBuilder>>
|
|
GenericSignatureBuilders;
|
|
|
|
/// Canonical generic environments for canonical generic signatures.
|
|
///
|
|
/// The keys are the generic signature builders in \c GenericSignatureBuilders.
|
|
llvm::DenseMap<GenericSignatureBuilder *, GenericEnvironment *>
|
|
CanonicalGenericEnvironments;
|
|
|
|
/// The single-parameter generic signature with no constraints, <T>.
|
|
CanGenericSignature SingleGenericParameterSignature;
|
|
|
|
/// The existential signature <T : P> for each P.
|
|
llvm::DenseMap<CanType, CanGenericSignature> ExistentialSignatures;
|
|
|
|
/// Overridden associated type declarations.
|
|
llvm::DenseMap<const AssociatedTypeDecl *, ArrayRef<AssociatedTypeDecl *>>
|
|
AssociatedTypeOverrides;
|
|
|
|
/// \brief Structure that captures data that is segregated into different
|
|
/// arenas.
|
|
struct Arena {
|
|
llvm::DenseMap<Type, ErrorType *> ErrorTypesWithOriginal;
|
|
llvm::FoldingSet<TupleType> TupleTypes;
|
|
llvm::DenseMap<std::pair<Type,char>, MetatypeType*> MetatypeTypes;
|
|
llvm::DenseMap<std::pair<Type,char>,
|
|
ExistentialMetatypeType*> ExistentialMetatypeTypes;
|
|
llvm::DenseMap<std::pair<Type,std::pair<Type,unsigned>>, FunctionType*>
|
|
FunctionTypes;
|
|
llvm::DenseMap<Type, ArraySliceType*> ArraySliceTypes;
|
|
llvm::DenseMap<std::pair<Type, Type>, DictionaryType *> DictionaryTypes;
|
|
llvm::DenseMap<Type, OptionalType*> OptionalTypes;
|
|
llvm::DenseMap<std::pair<Type, unsigned>, ParenType*> ParenTypes;
|
|
llvm::DenseMap<uintptr_t, ReferenceStorageType*> ReferenceStorageTypes;
|
|
llvm::DenseMap<Type, LValueType*> LValueTypes;
|
|
llvm::DenseMap<Type, InOutType*> InOutTypes;
|
|
llvm::DenseMap<std::pair<Type, void*>, DependentMemberType *>
|
|
DependentMemberTypes;
|
|
llvm::DenseMap<Type, DynamicSelfType *> DynamicSelfTypes;
|
|
llvm::FoldingSet<EnumType> EnumTypes;
|
|
llvm::FoldingSet<StructType> StructTypes;
|
|
llvm::FoldingSet<ClassType> ClassTypes;
|
|
llvm::FoldingSet<UnboundGenericType> UnboundGenericTypes;
|
|
llvm::FoldingSet<BoundGenericType> BoundGenericTypes;
|
|
llvm::FoldingSet<ProtocolType> ProtocolTypes;
|
|
llvm::FoldingSet<ProtocolCompositionType> ProtocolCompositionTypes;
|
|
llvm::FoldingSet<LayoutConstraintInfo> LayoutConstraints;
|
|
|
|
/// The set of normal protocol conformances.
|
|
llvm::FoldingSet<NormalProtocolConformance> NormalConformances;
|
|
|
|
/// The set of specialized protocol conformances.
|
|
llvm::FoldingSet<SpecializedProtocolConformance> SpecializedConformances;
|
|
|
|
/// The set of inherited protocol conformances.
|
|
llvm::FoldingSet<InheritedProtocolConformance> InheritedConformances;
|
|
|
|
~Arena() {
|
|
for (auto &conformance : SpecializedConformances)
|
|
conformance.~SpecializedProtocolConformance();
|
|
// Work around MSVC warning: local variable is initialized but
|
|
// not referenced.
|
|
#if SWIFT_COMPILER_IS_MSVC
|
|
#pragma warning (disable: 4189)
|
|
#endif
|
|
for (auto &conformance : InheritedConformances)
|
|
conformance.~InheritedProtocolConformance();
|
|
#if SWIFT_COMPILER_IS_MSVC
|
|
#pragma warning (default: 4189)
|
|
#endif
|
|
|
|
// Call the normal conformance destructors last since they could be
|
|
// referenced by the other conformance types.
|
|
for (auto &conformance : NormalConformances)
|
|
conformance.~NormalProtocolConformance();
|
|
}
|
|
|
|
size_t getTotalMemory() const;
|
|
};
|
|
|
|
llvm::DenseMap<ModuleDecl*, ModuleType*> ModuleTypes;
|
|
llvm::DenseMap<std::pair<unsigned, unsigned>, GenericTypeParamType *>
|
|
GenericParamTypes;
|
|
llvm::FoldingSet<GenericFunctionType> GenericFunctionTypes;
|
|
llvm::FoldingSet<SILFunctionType> SILFunctionTypes;
|
|
llvm::DenseMap<CanType, SILBlockStorageType *> SILBlockStorageTypes;
|
|
llvm::FoldingSet<SILBoxType> SILBoxTypes;
|
|
llvm::DenseMap<BuiltinIntegerWidth, BuiltinIntegerType*> IntegerTypes;
|
|
llvm::FoldingSet<BuiltinVectorType> BuiltinVectorTypes;
|
|
llvm::FoldingSet<GenericSignature> GenericSignatures;
|
|
llvm::FoldingSet<DeclName::CompoundDeclName> CompoundNames;
|
|
llvm::DenseMap<UUID, ArchetypeType *> OpenedExistentialArchetypes;
|
|
|
|
/// List of Objective-C member conflicts we have found during type checking.
|
|
std::vector<ObjCMethodConflict> ObjCMethodConflicts;
|
|
|
|
/// List of optional @objc protocol requirements that have gone
|
|
/// unsatisfied, which might conflict with other Objective-C methods.
|
|
std::vector<ObjCUnsatisfiedOptReq> ObjCUnsatisfiedOptReqs;
|
|
|
|
/// List of Objective-C methods created by the type checker (and not
|
|
/// by the Clang importer or deserialized), which is used for
|
|
/// checking unintended Objective-C overrides.
|
|
std::vector<AbstractFunctionDecl *> ObjCMethods;
|
|
|
|
/// A cache of information about whether particular nominal types
|
|
/// are representable in a foreign language.
|
|
llvm::DenseMap<NominalTypeDecl *, ForeignRepresentationInfo>
|
|
ForeignRepresentableCache;
|
|
|
|
llvm::StringMap<OptionSet<SearchPathKind>> SearchPathsSet;
|
|
|
|
/// \brief The permanent arena.
|
|
Arena Permanent;
|
|
|
|
/// Temporary arena used for a constraint solver.
|
|
struct ConstraintSolverArena : public Arena {
|
|
/// The allocator used for all allocations within this arena.
|
|
llvm::BumpPtrAllocator &Allocator;
|
|
|
|
ConstraintSolverArena(llvm::BumpPtrAllocator &allocator)
|
|
: Allocator(allocator) { }
|
|
|
|
ConstraintSolverArena(const ConstraintSolverArena &) = delete;
|
|
ConstraintSolverArena(ConstraintSolverArena &&) = delete;
|
|
ConstraintSolverArena &operator=(const ConstraintSolverArena &) = delete;
|
|
ConstraintSolverArena &operator=(ConstraintSolverArena &&) = delete;
|
|
};
|
|
|
|
/// \brief The current constraint solver arena, if any.
|
|
std::unique_ptr<ConstraintSolverArena> CurrentConstraintSolverArena;
|
|
|
|
Arena &getArena(AllocationArena arena) {
|
|
switch (arena) {
|
|
case AllocationArena::Permanent:
|
|
return Permanent;
|
|
|
|
case AllocationArena::ConstraintSolver:
|
|
assert(CurrentConstraintSolverArena && "No constraint solver active?");
|
|
return *CurrentConstraintSolverArena;
|
|
}
|
|
llvm_unreachable("bad AllocationArena");
|
|
}
|
|
|
|
llvm::FoldingSet<SILLayout> SILLayouts;
|
|
|
|
syntax::SyntaxArena TheSyntaxArena;
|
|
};
|
|
|
|
ASTContext::Implementation::Implementation()
|
|
: IdentifierTable(Allocator) {}
|
|
ASTContext::Implementation::~Implementation() {
|
|
for (auto &cleanup : Cleanups)
|
|
cleanup();
|
|
}
|
|
|
|
ConstraintCheckerArenaRAII::
|
|
ConstraintCheckerArenaRAII(ASTContext &self, llvm::BumpPtrAllocator &allocator)
|
|
: Self(self), Data(self.Impl.CurrentConstraintSolverArena.release())
|
|
{
|
|
Self.Impl.CurrentConstraintSolverArena.reset(
|
|
new ASTContext::Implementation::ConstraintSolverArena(allocator));
|
|
}
|
|
|
|
ConstraintCheckerArenaRAII::~ConstraintCheckerArenaRAII() {
|
|
Self.Impl.CurrentConstraintSolverArena.reset(
|
|
(ASTContext::Implementation::ConstraintSolverArena *)Data);
|
|
}
|
|
|
|
static ModuleDecl *createBuiltinModule(ASTContext &ctx) {
|
|
auto M = ModuleDecl::create(ctx.getIdentifier("Builtin"), ctx);
|
|
M->addFile(*new (ctx) BuiltinUnit(*M));
|
|
return M;
|
|
}
|
|
|
|
ASTContext::ASTContext(LangOptions &langOpts, SearchPathOptions &SearchPathOpts,
|
|
SourceManager &SourceMgr, DiagnosticEngine &Diags)
|
|
: Impl(*new Implementation()),
|
|
LangOpts(langOpts),
|
|
SearchPathOpts(SearchPathOpts),
|
|
SourceMgr(SourceMgr),
|
|
Diags(Diags),
|
|
TheBuiltinModule(createBuiltinModule(*this)),
|
|
StdlibModuleName(getIdentifier(STDLIB_NAME)),
|
|
SwiftShimsModuleName(getIdentifier(SWIFT_SHIMS_NAME)),
|
|
TypeCheckerDebug(new StderrTypeCheckerDebugConsumer()),
|
|
TheErrorType(
|
|
new (*this, AllocationArena::Permanent)
|
|
ErrorType(*this, Type(), RecursiveTypeProperties::HasError)),
|
|
TheUnresolvedType(new (*this, AllocationArena::Permanent)
|
|
UnresolvedType(*this)),
|
|
TheEmptyTupleType(TupleType::get(ArrayRef<TupleTypeElt>(), *this)),
|
|
TheAnyType(ProtocolCompositionType::get(*this, ArrayRef<Type>(),
|
|
/*HasExplicitAnyObject=*/false)),
|
|
TheNativeObjectType(new (*this, AllocationArena::Permanent)
|
|
BuiltinNativeObjectType(*this)),
|
|
TheBridgeObjectType(new (*this, AllocationArena::Permanent)
|
|
BuiltinBridgeObjectType(*this)),
|
|
TheUnknownObjectType(new (*this, AllocationArena::Permanent)
|
|
BuiltinUnknownObjectType(*this)),
|
|
TheRawPointerType(new (*this, AllocationArena::Permanent)
|
|
BuiltinRawPointerType(*this)),
|
|
TheUnsafeValueBufferType(new (*this, AllocationArena::Permanent)
|
|
BuiltinUnsafeValueBufferType(*this)),
|
|
TheSILTokenType(new (*this, AllocationArena::Permanent)
|
|
SILTokenType(*this)),
|
|
TheIEEE32Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE32,*this)),
|
|
TheIEEE64Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE64,*this)),
|
|
TheIEEE16Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE16,*this)),
|
|
TheIEEE80Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE80,*this)),
|
|
TheIEEE128Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE128, *this)),
|
|
ThePPC128Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::PPC128, *this)) {
|
|
|
|
// Initialize all of the known identifiers.
|
|
#define IDENTIFIER_WITH_NAME(Name, IdStr) Id_##Name = getIdentifier(IdStr);
|
|
#include "swift/AST/KnownIdentifiers.def"
|
|
|
|
// Record the initial set of search paths.
|
|
for (StringRef path : SearchPathOpts.ImportSearchPaths)
|
|
Impl.SearchPathsSet[path] |= SearchPathKind::Import;
|
|
for (const auto &framepath : SearchPathOpts.FrameworkSearchPaths)
|
|
Impl.SearchPathsSet[framepath.Path] |= SearchPathKind::Framework;
|
|
}
|
|
|
|
ASTContext::~ASTContext() {
|
|
delete &Impl;
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &ASTContext::getAllocator(AllocationArena arena) const {
|
|
switch (arena) {
|
|
case AllocationArena::Permanent:
|
|
return Impl.Allocator;
|
|
|
|
case AllocationArena::ConstraintSolver:
|
|
assert(Impl.CurrentConstraintSolverArena != nullptr);
|
|
return Impl.CurrentConstraintSolverArena->Allocator;
|
|
}
|
|
llvm_unreachable("bad AllocationArena");
|
|
}
|
|
|
|
syntax::SyntaxArena &ASTContext::getSyntaxArena() const {
|
|
return Impl.TheSyntaxArena;
|
|
}
|
|
|
|
LazyResolver *ASTContext::getLazyResolver() const {
|
|
return Impl.Resolver;
|
|
}
|
|
|
|
/// Set the lazy resolver for this context.
|
|
void ASTContext::setLazyResolver(LazyResolver *resolver) {
|
|
if (resolver) {
|
|
assert(Impl.Resolver == nullptr && "already have a resolver");
|
|
Impl.Resolver = resolver;
|
|
} else {
|
|
assert(Impl.Resolver != nullptr && "no resolver to remove");
|
|
Impl.Resolver = resolver;
|
|
}
|
|
}
|
|
|
|
/// getIdentifier - Return the uniqued and AST-Context-owned version of the
|
|
/// specified string.
|
|
Identifier ASTContext::getIdentifier(StringRef Str) const {
|
|
// Make sure null pointers stay null.
|
|
if (Str.data() == nullptr)
|
|
return Identifier(nullptr);
|
|
|
|
auto I = Impl.IdentifierTable.insert(std::make_pair(Str, char())).first;
|
|
return Identifier(I->getKeyData());
|
|
}
|
|
|
|
void ASTContext::lookupInSwiftModule(
|
|
StringRef name,
|
|
SmallVectorImpl<ValueDecl *> &results) const {
|
|
ModuleDecl *M = getStdlibModule();
|
|
if (!M)
|
|
return;
|
|
|
|
// Find all of the declarations with this name in the Swift module.
|
|
auto identifier = getIdentifier(name);
|
|
M->lookupValue({ }, identifier, NLKind::UnqualifiedLookup, results);
|
|
}
|
|
|
|
/// Find the generic implementation declaration for the named syntactic-sugar
|
|
/// type.
|
|
static NominalTypeDecl *findStdlibType(const ASTContext &ctx, StringRef name,
|
|
unsigned genericParams) {
|
|
// Find all of the declarations with this name in the Swift module.
|
|
SmallVector<ValueDecl *, 1> results;
|
|
ctx.lookupInSwiftModule(name, results);
|
|
for (auto result : results) {
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(result)) {
|
|
auto params = nominal->getGenericParams();
|
|
if (genericParams == (params == nullptr ? 0 : params->size())) {
|
|
// We found it.
|
|
return nominal;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getPlusFunctionOnRangeReplaceableCollection() const {
|
|
if (Impl.PlusFunctionOnRangeReplaceableCollection) {
|
|
return Impl.PlusFunctionOnRangeReplaceableCollection;
|
|
}
|
|
// Find all of the declarations with this name in the Swift module.
|
|
SmallVector<ValueDecl *, 1> Results;
|
|
lookupInSwiftModule("+", Results);
|
|
for (auto Result : Results) {
|
|
if (auto *FD = dyn_cast<FuncDecl>(Result)) {
|
|
if (!FD->getOperatorDecl())
|
|
continue;
|
|
for (auto Req: FD->getGenericRequirements()) {
|
|
if (Req.getKind() == RequirementKind::Conformance &&
|
|
Req.getSecondType()->getNominalOrBoundGenericNominal() ==
|
|
getRangeReplaceableCollectionDecl()) {
|
|
Impl.PlusFunctionOnRangeReplaceableCollection = FD;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Impl.PlusFunctionOnRangeReplaceableCollection;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getPlusFunctionOnString() const {
|
|
if (Impl.PlusFunctionOnString) {
|
|
return Impl.PlusFunctionOnString;
|
|
}
|
|
// Find all of the declarations with this name in the Swift module.
|
|
SmallVector<ValueDecl *, 1> Results;
|
|
lookupInSwiftModule("+", Results);
|
|
for (auto Result : Results) {
|
|
if (auto *FD = dyn_cast<FuncDecl>(Result)) {
|
|
if (!FD->getOperatorDecl())
|
|
continue;
|
|
auto ResultType = FD->getResultInterfaceType();
|
|
if (ResultType->getNominalOrBoundGenericNominal() != getStringDecl())
|
|
continue;
|
|
auto ParamLists = FD->getParameterLists();
|
|
if (ParamLists.size() != 2 || ParamLists[1]->size() != 2)
|
|
continue;
|
|
auto CheckIfStringParam = [this](ParamDecl* Param) {
|
|
auto Type = Param->getInterfaceType()->getNominalOrBoundGenericNominal();
|
|
return Type == getStringDecl();
|
|
};
|
|
if (CheckIfStringParam(ParamLists[1]->get(0)) &&
|
|
CheckIfStringParam(ParamLists[1]->get(1))) {
|
|
Impl.PlusFunctionOnString = FD;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Impl.PlusFunctionOnString;
|
|
}
|
|
|
|
#define KNOWN_STDLIB_TYPE_DECL(NAME, DECL_CLASS, NUM_GENERIC_PARAMS) \
|
|
DECL_CLASS *ASTContext::get##NAME##Decl() const { \
|
|
if (!Impl.NAME##Decl) \
|
|
Impl.NAME##Decl = dyn_cast_or_null<DECL_CLASS>( \
|
|
findStdlibType(*this, #NAME, NUM_GENERIC_PARAMS)); \
|
|
return Impl.NAME##Decl; \
|
|
}
|
|
#include "swift/AST/KnownStdlibTypes.def"
|
|
|
|
CanType ASTContext::getExceptionType() const {
|
|
if (auto exn = getErrorDecl()) {
|
|
return exn->getDeclaredType()->getCanonicalType();
|
|
} else {
|
|
// Use Builtin.NativeObject just as a stand-in.
|
|
return TheNativeObjectType;
|
|
}
|
|
}
|
|
|
|
ProtocolDecl *ASTContext::getErrorDecl() const {
|
|
return getProtocol(KnownProtocolKind::Error);
|
|
}
|
|
|
|
EnumElementDecl *ASTContext::getOptionalSomeDecl() const {
|
|
if (!Impl.OptionalSomeDecl)
|
|
Impl.OptionalSomeDecl = getOptionalDecl()->getUniqueElement(/*hasVal*/true);
|
|
return Impl.OptionalSomeDecl;
|
|
}
|
|
|
|
EnumElementDecl *ASTContext::getOptionalNoneDecl() const {
|
|
if (!Impl.OptionalNoneDecl)
|
|
Impl.OptionalNoneDecl =getOptionalDecl()->getUniqueElement(/*hasVal*/false);
|
|
return Impl.OptionalNoneDecl;
|
|
}
|
|
|
|
static VarDecl *getPointeeProperty(VarDecl *&cache,
|
|
NominalTypeDecl *(ASTContext::*getNominal)() const,
|
|
const ASTContext &ctx) {
|
|
if (cache) return cache;
|
|
|
|
// There must be a generic type with one argument.
|
|
NominalTypeDecl *nominal = (ctx.*getNominal)();
|
|
if (!nominal) return nullptr;
|
|
auto sig = nominal->getGenericSignature();
|
|
if (!sig) return nullptr;
|
|
if (sig->getGenericParams().size() != 1) return nullptr;
|
|
|
|
// There must be a property named "pointee".
|
|
auto identifier = ctx.getIdentifier("pointee");
|
|
auto results = nominal->lookupDirect(identifier);
|
|
if (results.size() != 1) return nullptr;
|
|
|
|
// The property must have type T.
|
|
auto *property = dyn_cast<VarDecl>(results[0]);
|
|
if (!property) return nullptr;
|
|
if (!property->getInterfaceType()->isEqual(sig->getGenericParams()[0]))
|
|
return nullptr;
|
|
|
|
cache = property;
|
|
return property;
|
|
}
|
|
|
|
VarDecl *
|
|
ASTContext::getPointerPointeePropertyDecl(PointerTypeKind ptrKind) const {
|
|
switch (ptrKind) {
|
|
case PTK_UnsafeMutableRawPointer:
|
|
return getPointeeProperty(Impl.UnsafeMutableRawPointerMemoryDecl,
|
|
&ASTContext::getUnsafeMutableRawPointerDecl,
|
|
*this);
|
|
case PTK_UnsafeRawPointer:
|
|
return getPointeeProperty(Impl.UnsafeRawPointerMemoryDecl,
|
|
&ASTContext::getUnsafeRawPointerDecl,
|
|
*this);
|
|
case PTK_UnsafeMutablePointer:
|
|
return getPointeeProperty(Impl.UnsafeMutablePointerMemoryDecl,
|
|
&ASTContext::getUnsafeMutablePointerDecl,
|
|
*this);
|
|
case PTK_UnsafePointer:
|
|
return getPointeeProperty(Impl.UnsafePointerMemoryDecl,
|
|
&ASTContext::getUnsafePointerDecl,
|
|
*this);
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
return getPointeeProperty(Impl.AutoreleasingUnsafeMutablePointerMemoryDecl,
|
|
&ASTContext::getAutoreleasingUnsafeMutablePointerDecl,
|
|
*this);
|
|
}
|
|
llvm_unreachable("bad pointer kind");
|
|
}
|
|
|
|
CanType ASTContext::getAnyObjectType() const {
|
|
if (Impl.AnyObjectType) {
|
|
return Impl.AnyObjectType;
|
|
}
|
|
|
|
Impl.AnyObjectType = CanType(
|
|
ProtocolCompositionType::get(
|
|
*this, {}, /*HasExplicitAnyObject=*/true));
|
|
return Impl.AnyObjectType;
|
|
}
|
|
|
|
CanType ASTContext::getNeverType() const {
|
|
auto neverDecl = getNeverDecl();
|
|
if (!neverDecl)
|
|
return CanType();
|
|
return neverDecl->getDeclaredType()->getCanonicalType();
|
|
}
|
|
|
|
TypeAliasDecl *ASTContext::getVoidDecl() const {
|
|
if (Impl.VoidDecl) {
|
|
return Impl.VoidDecl;
|
|
}
|
|
|
|
// Go find 'Void' in the Swift module.
|
|
SmallVector<ValueDecl *, 1> results;
|
|
lookupInSwiftModule("Void", results);
|
|
for (auto result : results) {
|
|
if (auto typeAlias = dyn_cast<TypeAliasDecl>(result)) {
|
|
Impl.VoidDecl = typeAlias;
|
|
return typeAlias;
|
|
}
|
|
}
|
|
|
|
return Impl.VoidDecl;
|
|
}
|
|
|
|
StructDecl *ASTContext::getObjCBoolDecl() const {
|
|
if (!Impl.ObjCBoolDecl) {
|
|
SmallVector<ValueDecl *, 1> results;
|
|
auto *Context = const_cast<ASTContext *>(this);
|
|
if (ModuleDecl *M = Context->getModuleByName(Id_ObjectiveC.str())) {
|
|
M->lookupValue({ }, getIdentifier("ObjCBool"), NLKind::UnqualifiedLookup,
|
|
results);
|
|
for (auto result : results) {
|
|
if (auto structDecl = dyn_cast<StructDecl>(result)) {
|
|
if (structDecl->getGenericParams() == nullptr) {
|
|
Impl.ObjCBoolDecl = structDecl;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Impl.ObjCBoolDecl;
|
|
}
|
|
|
|
#define GET_FOUNDATION_DECL(NAME) \
|
|
ClassDecl *ASTContext::get##NAME##Decl() const { \
|
|
if (!Impl.NAME##Decl) { \
|
|
if (ModuleDecl *M = getLoadedModule(Id_Foundation)) { \
|
|
/* Note: use unqualified lookup so we find NSError regardless of */ \
|
|
/* whether it's defined in the Foundation module or the Clang */ \
|
|
/* Foundation module it imports. */ \
|
|
UnqualifiedLookup lookup(getIdentifier(#NAME), M, nullptr); \
|
|
if (auto type = lookup.getSingleTypeResult()) { \
|
|
if (auto classDecl = dyn_cast<ClassDecl>(type)) { \
|
|
if (classDecl->getGenericParams() == nullptr) { \
|
|
Impl.NAME##Decl = classDecl; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
return Impl.NAME##Decl; \
|
|
}
|
|
|
|
FOR_KNOWN_FOUNDATION_TYPES(GET_FOUNDATION_DECL)
|
|
#undef GET_FOUNDATION_DECL
|
|
#undef FOR_KNOWN_FOUNDATION_TYPES
|
|
|
|
ProtocolDecl *ASTContext::getProtocol(KnownProtocolKind kind) const {
|
|
// Check whether we've already looked for and cached this protocol.
