Files
swift-mirror/tools/SourceKit/lib/SwiftLang/SwiftASTManager.cpp
Alex Hoppen 7a80034e35 [SourceKit] Support cancellation of requests while an AST is being built
This commit refactors the way ASTs are being built in SourceKit and how `SwiftASTConsumer`s are served by the built ASTs. `SwiftASTManager.h` should give an overview of the new design.

This commit does not change the cancellation paradigm in SourceKit (yet). That is, subsequent requests with the same `OncePerASTToken` still cancel previous requests with the same token. But while previously, we were only able to cancel requests that haven’t started an AST build yet, we can now also cancel the AST build of the to-be-cancelled requests.

With this change in place, we can start looking into explicit cancellation of requests or other cancellation paradigms.
2021-09-23 11:53:45 +02:00

1284 lines
48 KiB
C++

//===--- SwiftASTManager.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SwiftASTManager.h"
#include "SwiftEditorDiagConsumer.h"
#include "SwiftInvocation.h"
#include "SwiftLangSupport.h"
#include "SourceKit/Core/Context.h"
#include "SourceKit/Support/Concurrency.h"
#include "SourceKit/Support/ImmutableTextBuffer.h"
#include "SourceKit/Support/Logging.h"
#include "SourceKit/Support/Tracing.h"
#include "swift/Basic/Cache.h"
#include "swift/Driver/FrontendUtil.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
// This is included only for createLazyResolver(). Move to different header ?
#include "swift/Sema/IDETypeChecking.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace SourceKit;
using namespace swift;
using namespace swift::sys;
void SwiftASTConsumer::failed(StringRef Error) { }
//===----------------------------------------------------------------------===//
// SwiftInvocation
//===----------------------------------------------------------------------===//
namespace {
struct InvocationOptions {
const std::vector<std::string> Args;
const std::string PrimaryFile;
const CompilerInvocation Invok;
InvocationOptions(ArrayRef<const char *> CArgs, StringRef PrimaryFile,
CompilerInvocation Invok)
: Args(_convertArgs(CArgs)),
PrimaryFile(PrimaryFile),
Invok(std::move(Invok)) {
// Assert invocation with a primary file. We want to avoid full typechecking
// for all files.
assert(!this->PrimaryFile.empty());
assert(this->Invok.getFrontendOptions()
.InputsAndOutputs.hasUniquePrimaryInput() &&
"Must have exactly one primary input for code completion, etc.");
}
void applyTo(CompilerInvocation &CompInvok) const;
void
applyToSubstitutingInputs(CompilerInvocation &CompInvok,
FrontendInputsAndOutputs &&InputsAndOutputs) const;
void profile(llvm::FoldingSetNodeID &ID) const;
void raw(std::vector<std::string> &Args, std::string &PrimaryFile) const;
private:
static std::vector<std::string> _convertArgs(ArrayRef<const char *> CArgs) {
std::vector<std::string> Args;
Args.reserve(CArgs.size());
for (auto Arg : CArgs)
Args.push_back(Arg);
return Args;
}
};
struct ASTKey {
llvm::FoldingSetNodeID FSID;
};
template <typename T>
size_t getVectorMemoryCost(const std::vector<T> &Vec) {
return Vec.capacity() * sizeof(T);
}
} // end anonymous namespace
struct SwiftInvocation::Implementation {
InvocationOptions Opts;
ASTKey Key;
explicit Implementation(InvocationOptions opts) : Opts(std::move(opts)) {
Opts.profile(Key.FSID);
}
};
SwiftInvocation::~SwiftInvocation() {
delete &Impl;
}
void SwiftInvocation::applyTo(swift::CompilerInvocation &CompInvok) const {
return Impl.Opts.applyTo(CompInvok);
}
void SwiftInvocation::raw(std::vector<std::string> &Args,
std::string &PrimaryFile) const {
return Impl.Opts.raw(Args, PrimaryFile);
}
void InvocationOptions::applyTo(CompilerInvocation &CompInvok) const {
CompInvok = this->Invok;
}
void InvocationOptions::applyToSubstitutingInputs(
CompilerInvocation &CompInvok,
FrontendInputsAndOutputs &&inputsAndOutputs) const {
CompInvok = this->Invok;
CompInvok.getFrontendOptions().InputsAndOutputs = inputsAndOutputs;
}
void InvocationOptions::raw(std::vector<std::string> &Args,
std::string &PrimaryFile) const {
Args.assign(this->Args.begin(), this->Args.end());
PrimaryFile = this->PrimaryFile;
}
void InvocationOptions::profile(llvm::FoldingSetNodeID &ID) const {
// FIXME: This ties ASTs to every argument and the exact order that they were
// provided, preventing much sharing of ASTs.
// Note though that previously we tried targeting specific options considered
// semantically relevant but it proved too fragile (very easy to miss some new
// compiler invocation option).
// Possibly have all compiler invocation options auto-generated from a
// tablegen definition file, thus forcing a decision for each option if it is
// ok to share ASTs with the option differing.
for (auto &Arg : Args)
ID.AddString(Arg);
ID.AddString(PrimaryFile);
}
//===----------------------------------------------------------------------===//
// SwiftASTManager
//===----------------------------------------------------------------------===//
namespace SourceKit {
struct ASTUnit::Implementation {
const uint64_t Generation;
std::shared_ptr<SwiftStatistics> Stats;
SmallVector<ImmutableTextSnapshotRef, 4> Snapshots;
EditorDiagConsumer CollectDiagConsumer;
CompilerInstance CompInst;
WorkQueue Queue{ WorkQueue::Dequeuing::Serial, "sourcekit.swift.ConsumeAST" };
Implementation(uint64_t Generation, std::shared_ptr<SwiftStatistics> Stats)
: Generation(Generation), Stats(Stats) {}
void consumeAsync(SwiftASTConsumerRef ASTConsumer, ASTUnitRef ASTRef);
};
void ASTUnit::Implementation::consumeAsync(SwiftASTConsumerRef ConsumerRef,
ASTUnitRef ASTRef) {
#if defined(_WIN32)
// Windows uses more up for stack space (why?) than macOS/Linux which
// causes stack overflows in a dispatch thread with 64k stack. Passing
// useDeepStack=true means it's given a _beginthreadex thread with an 8MB
// stack.