|
|
unsigned index = (unsigned)kind;
|
|
assert(index < NumKnownProtocols && "Number of known protocols is wrong");
|
|
if (Impl.KnownProtocols[index])
|
|
return Impl.KnownProtocols[index];
|
|
|
|
// Find all of the declarations with this name in the appropriate module.
|
|
SmallVector<ValueDecl *, 1> results;
|
|
|
|
const ModuleDecl *M;
|
|
switch (kind) {
|
|
case KnownProtocolKind::BridgedNSError:
|
|
case KnownProtocolKind::BridgedStoredNSError:
|
|
case KnownProtocolKind::ErrorCodeProtocol:
|
|
M = getLoadedModule(Id_Foundation);
|
|
break;
|
|
case KnownProtocolKind::CFObject:
|
|
M = getLoadedModule(Id_CoreFoundation);
|
|
break;
|
|
default:
|
|
M = getStdlibModule();
|
|
break;
|
|
}
|
|
|
|
if (!M)
|
|
return nullptr;
|
|
M->lookupValue({ }, getIdentifier(getProtocolName(kind)),
|
|
NLKind::UnqualifiedLookup, results);
|
|
|
|
for (auto result : results) {
|
|
if (auto protocol = dyn_cast<ProtocolDecl>(result)) {
|
|
Impl.KnownProtocols[index] = protocol;
|
|
return protocol;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Find the implementation for the given "intrinsic" library function.
|
|
static FuncDecl *findLibraryIntrinsic(const ASTContext &ctx,
|
|
StringRef name,
|
|
LazyResolver *resolver) {
|
|
SmallVector<ValueDecl *, 1> results;
|
|
ctx.lookupInSwiftModule(name, results);
|
|
if (results.size() == 1) {
|
|
if (auto FD = dyn_cast<FuncDecl>(results.front())) {
|
|
if (resolver)
|
|
resolver->resolveDeclSignature(FD);
|
|
return FD;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Check whether the given function is non-generic.
|
|
static bool isNonGenericIntrinsic(FuncDecl *fn, bool allowTypeMembers,
|
|
Type &input,
|
|
Type &output) {
|
|
auto type = fn->getInterfaceType();
|
|
if (allowTypeMembers && fn->getDeclContext()->isTypeContext()) {
|
|
auto fnType = type->getAs<FunctionType>();
|
|
if (!fnType) return false;
|
|
|
|
type = fnType->getResult();
|
|
}
|
|
|
|
auto fnType = type->getAs<FunctionType>();
|
|
if (!fnType) return false;
|
|
|
|
input = fnType->getInput()->getWithoutImmediateLabel();
|
|
output = fnType->getResult();
|
|
return true;
|
|
}
|
|
|
|
/// Check whether the given type is Builtin.Int1.
|
|
static bool isBuiltinInt1Type(Type type) {
|
|
if (auto intType = type->getAs<BuiltinIntegerType>())
|
|
return intType->isFixedWidth() && intType->getFixedWidth() == 1;
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the given type is Builtin.Word.
|
|
static bool isBuiltinWordType(Type type) {
|
|
if (auto intType = type->getAs<BuiltinIntegerType>())
|
|
return intType->getWidth().isPointerWidth();
|
|
return false;
|
|
}
|
|
|
|
/// Looks up all implementations of an operator (globally and declared in types)
|
|
/// and passes potential matches to the given callback. The search stops when
|
|
/// the callback returns true (in which case the matching function declaration
|
|
/// is returned); otherwise, nullptr is returned if there are no matches.
|
|
/// \p C The AST context.
|
|
/// \p oper The name of the operator.
|
|
/// \p contextType If the operator is declared on a type, then only operators
|
|
/// defined on this type should be considered.
|
|
/// \p callback A callback that takes as its two arguments the input type and
|
|
/// result type of a candidate function declaration and returns true if the
|
|
/// function matches the desired criteria.
|
|
/// \return The matching function declaration, or nullptr if there was no match.
|
|
template <int ExpectedCandidateCount, typename MatchFuncCallback>
|
|
static FuncDecl *lookupOperatorFunc(const ASTContext &ctx, StringRef oper,
|
|
Type contextType,
|
|
MatchFuncCallback &callback) {
|
|
SmallVector<ValueDecl *, ExpectedCandidateCount> candidates;
|
|
ctx.lookupInSwiftModule(oper, candidates);
|
|
|
|
for (auto candidate : candidates) {
|
|
// All operator declarations should be functions, but make sure.
|
|
auto *funcDecl = dyn_cast<FuncDecl>(candidate);
|
|
if (!funcDecl)
|
|
continue;
|
|
|
|
if (funcDecl->getDeclContext()->isTypeContext()) {
|
|
auto contextTy = funcDecl->getDeclContext()->getDeclaredInterfaceType();
|
|
if (!contextTy->isEqual(contextType)) continue;
|
|
}
|
|
|
|
if (auto resolver = ctx.getLazyResolver())
|
|
resolver->resolveDeclSignature(funcDecl);
|
|
|
|
Type inputType, resultType;
|
|
if (!isNonGenericIntrinsic(funcDecl, /*allowTypeMembers=*/true, inputType,
|
|
resultType))
|
|
continue;
|
|
|
|
if (callback(inputType, resultType))
|
|
return funcDecl;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Looks up the implementation (assumed to be singular) of a globally-defined
|
|
/// standard library intrinsic function and passes the potential match to the
|
|
/// given callback if it was found. If the callback returns true, then the
|
|
/// match is returned; otherwise, nullptr is returned.
|
|
/// \p ctx The AST context.
|
|
/// \p name The name of the function.
|
|
/// \p resolver The lazy resolver.
|
|
/// \p callback A callback that takes as its two arguments the input type and
|
|
/// result type of the candidate function declaration and returns true if
|
|
/// the function matches the desired criteria.
|
|
/// \return The matching function declaration, or nullptr if there was no match.
|
|
template <typename MatchFuncCallback>
|
|
static FuncDecl *lookupLibraryIntrinsicFunc(const ASTContext &ctx,
|
|
StringRef name,
|
|
LazyResolver *resolver,
|
|
MatchFuncCallback &callback) {
|
|
Type inputType, resultType;
|
|
auto decl = findLibraryIntrinsic(ctx, name, resolver);
|
|
if (!decl ||
|
|
!isNonGenericIntrinsic(decl, /*allowTypeMembers=*/false, inputType,
|
|
resultType))
|
|
return nullptr;
|
|
|
|
if (callback(inputType, resultType))
|
|
return decl;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getEqualIntDecl() const {
|
|
if (Impl.EqualIntDecl)
|
|
return Impl.EqualIntDecl;
|
|
|
|
if (!getIntDecl() || !getBoolDecl())
|
|
return nullptr;
|
|
|
|
auto intType = getIntDecl()->getDeclaredType();
|
|
auto boolType = getBoolDecl()->getDeclaredType();
|
|
auto callback = [&](Type inputType, Type resultType) {
|
|
// Check for the signature: (Int, Int) -> Bool
|
|
auto tupleType = dyn_cast<TupleType>(inputType.getPointer());
|
|
assert(tupleType);
|
|
return tupleType->getNumElements() == 2 &&
|
|
tupleType->getElementType(0)->isEqual(intType) &&
|
|
tupleType->getElementType(1)->isEqual(intType) &&
|
|
resultType->isEqual(boolType);
|
|
};
|
|
|
|
auto decl = lookupOperatorFunc<32>(*this, "==", intType, callback);
|
|
Impl.EqualIntDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getGetBoolDecl(LazyResolver *resolver) const {
|
|
if (Impl.GetBoolDecl)
|
|
return Impl.GetBoolDecl;
|
|
|
|
auto callback = [&](Type inputType, Type resultType) {
|
|
// Look for the signature (Builtin.Int1) -> Bool
|
|
return isBuiltinInt1Type(inputType) &&
|
|
resultType->isEqual(getBoolDecl()->getDeclaredType());
|
|
};
|
|
|
|
auto decl = lookupLibraryIntrinsicFunc(*this, "_getBool", resolver, callback);
|
|
Impl.GetBoolDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getCombineHashValuesDecl() const {
|
|
if (Impl.CombineHashValuesDecl)
|
|
return Impl.CombineHashValuesDecl;
|
|
|
|
auto resolver = getLazyResolver();
|
|
auto intType = getIntDecl()->getDeclaredType();
|
|
|
|
auto callback = [&](Type inputType, Type resultType) {
|
|
// Look for the signature (Int, Int) -> Int
|
|
auto tupleType = dyn_cast<TupleType>(inputType.getPointer());
|
|
assert(tupleType);
|
|
return tupleType->getNumElements() == 2 &&
|
|
tupleType->getElementType(0)->isEqual(intType) &&
|
|
tupleType->getElementType(1)->isEqual(intType) &&
|
|
resultType->isEqual(intType);
|
|
};
|
|
|
|
auto decl = lookupLibraryIntrinsicFunc(
|
|
*this, "_combineHashValues", resolver, callback);
|
|
Impl.CombineHashValuesDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getMixIntDecl() const {
|
|
if (Impl.MixIntDecl)
|
|
return Impl.MixIntDecl;
|
|
|
|
auto resolver = getLazyResolver();
|
|
auto intType = getIntDecl()->getDeclaredType();
|
|
|
|
auto callback = [&](Type inputType, Type resultType) {
|
|
// Look for the signature (Int) -> Int
|
|
return inputType->isEqual(intType) && resultType->isEqual(intType);
|
|
};
|
|
|
|
auto decl = lookupLibraryIntrinsicFunc(*this, "_mixInt", resolver, callback);
|
|
Impl.MixIntDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getArrayAppendElementDecl() const {
|
|
if (Impl.ArrayAppendElementDecl)
|
|
return Impl.ArrayAppendElementDecl;
|
|
|
|
auto AppendFunctions = getArrayDecl()->lookupDirect(getIdentifier("append"));
|
|
|
|
for (auto CandidateFn : AppendFunctions) {
|
|
auto FnDecl = dyn_cast<FuncDecl>(CandidateFn);
|
|
auto Attrs = FnDecl->getAttrs();
|
|
for (auto *A : Attrs.getAttributes<SemanticsAttr, false>()) {
|
|
if (A->Value != "array.append_element")
|
|
continue;
|
|
|
|
auto ParamLists = FnDecl->getParameterLists();
|
|
if (ParamLists.size() != 2)
|
|
return nullptr;
|
|
if (ParamLists[0]->size() != 1)
|
|
return nullptr;
|
|
if (!ParamLists[0]->get(0)->isInOut())
|
|
return nullptr;
|
|
|
|
auto SelfInOutTy = ParamLists[0]->get(0)->getInterfaceType();
|
|
BoundGenericStructType *SelfGenericStructTy =
|
|
SelfInOutTy->getInOutObjectType()->getAs<BoundGenericStructType>();
|
|
if (!SelfGenericStructTy)
|
|
return nullptr;
|
|
if (SelfGenericStructTy->getDecl() != getArrayDecl())
|
|
return nullptr;
|
|
|
|
if (ParamLists[1]->size() != 1)
|
|
return nullptr;
|
|
GenericTypeParamType *ElementType = ParamLists[1]->get(0)->
|
|
getInterfaceType()->getAs<GenericTypeParamType>();
|
|
if (!ElementType)
|
|
return nullptr;
|
|
if (ElementType->getName() != getIdentifier("Element"))
|
|
return nullptr;
|
|
|
|
if (!FnDecl->getResultInterfaceType()->isVoid())
|
|
return nullptr;
|
|
|
|
Impl.ArrayAppendElementDecl = FnDecl;
|
|
return FnDecl;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getArrayReserveCapacityDecl() const {
|
|
if (Impl.ArrayReserveCapacityDecl)
|
|
return Impl.ArrayReserveCapacityDecl;
|
|
|
|
auto ReserveFunctions = getArrayDecl()->lookupDirect(
|
|
getIdentifier("reserveCapacityForAppend"));
|
|
|
|
for (auto CandidateFn : ReserveFunctions) {
|
|
auto FnDecl = dyn_cast<FuncDecl>(CandidateFn);
|
|
auto Attrs = FnDecl->getAttrs();
|
|
for (auto *A : Attrs.getAttributes<SemanticsAttr, false>()) {
|
|
if (A->Value != "array.reserve_capacity_for_append")
|
|
continue;
|
|
|
|
auto ParamLists = FnDecl->getParameterLists();
|
|
if (ParamLists.size() != 2)
|
|
return nullptr;
|
|
if (ParamLists[0]->size() != 1)
|
|
return nullptr;
|
|
if (!ParamLists[0]->get(0)->isInOut())
|
|
return nullptr;
|
|
|
|
auto SelfInOutTy = ParamLists[0]->get(0)->getInterfaceType();
|
|
BoundGenericStructType *SelfGenericStructTy =
|
|
SelfInOutTy->getInOutObjectType()->getAs<BoundGenericStructType>();
|
|
if (!SelfGenericStructTy)
|
|
return nullptr;
|
|
if (SelfGenericStructTy->getDecl() != getArrayDecl())
|
|
return nullptr;
|
|
|
|
if (ParamLists[1]->size() != 1)
|
|
return nullptr;
|
|
StructType *IntType =
|
|
ParamLists[1]->get(0)->getInterfaceType()->getAs<StructType>();
|
|
if (!IntType)
|
|
return nullptr;
|
|
|
|
StructDecl *IntDecl = IntType->getDecl();
|
|
auto StoredProperties = IntDecl->getStoredProperties();
|
|
auto FieldIter = StoredProperties.begin();
|
|
if (FieldIter == StoredProperties.end())
|
|
return nullptr;
|
|
VarDecl *field = *FieldIter;
|
|
if (field->hasClangNode())
|
|
return nullptr;
|
|
if (!field->getInterfaceType()->is<BuiltinIntegerType>())
|
|
return nullptr;
|
|
if (std::next(FieldIter) != StoredProperties.end())
|
|
return nullptr;
|
|
|
|
if (!FnDecl->getResultInterfaceType()->isVoid())
|
|
return nullptr;
|
|
|
|
Impl.ArrayReserveCapacityDecl = FnDecl;
|
|
return FnDecl;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FuncDecl *
|
|
ASTContext::getUnimplementedInitializerDecl(LazyResolver *resolver) const {
|
|
if (Impl.UnimplementedInitializerDecl)
|
|
return Impl.UnimplementedInitializerDecl;
|
|
|
|
// Look for the function.
|
|
Type input, output;
|
|
auto decl = findLibraryIntrinsic(*this, "_unimplementedInitializer",
|
|
resolver);
|
|
if (!decl ||
|
|
!isNonGenericIntrinsic(decl, /*allowTypeMembers=*/false, input, output))
|
|
return nullptr;
|
|
|
|
// FIXME: Check inputs and outputs.
|
|
|
|
Impl.UnimplementedInitializerDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *
|
|
ASTContext::getUndefinedDecl(LazyResolver *resolver) const {
|
|
if (Impl.UndefinedDecl)
|
|
return Impl.UndefinedDecl;
|
|
|
|
// Look for the function.
|
|
CanType input, output;
|
|
auto decl = findLibraryIntrinsic(*this, "_undefined", resolver);
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
Impl.UndefinedDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
FuncDecl *ASTContext::getIsOSVersionAtLeastDecl(LazyResolver *resolver) const {
|
|
if (Impl.IsOSVersionAtLeastDecl)
|
|
return Impl.IsOSVersionAtLeastDecl;
|
|
|
|
// Look for the function.
|
|
Type input, output;
|
|
auto decl =
|
|
findLibraryIntrinsic(*this, "_stdlib_isOSVersionAtLeast", resolver);
|
|
if (!decl ||
|
|
!isNonGenericIntrinsic(decl, /*allowTypeMembers=*/false, input, output))
|
|
return nullptr;
|
|
|
|
// Input must be (Builtin.Word, Builtin.Word, Builtin.Word)
|
|
auto inputTuple = input->getAs<TupleType>();
|
|
if (!inputTuple || inputTuple->getNumElements() != 3 ||
|
|
!isBuiltinWordType(inputTuple->getElementType(0)) ||
|
|
!isBuiltinWordType(inputTuple->getElementType(1)) ||
|
|
!isBuiltinWordType(inputTuple->getElementType(2))) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Output must be Builtin.Int1
|
|
if (!isBuiltinInt1Type(output))
|
|
return nullptr;
|
|
|
|
Impl.IsOSVersionAtLeastDecl = decl;
|
|
return decl;
|
|
}
|
|
|
|
static bool isHigherPrecedenceThan(PrecedenceGroupDecl *a,
|
|
PrecedenceGroupDecl *b) {
|
|
assert(a != b && "exact match should already have been filtered");
|
|
|
|
SmallVector<PrecedenceGroupDecl*, 4> stack;
|
|
|
|
// Compute the transitive set of precedence groups that are
|
|
// explicitly lower than 'b', including 'b' itself. This is expected
|
|
// to be very small, since it's only legal in downstream modules.
|
|
SmallPtrSet<PrecedenceGroupDecl*, 4> targets;
|
|
targets.insert(b);
|
|
stack.push_back(b);
|
|
do {
|
|
auto cur = stack.pop_back_val();
|
|
for (auto &rel : cur->getLowerThan()) {
|
|
auto group = rel.Group;
|
|
|
|
// If we ever see 'a', we're done.
|
|
if (group == a) return true;
|
|
|
|
// Protect against invalid ASTs where the group isn't actually set.
|
|
if (!group) continue;
|
|
|
|
// If we've already inserted this, don't add it to the queue.
|
|
if (!targets.insert(group).second) continue;
|
|
|
|
stack.push_back(group);
|
|
}
|
|
} while (!stack.empty());
|
|
|
|
// Walk down the higherThan relationships from 'a' and look for
|
|
// anything in the set we just built.
|
|
stack.push_back(a);
|
|
do {
|
|
auto cur = stack.pop_back_val();
|
|
assert(!targets.count(cur));
|
|
|
|
for (auto &rel : cur->getHigherThan()) {
|
|
auto group = rel.Group;
|
|
|
|
if (!group) continue;
|
|
|
|
// If we ever see a group that's in the targets set, we're done.
|
|
if (targets.count(group)) return true;
|
|
|
|
stack.push_back(group);
|
|
}
|
|
} while (!stack.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
static Associativity computeAssociativity(AssociativityCacheType &cache,
|
|
PrecedenceGroupDecl *left,
|
|
PrecedenceGroupDecl *right) {
|
|
auto it = cache.find({left, right});
|
|
if (it != cache.end()) return it->second;
|
|
|
|
auto result = Associativity::None;
|
|
if (isHigherPrecedenceThan(left, right))
|
|
result = Associativity::Left;
|
|
else if (isHigherPrecedenceThan(right, left))
|
|
result = Associativity::Right;
|
|
cache.insert({{left, right}, result});
|
|
return result;
|
|
}
|
|
|
|
Associativity
|
|
ASTContext::associateInfixOperators(PrecedenceGroupDecl *left,
|
|
PrecedenceGroupDecl *right) const {
|
|
// If the operators are in the same precedence group, use the group's
|
|
// associativity.
|
|
if (left == right) {
|
|
return left->getAssociativity();
|
|
}
|
|
|
|
// This relationship is antisymmetric, so we can canonicalize to avoid
|
|
// computing it twice. Arbitrarily, if the pointer value of 'left'
|
|
// is greater than the pointer value of 'right', we flip them and
|
|
// then flip the result.
|
|
|
|
if (uintptr_t(left) < uintptr_t(right)) {
|
|
return computeAssociativity(Impl.AssociativityCache, left, right);
|
|
}
|
|
|
|
switch (computeAssociativity(Impl.AssociativityCache, right, left)) {
|
|
case Associativity::Left: return Associativity::Right;
|
|
case Associativity::Right: return Associativity::Left;
|
|
case Associativity::None: return Associativity::None;
|
|
}
|
|
llvm_unreachable("bad associativity");
|
|
}
|
|
|
|
// Find library intrinsic function.
|
|
static FuncDecl *findLibraryFunction(const ASTContext &ctx, FuncDecl *&cache,
|
|
StringRef name, LazyResolver *resolver) {
|
|
if (cache) return cache;
|
|
|
|
// Look for a generic function.
|
|
cache = findLibraryIntrinsic(ctx, name, resolver);
|
|
return cache;
|
|
}
|
|
|
|
#define FUNC_DECL(Name, Id) \
|
|
FuncDecl *ASTContext::get##Name(LazyResolver *resolver) const { \
|
|
return findLibraryFunction(*this, Impl.Get##Name, Id, resolver); \
|
|
}
|
|
#include "swift/AST/KnownDecls.def"
|
|
|
|
bool ASTContext::hasOptionalIntrinsics(LazyResolver *resolver) const {
|
|
return getOptionalDecl() &&
|
|
getOptionalSomeDecl() &&
|
|
getOptionalNoneDecl() &&
|
|
getDiagnoseUnexpectedNilOptional(resolver);
|
|
}
|
|
|
|
bool ASTContext::hasPointerArgumentIntrinsics(LazyResolver *resolver) const {
|
|
return getUnsafeMutableRawPointerDecl()
|
|
&& getUnsafeRawPointerDecl()
|
|
&& getUnsafeMutablePointerDecl()
|
|
&& getUnsafePointerDecl()
|
|
&& (!LangOpts.EnableObjCInterop || getAutoreleasingUnsafeMutablePointerDecl())
|
|
&& getConvertPointerToPointerArgument(resolver)
|
|
&& getConvertMutableArrayToPointerArgument(resolver)
|
|
&& getConvertConstArrayToPointerArgument(resolver)
|
|
&& getConvertConstStringToUTF8PointerArgument(resolver)
|
|
&& getConvertInOutToPointerArgument(resolver);
|
|
}
|
|
|
|
bool ASTContext::hasArrayLiteralIntrinsics(LazyResolver *resolver) const {
|
|
return getArrayDecl()
|
|
&& getAllocateUninitializedArray(resolver)
|
|
&& getDeallocateUninitializedArray(resolver);
|
|
}
|
|
|
|
void ASTContext::addExternalDecl(Decl *decl) {
|
|
ExternalDefinitions.insert(decl);
|
|
}
|
|
|
|
void ASTContext::addCleanup(std::function<void(void)> cleanup) {
|
|
Impl.Cleanups.push_back(std::move(cleanup));
|
|
}
|
|
|
|
bool ASTContext::hadError() const {
|
|
return Diags.hadAnyError();
|
|
}
|
|
|
|
/// \brief Retrieve the arena from which we should allocate storage for a type.
|
|
static AllocationArena getArena(RecursiveTypeProperties properties) {
|
|
bool hasTypeVariable = properties.hasTypeVariable();
|
|
return hasTypeVariable? AllocationArena::ConstraintSolver
|
|
: AllocationArena::Permanent;
|
|
}
|
|
|
|
void ASTContext::addSearchPath(StringRef searchPath, bool isFramework,
|
|
bool isSystem) {
|
|
OptionSet<SearchPathKind> &loaded = Impl.SearchPathsSet[searchPath];
|
|
auto kind = isFramework ? SearchPathKind::Framework : SearchPathKind::Import;
|
|
if (loaded.contains(kind))
|
|
return;
|
|
loaded |= kind;
|
|
|
|
if (isFramework)
|
|
SearchPathOpts.FrameworkSearchPaths.push_back({searchPath, isSystem});
|
|
else
|
|
SearchPathOpts.ImportSearchPaths.push_back(searchPath);
|
|
|
|
if (auto *clangLoader = getClangModuleLoader())
|
|
clangLoader->addSearchPath(searchPath, isFramework, isSystem);
|
|
}
|
|
|
|
void ASTContext::addModuleLoader(std::unique_ptr<ModuleLoader> loader,
|
|
bool IsClang) {
|
|
if (IsClang) {
|
|
assert(!Impl.TheClangModuleLoader && "Already have a Clang module loader");
|
|
Impl.TheClangModuleLoader =
|
|
static_cast<ClangModuleLoader *>(loader.get());
|
|
}
|
|
Impl.ModuleLoaders.push_back(std::move(loader));
|
|
}
|
|
|
|
void ASTContext::loadExtensions(NominalTypeDecl *nominal,
|
|
unsigned previousGeneration) {
|
|
for (auto &loader : Impl.ModuleLoaders) {
|
|
loader->loadExtensions(nominal, previousGeneration);
|
|
}
|
|
}
|
|
|
|
void ASTContext::loadObjCMethods(
|
|
ClassDecl *classDecl,
|
|
ObjCSelector selector,
|
|
bool isInstanceMethod,
|
|
unsigned previousGeneration,
|
|
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
|
|
for (auto &loader : Impl.ModuleLoaders) {
|
|
loader->loadObjCMethods(classDecl, selector, isInstanceMethod,
|
|
previousGeneration, methods);
|
|
}
|
|
}
|
|
|
|
void ASTContext::verifyAllLoadedModules() const {
|
|
#ifndef NDEBUG
|
|
FrontendStatsTracer tracer(Stats, "verify-all-loaded-modules");
|
|
for (auto &loader : Impl.ModuleLoaders)
|
|
loader->verifyAllModules();
|
|
|
|
for (auto &topLevelModulePair : LoadedModules) {
|
|
ModuleDecl *M = topLevelModulePair.second;
|
|
assert(!M->getFiles().empty() || M->failedToLoad());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ClangModuleLoader *ASTContext::getClangModuleLoader() const {
|
|
return Impl.TheClangModuleLoader;
|
|
}
|
|
|
|
static void recordKnownProtocol(ModuleDecl *Stdlib, StringRef Name,
|
|
KnownProtocolKind Kind) {
|
|
Identifier ID = Stdlib->getASTContext().getIdentifier(Name);
|
|
UnqualifiedLookup Lookup(ID, Stdlib, nullptr, /*IsKnownPrivate=*/true,
|
|
SourceLoc(), /*IsTypeLookup=*/true);
|
|
if (auto Proto
|
|
= dyn_cast_or_null<ProtocolDecl>(Lookup.getSingleTypeResult()))
|
|
Proto->setKnownProtocolKind(Kind);
|
|
}
|
|
|
|
void ASTContext::recordKnownProtocols(ModuleDecl *Stdlib) {
|
|
#define PROTOCOL_WITH_NAME(Id, Name) \
|
|
recordKnownProtocol(Stdlib, Name, KnownProtocolKind::Id);
|
|
#include "swift/AST/KnownProtocols.def"
|
|
}
|
|
|
|
ModuleDecl *ASTContext::getLoadedModule(
|
|
ArrayRef<std::pair<Identifier, SourceLoc>> ModulePath) const {
|
|
assert(!ModulePath.empty());
|
|
|
|
// TODO: Swift submodules.
|
|
if (ModulePath.size() == 1) {
|
|
return getLoadedModule(ModulePath[0].first);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ModuleDecl *ASTContext::getLoadedModule(Identifier ModuleName) const {
|
|
return LoadedModules.lookup(ModuleName);
|
|
}
|
|
|
|
void ASTContext::getVisibleTopLevelClangModules(
|
|
SmallVectorImpl<clang::Module*> &Modules) const {
|
|
getClangModuleLoader()->getClangPreprocessor().getHeaderSearchInfo().
|
|
collectAllModules(Modules);
|
|
}
|
|
|
|
void ASTContext::registerGenericSignatureBuilder(
|
|
GenericSignature *sig,
|
|
GenericSignatureBuilder &&builder) {
|
|
auto canSig = sig->getCanonicalSignature();
|
|
auto known = Impl.GenericSignatureBuilders.find(canSig);
|
|
if (known != Impl.GenericSignatureBuilders.end()) {
|
|
++NumRegisteredGenericSignatureBuildersAlready;
|
|
return;
|
|
}
|
|
|
|
++NumRegisteredGenericSignatureBuilders;
|
|
Impl.GenericSignatureBuilders[canSig] =
|
|
llvm::make_unique<GenericSignatureBuilder>(std::move(builder));
|
|
}
|
|
|
|
GenericSignatureBuilder *ASTContext::getOrCreateGenericSignatureBuilder(
|
|
CanGenericSignature sig) {
|
|
// Check whether we already have a generic signature builder for this
|
|
// signature and module.
|
|
auto known = Impl.GenericSignatureBuilders.find(sig);
|
|
if (known != Impl.GenericSignatureBuilders.end())
|
|
return known->second.get();
|
|
|
|
// Create a new generic signature builder with the given signature.
|
|
auto builder = new GenericSignatureBuilder(*this);
|
|
|
|
// Store this generic signature builder (no generic environment yet).
|
|
Impl.GenericSignatureBuilders[sig] =
|
|
std::unique_ptr<GenericSignatureBuilder>(builder);
|
|
|
|
builder->addGenericSignature(sig);
|
|
|
|
#if SWIFT_GSB_EXPENSIVE_ASSERTIONS
|
|
auto builderSig =
|
|
builder->computeGenericSignature(SourceLoc(),
|
|
/*allowConcreteGenericParams=*/true);
|
|
if (builderSig->getCanonicalSignature() != sig) {
|
|
llvm::errs() << "ERROR: generic signature builder is not idempotent.\n";
|
|
llvm::errs() << "Original generic signature : ";
|
|
sig->print(llvm::errs());
|
|
llvm::errs() << "\nReprocessed generic signature: ";
|
|
auto reprocessedSig = builderSig->getCanonicalSignature();
|
|
|
|
reprocessedSig->print(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
|
|
if (sig->getGenericParams().size() ==
|
|
reprocessedSig->getGenericParams().size() &&
|
|
sig->getRequirements().size() ==
|
|
reprocessedSig->getRequirements().size()) {
|
|
for (unsigned i : indices(sig->getRequirements())) {
|
|
auto sigReq = sig->getRequirements()[i];
|
|
auto reprocessedReq = reprocessedSig->getRequirements()[i];
|
|
if (sigReq.getKind() != reprocessedReq.getKind()) {
|
|
llvm::errs() << "Requirement mismatch:\n";
|
|
llvm::errs() << " Original: ";
|
|
sigReq.print(llvm::errs(), PrintOptions());
|
|
llvm::errs() << "\n Reprocessed: ";
|
|
reprocessedReq.print(llvm::errs(), PrintOptions());
|
|
llvm::errs() << "\n";
|
|
break;
|
|
}
|
|
|
|
if (!sigReq.getFirstType()->isEqual(reprocessedReq.getFirstType())) {
|
|
llvm::errs() << "First type mismatch, original is:\n";
|
|
sigReq.getFirstType().dump(llvm::errs());
|
|
llvm::errs() << "Reprocessed:\n";
|
|
reprocessedReq.getFirstType().dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
break;
|
|
}
|
|
|
|
if (sigReq.getKind() == RequirementKind::SameType &&
|
|
!sigReq.getSecondType()->isEqual(reprocessedReq.getSecondType())) {
|
|
llvm::errs() << "Second type mismatch, original is:\n";
|
|
sigReq.getSecondType().dump(llvm::errs());
|
|
llvm::errs() << "Reprocessed:\n";
|
|
reprocessedReq.getSecondType().dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("idempotency problem with a generic signature");
|
|
}
|
|
#else
|
|
// FIXME: This should be handled lazily in the future, and therefore not
|
|
// required.
|
|
builder->processDelayedRequirements();
|
|
#endif
|
|
|
|
return builder;
|
|
}
|
|
|
|
GenericEnvironment *ASTContext::getOrCreateCanonicalGenericEnvironment(
|
|
GenericSignatureBuilder *builder,
|
|
GenericSignature *sig) {
|
|
auto known = Impl.CanonicalGenericEnvironments.find(builder);
|
|
if (known != Impl.CanonicalGenericEnvironments.end())
|
|
return known->second;
|
|
|
|
auto env = sig->createGenericEnvironment();
|
|
Impl.CanonicalGenericEnvironments[builder] = env;
|
|
return env;
|
|
}
|
|
|
|
/// Minimize the set of overridden associated types, eliminating any
|
|
/// associated types that are overridden by other associated types.
|
|
static void minimizeOverriddenAssociatedTypes(
|
|
SmallVectorImpl<AssociatedTypeDecl *> &assocTypes) {
|
|
// Mark associated types that are "worse" than some other associated type,
|
|
// because they come from an inherited protocol.
|
|
bool anyWorse = false;
|
|
std::vector<bool> worseThanAny(assocTypes.size(), false);
|
|
for (unsigned i : indices(assocTypes)) {
|
|
auto proto1 = assocTypes[i]->getProtocol();
|
|
for (unsigned j : range(i + 1, assocTypes.size())) {
|
|
auto proto2 = assocTypes[j]->getProtocol();
|
|
if (proto1->inheritsFrom(proto2)) {
|
|
anyWorse = true;
|
|
worseThanAny[j] = true;
|
|
} else if (proto2->inheritsFrom(proto1)) {
|
|
anyWorse = true;
|
|
worseThanAny[i] = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find any associated types that were "worse", we're done.
|
|
if (!anyWorse) return;
|
|
|
|
// Copy in the associated types that aren't worse than any other associated
|
|
// type.
|
|
unsigned nextIndex = 0;
|
|
for (unsigned i : indices(assocTypes)) {
|
|
if (worseThanAny[i]) continue;
|
|
assocTypes[nextIndex++] = assocTypes[i];
|
|
}
|
|
|
|
assocTypes.erase(assocTypes.begin() + nextIndex, assocTypes.end());
|
|
}
|
|
|
|
/// Sort associated types just based on the protocol.
|
|
static int compareSimilarAssociatedTypes(AssociatedTypeDecl *const *lhs,
|
|
AssociatedTypeDecl *const *rhs) {
|
|
auto lhsProto = (*lhs)->getProtocol();
|
|
auto rhsProto = (*rhs)->getProtocol();
|
|
return ProtocolType::compareProtocols(&lhsProto, &rhsProto);
|
|
}
|
|
|
|
ArrayRef<AssociatedTypeDecl *> AssociatedTypeDecl::getOverriddenDecls() const {
|
|
// If we already computed the set of overridden associated types, return it.
|
|
if (Bits.AssociatedTypeDecl.ComputedOverridden) {
|
|
// We didn't override any associated types, so return the empty set.
|
|
if (!Bits.AssociatedTypeDecl.HasOverridden)
|
|
return { };
|
|
|
|
// Look up the overrides.
|
|
auto known = getASTContext().Impl.AssociatedTypeOverrides.find(this);
|
|
assert(known != getASTContext().Impl.AssociatedTypeOverrides.end());
|
|
return known->second;
|
|
}
|
|
|
|
// While we are computing overridden declarations, pretend there are none.
|
|
auto mutableThis = const_cast<AssociatedTypeDecl *>(this);
|
|
mutableThis->Bits.AssociatedTypeDecl.ComputedOverridden = true;
|
|
mutableThis->Bits.AssociatedTypeDecl.HasOverridden = false;
|
|
|
|
// Find associated types with the given name in all of the inherited
|
|
// protocols.
|
|
SmallVector<AssociatedTypeDecl *, 4> inheritedAssociatedTypes;
|
|
auto proto = getProtocol();
|
|
proto->walkInheritedProtocols([&](ProtocolDecl *inheritedProto) {
|
|
if (proto == inheritedProto) return TypeWalker::Action::Continue;
|
|
|
|
// Objective-C protocols
|
|
if (inheritedProto->isObjC()) return TypeWalker::Action::Continue;
|
|
|
|
// Look for associated types with the same name.
|
|
bool foundAny = false;
|
|
for (auto member : inheritedProto->lookupDirect(
|
|
getFullName(),
|
|
/*ignoreNewExtensions=*/true)) {
|
|
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
|
|
inheritedAssociatedTypes.push_back(assocType);
|
|
foundAny = true;
|
|
}
|
|
}
|
|
|
|
return foundAny ? TypeWalker::Action::SkipChildren
|
|
: TypeWalker::Action::Continue;
|
|
});
|
|
|
|
// Minimize the set of inherited associated types, eliminating any that
|
|
// themselves are overridden.
|
|
minimizeOverriddenAssociatedTypes(inheritedAssociatedTypes);
|
|
|
|
// Sort the set of inherited associated types.
|
|
llvm::array_pod_sort(inheritedAssociatedTypes.begin(),
|
|
inheritedAssociatedTypes.end(),
|
|
compareSimilarAssociatedTypes);
|
|
|
|
mutableThis->Bits.AssociatedTypeDecl.ComputedOverridden = false;
|
|
return mutableThis->setOverriddenDecls(inheritedAssociatedTypes);
|
|
}
|
|
|
|
ArrayRef<AssociatedTypeDecl *> AssociatedTypeDecl::setOverriddenDecls(
|
|
ArrayRef<AssociatedTypeDecl *> overridden) {
|
|
assert(!Bits.AssociatedTypeDecl.ComputedOverridden &&
|
|
"Overridden decls already computed");
|
|
Bits.AssociatedTypeDecl.ComputedOverridden = true;
|
|
|
|
// If the set of overridden declarations is empty, note that.
|
|
if (overridden.empty()) {
|
|
Bits.AssociatedTypeDecl.HasOverridden = false;
|
|
return { };
|
|
}
|
|
|
|
// Record the overrides in the context.
|
|
auto &ctx = getASTContext();
|
|
Bits.AssociatedTypeDecl.HasOverridden = true;
|
|
auto overriddenCopy = ctx.AllocateCopy(overridden);
|
|
auto inserted =
|
|
ctx.Impl.AssociatedTypeOverrides.insert({this, overriddenCopy}).second;
|
|
(void)inserted;
|
|
assert(inserted && "Already recorded associated type overrides");
|
|
return overriddenCopy;
|
|
}
|
|
|
|
bool ASTContext::canImportModule(std::pair<Identifier, SourceLoc> ModulePath) {
|
|
// If this module has already been successfully imported, it is importable.
|
|
if (getLoadedModule(ModulePath) != nullptr)
|
|
return true;
|
|
|
|
// If we've failed loading this module before, don't look for it again.
|
|
if (FailedModuleImportNames.count(ModulePath.first))
|
|
return false;
|
|
|
|
// Otherwise, ask the module loaders.
|
|
for (auto &importer : Impl.ModuleLoaders) {
|
|
if (importer->canImportModule(ModulePath)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
FailedModuleImportNames.insert(ModulePath.first);
|
|
return false;
|
|
}
|
|
|
|
ModuleDecl *
|
|
ASTContext::getModule(ArrayRef<std::pair<Identifier, SourceLoc>> ModulePath) {
|
|
assert(!ModulePath.empty());
|
|
|
|
if (auto *M = getLoadedModule(ModulePath))
|
|
return M;
|
|
|
|
auto moduleID = ModulePath[0];
|
|
for (auto &importer : Impl.ModuleLoaders) {
|
|
if (ModuleDecl *M = importer->loadModule(moduleID.second, ModulePath)) {
|
|
if (ModulePath.size() == 1 &&
|
|
(ModulePath[0].first == StdlibModuleName ||
|
|
ModulePath[0].first == Id_Foundation))
|
|
recordKnownProtocols(M);
|
|
return M;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ModuleDecl *ASTContext::getModuleByName(StringRef ModuleName) {
|
|
SmallVector<std::pair<Identifier, SourceLoc>, 4>
|
|
AccessPath;
|
|
while (!ModuleName.empty()) {
|
|
StringRef SubModuleName;
|
|
std::tie(SubModuleName, ModuleName) = ModuleName.split('.');
|
|
AccessPath.push_back({ getIdentifier(SubModuleName), SourceLoc() });
|
|
}
|
|
return getModule(AccessPath);
|
|
}
|
|
|
|
ModuleDecl *ASTContext::getStdlibModule(bool loadIfAbsent) {
|
|
if (TheStdlibModule)
|
|
return TheStdlibModule;
|
|
|
|
if (loadIfAbsent) {
|
|
auto mutableThis = const_cast<ASTContext*>(this);
|
|
TheStdlibModule =
|
|
mutableThis->getModule({ std::make_pair(StdlibModuleName, SourceLoc()) });
|
|
} else {
|
|
TheStdlibModule = getLoadedModule(StdlibModuleName);
|
|
}
|
|
return TheStdlibModule;
|
|
}
|
|
|
|
Optional<RawComment> ASTContext::getRawComment(const Decl *D) {
|
|
auto Known = Impl.RawComments.find(D);
|
|
if (Known == Impl.RawComments.end())
|
|
return None;
|
|
|
|
return Known->second;
|
|
}
|
|
|
|
void ASTContext::setRawComment(const Decl *D, RawComment RC) {
|
|
Impl.RawComments[D] = RC;
|
|
}
|
|
|
|
Optional<StringRef> ASTContext::getBriefComment(const Decl *D) {
|
|
auto Known = Impl.BriefComments.find(D);
|
|
if (Known == Impl.BriefComments.end())
|
|
return None;
|
|
|
|
return Known->second;
|
|
}
|
|
|
|
void ASTContext::setBriefComment(const Decl *D, StringRef Comment) {
|
|
Impl.BriefComments[D] = Comment;
|
|
}
|
|
|
|
unsigned ValueDecl::getLocalDiscriminator() const {
|
|
assert(getDeclContext()->isLocalContext());
|
|
auto &discriminators = getASTContext().Impl.LocalDiscriminators;
|
|
auto it = discriminators.find(this);
|
|
if (it == discriminators.end())
|
|
return 0;
|
|
return it->second;
|
|
}
|
|
|
|
void ValueDecl::setLocalDiscriminator(unsigned index) {
|
|
assert(getDeclContext()->isLocalContext());
|
|
if (!index) {
|
|
assert(!getASTContext().Impl.LocalDiscriminators.count(this));
|
|
return;
|
|
}
|
|
getASTContext().Impl.LocalDiscriminators.insert({this, index});
|
|
}
|
|
|
|
NormalProtocolConformance *
|
|
ASTContext::getBehaviorConformance(Type conformingType,
|
|
ProtocolDecl *protocol,
|
|
SourceLoc loc,
|
|
AbstractStorageDecl *storage,
|
|
ProtocolConformanceState state) {
|
|
auto conformance = new (*this, AllocationArena::Permanent)
|
|
NormalProtocolConformance(conformingType, protocol, loc, storage, state);
|
|
|
|
if (auto nominal = conformingType->getRValueInstanceType()->getAnyNominal()) {
|
|
// Note: this is an egregious hack. The conformances need to be associated
|
|
// with the actual storage declarations.
|
|
SmallVector<ProtocolConformance *, 2> conformances;
|
|
if (!nominal->lookupConformance(nominal->getModuleContext(), protocol,
|
|
conformances))
|
|
nominal->registerProtocolConformance(conformance);
|
|
}
|
|
return conformance;
|
|
}
|
|
|
|
NormalProtocolConformance *
|
|
ASTContext::getConformance(Type conformingType,
|
|
ProtocolDecl *protocol,
|
|
SourceLoc loc,
|
|
DeclContext *dc,
|
|
ProtocolConformanceState state) {
|
|
assert(dc->isTypeContext());
|
|
|
|
llvm::FoldingSetNodeID id;
|
|
NormalProtocolConformance::Profile(id, protocol, dc);
|
|
|
|
// Did we already record the normal conformance?
|
|
void *insertPos;
|
|
auto &normalConformances =
|
|
Impl.getArena(AllocationArena::Permanent).NormalConformances;
|
|
if (auto result = normalConformances.FindNodeOrInsertPos(id, insertPos))
|
|
return result;
|
|
|
|
// Build a new normal protocol conformance.
|
|
auto result
|
|
= new (*this, AllocationArena::Permanent)
|
|
NormalProtocolConformance(conformingType, protocol, loc, dc, state);
|
|
normalConformances.InsertNode(result, insertPos);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// If one of the ancestor conformances already has a matching type, use
|
|
/// that instead.
|
|
static ProtocolConformance *collapseSpecializedConformance(
|
|
Type type,
|
|
ProtocolConformance *conformance) {
|
|
while (true) {
|
|
// If the conformance matches, return it.
|
|
if (conformance->getType()->isEqual(type))
|
|
return conformance;
|
|
|
|
switch (conformance->getKind()) {
|
|
case ProtocolConformanceKind::Inherited:
|
|
conformance = cast<InheritedProtocolConformance>(conformance)
|
|
->getInheritedConformance();
|
|
break;
|
|
|
|
case ProtocolConformanceKind::Specialized:
|
|
conformance = cast<SpecializedProtocolConformance>(conformance)
|
|
->getGenericConformance();
|
|
break;
|
|
|
|
case ProtocolConformanceKind::Normal:
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
ProtocolConformance *
|
|
ASTContext::getSpecializedConformance(Type type,
|
|
ProtocolConformance *generic,
|
|
SubstitutionList substitutions,
|
|
bool alreadyCheckedCollapsed) {
|
|
// If we are performing a substitution that would get us back to the
|
|
// a prior conformance (e.g., mapping into and then out of a conformance),
|
|
// return the existing conformance.
|
|
if (!alreadyCheckedCollapsed) {
|
|
if (auto existing = collapseSpecializedConformance(type, generic)) {
|
|
++NumCollapsedSpecializedProtocolConformances;
|
|
return existing;
|
|
}
|
|
}
|
|
|
|
llvm::FoldingSetNodeID id;
|
|
SpecializedProtocolConformance::Profile(id, type, generic, substitutions);
|
|
|
|
// Figure out which arena this conformance should go into.
|
|
AllocationArena arena = getArena(type->getRecursiveProperties());
|
|
|
|
// Did we already record the specialized conformance?
|
|
void *insertPos;
|
|
auto &specializedConformances = Impl.getArena(arena).SpecializedConformances;
|
|
if (auto result = specializedConformances.FindNodeOrInsertPos(id, insertPos))
|
|
return result;
|
|
|
|
// Build a new specialized conformance.
|
|
substitutions = AllocateCopy(substitutions, arena);
|
|
auto result
|
|
= new (*this, arena) SpecializedProtocolConformance(type, generic,
|
|
substitutions);
|
|
specializedConformances.InsertNode(result, insertPos);
|
|
return result;
|
|
}
|
|
|
|
ProtocolConformance *
|
|
ASTContext::getSpecializedConformance(Type type,
|
|
ProtocolConformance *generic,
|
|
const SubstitutionMap &subMap) {
|
|
// If we are performing a substitution that would get us back to the
|
|
// a prior conformance (e.g., mapping into and then out of a conformance),
|
|
// return the existing conformance.
|
|
if (auto existing = collapseSpecializedConformance(type, generic)) {
|
|
++NumCollapsedSpecializedProtocolConformances;
|
|
return existing;
|
|
}
|
|
|
|
SmallVector<Substitution, 4> subs;
|
|
if (auto *genericSig = generic->getGenericSignature())
|
|
genericSig->getSubstitutions(subMap, subs);
|
|
|
|
return getSpecializedConformance(type, generic, subs,
|
|
/*alreadyCheckedCollapsed=*/true);
|
|
}
|
|
|
|
InheritedProtocolConformance *
|
|
ASTContext::getInheritedConformance(Type type, ProtocolConformance *inherited) {
|
|
llvm::FoldingSetNodeID id;
|
|
InheritedProtocolConformance::Profile(id, type, inherited);
|
|
|
|
// Figure out which arena this conformance should go into.
|
|
AllocationArena arena = getArena(type->getRecursiveProperties());
|
|
|
|
// Did we already record the normal protocol conformance?
|
|
void *insertPos;
|
|
auto &inheritedConformances = Impl.getArena(arena).InheritedConformances;
|
|
if (auto result
|
|
= inheritedConformances.FindNodeOrInsertPos(id, insertPos))
|
|
return result;
|
|
|
|
// Build a new normal protocol conformance.
|
|
auto result = new (*this, arena) InheritedProtocolConformance(type, inherited);
|
|
inheritedConformances.InsertNode(result, insertPos);
|
|
return result;
|
|
}
|
|
|
|
LazyContextData *ASTContext::getOrCreateLazyContextData(
|
|
const DeclContext *dc,
|
|
LazyMemberLoader *lazyLoader) {
|
|
auto known = Impl.LazyContexts.find(dc);
|
|
if (known != Impl.LazyContexts.end()) {
|
|
// Make sure we didn't provide an incompatible lazy loader.
|
|
assert(!lazyLoader || lazyLoader == known->second->loader);
|
|
return known->second;
|
|
}
|
|
|
|
// Create new lazy iterable context data with the given loader.
|
|
assert(lazyLoader && "Queried lazy data for non-lazy iterable context");
|
|
if (isa<NominalTypeDecl>(dc) || isa<ExtensionDecl>(dc)) {
|
|
auto *contextData = Allocate<LazyIterableDeclContextData>();
|
|
contextData->loader = lazyLoader;
|
|
Impl.LazyContexts[dc] = contextData;
|
|
return contextData;
|
|
}
|
|
|
|
// Create new lazy generic context data with the given loader.