bool useDeepStack = true;
#else
bool useDeepStack = false;
#endif
Queue.dispatch([ASTRef, ConsumerRef]{
SwiftASTConsumer &ASTConsumer = *ConsumerRef;
CompilerInstance &CI = ASTRef->getCompilerInstance();
if (CI.getPrimarySourceFile()) {
ASTConsumer.handlePrimaryAST(ASTRef);
} else {
LOG_WARN_FUNC("did not find primary SourceFile");
ConsumerRef->failed("did not find primary SourceFile");
}
}, useDeepStack);
}
ASTUnit::ASTUnit(uint64_t Generation, std::shared_ptr<SwiftStatistics> Stats)
: Impl(*new Implementation(Generation, Stats)) {
auto numASTs = ++Stats->numASTsInMem;
Stats->maxASTsInMem.updateMax(numASTs);
}
ASTUnit::~ASTUnit() {
--Impl.Stats->numASTsInMem;
delete &Impl;
}
swift::CompilerInstance &ASTUnit::getCompilerInstance() const {
return Impl.CompInst;
}
uint64_t ASTUnit::getGeneration() const {
return Impl.Generation;
}
ArrayRef<ImmutableTextSnapshotRef> ASTUnit::getSnapshots() const {
return Impl.Snapshots;
}
SourceFile &ASTUnit::getPrimarySourceFile() const {
return *Impl.CompInst.getPrimarySourceFile();
}
EditorDiagConsumer &ASTUnit::getEditorDiagConsumer() const {
return Impl.CollectDiagConsumer;
}
void ASTUnit::performAsync(std::function<void()> Fn) {
Impl.Queue.dispatch(std::move(Fn));
}
} // namespace SourceKit
namespace {
typedef uint64_t BufferStamp;
struct FileContent {
ImmutableTextSnapshotRef Snapshot;
std::string Filename;
std::unique_ptr<llvm::MemoryBuffer> Buffer;
bool IsPrimary;
BufferStamp Stamp;
FileContent(ImmutableTextSnapshotRef Snapshot, std::string Filename,
std::unique_ptr<llvm::MemoryBuffer> Buffer, bool IsPrimary,
BufferStamp Stamp)
: Snapshot(std::move(Snapshot)), Filename(Filename),
Buffer(std::move(Buffer)), IsPrimary(IsPrimary), Stamp(Stamp) {}
explicit operator InputFile() const {
return InputFile(Filename, IsPrimary, Buffer.get());
}
};
/// An \c ASTBuildOperations builds an AST. Once the AST is built, it informs
/// a list of \c SwiftASTConsumers about the built AST.
/// It also supports cancellation with the following paradigm: If an \c
/// SwiftASTConsumer is no longer needed, it can be cancelled, which will remove
/// it from the \c ASTBuildOperation. If the \c ASTBuildOperation has no more
/// consumers attached to it, it will cancel the AST build at the next
/// opportunity.
class ASTBuildOperation
: public std::enable_shared_from_this<ASTBuildOperation> {
/// After the AST has been built, the corresponding result.
struct ASTBuildResult {
/// The AST that was created by the build operation.
ASTUnitRef AST;
/// An error message emitted by the creation of the AST. There might still
/// be an AST if an error occurred, but it's usefulnes depends on the
/// severity of the error.
std::string Error;
/// Whether the build operation was cancelled. There might be an AST and
/// error but their usefulness depends on when the operation was cancelled.
bool Cancelled;
/// Whether the result contains any values, i.e. whether the operation has
/// produced a result yet.
bool HasValue;
ASTBuildResult() : HasValue(false) {}
void emplace(ASTUnitRef AST, std::string Error, bool Cancelled) {
assert(!HasValue && "Should only emplace a result once");
this->HasValue = true;
this->AST = AST;
this->Error = Error;
this->Cancelled = Cancelled;
}
operator bool() const { return HasValue; }
size_t getMemoryCost() {
size_t Cost = sizeof(*this) + Error.size();
if (AST) {
Cost += sizeof(*AST);
if (AST->getCompilerInstance().hasASTContext()) {
Cost += AST->Impl.CompInst.getASTContext().getTotalMemory();
}
}
return Cost;
}
};
/// Parameters necessary to build the AST.
const SwiftInvocationRef InvokRef;
const IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem;
const std::vector<ImmutableTextSnapshotRef> Snapshots;
/// Stamps of files used to build the AST. \c Stamps contains the stamps of
/// all explicit input files, which can be determined at construction time of
/// the \c ASTBuildOperation.
const std::vector<BufferStamp> Stamps;
/// \c DependencyStamps contains the stamps of all module depenecies needed
/// for the AST build. These stamps are only known after the AST is built.
/// Before the AST has been built, we thus assume that all dependency stamps
/// match. This seems to be a reasonable assumption since the dependencies
/// shouldn't change (much) in the time between an \c ASTBuildOperation is
/// created and until it produced an AST.
SmallVector<std::pair<std::string, BufferStamp>, 8> DependencyStamps = {};
/// The ASTManager from which this operation got scheduled. Used to update
/// global stats and access the file system.
SwiftASTManagerRef ASTManager;
/// A flag to cancel the AST build. If this flag is set to \c true, the type
/// checker will cancel type checking at the next possible opportunity.
const std::shared_ptr<std::atomic<bool>> CancellationFlag =
std::make_shared<std::atomic<bool>>(false);
/// A callback that's called when the operation finishes. Used to remove it
/// from the \c ASTProducer that scheduled it.
const std::function<void(void)> DidFinishCallback;
/// The consumers and result are guarded by the same mutex to avoid
/// simultaneously adding a consumer and setting the result, which might cause
/// the consumer's callback to neither be called when it gets added to this
/// operation, nor when the operation finishes.
llvm::sys::Mutex ConsumersAndResultMtx;
/// The consumers that should be informed about this AST once it finishes
/// building. When this vector is empty, the AST build can be cancelled.