|
|
auto *contextData = Allocate<LazyGenericContextData>();
|
|
contextData->loader = lazyLoader;
|
|
Impl.LazyContexts[dc] = contextData;
|
|
return contextData;
|
|
}
|
|
|
|
LazyIterableDeclContextData *ASTContext::getOrCreateLazyIterableContextData(
|
|
const IterableDeclContext *idc,
|
|
LazyMemberLoader *lazyLoader) {
|
|
if (auto ext = dyn_cast<ExtensionDecl>(idc)) {
|
|
return (LazyIterableDeclContextData *)getOrCreateLazyContextData(
|
|
ext, lazyLoader);
|
|
}
|
|
|
|
auto nominal = cast<NominalTypeDecl>(idc);
|
|
return (LazyIterableDeclContextData *)getOrCreateLazyContextData(nominal,
|
|
lazyLoader);
|
|
}
|
|
|
|
LazyGenericContextData *ASTContext::getOrCreateLazyGenericContextData(
|
|
const GenericContext *dc,
|
|
LazyMemberLoader *lazyLoader) {
|
|
return (LazyGenericContextData *)getOrCreateLazyContextData(dc,
|
|
lazyLoader);
|
|
}
|
|
|
|
void ASTContext::addDelayedConformanceDiag(
|
|
NormalProtocolConformance *conformance,
|
|
DelayedConformanceDiag fn) {
|
|
Impl.DelayedConformanceDiags[conformance].push_back(std::move(fn));
|
|
}
|
|
|
|
void ASTContext::
|
|
addDelayedMissingWitnesses(NormalProtocolConformance *conformance,
|
|
ArrayRef<ValueDecl*> witnesses) {
|
|
auto &bucket = Impl.DelayedMissingWitnesses[conformance];
|
|
bucket.insert(bucket.end(), witnesses.begin(), witnesses.end());
|
|
}
|
|
|
|
std::vector<ValueDecl*> ASTContext::
|
|
takeDelayedMissingWitnesses(NormalProtocolConformance *conformance) {
|
|
std::vector<ValueDecl*> result;
|
|
auto known = Impl.DelayedMissingWitnesses.find(conformance);
|
|
if (known != Impl.DelayedMissingWitnesses.end()) {
|
|
result = std::move(known->second);
|
|
Impl.DelayedMissingWitnesses.erase(known);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<ASTContext::DelayedConformanceDiag>
|
|
ASTContext::takeDelayedConformanceDiags(NormalProtocolConformance *conformance){
|
|
std::vector<ASTContext::DelayedConformanceDiag> result;
|
|
auto known = Impl.DelayedConformanceDiags.find(conformance);
|
|
if (known != Impl.DelayedConformanceDiags.end()) {
|
|
result = std::move(known->second);
|
|
Impl.DelayedConformanceDiags.erase(known);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
size_t ASTContext::getTotalMemory() const {
|
|
size_t Size = sizeof(*this) +
|
|
// LoadedModules ?
|
|
// ExternalDefinitions ?
|
|
llvm::capacity_in_bytes(CanonicalGenericTypeParamTypeNames) +
|
|
// RemappedTypes ?
|
|
sizeof(Impl) +
|
|
Impl.Allocator.getTotalMemory() +
|
|
Impl.Cleanups.capacity() +
|
|
llvm::capacity_in_bytes(Impl.ModuleLoaders) +
|
|
llvm::capacity_in_bytes(Impl.RawComments) +
|
|
llvm::capacity_in_bytes(Impl.BriefComments) +
|
|
llvm::capacity_in_bytes(Impl.LocalDiscriminators) +
|
|
llvm::capacity_in_bytes(Impl.ModuleTypes) +
|
|
llvm::capacity_in_bytes(Impl.GenericParamTypes) +
|
|
// Impl.GenericFunctionTypes ?
|
|
// Impl.SILFunctionTypes ?
|
|
llvm::capacity_in_bytes(Impl.SILBlockStorageTypes) +
|
|
llvm::capacity_in_bytes(Impl.IntegerTypes) +
|
|
// Impl.ProtocolCompositionTypes ?
|
|
// Impl.BuiltinVectorTypes ?
|
|
// Impl.GenericSignatures ?
|
|
// Impl.CompoundNames ?
|
|
Impl.OpenedExistentialArchetypes.getMemorySize() +
|
|
Impl.Permanent.getTotalMemory();
|
|
|
|
Size += getSolverMemory();
|
|
|
|
return Size;
|
|
}
|
|
|
|
size_t ASTContext::getSolverMemory() const {
|
|
size_t Size = 0;
|
|
|
|
if (Impl.CurrentConstraintSolverArena) {
|
|
Size += Impl.CurrentConstraintSolverArena->getTotalMemory();
|
|
Size += Impl.CurrentConstraintSolverArena->Allocator.getBytesAllocated();
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
size_t ASTContext::Implementation::Arena::getTotalMemory() const {
|
|
return sizeof(*this) +
|
|
// TupleTypes ?
|
|
llvm::capacity_in_bytes(MetatypeTypes) +
|
|
llvm::capacity_in_bytes(ExistentialMetatypeTypes) +
|
|
llvm::capacity_in_bytes(FunctionTypes) +
|
|
llvm::capacity_in_bytes(ArraySliceTypes) +
|
|
llvm::capacity_in_bytes(DictionaryTypes) +
|
|
llvm::capacity_in_bytes(OptionalTypes) +
|
|
llvm::capacity_in_bytes(ParenTypes) +
|
|
llvm::capacity_in_bytes(ReferenceStorageTypes) +
|
|
llvm::capacity_in_bytes(LValueTypes) +
|
|
llvm::capacity_in_bytes(InOutTypes) +
|
|
llvm::capacity_in_bytes(DependentMemberTypes) +
|
|
llvm::capacity_in_bytes(DynamicSelfTypes);
|
|
// EnumTypes ?
|
|
// StructTypes ?
|
|
// ClassTypes ?
|
|
// UnboundGenericTypes ?
|
|
// BoundGenericTypes ?
|
|
// NormalConformances ?
|
|
// SpecializedConformances ?
|
|
// InheritedConformances ?
|
|
}
|
|
|
|
namespace {
|
|
/// Produce a deterministic ordering of the given declarations.
|
|
class OrderDeclarations {
|
|
SourceManager &SrcMgr;
|
|
|
|
public:
|
|
OrderDeclarations(SourceManager &srcMgr) : SrcMgr(srcMgr) { }
|
|
|
|
bool operator()(ValueDecl *lhs, ValueDecl *rhs) const {
|
|
// If the declarations come from different modules, order based on the
|
|
// module.
|
|
ModuleDecl *lhsModule = lhs->getDeclContext()->getParentModule();
|
|
ModuleDecl *rhsModule = rhs->getDeclContext()->getParentModule();
|
|
if (lhsModule != rhsModule) {
|
|
return lhsModule->getName().str() < rhsModule->getName().str();
|
|
}
|
|
|
|
// If the two declarations are in the same source file, order based on
|
|
// location within that source file.
|
|
SourceFile *lhsSF = lhs->getDeclContext()->getParentSourceFile();
|
|
SourceFile *rhsSF = rhs->getDeclContext()->getParentSourceFile();
|
|
if (lhsSF == rhsSF) {
|
|
// If only one location is valid, the valid location comes first.
|
|
if (lhs->getLoc().isValid() != rhs->getLoc().isValid()) {
|
|
return lhs->getLoc().isValid();
|
|
}
|
|
|
|
// Prefer the declaration that comes first in the source file.
|
|
return SrcMgr.isBeforeInBuffer(lhs->getLoc(), rhs->getLoc());
|
|
}
|
|
|
|
// The declarations are in different source files (or unknown source
|
|
// files) of the same module. Order based on name.
|
|
// FIXME: This isn't a total ordering.
|
|
return lhs->getFullName() < rhs->getFullName();
|
|
}
|
|
};
|
|
|
|
/// Produce a deterministic ordering of the given declarations with
|
|
/// a bias that favors declarations in the given source file and
|
|
/// members of a class.
|
|
class OrderDeclarationsWithSourceFileAndClassBias {
|
|
SourceManager &SrcMgr;
|
|
SourceFile &SF;
|
|
|
|
public:
|
|
OrderDeclarationsWithSourceFileAndClassBias(SourceManager &srcMgr,
|
|
SourceFile &sf)
|
|
: SrcMgr(srcMgr), SF(sf) { }
|
|
|
|
bool operator()(ValueDecl *lhs, ValueDecl *rhs) const {
|
|
// Check whether the declarations are in a class.
|
|
bool lhsInClass = isa<ClassDecl>(lhs->getDeclContext());
|
|
bool rhsInClass = isa<ClassDecl>(rhs->getDeclContext());
|
|
if (lhsInClass != rhsInClass)
|
|
return lhsInClass;
|
|
|
|
// If the two declarations are in different source files, and one of those
|
|
// source files is the source file we're biasing toward, prefer that
|
|
// declaration.
|
|
SourceFile *lhsSF = lhs->getDeclContext()->getParentSourceFile();
|
|
SourceFile *rhsSF = rhs->getDeclContext()->getParentSourceFile();
|
|
if (lhsSF != rhsSF) {
|
|
if (lhsSF == &SF) return true;
|
|
if (rhsSF == &SF) return false;
|
|
}
|
|
|
|
// Fall back to the normal deterministic ordering.
|
|
return OrderDeclarations(SrcMgr)(lhs, rhs);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Compute the information used to describe an Objective-C redeclaration.
|
|
std::pair<unsigned, DeclName> swift::getObjCMethodDiagInfo(
|
|
AbstractFunctionDecl *member) {
|
|
if (isa<ConstructorDecl>(member))
|
|
return { 0 + member->isImplicit(), member->getFullName() };
|
|
|
|
if (isa<DestructorDecl>(member))
|
|
return { 2 + member->isImplicit(), member->getFullName() };
|
|
|
|
if (auto accessor = dyn_cast<AccessorDecl>(member)) {
|
|
switch (accessor->getAccessorKind()) {
|
|
case AccessorKind::IsAddressor:
|
|
case AccessorKind::IsDidSet:
|
|
case AccessorKind::IsMaterializeForSet:
|
|
case AccessorKind::IsMutableAddressor:
|
|
case AccessorKind::IsWillSet:
|
|
llvm_unreachable("Not an Objective-C entry point");
|
|
|
|
case AccessorKind::IsGetter:
|
|
if (auto var = dyn_cast<VarDecl>(accessor->getStorage()))
|
|
return { 5, var->getFullName() };
|
|
|
|
return { 6, Identifier() };
|
|
|
|
case AccessorKind::IsSetter:
|
|
if (auto var = dyn_cast<VarDecl>(accessor->getStorage()))
|
|
return { 7, var->getFullName() };
|
|
return { 8, Identifier() };
|
|
}
|
|
|
|
llvm_unreachable("Unhandled AccessorKind in switch.");
|
|
}
|
|
|
|
// Normal method.
|
|
auto func = cast<FuncDecl>(member);
|
|
return { 4, func->getFullName() };
|
|
}
|
|
|
|
bool swift::fixDeclarationName(InFlightDiagnostic &diag, ValueDecl *decl,
|
|
DeclName targetName) {
|
|
if (decl->isImplicit()) return false;
|
|
if (decl->getFullName() == targetName) return false;
|
|
|
|
// Handle properties directly.
|
|
if (auto var = dyn_cast<VarDecl>(decl)) {
|
|
// Replace the name.
|
|
SmallString<64> scratch;
|
|
diag.fixItReplace(var->getNameLoc(), targetName.getString(scratch));
|
|
return false;
|
|
}
|
|
|
|
// We only handle functions from here on.
|
|
auto func = dyn_cast<AbstractFunctionDecl>(decl);
|
|
if (!func) return true;
|
|
|
|
auto name = func->getFullName();
|
|
|
|
// Fix the name of the function itself.
|
|
if (name.getBaseName() != targetName.getBaseName()) {
|
|
diag.fixItReplace(func->getLoc(), targetName.getBaseIdentifier().str());
|
|
}
|
|
|
|
// Fix the argument names that need fixing.
|
|
assert(name.getArgumentNames().size()
|
|
== targetName.getArgumentNames().size());
|
|
auto params = func->getParameterList(func->getDeclContext()->isTypeContext());
|
|
for (unsigned i = 0, n = name.getArgumentNames().size(); i != n; ++i) {
|
|
auto origArg = name.getArgumentNames()[i];
|
|
auto targetArg = targetName.getArgumentNames()[i];
|
|
|
|
if (origArg == targetArg)
|
|
continue;
|
|
|
|
auto *param = params->get(i);
|
|
|
|
// The parameter has an explicitly-specified API name, and it's wrong.
|
|
if (param->getArgumentNameLoc() != param->getLoc() &&
|
|
param->getArgumentNameLoc().isValid()) {
|
|
// ... but the internal parameter name was right. Just zap the
|
|
// incorrect explicit specialization.
|
|
if (param->getName() == targetArg) {
|
|
diag.fixItRemoveChars(param->getArgumentNameLoc(),
|
|
param->getLoc());
|
|
continue;
|
|
}
|
|
|
|
// Fix the API name.
|
|
StringRef targetArgStr = targetArg.empty()? "_" : targetArg.str();
|
|
diag.fixItReplace(param->getArgumentNameLoc(), targetArgStr);
|
|
continue;
|
|
}
|
|
|
|
// The parameter did not specify a separate API name. Insert one.
|
|
if (targetArg.empty())
|
|
diag.fixItInsert(param->getLoc(), "_ ");
|
|
else {
|
|
llvm::SmallString<8> targetArgStr;
|
|
targetArgStr += targetArg.str();
|
|
targetArgStr += ' ';
|
|
diag.fixItInsert(param->getLoc(), targetArgStr);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool swift::fixDeclarationObjCName(InFlightDiagnostic &diag, ValueDecl *decl,
|
|
Optional<ObjCSelector> targetNameOpt,
|
|
bool ignoreImpliedName) {
|
|
// Subscripts cannot be renamed, so handle them directly.
|
|
if (isa<SubscriptDecl>(decl)) {
|
|
diag.fixItInsert(decl->getAttributeInsertionLoc(/*forModifier=*/false),
|
|
"@objc ");
|
|
return false;
|
|
}
|
|
|
|
// Determine the Objective-C name of the declaration.
|
|
ObjCSelector name = *decl->getObjCRuntimeName();
|
|
auto targetName = *targetNameOpt;
|
|
|
|
// Dig out the existing '@objc' attribute on the witness. We don't care
|
|
// about implicit ones because they don't have useful source location
|
|
// information.
|
|
auto attr = decl->getAttrs().getAttribute<ObjCAttr>();
|
|
if (attr && attr->isImplicit())
|
|
attr = nullptr;
|
|
|
|
// If there is an @objc attribute with an explicit, incorrect witness
|
|
// name, go fix the witness name.
|
|
if (attr && name != targetName &&
|
|
attr->hasName() && !attr->isNameImplicit()) {
|
|
// Find the source range covering the full name.
|
|
SourceLoc startLoc;
|
|
if (attr->getNameLocs().empty())
|
|
startLoc = attr->getRParenLoc();
|
|
else
|
|
startLoc = attr->getNameLocs().front();
|
|
|
|
// Replace the name with the name of the requirement.
|
|
SmallString<64> scratch;
|
|
diag.fixItReplaceChars(startLoc, attr->getRParenLoc(),
|
|
targetName.getString(scratch));
|
|
return false;
|
|
}
|
|
|
|
// We need to create or amend an @objc attribute with the appropriate name.
|
|
|
|
// Form the Fix-It text.
|
|
SourceLoc startLoc;
|
|
SmallString<64> fixItText;
|
|
{
|
|
assert((!attr || !attr->hasName() || attr->isNameImplicit() ||
|
|
name == targetName) && "Nothing to diagnose!");
|
|
llvm::raw_svector_ostream out(fixItText);
|
|
|
|
// If there is no @objc attribute, we need to add our own '@objc'.
|
|
if (!attr) {
|
|
startLoc = decl->getAttributeInsertionLoc(/*forModifier=*/false);
|
|
out << "@objc";
|
|
} else {
|
|
startLoc = Lexer::getLocForEndOfToken(decl->getASTContext().SourceMgr,
|
|
attr->getRange().End);
|
|
}
|
|
|
|
// If the names of the witness and requirement differ, we need to
|
|
// specify the name.
|
|
if (name != targetName || ignoreImpliedName) {
|
|
out << "(";
|
|
out << targetName;
|
|
out << ")";
|
|
}
|
|
|
|
if (!attr)
|
|
out << " ";
|
|
}
|
|
|
|
diag.fixItInsert(startLoc, fixItText);
|
|
return false;
|
|
}
|
|
|
|
void ASTContext::diagnoseAttrsRequiringFoundation(SourceFile &SF) {
|
|
bool ImportsFoundationModule = false;
|
|
|
|
if (SF.Kind == SourceFileKind::SIL ||
|
|
!LangOpts.EnableObjCAttrRequiresFoundation)
|
|
return;
|
|
|
|
SF.forAllVisibleModules([&](ModuleDecl::ImportedModule import) {
|
|
if (import.second->getName() == Id_Foundation)
|
|
ImportsFoundationModule = true;
|
|
});
|
|
|
|
if (ImportsFoundationModule)
|
|
return;
|
|
|
|
for (auto Attr : SF.AttrsRequiringFoundation) {
|
|
Diags.diagnose(Attr->getLocation(),
|
|
diag::attr_used_without_required_module,
|
|
Attr, Id_Foundation)
|
|
.highlight(Attr->getRangeWithAt());
|
|
}
|
|
}
|
|
|
|
void ASTContext::recordObjCMethod(AbstractFunctionDecl *func) {
|
|
// If this method comes from Objective-C, ignore it.
|
|
if (func->hasClangNode())
|
|
return;
|
|
|
|
Impl.ObjCMethods.push_back(func);
|
|
}
|
|
|
|
/// Lookup for an Objective-C method with the given selector in the
|
|
/// given class type or any of its superclasses.
|
|
static AbstractFunctionDecl *lookupObjCMethodInType(
|
|
Type classType,
|
|
ObjCSelector selector,
|
|
bool isInstanceMethod,
|
|
bool isInitializer,
|
|
SourceManager &srcMgr,
|
|
bool inheritingInits = true) {
|
|
// Dig out the declaration of the class.
|
|
auto classDecl = classType->getClassOrBoundGenericClass();
|
|
if (!classDecl)
|
|
return nullptr;
|
|
|
|
// Look for an Objective-C method in this class.
|
|
auto methods = classDecl->lookupDirect(selector, isInstanceMethod);
|
|
if (!methods.empty()) {
|
|
// If we aren't inheriting initializers, remove any initializers from the
|
|
// list.
|
|
if (!inheritingInits &&
|
|
std::find_if(methods.begin(), methods.end(),
|
|
[](AbstractFunctionDecl *func) {
|
|
return isa<ConstructorDecl>(func);
|
|
}) != methods.end()) {
|
|
SmallVector<AbstractFunctionDecl *, 4> nonInitMethods;
|
|
std::copy_if(methods.begin(), methods.end(),
|
|
std::back_inserter(nonInitMethods),
|
|
[&](AbstractFunctionDecl *func) {
|
|
return !isa<ConstructorDecl>(func);
|
|
});
|
|
if (nonInitMethods.empty())
|
|
return nullptr;
|
|
|
|
return *std::min_element(nonInitMethods.begin(), nonInitMethods.end(),
|
|
OrderDeclarations(srcMgr));
|
|
}
|
|
|
|
return *std::min_element(methods.begin(), methods.end(),
|
|
OrderDeclarations(srcMgr));
|
|
}
|
|
|
|
// Recurse into the superclass.
|
|
if (!classDecl->hasSuperclass())
|
|
return nullptr;
|
|
|
|
// Determine whether we are (still) inheriting initializers.
|
|
inheritingInits = inheritingInits &&
|
|
classDecl->inheritsSuperclassInitializers(nullptr);
|
|
if (isInitializer && !inheritingInits)
|
|
return nullptr;
|
|
|
|
return lookupObjCMethodInType(classDecl->getSuperclass(), selector,
|
|
isInstanceMethod, isInitializer, srcMgr,
|
|
inheritingInits);
|
|
}
|
|
|
|
void AbstractFunctionDecl::setForeignErrorConvention(
|
|
const ForeignErrorConvention &conv) {
|
|
assert(hasThrows() && "setting error convention on non-throwing decl");
|
|
auto &conventionsMap = getASTContext().Impl.ForeignErrorConventions;
|
|
assert(!conventionsMap.count(this) && "error convention already set");
|
|
conventionsMap.insert({this, conv});
|
|
}
|
|
|
|
Optional<ForeignErrorConvention>
|
|
AbstractFunctionDecl::getForeignErrorConvention() const {
|
|
if (!isObjC() && !getAttrs().hasAttribute<CDeclAttr>())
|
|
return None;
|
|
if (!hasThrows())
|
|
return None;
|
|
auto &conventionsMap = getASTContext().Impl.ForeignErrorConventions;
|
|
auto it = conventionsMap.find(this);
|
|
if (it == conventionsMap.end()) return None;
|
|
return it->second;
|
|
}
|
|
|
|
bool ASTContext::diagnoseUnintendedObjCMethodOverrides(SourceFile &sf) {
|
|
// Capture the methods in this source file.
|
|
llvm::SmallVector<AbstractFunctionDecl *, 4> methods;
|
|
auto captureMethodInSourceFile = [&](AbstractFunctionDecl *method) -> bool {
|
|
if (method->getDeclContext()->getParentSourceFile() == &sf) {
|
|
methods.push_back(method);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
Impl.ObjCMethods.erase(std::remove_if(Impl.ObjCMethods.begin(),
|
|
Impl.ObjCMethods.end(),
|
|
captureMethodInSourceFile),
|
|
Impl.ObjCMethods.end());
|
|
|
|
// If no Objective-C methods were defined in this file, we're done.
|
|
if (methods.empty())
|
|
return false;
|
|
|
|
// Sort the methods by declaration order.
|
|
std::sort(methods.begin(), methods.end(), OrderDeclarations(SourceMgr));
|
|
|
|
// For each Objective-C method declared in this file, check whether
|
|
// it overrides something in one of its superclasses. We
|
|
// intentionally don't respect access control here, since everything
|
|
// is visible to the Objective-C runtime.
|
|
bool diagnosedAny = false;
|
|
for (auto method : methods) {
|
|
// If the method has an @objc override, we don't need to do any
|
|
// more checking.
|
|
if (auto overridden = method->getOverriddenDecl()) {
|
|
if (overridden->isObjC())
|
|
continue;
|
|
}
|
|
|
|
// Skip deinitializers.
|
|
if (isa<DestructorDecl>(method))
|
|
continue;
|
|
|
|
// Skip invalid declarations.
|
|
if (method->isInvalid())
|
|
continue;
|
|
|
|
// Skip declarations with an invalid 'override' attribute on them.
|
|
if (auto attr = method->getAttrs().getAttribute<OverrideAttr>(true)) {
|
|
if (attr->isInvalid())
|
|
continue;
|
|
}
|
|
|
|
auto classDecl =
|
|
method->getDeclContext()->getAsClassOrClassExtensionContext();
|
|
if (!classDecl)
|
|
continue; // error-recovery path, only
|
|
|
|
if (!classDecl->hasSuperclass())
|
|
continue;
|
|
|
|
// Look for a method that we have overridden in one of our
|
|
// superclasses.
|
|
// Note: This should be treated as a lookup for intra-module dependency
|
|
// purposes, but a subclass already depends on its superclasses and any
|
|
// extensions for many other reasons.
|
|
auto selector = method->getObjCSelector();
|
|
AbstractFunctionDecl *overriddenMethod
|
|
= lookupObjCMethodInType(classDecl->getSuperclass(),
|
|
selector,
|
|
method->isObjCInstanceMethod(),
|
|
isa<ConstructorDecl>(method),
|
|
SourceMgr);
|
|
if (!overriddenMethod)
|
|
continue;
|
|
|
|
// Ignore stub implementations.
|
|
if (auto overriddenCtor = dyn_cast<ConstructorDecl>(overriddenMethod)) {
|
|
if (overriddenCtor->hasStubImplementation())
|
|
continue;
|
|
}
|
|
|
|
// Diagnose the override.
|
|
auto methodDiagInfo = getObjCMethodDiagInfo(method);
|
|
auto overriddenDiagInfo = getObjCMethodDiagInfo(overriddenMethod);
|
|
Diags.diagnose(method, diag::objc_override_other,
|
|
methodDiagInfo.first,
|
|
methodDiagInfo.second,
|
|
overriddenDiagInfo.first,
|
|
overriddenDiagInfo.second,
|
|
selector,
|
|
overriddenMethod->getDeclContext()
|
|
->getDeclaredInterfaceType());
|
|
const ValueDecl *overriddenDecl = overriddenMethod;
|
|
if (overriddenMethod->isImplicit())
|
|
if (auto accessor = dyn_cast<AccessorDecl>(overriddenMethod))
|
|
overriddenDecl = accessor->getStorage();
|
|
Diags.diagnose(overriddenDecl, diag::objc_declared_here,
|
|
overriddenDiagInfo.first, overriddenDiagInfo.second);
|
|
|
|
diagnosedAny = true;
|
|
}
|
|
|
|
return diagnosedAny;
|
|
}
|
|
|
|
void ASTContext::recordObjCMethodConflict(ClassDecl *classDecl,
|
|
ObjCSelector selector,
|
|
bool isInstance) {
|
|
Impl.ObjCMethodConflicts.push_back(std::make_tuple(classDecl, selector,
|
|
isInstance));
|
|
}
|
|
|
|
/// Retrieve the source file for the given Objective-C member conflict.
|
|
static MutableArrayRef<AbstractFunctionDecl *>
|
|
getObjCMethodConflictDecls(const ObjCMethodConflict &conflict) {
|
|
ClassDecl *classDecl = std::get<0>(conflict);
|
|
ObjCSelector selector = std::get<1>(conflict);
|
|
bool isInstanceMethod = std::get<2>(conflict);
|
|
|
|
return classDecl->lookupDirect(selector, isInstanceMethod);
|
|
}
|
|
|
|
/// Given a set of conflicting Objective-C methods, remove any methods
|
|
/// that are legitimately overridden in Objective-C, i.e., because
|
|
/// they occur in different modules, one is defined in the class, and
|
|
/// the other is defined in an extension (category) thereof.
|
|
static void removeValidObjCConflictingMethods(
|
|
MutableArrayRef<AbstractFunctionDecl *> &methods) {
|
|
// Erase any invalid or stub declarations. We don't want to complain about
|
|
// them, because we might already have complained about
|
|
// redeclarations based on Swift matching.
|
|
auto newEnd = std::remove_if(methods.begin(), methods.end(),
|
|
[&](AbstractFunctionDecl *method) {
|
|
if (method->isInvalid())
|
|
return true;
|
|
|
|
if (auto ad = dyn_cast<AccessorDecl>(method)) {
|
|
return ad->getStorage()->isInvalid();
|
|
}
|
|
|
|
if (auto ctor
|
|
= dyn_cast<ConstructorDecl>(method)) {
|
|
if (ctor->hasStubImplementation())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
});
|
|
methods = methods.slice(0, newEnd - methods.begin());
|
|
}
|
|
|
|
/// Determine whether we should associate a conflict among the given
|
|
/// set of methods with the specified source file.
|
|
static bool shouldAssociateConflictWithSourceFile(
|
|
SourceFile &sf,
|
|
ArrayRef<AbstractFunctionDecl *> methods) {
|
|
bool anyInSourceFile = false;
|
|
bool anyInOtherSourceFile = false;
|
|
bool anyClassMethodsInSourceFile = false;
|
|
for (auto method : methods) {
|
|
// Skip methods in the class itself; we want to only diagnose
|
|
// those if there is a conflict within that file.
|
|
if (isa<ClassDecl>(method->getDeclContext())) {
|
|
if (method->getParentSourceFile() == &sf)
|
|
anyClassMethodsInSourceFile = true;
|
|
continue;
|
|
}
|
|
|
|
if (method->getParentSourceFile() == &sf)
|
|
anyInSourceFile = true;
|
|
else
|
|
anyInOtherSourceFile = true;
|
|
}
|
|
|
|
return anyInSourceFile ||
|
|
(!anyInOtherSourceFile && anyClassMethodsInSourceFile);
|
|
}
|
|
|
|
bool ASTContext::diagnoseObjCMethodConflicts(SourceFile &sf) {
|
|
// If there were no conflicts, we're done.
|
|
if (Impl.ObjCMethodConflicts.empty())
|
|
return false;
|
|
|
|
// Partition the set of conflicts to put the conflicts that involve
|
|
// this source file at the end.
|
|
auto firstLocalConflict
|
|
= std::partition(Impl.ObjCMethodConflicts.begin(),
|
|
Impl.ObjCMethodConflicts.end(),
|
|
[&](const ObjCMethodConflict &conflict) -> bool {
|
|
auto decls = getObjCMethodConflictDecls(conflict);
|
|
if (shouldAssociateConflictWithSourceFile(sf, decls)) {
|
|
// It's in this source file. Sort the conflict
|
|
// declarations. We'll use this later.
|
|
std::sort(
|
|
decls.begin(), decls.end(),
|
|
OrderDeclarationsWithSourceFileAndClassBias(
|
|
SourceMgr, sf));
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
|
|
// If there were no local conflicts, we're done.
|
|
unsigned numLocalConflicts
|
|
= Impl.ObjCMethodConflicts.end() - firstLocalConflict;
|
|
if (numLocalConflicts == 0)
|
|
return false;
|
|
|
|
// Sort the set of conflicts so we get a deterministic order for
|
|
// diagnostics. We use the first conflicting declaration in each set to
|
|
// perform the sort.
|
|
MutableArrayRef<ObjCMethodConflict> localConflicts(&*firstLocalConflict,
|
|
numLocalConflicts);
|
|
std::sort(localConflicts.begin(), localConflicts.end(),
|
|
[&](const ObjCMethodConflict &lhs, const ObjCMethodConflict &rhs) {
|
|
OrderDeclarations ordering(SourceMgr);
|
|
return ordering(getObjCMethodConflictDecls(lhs)[1],
|
|
getObjCMethodConflictDecls(rhs)[1]);
|
|
});
|
|
|
|
// Diagnose each conflict.
|
|
bool anyConflicts = false;
|
|
for (const ObjCMethodConflict &conflict : localConflicts) {
|
|
ObjCSelector selector = std::get<1>(conflict);
|
|
|
|
auto methods = getObjCMethodConflictDecls(conflict);
|
|
|
|
// Prune out cases where it is acceptable to have a conflict.
|
|
removeValidObjCConflictingMethods(methods);
|
|
if (methods.size() < 2)
|
|
continue;
|
|
|
|
// Diagnose the conflict.
|
|
anyConflicts = true;
|
|
|
|
// If the first method has a valid source location but the first conflicting
|
|
// declaration does not, swap them so the primary diagnostic has a useful
|
|
// source location.
|
|
if (methods[1]->getLoc().isInvalid() && methods[0]->getLoc().isValid()) {
|
|
std::swap(methods[0], methods[1]);
|
|
}
|
|
|
|
auto originalMethod = methods.front();
|
|
auto conflictingMethods = methods.slice(1);
|
|
|
|
auto origDiagInfo = getObjCMethodDiagInfo(originalMethod);
|
|
for (auto conflictingDecl : conflictingMethods) {
|
|
auto diagInfo = getObjCMethodDiagInfo(conflictingDecl);
|
|
|
|
const ValueDecl *originalDecl = originalMethod;
|
|
if (originalMethod->isImplicit())
|
|
if (auto accessor = dyn_cast<AccessorDecl>(originalMethod))
|
|
originalDecl = accessor->getStorage();
|
|
|
|
if (diagInfo == origDiagInfo) {
|
|
Diags.diagnose(conflictingDecl, diag::objc_redecl_same,
|
|
diagInfo.first, diagInfo.second, selector);
|
|
Diags.diagnose(originalDecl, diag::invalid_redecl_prev,
|
|
originalDecl->getBaseName());
|
|
} else {
|
|
Diags.diagnose(conflictingDecl, diag::objc_redecl,
|
|
diagInfo.first,
|
|
diagInfo.second,
|
|
origDiagInfo.first,
|
|
origDiagInfo.second,
|
|
selector);
|
|
Diags.diagnose(originalDecl, diag::objc_declared_here,
|
|
origDiagInfo.first, origDiagInfo.second);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erase the local conflicts from the list of conflicts.
|
|
Impl.ObjCMethodConflicts.erase(firstLocalConflict,
|
|
Impl.ObjCMethodConflicts.end());
|
|
|
|
return anyConflicts;
|
|
}
|
|
|
|
void ASTContext::recordObjCUnsatisfiedOptReq(DeclContext *dc,
|
|
AbstractFunctionDecl *req) {
|
|
Impl.ObjCUnsatisfiedOptReqs.push_back(ObjCUnsatisfiedOptReq(dc, req));
|
|
}
|
|
|
|
/// Retrieve the source location associated with this declaration
|
|
/// context.
|
|
static SourceLoc getDeclContextLoc(DeclContext *dc) {
|
|
if (auto ext = dyn_cast<ExtensionDecl>(dc))
|
|
return ext->getLoc();
|
|
|
|
return cast<NominalTypeDecl>(dc)->getLoc();
|
|
}
|
|
|
|
bool ASTContext::diagnoseObjCUnsatisfiedOptReqConflicts(SourceFile &sf) {
|
|
// If there are no unsatisfied, optional @objc requirements, we're done.
|
|
if (Impl.ObjCUnsatisfiedOptReqs.empty())
|
|
return false;
|
|
|
|
// Partition the set of unsatisfied requirements to put the
|
|
// conflicts that involve this source file at the end.
|
|
auto firstLocalReq
|
|
= std::partition(Impl.ObjCUnsatisfiedOptReqs.begin(),
|
|
Impl.ObjCUnsatisfiedOptReqs.end(),
|
|
[&](const ObjCUnsatisfiedOptReq &unsatisfied) -> bool {
|
|
return &sf != unsatisfied.first->getParentSourceFile();
|
|
});
|
|
|
|
// If there were no local unsatisfied requirements, we're done.
|
|
unsigned numLocalReqs
|
|
= Impl.ObjCUnsatisfiedOptReqs.end() - firstLocalReq;
|
|
if (numLocalReqs == 0)
|
|
return false;
|
|
|
|
// Sort the set of local unsatisfied requirements, so we get a
|
|
// deterministic order for diagnostics.
|
|
MutableArrayRef<ObjCUnsatisfiedOptReq> localReqs(&*firstLocalReq,
|
|
numLocalReqs);
|
|
std::sort(localReqs.begin(), localReqs.end(),
|
|
[&](const ObjCUnsatisfiedOptReq &lhs,
|
|
const ObjCUnsatisfiedOptReq &rhs) -> bool {
|
|
return SourceMgr.isBeforeInBuffer(getDeclContextLoc(lhs.first),
|
|
getDeclContextLoc(rhs.first));
|
|
});
|
|
|
|
// Check each of the unsatisfied optional requirements.
|
|
bool anyDiagnosed = false;
|
|
for (const auto &unsatisfied : localReqs) {
|
|
// Check whether there is a conflict here.
|
|
ClassDecl *classDecl =
|
|
unsatisfied.first->getAsClassOrClassExtensionContext();
|
|
auto req = unsatisfied.second;
|
|
auto selector = req->getObjCSelector();
|
|
bool isInstanceMethod = req->isInstanceMember();
|
|
// FIXME: Also look in superclasses?
|
|
auto conflicts = classDecl->lookupDirect(selector, isInstanceMethod);
|
|
if (conflicts.empty())
|
|
continue;
|
|
|
|
// Diagnose the conflict.
|
|
auto reqDiagInfo = getObjCMethodDiagInfo(unsatisfied.second);
|
|
auto conflictDiagInfo = getObjCMethodDiagInfo(conflicts[0]);
|
|
auto protocolName
|
|
= cast<ProtocolDecl>(req->getDeclContext())->getFullName();
|
|
Diags.diagnose(conflicts[0],
|
|
diag::objc_optional_requirement_conflict,
|
|
conflictDiagInfo.first,
|
|
conflictDiagInfo.second,
|
|
reqDiagInfo.first,
|
|
reqDiagInfo.second,
|
|
selector,
|
|
protocolName);
|
|
|
|
// Fix the name of the witness, if we can.
|
|
if (req->getFullName() != conflicts[0]->getFullName() &&
|
|
req->getKind() == conflicts[0]->getKind() &&
|
|
isa<AccessorDecl>(req) == isa<AccessorDecl>(conflicts[0])) {
|
|
// They're of the same kind: fix the name.
|
|
unsigned kind;
|
|
if (isa<ConstructorDecl>(req))
|
|
kind = 1;
|
|
else if (auto accessor = dyn_cast<AccessorDecl>(req))
|
|
kind = isa<SubscriptDecl>(accessor->getStorage()) ? 3 : 2;
|
|
else if (isa<FuncDecl>(req))
|
|
kind = 0;
|
|
else {
|
|
llvm_unreachable("unhandled @objc declaration kind");
|
|
}
|
|
|
|
auto diag = Diags.diagnose(conflicts[0],
|
|
diag::objc_optional_requirement_swift_rename,
|
|
kind, req->getFullName());
|
|
|
|
// Fix the Swift name.
|
|
fixDeclarationName(diag, conflicts[0], req->getFullName());
|
|
|
|
// Fix the '@objc' attribute, if needed.
|
|
if (!conflicts[0]->canInferObjCFromRequirement(req))
|
|
fixDeclarationObjCName(diag, conflicts[0], req->getObjCRuntimeName(),
|
|
/*ignoreImpliedName=*/true);
|
|
}
|
|
|
|
// @nonobjc will silence this warning.
|
|
bool hasExplicitObjCAttribute = false;
|
|
if (auto objcAttr = conflicts[0]->getAttrs().getAttribute<ObjCAttr>())
|
|
hasExplicitObjCAttribute = !objcAttr->isImplicit();
|
|
if (!hasExplicitObjCAttribute)
|
|
Diags.diagnose(conflicts[0], diag::req_near_match_nonobjc, true)
|
|
.fixItInsert(
|
|
conflicts[0]->getAttributeInsertionLoc(/*forModifier=*/false),
|
|
"@nonobjc ");
|
|
|
|
Diags.diagnose(getDeclContextLoc(unsatisfied.first),
|
|
diag::protocol_conformance_here,
|
|
true,
|
|
classDecl->getFullName(),
|
|
protocolName);
|
|
Diags.diagnose(req, diag::protocol_requirement_here,
|
|
reqDiagInfo.second);
|
|
|
|
anyDiagnosed = true;
|
|
}
|
|
|
|
// Erase the local unsatisfied requirements from the list.
|
|
Impl.ObjCUnsatisfiedOptReqs.erase(firstLocalReq,
|
|
Impl.ObjCUnsatisfiedOptReqs.end());
|
|
|
|
return anyDiagnosed;
|
|
}
|
|
|
|
Optional<KnownFoundationEntity> swift::getKnownFoundationEntity(StringRef name){
|
|
return llvm::StringSwitch<Optional<KnownFoundationEntity>>(name)
|
|
#define FOUNDATION_ENTITY(Name) .Case(#Name, KnownFoundationEntity::Name)
|
|
#include "swift/AST/KnownFoundationEntities.def"
|
|
.Default(None);
|
|
}
|
|
|
|
StringRef ASTContext::getSwiftName(KnownFoundationEntity kind) {
|
|
StringRef objcName;
|
|
switch (kind) {
|
|
#define FOUNDATION_ENTITY(Name) case KnownFoundationEntity::Name: \
|
|
objcName = #Name; \
|
|
break;
|
|
#include "swift/AST/KnownFoundationEntities.def"
|
|
}
|
|
|
|
return objcName;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type manipulation routines.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Simple accessors.
|
|
Type ErrorType::get(const ASTContext &C) { return C.TheErrorType; }
|
|
|
|
Type ErrorType::get(Type originalType) {
|
|
assert(originalType);
|
|
|
|
auto originalProperties = originalType->getRecursiveProperties();
|
|
auto arena = getArena(originalProperties);
|
|
|
|
auto &ctx = originalType->getASTContext();
|
|
auto &entry = ctx.Impl.getArena(arena).ErrorTypesWithOriginal[originalType];
|
|
if (entry) return entry;
|
|
|
|
void *mem = ctx.Allocate(sizeof(ErrorType) + sizeof(Type),
|
|
alignof(ErrorType), arena);
|
|
RecursiveTypeProperties properties = RecursiveTypeProperties::HasError;
|
|
if (originalProperties.hasTypeVariable())
|
|
properties |= RecursiveTypeProperties::HasTypeVariable;
|
|
return entry = new (mem) ErrorType(ctx, originalType, properties);
|
|
}
|
|
|
|
BuiltinIntegerType *BuiltinIntegerType::get(BuiltinIntegerWidth BitWidth,
|
|
const ASTContext &C) {
|
|
BuiltinIntegerType *&Result = C.Impl.IntegerTypes[BitWidth];
|
|
if (Result == nullptr)
|
|
Result = new (C, AllocationArena::Permanent) BuiltinIntegerType(BitWidth,C);
|
|
return Result;
|
|
}
|
|
|
|
BuiltinVectorType *BuiltinVectorType::get(const ASTContext &context,
|
|
Type elementType,
|
|
unsigned numElements) {
|
|
llvm::FoldingSetNodeID id;
|
|
BuiltinVectorType::Profile(id, elementType, numElements);
|
|
|
|
void *insertPos;
|
|
if (BuiltinVectorType *vecType
|
|
= context.Impl.BuiltinVectorTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return vecType;
|
|
|
|
assert(elementType->isCanonical() && "Non-canonical builtin vector?");
|
|
BuiltinVectorType *vecTy
|
|
= new (context, AllocationArena::Permanent)
|
|
BuiltinVectorType(context, elementType, numElements);
|
|
context.Impl.BuiltinVectorTypes.InsertNode(vecTy, insertPos);
|
|
return vecTy;
|
|
}
|
|
|
|
ParenType *ParenType::get(const ASTContext &C, Type underlying,
|
|
ParameterTypeFlags fl) {
|
|
if (fl.isInOut())
|
|
assert(!underlying->is<InOutType>() && "caller did not pass a base type");
|
|
if (underlying->is<InOutType>())
|
|
assert(fl.isInOut() && "caller did not set flags correctly");
|
|
|
|
auto properties = underlying->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
ParenType *&Result =
|
|
C.Impl.getArena(arena).ParenTypes[{underlying, fl.toRaw()}];
|
|
if (Result == nullptr) {
|
|
Result = new (C, arena) ParenType(underlying,
|
|
properties, fl);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
CanTupleType TupleType::getEmpty(const ASTContext &C) {
|
|
return cast<TupleType>(CanType(C.TheEmptyTupleType));
|
|
}
|
|
|
|
void TupleType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ArrayRef<TupleTypeElt> Fields) {
|
|
ID.AddInteger(Fields.size());
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
ID.AddPointer(Elt.Name.get());
|
|
ID.AddPointer(Elt.getType().getPointer());
|
|
ID.AddInteger(Elt.Flags.toRaw());
|
|
}
|
|
}
|
|
|
|
/// getTupleType - Return the uniqued tuple type with the specified elements.
|
|
Type TupleType::get(ArrayRef<TupleTypeElt> Fields, const ASTContext &C) {
|
|
if (Fields.size() == 1 && !Fields[0].isVararg() && !Fields[0].hasName())
|
|
return ParenType::get(C, Fields[0].getRawType(),
|
|
Fields[0].getParameterFlags());
|
|
|
|
RecursiveTypeProperties properties;
|
|
bool hasInOut = false;
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
auto eltTy = Elt.getType();
|
|
if (!eltTy) continue;
|
|
|
|
properties |= eltTy->getRecursiveProperties();
|
|
// Recur into paren types and canonicalized paren types. 'inout' in nested
|
|
// non-paren tuples are malformed and will be diagnosed later.
|
|
if (auto *TTy = Elt.getType()->getAs<TupleType>()) {
|
|
if (TTy->getNumElements() == 1)
|
|
hasInOut |= TTy->hasInOutElement();
|
|
} else if (auto *Pty = dyn_cast<ParenType>(Elt.getType().getPointer())) {
|
|
hasInOut |= Pty->getParameterFlags().isInOut();
|
|
} else {
|
|
hasInOut |= Elt.getParameterFlags().isInOut();
|
|
}
|
|
}
|
|
|
|
auto arena = getArena(properties);
|
|
|
|
void *InsertPos = nullptr;
|
|
// Check to see if we've already seen this tuple before.
|
|
llvm::FoldingSetNodeID ID;
|
|
TupleType::Profile(ID, Fields);
|
|
|
|
if (TupleType *TT
|
|
= C.Impl.getArena(arena).TupleTypes.FindNodeOrInsertPos(ID,InsertPos))
|
|
return TT;
|
|
|
|
bool IsCanonical = true; // All canonical elts means this is canonical.
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
if (Elt.getType().isNull() || !Elt.getType()->isCanonical()) {
|
|
IsCanonical = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TupleType will copy the fields list into ASTContext owned memory.
|
|
void *mem = C.Allocate(sizeof(TupleType) +
|
|
sizeof(TupleTypeElt) * Fields.size(),
|
|
alignof(TupleType), arena);
|
|
auto New = new (mem) TupleType(Fields, IsCanonical ? &C : nullptr, properties,
|
|
hasInOut);
|
|
C.Impl.getArena(arena).TupleTypes.InsertNode(New, InsertPos);
|
|
return New;
|
|
}
|
|
|
|
TupleTypeElt::TupleTypeElt(Type ty, Identifier name,
|
|
ParameterTypeFlags fl)
|
|
: Name(name), ElementType(ty), Flags(fl) {
|
|
if (fl.isInOut())
|
|
assert(!ty->is<InOutType>() && "caller did not pass a base type");
|
|
if (ty->is<InOutType>())
|
|
assert(fl.isInOut() && "caller did not set flags correctly");
|
|
}
|
|
|
|
Type TupleTypeElt::getType() const {
|
|
if (Flags.isInOut()) return InOutType::get(ElementType);
|
|
return ElementType;
|
|
}
|
|
|
|
AnyFunctionType::Param::Param(const TupleTypeElt &tte)
|
|
: Ty(tte.isVararg() ? tte.getVarargBaseTy() : tte.getRawType()),
|
|
Label(tte.getName()), Flags(tte.getParameterFlags()) {
|
|
assert(getType()->is<InOutType>() == Flags.isInOut());
|
|
}
|
|
|
|
AnyFunctionType::Param::Param(Type t, Identifier l, ParameterTypeFlags f)
|
|
: Ty(t), Label(l), Flags(f) {
|
|
if (f.isInOut())
|
|
assert(!t->is<InOutType>() && "caller did not pass a base type");
|
|
if (!t.isNull() && t->is<InOutType>())
|
|
assert(f.isInOut() && "caller did not set flags correctly");
|
|
}
|
|
|
|
Type AnyFunctionType::Param::getType() const {
|
|
if (Flags.isInOut()) return InOutType::get(Ty);
|
|
// FIXME: Callers are inconsistenly setting this flag and retrieving this
|
|
// type with and without the Array Slice type.
|
|
// if (Flags.isVariadic()) return ArraySliceType::get(Ty);
|
|
return Ty;
|
|
}
|
|
|
|
AnyFunctionType::Param swift::computeSelfParam(AbstractFunctionDecl *AFD,
|
|
bool isInitializingCtor,
|
|
bool wantDynamicSelf) {
|
|
auto *dc = AFD->getDeclContext();
|
|
auto &Ctx = dc->getASTContext();
|
|
|
|
// Determine the type of the container.
|
|
auto containerTy = dc->getDeclaredInterfaceType();
|
|
if (!containerTy || containerTy->hasError())
|
|
return AnyFunctionType::Param(ErrorType::get(Ctx), Identifier(),
|
|
ParameterTypeFlags());
|
|
|
|
// Determine the type of 'self' inside the container.
|
|
auto selfTy = dc->getSelfInterfaceType();
|
|
if (!selfTy || selfTy->hasError())
|
|
return AnyFunctionType::Param(ErrorType::get(Ctx), Identifier(),
|
|
ParameterTypeFlags());
|
|
|
|
bool isStatic = false;
|
|
bool isMutating = false;
|
|
bool isDynamicSelf = false;
|
|
|
|
if (auto *FD = dyn_cast<FuncDecl>(AFD)) {
|
|
isStatic = FD->isStatic();
|
|
isMutating = FD->isMutating();
|
|
|
|
// Methods returning 'Self' have a dynamic 'self'.
|
|
//
|
|
// FIXME: All methods of non-final classes should have this.
|
|
if (wantDynamicSelf && FD->hasDynamicSelf())
|
|
isDynamicSelf = true;
|
|
} else if (auto *CD = dyn_cast<ConstructorDecl>(AFD)) {
|
|
if (isInitializingCtor) {
|
|
// initializing constructors of value types always have an implicitly
|
|
// inout self.
|
|
isMutating = true;
|
|
} else {
|
|
// allocating constructors have metatype 'self'.
|
|
isStatic = true;
|
|
}
|
|
|
|
// Convenience initializers have a dynamic 'self' in '-swift-version 5'.
|
|
if (Ctx.isSwiftVersionAtLeast(5)) {
|
|
if (wantDynamicSelf && CD->isConvenienceInit())
|
|
if (auto *classDecl = selfTy->getClassOrBoundGenericClass())
|
|
if (!classDecl->isFinal())
|
|
isDynamicSelf = true;
|
|
}
|
|
} else if (isa<DestructorDecl>(AFD)) {
|
|
// destructors of value types always have an implicitly inout self.