SmallVector<SwiftASTConsumerRef, 4> Consumers = {};
/// Once the build operation has finished, its result, which can be an AST, an
/// error or the fact that it has been cancelled.
ASTBuildResult Result;
enum class State { Created, Queued, Running, Finished };
/// The state the operation is in. Only used in assertions to verify no state
/// is skipped or executed twice.
State OperationState = State::Created;
/// Inform a consumer that the AST has been built or that the build failed
/// with an error.
void informConsumer(SwiftASTConsumerRef Consumer);
/// Actually build the AST unit, synchronously on the current thread. If an
/// error occurred during the build, \p Error will contain the message. In
/// case of an error, a non-null AST may still be returned. Its usefulness
/// depends on the severity of the error.
ASTUnitRef buildASTUnit(std::string &Error);
/// Retrieve the contents of all files needed for the compiler invocation to
/// build this AST. For files contained in \c Snapshots use the snapshot's
/// content. For all other files, consult the file system.
void findSnapshotAndOpenFiles(SmallVectorImpl<FileContent> &Contents,
std::string &Error) const;
/// Transition the build operation to \p NewState, asserting that the current
/// state is \p ExpectedOldState.
void transitionToState(State NewState, State ExpectedOldState) {
assert(OperationState == ExpectedOldState);
OperationState = NewState;
}
/// Create a vector of text snapshots containing all files explicitly
/// referenced by the compiler invocation and a vector of buffer stamps of
/// those files. For all files that have a snapshot specified in \p
/// FixedSnapshots, that snapshot is used. For all other files \p FileSystem
/// will be consulted for the current contents of the file.
std::pair<std::vector<ImmutableTextSnapshotRef>, std::vector<BufferStamp>>
snapshotAndStampsForFilesInCompilerInvocation(
ArrayRef<ImmutableTextSnapshotRef> FixedSnapshots);
public:
ASTBuildOperation(IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots,
SwiftInvocationRef InvokRef, SwiftASTManagerRef ASTManager,
std::function<void(void)> DidFinishCallback)
: InvokRef(InvokRef), FileSystem(FileSystem), ASTManager(ASTManager),
DidFinishCallback(DidFinishCallback) {
auto SnapshotsAndStamps =
snapshotAndStampsForFilesInCompilerInvocation(Snapshots);
// const_cast is fine here. We just want to guard against modifying these
// fields later on. It's fine to set them in the constructor.
const_cast<std::vector<ImmutableTextSnapshotRef> &>(this->Snapshots) =
SnapshotsAndStamps.first;
const_cast<std::vector<BufferStamp> &>(this->Stamps) =
SnapshotsAndStamps.second;
}
~ASTBuildOperation() {
assert(OperationState == State::Finished &&
"ASTBuildOperations should only be destructed once they have "
"produced an AST or are finished. Otherwise, some consumers might "
"not receive their callback.");
}
ArrayRef<ImmutableTextSnapshotRef> getSnapshots() const { return Snapshots; }
/// Returns true if the build operation has finished.
bool isFinished() {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
return Result.HasValue;
}
bool isCancelled() {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
return (Result.HasValue && Result.Cancelled) ||
CancellationFlag->load(std::memory_order_relaxed);
}
size_t getMemoryCost() {
return sizeof(*this) + getVectorMemoryCost(Snapshots) +
getVectorMemoryCost(Stamps) + Result.getMemoryCost();
}
/// Schedule building this AST on the given \p Queue.
void schedule(WorkQueue Queue);
/// Inform the given \p Consumer when the AST has been built. If the build
/// operation has already built the AST, the consumer is directly informed.
/// Returns \c true if the \p Consumer was added. Returns \c false if the
/// operation has already been cancelled, in which case the consumer should be
/// scheduled on a different build operation. This ensures that we don't hit
/// a race condition when a build operation gets cancelled in between when it
/// gets selected as a viable candidate but before the consumer gets added to
/// it.
bool addConsumer(SwiftASTConsumerRef Consumer);
/// Determines whether the AST built from this build operation can be used for
/// the given source state. Note that before the AST is built, this does not
/// consider depenencies needed for the AST build that are not explicitly
/// listed in the input files. As such, this might be \c true before the AST
/// build and \c false after the AST has been built. See documentation on \c
/// DependencyStamps for more info.
bool matchesSourceState(IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots);
/// Called when a consumer is cancelled. This calls \c cancelled on the
/// consumer, removes it from the \c Consumers severed by this build operation
/// and, if no consumers are left, cancels the AST build of this operation.
void requestConsumerCancellation(SwiftASTConsumerRef Consumer);
};
using ASTBuildOperationRef = std::shared_ptr<ASTBuildOperation>;
/// An \c ASTProducer produces ASTs for a given compiler invocation through
/// multiple \c ASTBuildOperations.
/// While \c ASTBuildOperations only build ASTs for a single snapshot, \c
/// ASTProducer also keeps track of ASTs built from different (older) snapshots.
/// It is thus able to serve an \c SwiftASTConsumer with an AST from an older
/// snapshot, should it accept it by returning \c true in \c
/// canUseASTWithSnapshots.
class ASTProducer : public std::enable_shared_from_this<ASTProducer> {
SwiftInvocationRef InvokRef;
/// The build operations that have been scheduled by this producer. Some of
/// these operations might already have finished, effectively caching an old
/// AST, one might currently be building an AST and some might be waiting to
/// execute. Operations are guaranteed to be in FIFO order, that is the first
/// one in the vector is the oldes build operation.
SmallVector<ASTBuildOperationRef, 4> BuildOperations = {};
llvm::sys::Mutex BuildOperationsMtx;
/// Erase all finished build operations with a result except for the latest
/// one which contains a successful results.