|
|
isMutating = true;
|
|
}
|
|
|
|
if (isDynamicSelf)
|
|
selfTy = DynamicSelfType::get(selfTy, Ctx);
|
|
|
|
// 'static' functions have 'self' of type metatype<T>.
|
|
if (isStatic)
|
|
return AnyFunctionType::Param(MetatypeType::get(selfTy, Ctx), Identifier(),
|
|
ParameterTypeFlags());
|
|
|
|
// Reference types have 'self' of type T.
|
|
if (containerTy->hasReferenceSemantics())
|
|
return AnyFunctionType::Param(selfTy, Identifier(),
|
|
ParameterTypeFlags());
|
|
|
|
return AnyFunctionType::Param(selfTy, Identifier(),
|
|
ParameterTypeFlags().withInOut(isMutating));
|
|
}
|
|
|
|
void UnboundGenericType::Profile(llvm::FoldingSetNodeID &ID,
|
|
GenericTypeDecl *TheDecl, Type Parent) {
|
|
ID.AddPointer(TheDecl);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
UnboundGenericType *UnboundGenericType::
|
|
get(GenericTypeDecl *TheDecl, Type Parent, const ASTContext &C) {
|
|
llvm::FoldingSetNodeID ID;
|
|
UnboundGenericType::Profile(ID, TheDecl, Parent);
|
|
void *InsertPos = nullptr;
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
if (auto unbound = C.Impl.getArena(arena).UnboundGenericTypes
|
|
.FindNodeOrInsertPos(ID, InsertPos))
|
|
return unbound;
|
|
|
|
auto result = new (C, arena) UnboundGenericType(TheDecl, Parent, C,
|
|
properties);
|
|
C.Impl.getArena(arena).UnboundGenericTypes.InsertNode(result, InsertPos);
|
|
return result;
|
|
}
|
|
|
|
void BoundGenericType::Profile(llvm::FoldingSetNodeID &ID,
|
|
NominalTypeDecl *TheDecl, Type Parent,
|
|
ArrayRef<Type> GenericArgs) {
|
|
ID.AddPointer(TheDecl);
|
|
ID.AddPointer(Parent.getPointer());
|
|
ID.AddInteger(GenericArgs.size());
|
|
for (Type Arg : GenericArgs) {
|
|
ID.AddPointer(Arg.getPointer());
|
|
}
|
|
}
|
|
|
|
BoundGenericType::BoundGenericType(TypeKind theKind,
|
|
NominalTypeDecl *theDecl,
|
|
Type parent,
|
|
ArrayRef<Type> genericArgs,
|
|
const ASTContext *context,
|
|
RecursiveTypeProperties properties)
|
|
: NominalOrBoundGenericNominalType(theDecl, parent, theKind, context,
|
|
properties) {
|
|
Bits.BoundGenericType.GenericArgCount = genericArgs.size();
|
|
// Subtypes are required to provide storage for the generic arguments
|
|
std::uninitialized_copy(genericArgs.begin(), genericArgs.end(),
|
|
getTrailingObjectsPointer());
|
|
}
|
|
|
|
BoundGenericType *BoundGenericType::get(NominalTypeDecl *TheDecl,
|
|
Type Parent,
|
|
ArrayRef<Type> GenericArgs) {
|
|
assert(TheDecl->getGenericParams() && "must be a generic type decl");
|
|
assert((!Parent || Parent->is<NominalType>() ||
|
|
Parent->is<BoundGenericType>() ||
|
|
Parent->is<UnboundGenericType>()) &&
|
|
"parent must be a nominal type");
|
|
|
|
ASTContext &C = TheDecl->getDeclContext()->getASTContext();
|
|
llvm::FoldingSetNodeID ID;
|
|
BoundGenericType::Profile(ID, TheDecl, Parent, GenericArgs);
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
for (Type Arg : GenericArgs) {
|
|
properties |= Arg->getRecursiveProperties();
|
|
}
|
|
|
|
auto arena = getArena(properties);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (BoundGenericType *BGT =
|
|
C.Impl.getArena(arena).BoundGenericTypes.FindNodeOrInsertPos(ID,
|
|
InsertPos))
|
|
return BGT;
|
|
|
|
bool IsCanonical = !Parent || Parent->isCanonical();
|
|
if (IsCanonical) {
|
|
for (Type Arg : GenericArgs) {
|
|
if (!Arg->isCanonical()) {
|
|
IsCanonical = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BoundGenericType *newType;
|
|
if (auto theClass = dyn_cast<ClassDecl>(TheDecl)) {
|
|
auto sz = BoundGenericClassType::totalSizeToAlloc<Type>(GenericArgs.size());
|
|
auto mem = C.Allocate(sz, alignof(BoundGenericClassType), arena);
|
|
newType = new (mem) BoundGenericClassType(
|
|
theClass, Parent, GenericArgs, IsCanonical ? &C : nullptr, properties);
|
|
} else if (auto theStruct = dyn_cast<StructDecl>(TheDecl)) {
|
|
auto sz =BoundGenericStructType::totalSizeToAlloc<Type>(GenericArgs.size());
|
|
auto mem = C.Allocate(sz, alignof(BoundGenericStructType), arena);
|
|
newType = new (mem) BoundGenericStructType(
|
|
theStruct, Parent, GenericArgs, IsCanonical ? &C : nullptr, properties);
|
|
} else if (auto theEnum = dyn_cast<EnumDecl>(TheDecl)) {
|
|
auto sz = BoundGenericEnumType::totalSizeToAlloc<Type>(GenericArgs.size());
|
|
auto mem = C.Allocate(sz, alignof(BoundGenericEnumType), arena);
|
|
newType = new (mem) BoundGenericEnumType(
|
|
theEnum, Parent, GenericArgs, IsCanonical ? &C : nullptr, properties);
|
|
} else {
|
|
llvm_unreachable("Unhandled NominalTypeDecl");
|
|
}
|
|
C.Impl.getArena(arena).BoundGenericTypes.InsertNode(newType, InsertPos);
|
|
|
|
return newType;
|
|
}
|
|
|
|
NominalType *NominalType::get(NominalTypeDecl *D, Type Parent, const ASTContext &C) {
|
|
assert((isa<ProtocolDecl>(D) || !D->getGenericParams()) &&
|
|
"must be a non-generic type decl");
|
|
assert((!Parent || Parent->is<NominalType>() ||
|
|
Parent->is<BoundGenericType>() ||
|
|
Parent->is<UnboundGenericType>()) &&
|
|
"parent must be a nominal type");
|
|
|
|
switch (D->getKind()) {
|
|
case DeclKind::Enum:
|
|
return EnumType::get(cast<EnumDecl>(D), Parent, C);
|
|
case DeclKind::Struct:
|
|
return StructType::get(cast<StructDecl>(D), Parent, C);
|
|
case DeclKind::Class:
|
|
return ClassType::get(cast<ClassDecl>(D), Parent, C);
|
|
case DeclKind::Protocol: {
|
|
return ProtocolType::get(cast<ProtocolDecl>(D), Parent, C);
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("Not a nominal declaration!");
|
|
}
|
|
}
|
|
|
|
EnumType::EnumType(EnumDecl *TheDecl, Type Parent, const ASTContext &C,
|
|
RecursiveTypeProperties properties)
|
|
: NominalType(TypeKind::Enum, &C, TheDecl, Parent, properties) { }
|
|
|
|
EnumType *EnumType::get(EnumDecl *D, Type Parent, const ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
EnumType::Profile(id, D, Parent);
|
|
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
void *insertPos = nullptr;
|
|
if (auto enumTy
|
|
= C.Impl.getArena(arena).EnumTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return enumTy;
|
|
|
|
auto enumTy = new (C, arena) EnumType(D, Parent, C, properties);
|
|
C.Impl.getArena(arena).EnumTypes.InsertNode(enumTy, insertPos);
|
|
return enumTy;
|
|
}
|
|
|
|
void EnumType::Profile(llvm::FoldingSetNodeID &ID, EnumDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
StructType::StructType(StructDecl *TheDecl, Type Parent, const ASTContext &C,
|
|
RecursiveTypeProperties properties)
|
|
: NominalType(TypeKind::Struct, &C, TheDecl, Parent, properties) { }
|
|
|
|
StructType *StructType::get(StructDecl *D, Type Parent, const ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
StructType::Profile(id, D, Parent);
|
|
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
void *insertPos = nullptr;
|
|
if (auto structTy
|
|
= C.Impl.getArena(arena).StructTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return structTy;
|
|
|
|
auto structTy = new (C, arena) StructType(D, Parent, C, properties);
|
|
C.Impl.getArena(arena).StructTypes.InsertNode(structTy, insertPos);
|
|
return structTy;
|
|
}
|
|
|
|
void StructType::Profile(llvm::FoldingSetNodeID &ID, StructDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
ClassType::ClassType(ClassDecl *TheDecl, Type Parent, const ASTContext &C,
|
|
RecursiveTypeProperties properties)
|
|
: NominalType(TypeKind::Class, &C, TheDecl, Parent, properties) { }
|
|
|
|
ClassType *ClassType::get(ClassDecl *D, Type Parent, const ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
ClassType::Profile(id, D, Parent);
|
|
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
void *insertPos = nullptr;
|
|
if (auto classTy
|
|
= C.Impl.getArena(arena).ClassTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return classTy;
|
|
|
|
auto classTy = new (C, arena) ClassType(D, Parent, C, properties);
|
|
C.Impl.getArena(arena).ClassTypes.InsertNode(classTy, insertPos);
|
|
return classTy;
|
|
}
|
|
|
|
void ClassType::Profile(llvm::FoldingSetNodeID &ID, ClassDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
ProtocolCompositionType *
|
|
ProtocolCompositionType::build(const ASTContext &C, ArrayRef<Type> Members,
|
|
bool HasExplicitAnyObject) {
|
|
// Check to see if we've already seen this protocol composition before.
|
|
void *InsertPos = nullptr;
|
|
llvm::FoldingSetNodeID ID;
|
|
ProtocolCompositionType::Profile(ID, Members, HasExplicitAnyObject);
|
|
|
|
bool isCanonical = true;
|
|
RecursiveTypeProperties properties;
|
|
for (Type t : Members) {
|
|
if (!t->isCanonical())
|
|
isCanonical = false;
|
|
properties |= t->getRecursiveProperties();
|
|
}
|
|
|
|
// Create a new protocol composition type.
|
|
auto arena = getArena(properties);
|
|
|
|
if (auto compTy
|
|
= C.Impl.getArena(arena).ProtocolCompositionTypes
|
|
.FindNodeOrInsertPos(ID, InsertPos))
|
|
return compTy;
|
|
|
|
// Use trailing objects for member type storage
|
|
auto size = totalSizeToAlloc<Type>(Members.size());
|
|
auto mem = C.Allocate(size, alignof(ProtocolCompositionType), arena);
|
|
auto compTy = new (mem) ProtocolCompositionType(isCanonical ? &C : nullptr,
|
|
Members,
|
|
HasExplicitAnyObject,
|
|
properties);
|
|
C.Impl.getArena(arena).ProtocolCompositionTypes.InsertNode(compTy, InsertPos);
|
|
return compTy;
|
|
}
|
|
|
|
ReferenceStorageType *ReferenceStorageType::get(Type T, Ownership ownership,
|
|
const ASTContext &C) {
|
|
assert(ownership != Ownership::Strong &&
|
|
"ReferenceStorageType is unnecessary for strong ownership");
|
|
assert(!T->hasTypeVariable()); // not meaningful in type-checker
|
|
auto properties = T->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
auto key = uintptr_t(T.getPointer()) | unsigned(ownership);
|
|
auto &entry = C.Impl.getArena(arena).ReferenceStorageTypes[key];
|
|
if (entry) return entry;
|
|
|
|
|
|
switch (ownership) {
|
|
case Ownership::Strong: llvm_unreachable("not possible");
|
|
case Ownership::Unowned:
|
|
return entry = new (C, arena) UnownedStorageType(
|
|
T, T->isCanonical() ? &C : nullptr, properties);
|
|
case Ownership::Weak:
|
|
assert(T->getOptionalObjectType() &&
|
|
"object of weak storage type is not optional");
|
|
return entry = new (C, arena)
|
|
WeakStorageType(T, T->isCanonical() ? &C : nullptr, properties);
|
|
case Ownership::Unmanaged:
|
|
return entry = new (C, arena) UnmanagedStorageType(
|
|
T, T->isCanonical() ? &C : nullptr, properties);
|
|
}
|
|
llvm_unreachable("bad ownership");
|
|
}
|
|
|
|
AnyMetatypeType::AnyMetatypeType(TypeKind kind, const ASTContext *C,
|
|
RecursiveTypeProperties properties,
|
|
Type instanceType,
|
|
Optional<MetatypeRepresentation> repr)
|
|
: TypeBase(kind, C, properties), InstanceType(instanceType) {
|
|
if (repr) {
|
|
Bits.AnyMetatypeType.Representation = static_cast<char>(*repr) + 1;
|
|
} else {
|
|
Bits.AnyMetatypeType.Representation = 0;
|
|
}
|
|
}
|
|
|
|
MetatypeType *MetatypeType::get(Type T, Optional<MetatypeRepresentation> Repr,
|
|
const ASTContext &Ctx) {
|
|
auto properties = T->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
char reprKey;
|
|
if (Repr.hasValue())
|
|
reprKey = static_cast<char>(*Repr) + 1;
|
|
else
|
|
reprKey = 0;
|
|
|
|
MetatypeType *&Entry = Ctx.Impl.getArena(arena).MetatypeTypes[{T, reprKey}];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (Ctx, arena) MetatypeType(
|
|
T, T->isCanonical() ? &Ctx : nullptr, properties, Repr);
|
|
}
|
|
|
|
MetatypeType::MetatypeType(Type T, const ASTContext *C,
|
|
RecursiveTypeProperties properties,
|
|
Optional<MetatypeRepresentation> repr)
|
|
: AnyMetatypeType(TypeKind::Metatype, C, properties, T, repr) {
|
|
}
|
|
|
|
ExistentialMetatypeType *
|
|
ExistentialMetatypeType::get(Type T, Optional<MetatypeRepresentation> repr,
|
|
const ASTContext &ctx) {
|
|
auto properties = T->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
char reprKey;
|
|
if (repr.hasValue())
|
|
reprKey = static_cast<char>(*repr) + 1;
|
|
else
|
|
reprKey = 0;
|
|
|
|
auto &entry = ctx.Impl.getArena(arena).ExistentialMetatypeTypes[{T, reprKey}];
|
|
if (entry) return entry;
|
|
|
|
return entry = new (ctx, arena) ExistentialMetatypeType(
|
|
T, T->isCanonical() ? &ctx : nullptr, properties, repr);
|
|
}
|
|
|
|
ExistentialMetatypeType::ExistentialMetatypeType(Type T,
|
|
const ASTContext *C,
|
|
RecursiveTypeProperties properties,
|
|
Optional<MetatypeRepresentation> repr)
|
|
: AnyMetatypeType(TypeKind::ExistentialMetatype, C, properties, T, repr) {
|
|
if (repr) {
|
|
assert(*repr != MetatypeRepresentation::Thin &&
|
|
"creating a thin existential metatype?");
|
|
assert(getASTContext().LangOpts.EnableObjCInterop ||
|
|
*repr != MetatypeRepresentation::ObjC);
|
|
}
|
|
}
|
|
|
|
ModuleType *ModuleType::get(ModuleDecl *M) {
|
|
ASTContext &C = M->getASTContext();
|
|
|
|
ModuleType *&Entry = C.Impl.ModuleTypes[M];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (C, AllocationArena::Permanent) ModuleType(M, C);
|
|
}
|
|
|
|
DynamicSelfType *DynamicSelfType::get(Type selfType, const ASTContext &ctx) {
|
|
assert(selfType->isMaterializable()
|
|
&& "non-materializable dynamic self?");
|
|
|
|
auto properties = selfType->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
auto &dynamicSelfTypes = ctx.Impl.getArena(arena).DynamicSelfTypes;
|
|
auto known = dynamicSelfTypes.find(selfType);
|
|
if (known != dynamicSelfTypes.end())
|
|
return known->second;
|
|
|
|
auto result = new (ctx, arena) DynamicSelfType(selfType, ctx, properties);
|
|
dynamicSelfTypes.insert({selfType, result});
|
|
return result;
|
|
}
|
|
|
|
static RecursiveTypeProperties getFunctionRecursiveProperties(Type Input,
|
|
Type Result) {
|
|
// assert(!Input->hasLValueType()
|
|
// && "function should not take lvalues directly as parameters");
|
|
|
|
auto properties = Input->getRecursiveProperties()
|
|
| Result->getRecursiveProperties();
|
|
properties &= ~RecursiveTypeProperties::IsLValue;
|
|
return properties;
|
|
}
|
|
|
|
// For now, generic function types cannot be dependent (in fact,
|
|
// they erase dependence) or contain type variables, and they're
|
|
// always materializable.
|
|
static RecursiveTypeProperties
|
|
getGenericFunctionRecursiveProperties(Type Input, Type Result) {
|
|
// assert(!Input->hasLValueType()
|
|
// && "function should not take lvalues directly as parameters");
|
|
|
|
static_assert(RecursiveTypeProperties::BitWidth == 10,
|
|
"revisit this if you add new recursive type properties");
|
|
RecursiveTypeProperties properties;
|
|
if (Result->getRecursiveProperties().hasDynamicSelf())
|
|
properties |= RecursiveTypeProperties::HasDynamicSelf;
|
|
if (Result->getRecursiveProperties().hasError())
|
|
properties |= RecursiveTypeProperties::HasError;
|
|
return properties;
|
|
}
|
|
|
|
AnyFunctionType *AnyFunctionType::withExtInfo(ExtInfo info) const {
|
|
if (isa<FunctionType>(this))
|
|
return FunctionType::get(getInput(), getResult(), info);
|
|
if (auto *genFnTy = dyn_cast<GenericFunctionType>(this))
|
|
return GenericFunctionType::get(genFnTy->getGenericSignature(),
|
|
getInput(), getResult(), info);
|
|
|
|
static_assert(2 - 1 ==
|
|
static_cast<int>(TypeKind::Last_AnyFunctionType) -
|
|
static_cast<int>(TypeKind::First_AnyFunctionType),
|
|
"unhandled function type");
|
|
llvm_unreachable("unhandled function type");
|
|
}
|
|
|
|
void AnyFunctionType::decomposeInput(
|
|
Type type, SmallVectorImpl<AnyFunctionType::Param> &result) {
|
|
switch (type->getKind()) {
|
|
case TypeKind::Tuple: {
|
|
auto tupleTy = cast<TupleType>(type.getPointer());
|
|
for (auto &elt : tupleTy->getElements()) {
|
|
result.push_back(AnyFunctionType::Param(elt));
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TypeKind::Paren: {
|
|
auto pty = cast<ParenType>(type.getPointer());
|
|
result.push_back(AnyFunctionType::Param(pty->getUnderlyingType()->getInOutObjectType(),
|
|
Identifier(),
|
|
pty->getParameterFlags()));
|
|
return;
|
|
}
|
|
|
|
default:
|
|
// assert(type->is<InOutType>() && "Found naked inout type");
|
|
result.push_back(AnyFunctionType::Param(type->getInOutObjectType(),
|
|
Identifier(),
|
|
ParameterTypeFlags::fromParameterType(type, false, false)));
|
|
return;
|
|
}
|
|
}
|
|
|
|
Type AnyFunctionType::composeInput(ASTContext &ctx, ArrayRef<Param> params,
|
|
bool canonicalVararg) {
|
|
SmallVector<TupleTypeElt, 4> elements;
|
|
for (const auto ¶m : params) {
|
|
Type eltType = param.getPlainType();
|
|
if (param.isVariadic()) {
|
|
if (canonicalVararg)
|
|
eltType = BoundGenericType::get(ctx.getArrayDecl(), Type(), {eltType});
|
|
else
|
|
eltType = ArraySliceType::get(eltType);
|
|
}
|
|
elements.push_back(TupleTypeElt(eltType, param.getLabel(),
|
|
param.getParameterFlags()));
|
|
}
|
|
return TupleType::get(elements, ctx);
|
|
}
|
|
|
|
FunctionType *FunctionType::get(ArrayRef<AnyFunctionType::Param> params,
|
|
Type result, const ExtInfo &info,
|
|
bool canonicalVararg) {
|
|
return get(composeInput(result->getASTContext(), params, canonicalVararg),
|
|
result, info);
|
|
}
|
|
|
|
FunctionType *FunctionType::get(Type input, Type result,
|
|
const ExtInfo &info) {
|
|
auto properties = getFunctionRecursiveProperties(input, result);
|
|
auto arena = getArena(properties);
|
|
uint16_t attrKey = info.getFuncAttrKey();
|
|
|
|
const ASTContext &C = input->getASTContext();
|
|
|
|
FunctionType *&Entry
|
|
= C.Impl.getArena(arena).FunctionTypes[{input, {result, attrKey} }];
|
|
if (Entry) return Entry;
|
|
|
|
SmallVector<AnyFunctionType::Param, 4> params;
|
|
AnyFunctionType::decomposeInput(input, params);
|
|
void *mem = C.Allocate(sizeof(FunctionType) +
|
|
sizeof(AnyFunctionType::Param) * params.size(),
|
|
alignof(FunctionType));
|
|
return Entry = new (mem) FunctionType(params, input, result,
|
|
properties, info);
|
|
}
|
|
|
|
// If the input and result types are canonical, then so is the result.
|
|
FunctionType::FunctionType(ArrayRef<AnyFunctionType::Param> params,
|
|
Type input, Type output,
|
|
RecursiveTypeProperties properties,
|
|
const ExtInfo &Info)
|
|
: AnyFunctionType(TypeKind::Function,
|
|
(isCanonicalFunctionInputType(input) &&
|
|
output->isCanonical())
|
|
? &input->getASTContext()
|
|
: nullptr,
|
|
input, output, properties, params.size(), Info) {
|
|
std::uninitialized_copy(params.begin(), params.end(),
|
|
getTrailingObjects<AnyFunctionType::Param>());
|
|
}
|
|
|
|
void GenericFunctionType::Profile(llvm::FoldingSetNodeID &ID,
|
|
GenericSignature *sig,
|
|
Type input,
|
|
Type result,
|
|
const ExtInfo &info) {
|
|
ID.AddPointer(sig);
|
|
ID.AddPointer(input.getPointer());
|
|
ID.AddPointer(result.getPointer());
|
|
ID.AddInteger(info.getFuncAttrKey());
|
|
}
|
|
|
|
/// If this is a ParenType, unwrap it to produce the underlying type.
|
|
/// Otherwise, return \c type.
|
|
static Type unwrapParenType(Type type) {
|
|
if (auto parenTy = dyn_cast<ParenType>(type.getPointer()))
|
|
return parenTy->getUnderlyingType();
|
|
|
|
return type;
|
|
}
|
|
|
|
GenericFunctionType *GenericFunctionType::get(GenericSignature *sig,
|
|
ArrayRef<Param> params,
|
|
Type result,
|
|
const ExtInfo &info,
|
|
bool canonicalVararg) {
|
|
return get(sig, composeInput(result->getASTContext(), params,
|
|
canonicalVararg),
|
|
result, info);
|
|
}
|
|
|
|
GenericFunctionType *
|
|
GenericFunctionType::get(GenericSignature *sig,
|
|
Type input,
|
|
Type output,
|
|
const ExtInfo &info) {
|
|
assert(sig && "no generic signature for generic function type?!");
|
|
assert(!input->hasTypeVariable() && !output->hasTypeVariable());
|
|
|
|
llvm::FoldingSetNodeID id;
|
|
GenericFunctionType::Profile(id, sig, input, output, info);
|
|
|
|
const ASTContext &ctx = input->getASTContext();
|
|
|
|
// Do we already have this generic function type?
|
|
void *insertPos;
|
|
if (auto result
|
|
= ctx.Impl.GenericFunctionTypes.FindNodeOrInsertPos(id, insertPos)) {
|
|
return result;
|
|
}
|
|
|
|
// We have to construct this generic function type. Determine whether
|
|
// it's canonical. Unfortunately, isCanonicalTypeInContext can cause
|
|
// new GenericFunctionTypes to be created and thus invalidate our insertion
|
|
// point.
|
|
bool isCanonical = sig->isCanonical()
|
|
&& isCanonicalFunctionInputType(input)
|
|
&& sig->isCanonicalTypeInContext(unwrapParenType(input))
|
|
&& sig->isCanonicalTypeInContext(output);
|
|
|
|
if (auto result
|
|
= ctx.Impl.GenericFunctionTypes.FindNodeOrInsertPos(id, insertPos)) {
|
|
return result;
|
|
}
|
|
|
|
SmallVector<AnyFunctionType::Param, 4> params;
|
|
AnyFunctionType::decomposeInput(input, params);
|
|
void *mem = ctx.Allocate(sizeof(GenericFunctionType) +
|
|
sizeof(AnyFunctionType::Param) * params.size(),
|
|
alignof(GenericFunctionType));
|
|
|
|
auto properties = getGenericFunctionRecursiveProperties(input, output);
|
|
auto result = new (mem) GenericFunctionType(sig, params, input, output, info,
|
|
isCanonical ? &ctx : nullptr,
|
|
properties);
|
|
|
|
ctx.Impl.GenericFunctionTypes.InsertNode(result, insertPos);
|
|
return result;
|
|
}
|
|
|
|
GenericFunctionType::GenericFunctionType(
|
|
GenericSignature *sig,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
Type input,
|
|
Type result,
|
|
const ExtInfo &info,
|
|
const ASTContext *ctx,
|
|
RecursiveTypeProperties properties)
|
|
: AnyFunctionType(TypeKind::GenericFunction, ctx, input, result,
|
|
properties, params.size(), info), Signature(sig) {
|
|
std::uninitialized_copy(params.begin(), params.end(),
|
|
getTrailingObjects<AnyFunctionType::Param>());
|
|
}
|
|
|
|
GenericTypeParamType *GenericTypeParamType::get(unsigned depth, unsigned index,
|
|
const ASTContext &ctx) {
|
|
auto known = ctx.Impl.GenericParamTypes.find({ depth, index });
|
|
if (known != ctx.Impl.GenericParamTypes.end())
|
|
return known->second;
|
|
|
|
auto result = new (ctx, AllocationArena::Permanent)
|
|
GenericTypeParamType(depth, index, ctx);
|
|
ctx.Impl.GenericParamTypes[{depth, index}] = result;
|
|
return result;
|
|
}
|
|
|
|
TypeArrayView<GenericTypeParamType>
|
|
GenericFunctionType::getGenericParams() const {
|
|
return Signature->getGenericParams();
|
|
}
|
|
|
|
/// Retrieve the requirements of this polymorphic function type.
|
|
ArrayRef<Requirement> GenericFunctionType::getRequirements() const {
|
|
return Signature->getRequirements();
|
|
}
|
|
|
|
void SILFunctionType::Profile(llvm::FoldingSetNodeID &id,
|
|
GenericSignature *genericParams,
|
|
ExtInfo info,
|
|
SILCoroutineKind coroutineKind,
|
|
ParameterConvention calleeConvention,
|
|
ArrayRef<SILParameterInfo> params,
|
|
ArrayRef<SILYieldInfo> yields,
|
|
ArrayRef<SILResultInfo> results,
|
|
Optional<SILResultInfo> errorResult) {
|
|
id.AddPointer(genericParams);
|
|
id.AddInteger(info.getFuncAttrKey());
|
|
id.AddInteger(unsigned(coroutineKind));
|
|
id.AddInteger(unsigned(calleeConvention));
|
|
id.AddInteger(params.size());
|
|
for (auto param : params)
|
|
param.profile(id);
|
|
id.AddInteger(yields.size());
|
|
for (auto yield : yields)
|
|
yield.profile(id);
|
|
id.AddInteger(results.size());
|
|
for (auto result : results)
|
|
result.profile(id);
|
|
|
|
// Just allow the profile length to implicitly distinguish the
|
|
// presence of an error result.
|
|
if (errorResult) errorResult->profile(id);
|
|
}
|
|
|
|
SILFunctionType::SILFunctionType(GenericSignature *genericSig, ExtInfo ext,
|
|
SILCoroutineKind coroutineKind,
|
|
ParameterConvention calleeConvention,
|
|
ArrayRef<SILParameterInfo> params,
|
|
ArrayRef<SILYieldInfo> yields,
|
|
ArrayRef<SILResultInfo> normalResults,
|
|
Optional<SILResultInfo> errorResult,
|
|
const ASTContext &ctx,
|
|
RecursiveTypeProperties properties,
|
|
Optional<ProtocolConformanceRef> witnessMethodConformance)
|
|
: TypeBase(TypeKind::SILFunction, &ctx, properties),
|
|
GenericSig(genericSig),
|
|
WitnessMethodConformance(witnessMethodConformance) {
|
|
|
|
Bits.SILFunctionType.HasErrorResult = errorResult.hasValue();
|
|
Bits.SILFunctionType.ExtInfo = ext.Bits;
|
|
// The use of both assert() and static_assert() below is intentional.
|
|
assert(Bits.SILFunctionType.ExtInfo == ext.Bits && "Bits were dropped!");
|
|
static_assert(ExtInfo::NumMaskBits == NumSILExtInfoBits,
|
|
"ExtInfo and SILFunctionTypeBitfields must agree on bit size");
|
|
Bits.SILFunctionType.CoroutineKind = unsigned(coroutineKind);
|
|
NumParameters = params.size();
|
|
if (coroutineKind == SILCoroutineKind::None) {
|
|
assert(yields.empty());
|
|
NumAnyResults = normalResults.size();
|
|
NumAnyIndirectFormalResults =
|
|
std::count_if(normalResults.begin(), normalResults.end(),
|
|
[](const SILResultInfo &resultInfo) {
|
|
return resultInfo.isFormalIndirect();
|
|
});
|
|
memcpy(getMutableResults().data(), normalResults.data(),
|
|
normalResults.size() * sizeof(SILResultInfo));
|
|
} else {
|
|
assert(normalResults.empty());
|
|
NumAnyResults = yields.size();
|
|
NumAnyIndirectFormalResults = 0; // unused
|
|
memcpy(getMutableYields().data(), yields.data(),
|
|
yields.size() * sizeof(SILYieldInfo));
|
|
}
|
|
|
|
assert(!isIndirectFormalParameter(calleeConvention));
|
|
Bits.SILFunctionType.CalleeConvention = unsigned(calleeConvention);
|
|
|
|
memcpy(getMutableParameters().data(), params.data(),
|
|
params.size() * sizeof(SILParameterInfo));
|
|
if (errorResult)
|
|
getMutableErrorResult() = *errorResult;
|
|
|
|
if (hasResultCache()) {
|
|
getMutableFormalResultsCache() = CanType();
|
|
getMutableAllResultsCache() = CanType();
|
|
}
|
|
#ifndef NDEBUG
|
|
if (ext.getRepresentation() == Representation::WitnessMethod)
|
|
assert(WitnessMethodConformance &&
|
|
"witness_method SIL function without a conformance");
|
|
else
|
|
assert(!WitnessMethodConformance &&
|
|
"non-witness_method SIL function with a conformance");
|
|
|
|
// Make sure the interface types are sane.
|
|
if (genericSig) {
|
|
for (auto gparam : genericSig->getGenericParams()) {
|
|
(void)gparam;
|
|
assert(gparam->isCanonical() && "generic signature is not canonicalized");
|
|
}
|
|
|
|
for (auto param : getParameters()) {
|
|
(void)param;
|
|
assert(!param.getType()->hasError()
|
|
&& "interface type of parameter should not contain error types");
|
|
assert(!param.getType()->hasArchetype()
|
|
&& "interface type of parameter should not contain context archetypes");
|
|
}
|
|
for (auto result : getResults()) {
|
|
(void)result;
|
|
assert(!result.getType()->hasError()
|
|
&& "interface type of result should not contain error types");
|
|
assert(!result.getType()->hasArchetype()
|
|
&& "interface type of result should not contain context archetypes");
|
|
}
|
|
for (auto yield : getYields()) {
|
|
(void)yield;
|
|
assert(!yield.getType()->hasError()
|
|
&& "interface type of yield should not contain error types");
|
|
assert(!yield.getType()->hasArchetype()
|
|
&& "interface type of yield should not contain context archetypes");
|
|
}
|
|
if (hasErrorResult()) {
|
|
assert(!getErrorResult().getType()->hasError()
|
|
&& "interface type of result should not contain error types");
|
|
assert(!getErrorResult().getType()->hasArchetype()
|
|
&& "interface type of result should not contain context archetypes");
|
|
}
|
|
}
|
|
for (auto result : getResults()) {
|
|
(void)result;
|
|
if (auto *FnType = result.getType()->getAs<SILFunctionType>()) {
|
|
assert(!FnType->isNoEscape() &&
|
|
"Cannot return an @noescape function type");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
CanSILBlockStorageType SILBlockStorageType::get(CanType captureType) {
|
|
ASTContext &ctx = captureType->getASTContext();
|
|
auto found = ctx.Impl.SILBlockStorageTypes.find(captureType);
|
|
if (found != ctx.Impl.SILBlockStorageTypes.end())
|
|
return CanSILBlockStorageType(found->second);
|
|
|
|
void *mem = ctx.Allocate(sizeof(SILBlockStorageType),
|
|
alignof(SILBlockStorageType));
|
|
|
|
SILBlockStorageType *storageTy = new (mem) SILBlockStorageType(captureType);
|
|
ctx.Impl.SILBlockStorageTypes.insert({captureType, storageTy});
|
|
return CanSILBlockStorageType(storageTy);
|
|
}
|
|
|
|
CanSILFunctionType SILFunctionType::get(GenericSignature *genericSig,
|
|
ExtInfo ext,
|
|
SILCoroutineKind coroutineKind,
|
|
ParameterConvention callee,
|
|
ArrayRef<SILParameterInfo> params,
|
|
ArrayRef<SILYieldInfo> yields,
|
|
ArrayRef<SILResultInfo> normalResults,
|
|
Optional<SILResultInfo> errorResult,
|
|
const ASTContext &ctx,
|
|
Optional<ProtocolConformanceRef> witnessMethodConformance) {
|
|
assert(coroutineKind == SILCoroutineKind::None || normalResults.empty());
|
|
assert(coroutineKind != SILCoroutineKind::None || yields.empty());
|
|
|
|
llvm::FoldingSetNodeID id;
|
|
SILFunctionType::Profile(id, genericSig, ext, coroutineKind, callee,
|
|
params, yields, normalResults, errorResult);
|
|
|
|
// Do we already have this generic function type?
|
|
void *insertPos;
|
|
if (auto result
|
|
= ctx.Impl.SILFunctionTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return CanSILFunctionType(result);
|
|
|
|
// All SILFunctionTypes are canonical.
|
|
|
|
// Allocate storage for the object.
|
|
size_t bytes = sizeof(SILFunctionType)
|
|
+ sizeof(SILParameterInfo) * params.size()
|
|
+ sizeof(SILYieldInfo) * yields.size()
|
|
+ sizeof(SILResultInfo) * normalResults.size()
|
|
+ (errorResult ? sizeof(SILResultInfo) : 0)
|
|
+ (normalResults.size() > 1 ? sizeof(CanType) * 2 : 0);
|
|
void *mem = ctx.Allocate(bytes, alignof(SILFunctionType));
|
|
|
|
RecursiveTypeProperties properties;
|
|
static_assert(RecursiveTypeProperties::BitWidth == 10,
|
|
"revisit this if you add new recursive type properties");
|
|
for (auto ¶m : params)
|
|
properties |= param.getType()->getRecursiveProperties();
|
|
for (auto &yield : yields)
|
|
properties |= yield.getType()->getRecursiveProperties();
|
|
for (auto &result : normalResults)
|
|
properties |= result.getType()->getRecursiveProperties();
|
|
if (errorResult)
|
|
properties |= errorResult->getType()->getRecursiveProperties();
|
|
|
|
// FIXME: If we ever have first-class polymorphic values, we'll need to
|
|
// revisit this.
|
|
if (genericSig) {
|
|
properties.removeHasTypeParameter();
|
|
properties.removeHasDependentMember();
|
|
}
|
|
|
|
auto fnType =
|
|
new (mem) SILFunctionType(genericSig, ext, coroutineKind, callee,
|
|
params, yields, normalResults, errorResult,
|
|
ctx, properties, witnessMethodConformance);
|
|
ctx.Impl.SILFunctionTypes.InsertNode(fnType, insertPos);
|
|
return CanSILFunctionType(fnType);
|
|
}
|
|
|
|
|
|
ArraySliceType *ArraySliceType::get(Type base) {
|
|
auto properties = base->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
const ASTContext &C = base->getASTContext();
|
|
|
|
ArraySliceType *&entry = C.Impl.getArena(arena).ArraySliceTypes[base];
|
|
if (entry) return entry;
|
|
|
|
return entry = new (C, arena) ArraySliceType(C, base, properties);
|
|
}
|
|
|
|
DictionaryType *DictionaryType::get(Type keyType, Type valueType) {
|
|
auto properties = keyType->getRecursiveProperties()
|
|
| valueType->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
const ASTContext &C = keyType->getASTContext();
|
|
|
|
DictionaryType *&entry
|
|
= C.Impl.getArena(arena).DictionaryTypes[{keyType, valueType}];
|
|
if (entry) return entry;
|
|
|
|
return entry = new (C, arena) DictionaryType(C, keyType, valueType,
|
|
properties);
|
|
}
|
|
|
|
OptionalType *OptionalType::get(Type base) {
|
|
auto properties = base->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
const ASTContext &C = base->getASTContext();
|
|
|
|
OptionalType *&entry = C.Impl.getArena(arena).OptionalTypes[base];
|
|
if (entry) return entry;
|
|
|
|
return entry = new (C, arena) OptionalType(C, base, properties);
|
|
}
|
|
|
|
ProtocolType *ProtocolType::get(ProtocolDecl *D, Type Parent,
|
|
const ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
ProtocolType::Profile(id, D, Parent);
|
|
|
|
RecursiveTypeProperties properties;
|
|
if (Parent) properties |= Parent->getRecursiveProperties();
|
|
auto arena = getArena(properties);
|
|
|
|
void *insertPos = nullptr;
|
|
if (auto protoTy
|
|
= C.Impl.getArena(arena).ProtocolTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return protoTy;
|
|
|
|
auto protoTy = new (C, arena) ProtocolType(D, Parent, C, properties);
|
|
C.Impl.getArena(arena).ProtocolTypes.InsertNode(protoTy, insertPos);
|
|
|
|
return protoTy;
|
|
}
|
|
|
|
ProtocolType::ProtocolType(ProtocolDecl *TheDecl, Type Parent,
|
|
const ASTContext &Ctx,
|
|
RecursiveTypeProperties properties)
|
|
: NominalType(TypeKind::Protocol, &Ctx, TheDecl, Parent, properties) { }
|
|
|
|
void ProtocolType::Profile(llvm::FoldingSetNodeID &ID, ProtocolDecl *D,
|
|
Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
LValueType *LValueType::get(Type objectTy) {
|
|
assert(!objectTy->hasError() &&
|
|
"cannot have ErrorType wrapped inside LValueType");
|
|
assert(!objectTy->is<LValueType>() && !objectTy->is<InOutType>() &&
|
|
"cannot have 'inout' or @lvalue wrapped inside an @lvalue");
|
|
|
|
auto properties = objectTy->getRecursiveProperties()
|
|
| RecursiveTypeProperties::IsLValue;
|
|
auto arena = getArena(properties);
|
|
|
|
auto &C = objectTy->getASTContext();
|
|
auto &entry = C.Impl.getArena(arena).LValueTypes[objectTy];
|
|
if (entry)
|
|
return entry;
|
|
|
|
const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr;
|
|
return entry = new (C, arena) LValueType(objectTy, canonicalContext,
|
|
properties);
|
|
}
|
|
|
|
InOutType *InOutType::get(Type objectTy) {
|
|
assert(!objectTy->is<LValueType>() && !objectTy->is<InOutType>() &&
|
|
"cannot have 'inout' or @lvalue wrapped inside an 'inout'");
|
|
|
|
auto properties = objectTy->getRecursiveProperties();
|
|
|
|
properties &= ~RecursiveTypeProperties::IsLValue;
|
|
auto arena = getArena(properties);
|
|
|
|
auto &C = objectTy->getASTContext();
|
|
auto &entry = C.Impl.getArena(arena).InOutTypes[objectTy];
|
|
if (entry)
|
|
return entry;
|
|
|
|
const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr;
|
|
return entry = new (C, arena) InOutType(objectTy, canonicalContext,
|
|
properties);
|
|
}
|
|
|
|
DependentMemberType *DependentMemberType::get(Type base, Identifier name) {
|
|
auto properties = base->getRecursiveProperties();
|
|
properties |= RecursiveTypeProperties::HasDependentMember;
|
|
auto arena = getArena(properties);
|
|
|
|
llvm::PointerUnion<Identifier, AssociatedTypeDecl *> stored(name);
|
|
const ASTContext &ctx = base->getASTContext();
|
|
auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[
|
|
{base, stored.getOpaqueValue()}];
|
|
if (!known) {
|
|
const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr;
|
|
known = new (ctx, arena) DependentMemberType(base, name, canonicalCtx,
|
|
properties);
|
|
}
|
|
return known;
|
|
}
|
|
|
|
DependentMemberType *DependentMemberType::get(Type base,
|
|
AssociatedTypeDecl *assocType) {
|
|
auto properties = base->getRecursiveProperties();
|
|
properties |= RecursiveTypeProperties::HasDependentMember;
|
|
auto arena = getArena(properties);
|
|
|
|
llvm::PointerUnion<Identifier, AssociatedTypeDecl *> stored(assocType);
|
|
const ASTContext &ctx = base->getASTContext();
|
|
auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[
|
|
{base, stored.getOpaqueValue()}];
|
|
if (!known) {
|
|
const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr;
|
|
known = new (ctx, arena) DependentMemberType(base, assocType, canonicalCtx,
|
|
properties);
|
|
}
|
|
return known;
|
|
}
|
|
|
|
CanArchetypeType ArchetypeType::getOpened(Type existential,
|
|
Optional<UUID> knownID) {
|
|
auto &ctx = existential->getASTContext();
|
|
auto &openedExistentialArchetypes = ctx.Impl.OpenedExistentialArchetypes;
|
|
// If we know the ID already...
|
|
if (knownID) {
|
|
// ... and we already have an archetype for that ID, return it.
|
|
auto found = openedExistentialArchetypes.find(*knownID);
|
|
|
|
if (found != openedExistentialArchetypes.end()) {
|
|
auto result = found->second;
|
|
assert(result->getOpenedExistentialType()->isEqual(existential) &&
|
|
"Retrieved the wrong opened existential type?");
|
|
return CanArchetypeType(result);
|
|
}
|
|
} else {
|
|
// Create a new ID.
|
|
knownID = UUID::fromTime();
|
|
}
|
|
|
|
auto layout = existential->getExistentialLayout();
|
|
|
|
SmallVector<ProtocolDecl *, 2> protos;
|
|
for (auto proto : layout.getProtocols())
|
|
protos.push_back(proto->getDecl());
|
|
|
|
auto layoutConstraint = layout.getLayoutConstraint();
|
|
|
|
auto arena = AllocationArena::Permanent;
|
|
void *mem = ctx.Allocate(
|
|
totalSizeToAlloc<ProtocolDecl *, Type, LayoutConstraint, UUID>(
|
|
protos.size(),
|
|
layout.superclass ? 1 : 0,
|
|
layoutConstraint ? 1 : 0, 1),
|
|
alignof(ArchetypeType), arena);
|
|
|
|
// FIXME: Pass in class layout constraint
|
|
auto result =
|
|
::new (mem) ArchetypeType(ctx, existential,
|
|
protos, layout.superclass,
|
|
layoutConstraint, *knownID);
|
|
openedExistentialArchetypes[*knownID] = result;
|
|
|
|
return CanArchetypeType(result);
|
|
}
|
|
|
|
CanType ArchetypeType::getAnyOpened(Type existential) {
|
|
if (auto metatypeTy = existential->getAs<ExistentialMetatypeType>()) {
|
|
auto instanceTy = metatypeTy->getInstanceType();
|
|
return CanMetatypeType::get(ArchetypeType::getAnyOpened(instanceTy));
|
|
}
|
|
assert(existential->isExistentialType());
|
|
return ArchetypeType::getOpened(existential);
|
|
}
|
|
|
|
void TypeLoc::setInvalidType(ASTContext &C) {
|
|
TAndValidBit.setPointerAndInt(ErrorType::get(C), true);
|
|
}
|
|
|
|
namespace {
|
|
class raw_capturing_ostream : public raw_ostream {
|
|
std::string Message;
|
|
uint64_t Pos;
|
|
CapturingTypeCheckerDebugConsumer &Listener;
|
|
|
|
public:
|
|
raw_capturing_ostream(CapturingTypeCheckerDebugConsumer &Listener)
|
|
: Listener(Listener) {}
|
|
|
|
~raw_capturing_ostream() override {
|
|
flush();
|
|
}
|
|
|
|
void write_impl(const char *Ptr, size_t Size) override {
|
|
Message.append(Ptr, Size);
|
|
Pos += Size;
|
|
|
|
// Check if we have at least one complete line.
|
|
size_t LastNewline = StringRef(Message).rfind('\n');
|
|
if (LastNewline == StringRef::npos)
|
|
return;
|
|
Listener.handleMessage(StringRef(Message.data(), LastNewline + 1));
|
|
Message.erase(0, LastNewline + 1);
|
|
}
|
|
|
|
uint64_t current_pos() const override {
|
|
return Pos;
|
|
}
|
|
};
|
|
} // unnamed namespace
|
|
|
|
TypeCheckerDebugConsumer::~TypeCheckerDebugConsumer() { }
|
|
|
|
CapturingTypeCheckerDebugConsumer::CapturingTypeCheckerDebugConsumer()
|
|
: Log(new raw_capturing_ostream(*this)) {
|
|
Log->SetUnbuffered();
|
|
}
|
|
|
|
CapturingTypeCheckerDebugConsumer::~CapturingTypeCheckerDebugConsumer() {
|
|
delete Log;
|
|
}
|
|
|
|
void GenericSignature::Profile(llvm::FoldingSetNodeID &ID,
|
|
TypeArrayView<GenericTypeParamType> genericParams,
|
|
ArrayRef<Requirement> requirements) {
|
|
for (auto p : genericParams)
|
|
ID.AddPointer(p);
|
|
|
|
for (auto &reqt : requirements) {
|
|
ID.AddPointer(reqt.getFirstType().getPointer());
|
|
if (reqt.getKind() != RequirementKind::Layout)
|
|
ID.AddPointer(reqt.getSecondType().getPointer());
|
|
else
|
|
ID.AddPointer(reqt.getLayoutConstraint().getPointer());
|
|
ID.AddInteger(unsigned(reqt.getKind()));
|
|
}
|
|
}
|
|
|
|
GenericSignature *
|
|
GenericSignature::get(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements,
|
|
bool isKnownCanonical) {
|
|
SmallVector<Type, 4> paramTypes;
|
|
for (auto param : params)
|
|
paramTypes.push_back(param);
|
|
auto paramsView = TypeArrayView<GenericTypeParamType>(paramTypes);
|
|
return get(paramsView, requirements, isKnownCanonical);
|
|
}
|
|
|
|
GenericSignature *
|
|
GenericSignature::get(TypeArrayView<GenericTypeParamType> params,
|
|
ArrayRef<Requirement> requirements,
|
|
bool isKnownCanonical) {
|
|
assert(!params.empty());
|
|
|
|
#ifndef NDEBUG
|
|
for (auto req : requirements)
|
|
assert(req.getFirstType()->isTypeParameter());
|
|
#endif
|
|
|
|
// Check for an existing generic signature.
|
|
llvm::FoldingSetNodeID ID;
|
|
GenericSignature::Profile(ID, params, requirements);
|
|
|
|
auto &ctx = getASTContext(params, requirements);
|
|
void *insertPos;
|
|
if (auto *sig = ctx.Impl.GenericSignatures.FindNodeOrInsertPos(ID,
|
|
insertPos)) {
|
|
if (isKnownCanonical)
|
|
sig->CanonicalSignatureOrASTContext = &ctx;
|
|
|
|
return sig;
|
|
}
|
|
|
|
// Allocate and construct the new signature.
|
|
size_t bytes = totalSizeToAlloc<Type, Requirement>(
|
|
params.size(), requirements.size());
|
|
void *mem = ctx.Allocate(bytes, alignof(GenericSignature));
|
|
auto newSig = new (mem) GenericSignature(params, requirements,
|
|
isKnownCanonical);
|
|
ctx.Impl.GenericSignatures.InsertNode(newSig, insertPos);
|
|
return newSig;
|
|
}
|
|
|
|
GenericEnvironment *GenericEnvironment::getIncomplete(
|
|
GenericSignature *signature,
|
|
GenericSignatureBuilder *builder) {
|
|
auto &ctx = signature->getASTContext();
|
|
|
|
// Allocate and construct the new environment.