/// This cleans up all stale build operations (probably containing old ASTs),
/// but keeps the latest AST around, so that new consumers can be served from
/// it, if possible.
///
/// Assumes that \c BuildOperationsMtx has been claimed.
void cleanBuildOperations() {
auto ReverseOperations = llvm::reverse(BuildOperations);
auto LastOperationWithResultIt =
llvm::find_if(ReverseOperations, [](ASTBuildOperationRef BuildOp) {
return BuildOp->isFinished() && !BuildOp->isCancelled();
});
ASTBuildOperationRef LastOperationWithResult = nullptr;
if (LastOperationWithResultIt != ReverseOperations.end()) {
LastOperationWithResult = *LastOperationWithResultIt;
}
llvm::erase_if(BuildOperations, [LastOperationWithResult](
ASTBuildOperationRef BuildOp) {
return BuildOp->isFinished() && BuildOp != LastOperationWithResult;
});
}
/// Returns the latest build operation which can serve the \p Consumer or
/// \c nullptr if no such build operation exists.
/// \p FileSystem and \p Snapshots describe the source state that the \p
/// Consumer expects.
///
/// Assumes that \c BuildOperationsMtx has been claimed.
ASTBuildOperationRef getBuildOperationForConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots, SwiftASTManagerRef Mgr);
public:
explicit ASTProducer(SwiftInvocationRef InvokRef)
: InvokRef(std::move(InvokRef)) {}
/// Schedules the given \p Consumer to the latest suitable build operation.
/// Independently of what happens, the consumer will receive either a \c
/// cancelled, \c failed or \c handlePrimaryAST callback.
void enqueueConsumer(SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots,
SwiftASTManagerRef Mgr);
size_t getMemoryCost() const {
size_t Cost = sizeof(*this);
for (auto &BuildOp : BuildOperations) {
Cost += BuildOp->getMemoryCost();
}
return Cost;
}
};
typedef std::shared_ptr<ASTProducer> ASTProducerRef;
} // end anonymous namespace
namespace swift {
namespace sys {
template <>
struct CacheValueCostInfo<ASTProducer> {
static size_t getCost(const ASTProducer &Unit) {
return Unit.getMemoryCost();
}
};
template <>
struct CacheKeyHashInfo<ASTKey> {
static uintptr_t getHashValue(const ASTKey &Key) {
return Key.FSID.ComputeHash();
}
static bool isEqual(void *LHS, void *RHS) {
return static_cast<ASTKey*>(LHS)->FSID == static_cast<ASTKey*>(RHS)->FSID;
}
};
} // namespace sys
} // namespace swift
struct SwiftASTManager::Implementation {
explicit Implementation(
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs,
std::shared_ptr<GlobalConfig> Config,
std::shared_ptr<SwiftStatistics> Stats, StringRef RuntimeResourcePath,
StringRef DiagnosticDocumentationPath)
: EditorDocs(EditorDocs), Config(Config), Stats(Stats),
RuntimeResourcePath(RuntimeResourcePath),
DiagnosticDocumentationPath(DiagnosticDocumentationPath),
SessionTimestamp(llvm::sys::toTimeT(std::chrono::system_clock::now())) {
}
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs;
std::shared_ptr<GlobalConfig> Config;
std::shared_ptr<SwiftStatistics> Stats;
std::string RuntimeResourcePath;
std::string DiagnosticDocumentationPath;
SourceManager SourceMgr;
Cache<ASTKey, ASTProducerRef> ASTCache{ "sourcekit.swift.ASTCache" };
llvm::sys::Mutex CacheMtx;
std::time_t SessionTimestamp;
/// A consumer that has been scheduled using \c processASTAsync.
/// The \c OncePerASTToken allows us to cancel previously scheduled consumers
/// if a new request/consumer with the same \c OncePerASTToken comes in.
/// Since we only keep a reference to the consumers to cancel them, the
/// reference to the consumer itself is weak - if it's already deallocated,
/// there is no need to cancel it anymore.
struct ScheduledConsumer {
SwiftASTConsumerWeakRef Consumer;
const void *OncePerASTToken;
};
llvm::sys::Mutex ScheduledConsumersMtx;
std::vector<ScheduledConsumer> ScheduledConsumers;
/// Queue guaranteeing that only one \c ASTBuildOperation builds an AST at a
/// time.
WorkQueue ASTBuildQueue{ WorkQueue::Dequeuing::Serial,
"sourcekit.swift.ASTBuilding" };
/// Remove all scheduled consumers that don't exist anymore. This is just a
/// garbage-collection operation to make sure the \c ScheduledConsumers vector
/// doesn't explode. One should never make assumptions that all consumers in
/// \c ScheduledConsumers are alive.
void cleanDeletedConsumers() {
llvm::sys::ScopedLock L(ScheduledConsumersMtx);
llvm::erase_if(ScheduledConsumers, [](ScheduledConsumer Consumer) {
return Consumer.Consumer.expired();
});
}
ASTProducerRef getASTProducer(SwiftInvocationRef InvokRef);
FileContent
getFileContent(StringRef FilePath, bool IsPrimary,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const;
BufferStamp
getBufferStamp(StringRef FilePath,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem) const;
std::unique_ptr<llvm::MemoryBuffer>
getMemoryBuffer(StringRef Filename,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const;
};
SwiftASTManager::SwiftASTManager(
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs,
std::shared_ptr<GlobalConfig> Config,
std::shared_ptr<SwiftStatistics> Stats, StringRef RuntimeResourcePath,
StringRef DiagnosticDocumentationPath)
: Impl(*new Implementation(EditorDocs, Config, Stats, RuntimeResourcePath,
DiagnosticDocumentationPath)) {}
SwiftASTManager::~SwiftASTManager() {
delete &Impl;
}
std::unique_ptr<llvm::MemoryBuffer>
SwiftASTManager::getMemoryBuffer(StringRef Filename, std::string &Error) {
return Impl.getMemoryBuffer(Filename, llvm::vfs::getRealFileSystem(), Error);
}
static FrontendInputsAndOutputs
convertFileContentsToInputs(const SmallVectorImpl<FileContent> &contents) {
FrontendInputsAndOutputs inputsAndOutputs;
for (const FileContent &content : contents)
inputsAndOutputs.addInput(InputFile(content));
return inputsAndOutputs;
}
bool SwiftASTManager::initCompilerInvocation(
CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
DiagnosticEngine &Diags, StringRef UnresolvedPrimaryFile,
std::string &Error) {
return initCompilerInvocation(Invocation, OrigArgs, Diags,
UnresolvedPrimaryFile,
llvm::vfs::getRealFileSystem(),
Error);
}
bool SwiftASTManager::initCompilerInvocation(
CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
DiagnosticEngine &Diags, StringRef UnresolvedPrimaryFile,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) {
return ide::initCompilerInvocation(
Invocation, OrigArgs, Diags, UnresolvedPrimaryFile, FileSystem,
Impl.RuntimeResourcePath, Impl.DiagnosticDocumentationPath,
Impl.SessionTimestamp, Error);
}
bool SwiftASTManager::initCompilerInvocation(CompilerInvocation &CompInvok,
ArrayRef<const char *> OrigArgs,
StringRef PrimaryFile,
std::string &Error) {
DiagnosticEngine Diagnostics(Impl.SourceMgr);
return initCompilerInvocation(CompInvok, OrigArgs, Diagnostics, PrimaryFile,
Error);
}
bool SwiftASTManager::initCompilerInvocationNoInputs(
swift::CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
swift::DiagnosticEngine &Diags, std::string &Error, bool AllowInputs) {
SmallVector<const char *, 16> Args(OrigArgs.begin(), OrigArgs.end());
// Use stdin as a .swift input to satisfy the driver.
Args.push_back("-");
if (initCompilerInvocation(Invocation, Args, Diags, "", Error))
return true;
if (!AllowInputs &&
Invocation.getFrontendOptions().InputsAndOutputs.inputCount() > 1) {
Error = "unexpected input in compiler arguments";
return true;
}
// Clear the inputs.
Invocation.getFrontendOptions().InputsAndOutputs.clearInputs();
return false;
}
SwiftInvocationRef SwiftASTManager::getInvocation(
ArrayRef<const char *> OrigArgs, StringRef PrimaryFile, std::string &Error) {
return getInvocation(OrigArgs, PrimaryFile, llvm::vfs::getRealFileSystem(),
Error);
}
SwiftInvocationRef SwiftASTManager::getInvocation(
ArrayRef<const char *> OrigArgs, StringRef PrimaryFile,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) {
assert(FileSystem);
DiagnosticEngine Diags(Impl.SourceMgr);
EditorDiagConsumer CollectDiagConsumer;
Diags.addConsumer(CollectDiagConsumer);
CompilerInvocation CompInvok;
if (initCompilerInvocation(CompInvok, OrigArgs, Diags, PrimaryFile,
FileSystem, Error)) {
// We create a traced operation here to represent the failure to parse
// arguments since we cannot reach `createAST` where that would normally
// happen.
trace::TracedOperation TracedOp(trace::OperationKind::PerformSema);
if (TracedOp.enabled()) {
trace::SwiftInvocation TraceInfo;
trace::initTraceInfo(TraceInfo, PrimaryFile, OrigArgs);
TracedOp.setDiagnosticProvider(
[&CollectDiagConsumer](SmallVectorImpl<DiagnosticEntryInfo> &diags) {
CollectDiagConsumer.getAllDiagnostics(diags);
});
TracedOp.start(TraceInfo);
}
return nullptr;
}
InvocationOptions Opts(OrigArgs, PrimaryFile, CompInvok);
return new SwiftInvocation(
*new SwiftInvocation::Implementation(std::move(Opts)));
}
void SwiftASTManager::processASTAsync(
SwiftInvocationRef InvokRef, SwiftASTConsumerRef ASTConsumer,
const void *OncePerASTToken,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots) {
assert(fileSystem);
ASTProducerRef Producer = Impl.getASTProducer(InvokRef);
Impl.cleanDeletedConsumers();
{
llvm::sys::ScopedLock L(Impl.ScheduledConsumersMtx);
if (OncePerASTToken) {
// Cancel any consumers with the same OncePerASTToken.
for (auto ScheduledConsumer : Impl.ScheduledConsumers) {
if (ScheduledConsumer.OncePerASTToken == OncePerASTToken) {
if (auto Consumer = ScheduledConsumer.Consumer.lock()) {
Consumer->requestCancellation();
}
}
}
}
Impl.ScheduledConsumers.push_back({ASTConsumer, OncePerASTToken});
}
Producer->enqueueConsumer(ASTConsumer, fileSystem, Snapshots,
shared_from_this());
}
void SwiftASTManager::removeCachedAST(SwiftInvocationRef Invok) {
Impl.ASTCache.remove(Invok->Impl.Key);
}
ASTProducerRef
SwiftASTManager::Implementation::getASTProducer(SwiftInvocationRef InvokRef) {
llvm::sys::ScopedLock L(CacheMtx);
llvm::Optional<ASTProducerRef> OptProducer = ASTCache.get(InvokRef->Impl.Key);
if (OptProducer.hasValue())
return OptProducer.getValue();
ASTProducerRef Producer = std::make_shared<ASTProducer>(InvokRef);
ASTCache.set(InvokRef->Impl.Key, Producer);
return Producer;
}
static FileContent getFileContentFromSnap(ImmutableTextSnapshotRef Snap,
bool IsPrimary, StringRef FilePath) {
auto Buf = llvm::MemoryBuffer::getMemBufferCopy(
Snap->getBuffer()->getText(), FilePath);
return FileContent(Snap, FilePath.str(), std::move(Buf), IsPrimary,
Snap->getStamp());
}
FileContent SwiftASTManager::Implementation::getFileContent(
StringRef UnresolvedPath, bool IsPrimary,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const {
std::string FilePath = SwiftLangSupport::resolvePathSymlinks(UnresolvedPath);
if (auto EditorDoc = EditorDocs->findByPath(FilePath))
return getFileContentFromSnap(EditorDoc->getLatestSnapshot(), IsPrimary,
FilePath);
// FIXME: Is there a way to get timestamp and buffer for a file atomically ?