|
|
unsigned numGenericParams = signature->getGenericParams().size();
|
|
size_t bytes = totalSizeToAlloc<Type>(numGenericParams);
|
|
void *mem = ctx.Allocate(bytes, alignof(GenericEnvironment));
|
|
return new (mem) GenericEnvironment(signature, builder);
|
|
}
|
|
|
|
void DeclName::CompoundDeclName::Profile(llvm::FoldingSetNodeID &id,
|
|
DeclBaseName baseName,
|
|
ArrayRef<Identifier> argumentNames) {
|
|
id.AddPointer(baseName.getAsOpaquePointer());
|
|
id.AddInteger(argumentNames.size());
|
|
for (auto arg : argumentNames)
|
|
id.AddPointer(arg.get());
|
|
}
|
|
|
|
void DeclName::initialize(ASTContext &C, DeclBaseName baseName,
|
|
ArrayRef<Identifier> argumentNames) {
|
|
if (argumentNames.size() == 0) {
|
|
SimpleOrCompound = BaseNameAndCompound(baseName, true);
|
|
return;
|
|
}
|
|
|
|
llvm::FoldingSetNodeID id;
|
|
CompoundDeclName::Profile(id, baseName, argumentNames);
|
|
|
|
void *insert = nullptr;
|
|
if (CompoundDeclName *compoundName
|
|
= C.Impl.CompoundNames.FindNodeOrInsertPos(id, insert)) {
|
|
SimpleOrCompound = compoundName;
|
|
return;
|
|
}
|
|
|
|
size_t size =
|
|
CompoundDeclName::totalSizeToAlloc<Identifier>(argumentNames.size());
|
|
auto buf = C.Allocate(size, alignof(CompoundDeclName));
|
|
auto compoundName = new (buf) CompoundDeclName(baseName,argumentNames.size());
|
|
std::uninitialized_copy(argumentNames.begin(), argumentNames.end(),
|
|
compoundName->getArgumentNames().begin());
|
|
SimpleOrCompound = compoundName;
|
|
C.Impl.CompoundNames.InsertNode(compoundName, insert);
|
|
}
|
|
|
|
/// Build a compound value name given a base name and a set of argument names
|
|
/// extracted from a parameter list.
|
|
DeclName::DeclName(ASTContext &C, DeclBaseName baseName,
|
|
ParameterList *paramList) {
|
|
SmallVector<Identifier, 4> names;
|
|
|
|
for (auto P : *paramList)
|
|
names.push_back(P->getArgumentName());
|
|
initialize(C, baseName, names);
|
|
}
|
|
|
|
/// Find the implementation of the named type in the given module.
|
|
static NominalTypeDecl *findUnderlyingTypeInModule(ASTContext &ctx,
|
|
Identifier name,
|
|
ModuleDecl *module) {
|
|
// Find all of the declarations with this name in the Swift module.
|
|
SmallVector<ValueDecl *, 1> results;
|
|
module->lookupValue({ }, name, NLKind::UnqualifiedLookup, results);
|
|
for (auto result : results) {
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(result))
|
|
return nominal;
|
|
|
|
// Look through typealiases.
|
|
if (auto typealias = dyn_cast<TypeAliasDecl>(result)) {
|
|
if (auto resolver = ctx.getLazyResolver())
|
|
resolver->resolveDeclSignature(typealias);
|
|
return typealias->getDeclaredInterfaceType()->getAnyNominal();
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool ForeignRepresentationInfo::isRepresentableAsOptional() const {
|
|
switch (getKind()) {
|
|
case ForeignRepresentableKind::None:
|
|
llvm_unreachable("this type is not representable");
|
|
|
|
case ForeignRepresentableKind::Trivial:
|
|
return Storage.getPointer() != 0;
|
|
|
|
case ForeignRepresentableKind::Bridged: {
|
|
auto KPK_ObjectiveCBridgeable = KnownProtocolKind::ObjectiveCBridgeable;
|
|
ProtocolDecl *proto = getConformance()->getProtocol();
|
|
assert(proto->isSpecificProtocol(KPK_ObjectiveCBridgeable) &&
|
|
"unknown protocol; does it support optional?");
|
|
(void)proto;
|
|
(void)KPK_ObjectiveCBridgeable;
|
|
|
|
return true;
|
|
}
|
|
|
|
case ForeignRepresentableKind::BridgedError:
|
|
return true;
|
|
|
|
case ForeignRepresentableKind::Object:
|
|
case ForeignRepresentableKind::StaticBridged:
|
|
llvm_unreachable("unexpected kind in ForeignRepresentableCacheEntry");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ForeignRepresentableKind in switch.");
|
|
}
|
|
|
|
ForeignRepresentationInfo
|
|
ASTContext::getForeignRepresentationInfo(NominalTypeDecl *nominal,
|
|
ForeignLanguage language,
|
|
const DeclContext *dc) {
|
|
// Local function to add a type with the given name and module as
|
|
// trivially-representable.
|
|
auto addTrivial = [&](Identifier name, ModuleDecl *module,
|
|
bool allowOptional = false) {
|
|
if (auto type = findUnderlyingTypeInModule(*this, name, module)) {
|
|
auto info = ForeignRepresentationInfo::forTrivial();
|
|
if (allowOptional)
|
|
info = ForeignRepresentationInfo::forTrivialWithOptional();
|
|
Impl.ForeignRepresentableCache.insert({type, info});
|
|
}
|
|
};
|
|
|
|
if (Impl.ForeignRepresentableCache.empty()) {
|
|
// Pre-populate the foreign-representable cache with known types.
|
|
if (auto stdlib = getStdlibModule()) {
|
|
addTrivial(getIdentifier("OpaquePointer"), stdlib, true);
|
|
|
|
// Builtin types
|
|
// FIXME: Layering violation to use the ClangImporter's define.
|
|
#define MAP_BUILTIN_TYPE(CLANG_BUILTIN_KIND, SWIFT_TYPE_NAME) \
|
|
addTrivial(getIdentifier(#SWIFT_TYPE_NAME), stdlib);
|
|
#include "swift/ClangImporter/BuiltinMappedTypes.def"
|
|
|
|
// Even though we may never import types directly as Int or UInt
|
|
// (e.g. on 64-bit Windows, where CLong maps to Int32 and
|
|
// CLongLong to Int64), it's always possible to convert an Int
|
|
// or UInt to a C type.
|
|
addTrivial(getIdentifier("Int"), stdlib);
|
|
addTrivial(getIdentifier("UInt"), stdlib);
|
|
}
|
|
|
|
if (auto darwin = getLoadedModule(Id_Darwin)) {
|
|
// Note: DarwinBoolean is odd because it's bridged to Bool in APIs,
|
|
// but can also be trivially bridged.
|
|
addTrivial(getIdentifier("DarwinBoolean"), darwin);
|
|
}
|
|
|
|
if (auto objectiveC = getLoadedModule(Id_ObjectiveC)) {
|
|
addTrivial(Id_Selector, objectiveC, true);
|
|
|
|
// Note: ObjCBool is odd because it's bridged to Bool in APIs,
|
|
// but can also be trivially bridged.
|
|
addTrivial(getIdentifier("ObjCBool"), objectiveC);
|
|
|
|
addTrivial(getSwiftId(KnownFoundationEntity::NSZone), objectiveC, true);
|
|
}
|
|
|
|
if (auto coreGraphics = getLoadedModule(getIdentifier("CoreGraphics"))) {
|
|
addTrivial(Id_CGFloat, coreGraphics);
|
|
}
|
|
|
|
// Pull SIMD types of size 2...4 from the SIMD module, if it exists.
|
|
// FIXME: Layering violation to use the ClangImporter's define.
|
|
const unsigned SWIFT_MAX_IMPORTED_SIMD_ELEMENTS = 4;
|
|
if (auto simd = getLoadedModule(Id_simd)) {
|
|
#define MAP_SIMD_TYPE(BASENAME, _, __) \
|
|
{ \
|
|
char name[] = #BASENAME "0"; \
|
|
for (unsigned i = 2; i <= SWIFT_MAX_IMPORTED_SIMD_ELEMENTS; ++i) { \
|
|
*(std::end(name) - 2) = '0' + i; \
|
|
addTrivial(getIdentifier(name), simd); \
|
|
} \
|
|
}
|
|
#include "swift/ClangImporter/SIMDMappedTypes.def"
|
|
}
|
|
}
|
|
|
|
// Determine whether we know anything about this nominal type
|
|
// yet. If we've never seen this nominal type before, or if we have
|
|
// an out-of-date negative cached value, we'll have to go looking.
|
|
auto known = Impl.ForeignRepresentableCache.find(nominal);
|
|
bool wasNotFoundInCache = known == Impl.ForeignRepresentableCache.end();
|
|
|
|
// For the REPL. We might have initialized the cache above before CoreGraphics
|
|
// was loaded.
|
|
// let s = "" // Here we initialize the ForeignRepresentableCache.
|
|
// import Foundation
|
|
// let pt = CGPoint(x: 1.0, y: 2.0) // Here we query for CGFloat.
|
|
// Add CGFloat as trivial if we encounter it later.
|
|
// If the type was not found check if it would be found after having recently
|
|
// loaded the module.
|
|
// Similar for types for other non stdlib modules.
|
|
auto conditionallyAddTrivial = [&](NominalTypeDecl *nominalDecl,
|
|
Identifier typeName, Identifier moduleName,
|
|
bool allowOptional = false) {
|
|
if (nominal->getName() == typeName && wasNotFoundInCache) {
|
|
if (auto module = getLoadedModule(moduleName)) {
|
|
addTrivial(typeName, module, allowOptional);
|
|
known = Impl.ForeignRepresentableCache.find(nominal);
|
|
wasNotFoundInCache = known == Impl.ForeignRepresentableCache.end();
|
|
}
|
|
}
|
|
};
|
|
conditionallyAddTrivial(nominal, getIdentifier("DarwinBoolean") , Id_Darwin);
|
|
conditionallyAddTrivial(nominal, Id_Selector, Id_ObjectiveC, true);
|
|
conditionallyAddTrivial(nominal, getIdentifier("ObjCBool"), Id_ObjectiveC);
|
|
conditionallyAddTrivial(nominal, getSwiftId(KnownFoundationEntity::NSZone), Id_ObjectiveC, true);
|
|
conditionallyAddTrivial(nominal, Id_CGFloat, getIdentifier("CoreGraphics"));
|
|
const unsigned SWIFT_MAX_IMPORTED_SIMD_ELEMENTS = 4;
|
|
#define MAP_SIMD_TYPE(BASENAME, _, __) \
|
|
{ \
|
|
char name[] = #BASENAME "0"; \
|
|
for (unsigned i = 2; i <= SWIFT_MAX_IMPORTED_SIMD_ELEMENTS; ++i) { \
|
|
*(std::end(name) - 2) = '0' + i; \
|
|
conditionallyAddTrivial(nominal, getIdentifier(name), Id_simd); \
|
|
} \
|
|
}
|
|
#include "swift/ClangImporter/SIMDMappedTypes.def"
|
|
|
|
if (wasNotFoundInCache ||
|
|
(known->second.getKind() == ForeignRepresentableKind::None &&
|
|
known->second.getGeneration() < CurrentGeneration)) {
|
|
Optional<ForeignRepresentationInfo> result;
|
|
|
|
// Look for a conformance to _ObjectiveCBridgeable (other than Optional's--
|
|
// we don't want to allow exposing APIs with double-optional types like
|
|
// NSObject??, even though Optional is bridged to its underlying type).
|
|
//
|
|
// FIXME: We're implicitly depending on the fact that lookupConformance
|
|
// is global, ignoring the module we provide for it.
|
|
if (nominal != dc->getASTContext().getOptionalDecl()) {
|
|
if (auto objcBridgeable
|
|
= getProtocol(KnownProtocolKind::ObjectiveCBridgeable)) {
|
|
if (auto conformance
|
|
= dc->getParentModule()->lookupConformance(
|
|
nominal->getDeclaredType(), objcBridgeable)) {
|
|
result =
|
|
ForeignRepresentationInfo::forBridged(conformance->getConcrete());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Error is bridged to NSError, when it's available.
|
|
if (nominal == getErrorDecl() && getNSErrorDecl())
|
|
result = ForeignRepresentationInfo::forBridgedError();
|
|
|
|
// If we didn't find anything, mark the result as "None".
|
|
if (!result)
|
|
result = ForeignRepresentationInfo::forNone(CurrentGeneration);
|
|
|
|
// Cache the result.
|
|
known = Impl.ForeignRepresentableCache.insert({ nominal, *result }).first;
|
|
}
|
|
|
|
// Map a cache entry to a result for this specific
|
|
auto entry = known->second;
|
|
if (entry.getKind() == ForeignRepresentableKind::None)
|
|
return entry;
|
|
|
|
// Extract the protocol conformance.
|
|
auto conformance = entry.getConformance();
|
|
|
|
// If the conformance is not visible, fail.
|
|
if (conformance && !conformance->isVisibleFrom(dc))
|
|
return ForeignRepresentationInfo::forNone();
|
|
|
|
// Language-specific filtering.
|
|
switch (language) {
|
|
case ForeignLanguage::C:
|
|
// Ignore _ObjectiveCBridgeable conformances in C.
|
|
if (conformance &&
|
|
conformance->getProtocol()->isSpecificProtocol(
|
|
KnownProtocolKind::ObjectiveCBridgeable))
|
|
return ForeignRepresentationInfo::forNone();
|
|
|
|
// Ignore error bridging in C.
|
|
if (entry.getKind() == ForeignRepresentableKind::BridgedError)
|
|
return ForeignRepresentationInfo::forNone();
|
|
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case ForeignLanguage::ObjectiveC:
|
|
return entry;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ForeignLanguage in switch.");
|
|
}
|
|
|
|
bool ASTContext::isTypeBridgedInExternalModule(
|
|
NominalTypeDecl *nominal) const {
|
|
return (nominal == getBoolDecl() ||
|
|
nominal == getIntDecl() ||
|
|
nominal == getInt64Decl() ||
|
|
nominal == getInt32Decl() ||
|
|
nominal == getInt16Decl() ||
|
|
nominal == getInt8Decl() ||
|
|
nominal == getUIntDecl() ||
|
|
nominal == getUInt64Decl() ||
|
|
nominal == getUInt32Decl() ||
|
|
nominal == getUInt16Decl() ||
|
|
nominal == getUInt8Decl() ||
|
|
nominal == getFloatDecl() ||
|
|
nominal == getDoubleDecl() ||
|
|
nominal == getArrayDecl() ||
|
|
nominal == getDictionaryDecl() ||
|
|
nominal == getSetDecl() ||
|
|
nominal == getStringDecl() ||
|
|
nominal == getSubstringDecl() ||
|
|
nominal == getErrorDecl() ||
|
|
nominal == getAnyHashableDecl() ||
|
|
// Foundation's overlay depends on the CoreGraphics overlay, but
|
|
// CoreGraphics value types bridge to Foundation objects such as
|
|
// NSValue and NSNumber, so to avoid circular dependencies, the
|
|
// bridging implementations of CG types appear in the Foundation
|
|
// module.
|
|
nominal->getParentModule()->getName() == Id_CoreGraphics ||
|
|
// CoreMedia is a dependency of AVFoundation, but the bridged
|
|
// NSValue implementations for CMTime, CMTimeRange, and
|
|
// CMTimeMapping are provided by AVFoundation, and AVFoundation
|
|
// gets upset if you don't use the NSValue subclasses its factory
|
|
// methods instantiate.
|
|
nominal->getParentModule()->getName() == Id_CoreMedia);
|
|
}
|
|
|
|
bool ASTContext::isObjCClassWithMultipleSwiftBridgedTypes(Type t) {
|
|
auto clas = t->getClassOrBoundGenericClass();
|
|
if (!clas)
|
|
return false;
|
|
|
|
if (clas == getNSErrorDecl())
|
|
return true;
|
|
if (clas == getNSNumberDecl())
|
|
return true;
|
|
if (clas == getNSValueDecl())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Type ASTContext::getBridgedToObjC(const DeclContext *dc, Type type,
|
|
Type *bridgedValueType) const {
|
|
if (type->isBridgeableObjectType()) {
|
|
if (bridgedValueType) *bridgedValueType = type;
|
|
|
|
return type;
|
|
}
|
|
|
|
if (auto metaTy = type->getAs<MetatypeType>())
|
|
if (metaTy->getInstanceType()->mayHaveSuperclass())
|
|
return type;
|
|
|
|
if (auto existentialMetaTy = type->getAs<ExistentialMetatypeType>())
|
|
if (existentialMetaTy->getInstanceType()->isObjCExistentialType())
|
|
return type;
|
|
|
|
// Check whether the type is an existential that contains
|
|
// Error. If so, it's bridged to NSError.
|
|
if (type->isExistentialWithError()) {
|
|
if (auto nsErrorDecl = getNSErrorDecl()) {
|
|
// The corresponding value type is Error.
|
|
if (bridgedValueType)
|
|
*bridgedValueType = getErrorDecl()->getDeclaredInterfaceType();
|
|
|
|
return nsErrorDecl->getDeclaredInterfaceType();
|
|
}
|
|
}
|
|
|
|
// Try to find a conformance that will enable bridging.
|
|
auto findConformance =
|
|
[&](KnownProtocolKind known) -> Optional<ProtocolConformanceRef> {
|
|
// Don't ascribe any behavior to Optional other than what we explicitly
|
|
// give it. We don't want things like AnyObject?? to work.
|
|
if (type->getAnyNominal() == getOptionalDecl())
|
|
return None;
|
|
|
|
// Find the protocol.
|
|
auto proto = getProtocol(known);
|
|
if (!proto) return None;
|
|
|
|
return dc->getParentModule()->lookupConformance(type, proto);
|
|
};
|
|
|
|
// Do we conform to _ObjectiveCBridgeable?
|
|
if (auto conformance
|
|
= findConformance(KnownProtocolKind::ObjectiveCBridgeable)) {
|
|
// The corresponding value type is... the type.
|
|
if (bridgedValueType)
|
|
*bridgedValueType = type;
|
|
|
|
// Find the Objective-C class type we bridge to.
|
|
if (conformance->isConcrete()) {
|
|
return ProtocolConformanceRef::getTypeWitnessByName(
|
|
type, *conformance, Id_ObjectiveCType,
|
|
getLazyResolver());
|
|
} else {
|
|
return type->castTo<ArchetypeType>()->getNestedType(Id_ObjectiveCType);
|
|
}
|
|
}
|
|
|
|
// Do we conform to Error?
|
|
if (findConformance(KnownProtocolKind::Error)) {
|
|
// The corresponding value type is Error.
|
|
if (bridgedValueType)
|
|
*bridgedValueType = getErrorDecl()->getDeclaredInterfaceType();
|
|
|
|
// Bridge to NSError.
|
|
if (auto nsErrorDecl = getNSErrorDecl())
|
|
return nsErrorDecl->getDeclaredInterfaceType();
|
|
}
|
|
|
|
// No special bridging to Objective-C, but this can become an 'Any'.
|
|
return Type();
|
|
}
|
|
|
|
CanGenericSignature ASTContext::getSingleGenericParameterSignature() const {
|
|
if (auto theSig = Impl.SingleGenericParameterSignature)
|
|
return theSig;
|
|
|
|
auto param = GenericTypeParamType::get(0, 0, *this);
|
|
auto sig = GenericSignature::get(param, { });
|
|
auto canonicalSig = CanGenericSignature(sig);
|
|
Impl.SingleGenericParameterSignature = canonicalSig;
|
|
return canonicalSig;
|
|
}
|
|
|
|
CanGenericSignature ASTContext::getExistentialSignature(CanType existential,
|
|
ModuleDecl *mod) {
|
|
auto found = Impl.ExistentialSignatures.find(existential);
|
|
if (found != Impl.ExistentialSignatures.end())
|
|
return found->second;
|
|
|
|
assert(existential.isExistentialType());
|
|
|
|
GenericSignatureBuilder builder(*this);
|
|
|
|
auto genericParam = GenericTypeParamType::get(0, 0, *this);
|
|
builder.addGenericParameter(genericParam);
|
|
|
|
Requirement requirement(RequirementKind::Conformance, genericParam,
|
|
existential);
|
|
auto source =
|
|
GenericSignatureBuilder::FloatingRequirementSource::forAbstract();
|
|
builder.addRequirement(requirement, source, nullptr);
|
|
|
|
CanGenericSignature genericSig(std::move(builder).computeGenericSignature(SourceLoc()));
|
|
|
|
auto result = Impl.ExistentialSignatures.insert(
|
|
std::make_pair(existential, genericSig));
|
|
assert(result.second);
|
|
(void) result;
|
|
|
|
return genericSig;
|
|
}
|
|
|
|
SILLayout *SILLayout::get(ASTContext &C,
|
|
CanGenericSignature Generics,
|
|
ArrayRef<SILField> Fields) {
|
|
// Profile the layout parameters.
|
|
llvm::FoldingSetNodeID id;
|
|
Profile(id, Generics, Fields);
|
|
|
|
// Return an existing layout if there is one.
|
|
void *insertPos;
|
|
auto &Layouts = C.Impl.SILLayouts;
|
|
|
|
if (auto existing = Layouts.FindNodeOrInsertPos(id, insertPos))
|
|
return existing;
|
|
|
|
// Allocate a new layout.
|
|
void *memory = C.Allocate(totalSizeToAlloc<SILField>(Fields.size()),
|
|
alignof(SILLayout));
|
|
|
|
auto newLayout = ::new (memory) SILLayout(Generics, Fields);
|
|
Layouts.InsertNode(newLayout, insertPos);
|
|
return newLayout;
|
|
}
|
|
|
|
CanSILBoxType SILBoxType::get(ASTContext &C,
|
|
SILLayout *Layout,
|
|
SubstitutionList Args) {
|
|
llvm::FoldingSetNodeID id;
|
|
|
|
// Canonicalize substitutions.
|
|
SmallVector<Substitution, 4> CanArgs;
|
|
Args = getCanonicalSubstitutionList(Args, CanArgs);
|
|
|
|
Profile(id, Layout, Args);
|
|
|
|
// Return an existing layout if there is one.
|
|
void *insertPos;
|
|
auto &SILBoxTypes = C.Impl.SILBoxTypes;
|
|
|
|
if (auto existing = SILBoxTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return CanSILBoxType(existing);
|
|
|
|
void *memory = C.Allocate(totalSizeToAlloc<Substitution>(Args.size()),
|
|
alignof(SILBoxType));
|
|
auto newBox = ::new (memory) SILBoxType(C, Layout, Args);
|
|
SILBoxTypes.InsertNode(newBox, insertPos);
|
|
return CanSILBoxType(newBox);
|
|
}
|
|
|
|
/// TODO: Transitional factory to present the single-type SILBoxType::get
|
|
/// interface.
|
|
CanSILBoxType SILBoxType::get(CanType boxedType) {
|
|
auto &ctx = boxedType->getASTContext();
|
|
auto singleGenericParamSignature = ctx.getSingleGenericParameterSignature();
|
|
auto layout = SILLayout::get(ctx, singleGenericParamSignature,
|
|
SILField(CanType(singleGenericParamSignature
|
|
->getGenericParams()[0]),
|
|
/*mutable*/ true));
|
|
|
|
return get(boxedType->getASTContext(), layout, Substitution(boxedType, {}));
|
|
}
|
|
|
|
LayoutConstraint
|
|
LayoutConstraint::getLayoutConstraint(LayoutConstraintKind Kind,
|
|
ASTContext &C) {
|
|
return getLayoutConstraint(Kind, 0, 0, C);
|
|
}
|
|
|
|
LayoutConstraint LayoutConstraint::getLayoutConstraint(LayoutConstraintKind Kind,
|
|
unsigned SizeInBits,
|
|
unsigned Alignment,
|
|
ASTContext &C) {
|
|
if (!LayoutConstraintInfo::isKnownSizeTrivial(Kind)) {
|
|
assert(SizeInBits == 0);
|
|
assert(Alignment == 0);
|
|
return getLayoutConstraint(Kind);
|
|
}
|
|
|
|
// Check to see if we've already seen this tuple before.
|
|
llvm::FoldingSetNodeID ID;
|
|
LayoutConstraintInfo::Profile(ID, Kind, SizeInBits, Alignment);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (LayoutConstraintInfo *Layout =
|
|
C.Impl.getArena(AllocationArena::Permanent)
|
|
.LayoutConstraints.FindNodeOrInsertPos(ID, InsertPos))
|
|
return LayoutConstraint(Layout);
|
|
|
|
LayoutConstraintInfo *New =
|
|
LayoutConstraintInfo::isTrivial(Kind)
|
|
? new (C, AllocationArena::Permanent)
|
|
LayoutConstraintInfo(Kind, SizeInBits, Alignment)
|
|
: new (C, AllocationArena::Permanent) LayoutConstraintInfo(Kind);
|
|
C.Impl.getArena(AllocationArena::Permanent)
|
|
.LayoutConstraints.InsertNode(New, InsertPos);
|
|
return LayoutConstraint(New);
|
|
}
|
|
|
|
|