auto Stamp = getBufferStamp(FilePath, FileSystem);
auto Buffer = getMemoryBuffer(FilePath, FileSystem, Error);
return FileContent(nullptr, UnresolvedPath.str(), std::move(Buffer),
IsPrimary, Stamp);
}
BufferStamp SwiftASTManager::Implementation::getBufferStamp(
StringRef FilePath,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem) const {
assert(FileSystem);
if (auto EditorDoc = EditorDocs->findByPath(FilePath))
return EditorDoc->getLatestSnapshot()->getStamp();
auto StatusOrErr = FileSystem->status(FilePath);
if (std::error_code Err = StatusOrErr.getError()) {
// Failure to read the file.
LOG_WARN_FUNC("failed to stat file: " << FilePath << " (" << Err.message()
<< ')');
return -1;
}
return StatusOrErr.get().getLastModificationTime().time_since_epoch().count();
}
std::unique_ptr<llvm::MemoryBuffer>
SwiftASTManager::Implementation::getMemoryBuffer(
StringRef Filename,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const {
assert(FileSystem);
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
FileSystem->getBufferForFile(Filename);
if (FileBufOrErr)
return std::move(FileBufOrErr.get());
llvm::raw_string_ostream OSErr(Error);
OSErr << "error opening input file '" << Filename << "' ("
<< FileBufOrErr.getError().message() << ')';
return nullptr;
}
/// If \p Snapshots contains a snapshot for the given \p Filename return it.
/// Otherwise, return \c None.
Optional<ImmutableTextSnapshotRef>
findSnapshot(ArrayRef<ImmutableTextSnapshotRef> Snapshots,
const std::string &Filename) {
for (auto &Snap : Snapshots) {
if (Snap->getFilename() == Filename) {
return Snap;
}
}
return None;
}
std::pair<std::vector<ImmutableTextSnapshotRef>, std::vector<BufferStamp>>
ASTBuildOperation::snapshotAndStampsForFilesInCompilerInvocation(
ArrayRef<ImmutableTextSnapshotRef> FixedSnapshots) {
const InvocationOptions &Opts = InvokRef->Impl.Opts;
std::string Error; // is ignored
std::vector<ImmutableTextSnapshotRef> Snapshots = FixedSnapshots.vec();
std::vector<BufferStamp> Stamps;
Stamps.reserve(Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
// IMPORTANT: The computation of stamps must match the one in
// matchesSourceState.
for (const auto &input :
Opts.Invok.getFrontendOptions().InputsAndOutputs.getAllInputs()) {
const std::string &Filename = input.getFileName();
bool IsPrimary = input.isPrimary();
if (auto FoundSnapshot = findSnapshot(Snapshots, Filename)) {
Stamps.push_back(FoundSnapshot.getValue()->getStamp());
} else {
auto Content = ASTManager->Impl.getFileContent(Filename, IsPrimary,
FileSystem, Error);
Stamps.push_back(Content.Stamp);
if (Content.Snapshot) {
Snapshots.push_back(Content.Snapshot);
}
}
}
assert(Stamps.size() ==
Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
return std::make_pair(Snapshots, Stamps);
}
bool ASTBuildOperation::matchesSourceState(
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> OtherFileSystem,
ArrayRef<ImmutableTextSnapshotRef> OtherSnapshots) {
const SwiftInvocation::Implementation &Invok = InvokRef->Impl;
// Check if the inputs changed.
std::vector<BufferStamp> InputStamps;
InputStamps.reserve(
Invok.Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
// IMPORTANT: The computation of stamps must match the one in
// snapshotAndStampsForFilesInCompilerInvocation.
for (const auto &input :
Invok.Opts.Invok.getFrontendOptions().InputsAndOutputs.getAllInputs()) {
const std::string &File = input.getFileName();
if (auto FoundSnapshot = findSnapshot(OtherSnapshots, File)) {
InputStamps.push_back(FoundSnapshot.getValue()->getStamp());
} else {
InputStamps.push_back(
ASTManager->Impl.getBufferStamp(File, OtherFileSystem));
}
}
assert(InputStamps.size() ==
Invok.Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
if (Stamps != InputStamps)
return false;
for (auto &Dependency : DependencyStamps) {
if (Dependency.second !=
ASTManager->Impl.getBufferStamp(Dependency.first, OtherFileSystem))
return false;
}
return true;
}
void ASTBuildOperation::requestConsumerCancellation(
SwiftASTConsumerRef Consumer) {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
// No need to check if we have already called the consumer here, because it
// is removed from `Consumers` if it's informed about a result from
// `schedule()`.
auto ConsumerIndex = llvm::find_if(
Consumers, [&Consumer](SwiftASTConsumerRef ConsumerInQueue) {
return ConsumerInQueue == Consumer;
});
if (ConsumerIndex == Consumers.end()) {
// Consumer no longer tracked by this build operation. Did it finish
// already?
return;
}
Consumers.erase(ConsumerIndex);
Consumer->cancelled();
if (Consumers.empty()) {
// If there are no more consumers waiting for this result, cancel the AST
// build.
CancellationFlag->store(true, std::memory_order_relaxed);
}
}
static void collectModuleDependencies(ModuleDecl *TopMod,
llvm::SmallPtrSetImpl<ModuleDecl *> &Visited,
SmallVectorImpl<std::string> &Filenames) {
if (!TopMod)
return;
auto ClangModuleLoader = TopMod->getASTContext().getClangModuleLoader();
ModuleDecl::ImportFilter ImportFilter = {
ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default};
if (Visited.empty()) {
// Only collect implementation-only dependencies from the main module.
ImportFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
}
// FIXME: ImportFilterKind::ShadowedByCrossImportOverlay?
SmallVector<ImportedModule, 8> Imports;
TopMod->getImportedModules(Imports, ImportFilter);
for (auto Import : Imports) {
ModuleDecl *Mod = Import.importedModule;
if (Mod->isSystemModule())
continue;
// FIXME: Setup dependencies on the included headers.
if (ClangModuleLoader &&
Mod == ClangModuleLoader->getImportedHeaderModule())
continue;
bool NewVisit = Visited.insert(Mod).second;
if (!NewVisit)
continue;
// FIXME: Handle modules with multiple source files; these will fail on
// getModuleFilename() (by returning an empty path). Note that such modules
// may be heterogeneous.
{
std::string Path = Mod->getModuleFilename().str();
if (Path.empty() || Path == TopMod->getModuleFilename())
continue; // this is a submodule.
Filenames.push_back(std::move(Path));
}
bool IsClangModule = false;
for (auto File : Mod->getFiles()) {
if (File->getKind() == FileUnitKind::ClangModule) {
IsClangModule = true;
break;
}
}
if (IsClangModule) {
// No need to keep track of the clang module dependencies.
continue;
}
collectModuleDependencies(Mod, Visited, Filenames);
}
}
static std::atomic<uint64_t> ASTUnitGeneration{ 0 };
void ASTBuildOperation::informConsumer(SwiftASTConsumerRef Consumer) {
assert(Result &&
"Can't inform consumer about result if we don't have a result yet");
Consumer->removeCancellationRequestCallback();
if (Result.Cancelled) {
assert(false && "We should only cancel the build operation if there are no "
"more consumers attached to it and should not accept any "
"new consumers if the build operation was cancelled. Thus "
"this case should never happen.");
Consumer->cancelled();
} else if (Result.AST) {
Result.AST->Impl.consumeAsync(Consumer, Result.AST);
} else {
Consumer->failed(Result.Error);
}
}
ASTUnitRef ASTBuildOperation::buildASTUnit(std::string &Error) {
++ASTManager->Impl.Stats->numASTBuilds;
const InvocationOptions &Opts = InvokRef->Impl.Opts;
LOG_FUNC_SECTION(InfoHighPrio) {
Log->getOS() << "AST build: ";
Log->getOS() << Opts.Invok.getModuleName() << '/' << Opts.PrimaryFile;
}
SmallVector<FileContent, 8> Contents;
findSnapshotAndOpenFiles(Contents, Error);
ASTUnitRef ASTRef = new ASTUnit(++ASTUnitGeneration, ASTManager->Impl.Stats);
for (auto &Content : Contents) {
if (Content.Snapshot)
ASTRef->Impl.Snapshots.push_back(Content.Snapshot);
}
auto &CompIns = ASTRef->Impl.CompInst;
auto &Consumer = ASTRef->Impl.CollectDiagConsumer;
// Display diagnostics to stderr.
CompIns.addDiagnosticConsumer(&Consumer);
trace::TracedOperation TracedOp(trace::OperationKind::PerformSema);
trace::SwiftInvocation TraceInfo;
if (TracedOp.enabled()) {
trace::initTraceInfo(TraceInfo, InvokRef->Impl.Opts.PrimaryFile,
InvokRef->Impl.Opts.Args);
TracedOp.setDiagnosticProvider(
[&Consumer](SmallVectorImpl<DiagnosticEntryInfo> &diags) {
Consumer.getAllDiagnostics(diags);
});
}
CompilerInvocation Invocation;
InvokRef->Impl.Opts.applyToSubstitutingInputs(
Invocation, convertFileContentsToInputs(Contents));
Invocation.getLangOptions().CollectParsedToken = true;
Invocation.getTypeCheckerOptions().CancellationFlag = CancellationFlag;
if (FileSystem != llvm::vfs::getRealFileSystem()) {
CompIns.getSourceMgr().setFileSystem(FileSystem);
}
if (CompIns.setup(Invocation)) {
// FIXME: Report the diagnostic.
LOG_WARN_FUNC("Compilation setup failed!!!");
Error = "compilation setup failed";
return nullptr;
}
if (CompIns.loadStdlibIfNeeded()) {
LOG_WARN_FUNC("Loading the stdlib failed");
Error = "Loading the stdlib failed";
return nullptr;
}
registerIDERequestFunctions(CompIns.getASTContext().evaluator);
if (TracedOp.enabled()) {
TracedOp.start(TraceInfo);
}
CloseClangModuleFiles scopedCloseFiles(
*CompIns.getASTContext().getClangModuleLoader());
Consumer.setInputBufferIDs(ASTRef->getCompilerInstance().getInputBufferIDs());
CompIns.performSema();
llvm::SmallPtrSet<ModuleDecl *, 16> Visited;
SmallVector<std::string, 8> Filenames;
collectModuleDependencies(CompIns.getMainModule(), Visited, Filenames);
// FIXME: There exists a small window where the module file may have been
// modified after compilation finished and before we get its stamp.
for (auto &Filename : Filenames) {
DependencyStamps.push_back(std::make_pair(
Filename, ASTManager->Impl.getBufferStamp(Filename, FileSystem)));
}
// Since we only typecheck the primary file (plus referenced constructs
// from other files), any error is likely to break SIL generation.
if (!Consumer.hadAnyError()) {
// FIXME: Any error anywhere in the SourceFile will switch off SIL
// diagnostics. This means that this can happen:
// - The user sees a SIL diagnostic in one function
// - The user edits another function in the same file and introduces a
// typechecking error.
// - The SIL diagnostic in the first function will be gone.
//
// Could we maybe selectively SILGen functions from the SourceFile, so
// that we avoid SILGen'ing the second function with the typecheck error
// but still allow SILGen'ing the first function ?
// Or try to keep track of SIL diagnostics emitted previously ?
// FIXME: We should run SIL diagnostics asynchronously after typechecking
// so that they don't delay reporting of typechecking diagnostics and they
// don't block any other AST processing for the same SwiftInvocation.
if (auto SF = CompIns.getPrimarySourceFile()) {
SILOptions SILOpts = Invocation.getSILOptions();
auto &TC = CompIns.getSILTypes();
std::unique_ptr<SILModule> SILMod = performASTLowering(*SF, TC, SILOpts);
runSILDiagnosticPasses(*SILMod);
}
}
return ASTRef;
}
void ASTBuildOperation::findSnapshotAndOpenFiles(
SmallVectorImpl<FileContent> &Contents, std::string &Error) const {
const InvocationOptions &Opts = InvokRef->Impl.Opts;
for (const auto &input :
Opts.Invok.getFrontendOptions().InputsAndOutputs.getAllInputs()) {
const std::string &File = input.getFileName();
bool IsPrimary = input.isPrimary();
bool FoundSnapshot = false;
for (auto &Snap : Snapshots) {
if (Snap->getFilename() == File) {
FoundSnapshot = true;
Contents.push_back(getFileContentFromSnap(Snap, IsPrimary, File));
break;
}
}
if (FoundSnapshot)
continue;
auto Content =
ASTManager->Impl.getFileContent(File, IsPrimary, FileSystem, Error);
if (!Content.Buffer) {
LOG_WARN_FUNC("failed getting file contents for " << File << ": "
<< Error);
// File may not exist, continue and recover as if it was empty.
Content.Buffer = llvm::WritableMemoryBuffer::getNewMemBuffer(0, File);
}
Contents.push_back(std::move(Content));
}
assert(Contents.size() ==
Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
}
void ASTBuildOperation::schedule(WorkQueue Queue) {
transitionToState(State::Queued, /*ExpectedOldState=*/State::Created);
auto SharedThis = shared_from_this();
// Capture `SharedThis` in the dispatched lambda to keep `this` alive.
// Capture `this` for a more convenient access of members.
Queue.dispatch(
[this, SharedThis] {
transitionToState(State::Running, /*ExpectedOldState=*/State::Queued);
SWIFT_DEFER {
transitionToState(State::Finished,
/*ExpectedOldState=*/State::Running);
};
{
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
if (Consumers.empty()) {
// There are no consumers - no point creating the AST anymore.
Result.emplace(/*AST=*/nullptr, /*Error=*/"", /*Cancelled=*/true);
return;
}
if (CancellationFlag->load(std::memory_order_relaxed)) {
assert(false && "We should only set the cancellation flag if there "
"are no more consumers");
for (auto &Consumer : Consumers) {
Consumer->cancelled();
}
}
}
std::string Error;
assert(!Result && "We should only be producing a result once");
ASTUnitRef AST = buildASTUnit(Error);
{
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
bool WasCancelled = CancellationFlag->load(std::memory_order_relaxed);
Result.emplace(AST, Error, WasCancelled);
for (auto &Consumer : Consumers) {
informConsumer(Consumer);
}
Consumers = {};
}
DidFinishCallback();
},
/*isStackDeep=*/true);
}
bool ASTBuildOperation::addConsumer(SwiftASTConsumerRef Consumer) {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
if (isCancelled()) {
return false;
}
if (Result) {
informConsumer(Consumer);
} else {
assert(OperationState != State::Finished);
auto WeakThis = std::weak_ptr<ASTBuildOperation>(shared_from_this());
Consumer->setCancellationRequestCallback(
[WeakThis](SwiftASTConsumerRef Consumer) {
if (auto This = WeakThis.lock()) {
This->requestConsumerCancellation(Consumer);
}
});
Consumers.push_back(Consumer);
}
return true;
}
ASTBuildOperationRef ASTProducer::getBuildOperationForConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots, SwiftASTManagerRef Mgr) {
for (auto &BuildOp : llvm::reverse(BuildOperations)) {
if (BuildOp->isCancelled()) {
continue;
}
if (BuildOp->matchesSourceState(FileSystem, Snapshots)) {
++Mgr->Impl.Stats->numASTCacheHits;
return BuildOp;
} else if (Consumer->canUseASTWithSnapshots(BuildOp->getSnapshots())) {
++Mgr->Impl.Stats->numASTsUsedWithSnaphots;
return BuildOp;
}
}
return nullptr;
}
void ASTProducer::enqueueConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
ArrayRef<ImmutableTextSnapshotRef> Snapshots, SwiftASTManagerRef Mgr) {
// We can't use a llvm::sys::ScopedLock here because we need to unlock it
// before calling enqueueConsumer again in the !WasAdded case below.
std::unique_lock<llvm::sys::Mutex> BuildOperationsLock(BuildOperationsMtx);
if (auto BuildOp =
getBuildOperationForConsumer(Consumer, FileSystem, Snapshots, Mgr)) {
bool WasAdded = BuildOp->addConsumer(Consumer);
if (!WasAdded) {
// The build operation was cancelled after the call to
// getBuildOperationForConsumer but before the consumer could be added.
// This should be an absolute edge case. Let's just try again.
BuildOperationsLock.unlock();
enqueueConsumer(Consumer, FileSystem, Snapshots, Mgr);
return;
}
} else {
auto WeakThis = std::weak_ptr<ASTProducer>(shared_from_this());
auto DidFinishCallback = [WeakThis, Mgr]() {
if (auto This = WeakThis.lock()) {
{
llvm::sys::ScopedLock L(This->BuildOperationsMtx);
This->cleanBuildOperations();
}
// Re-register the object with the cache to update its memory cost.
Mgr->Impl.ASTCache.set(This->InvokRef->Impl.Key, This);
}
};
ASTBuildOperationRef NewBuildOp = std::make_shared<ASTBuildOperation>(
FileSystem, Snapshots, InvokRef, Mgr, DidFinishCallback);
BuildOperations.push_back(NewBuildOp);
NewBuildOp->addConsumer(Consumer);
NewBuildOp->schedule(Mgr->Impl.ASTBuildQueue);
}
}