Files
swift-mirror/lib/Parse/ParsePattern.cpp
John McCall 7b29a420f6 Design and implement the [byref] attribute, checking that
it doesn't appear in places it shouldn't.  The only limits on
this checking right now is the inadequacy of location information
for types, which is something we ought to fix.

Fix type-checking of byref applications.  Fix IR generation
of byref variables.  Whole lotta fixin' goin' on.

But hey, byref calls work.



Swift SVN r1111
2012-02-10 09:42:50 +00:00

283 lines
8.5 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
using namespace swift;
/// Check that the given type is fully-typed.
/// FIXME: this is *terrible* for source locations.
static bool checkFullyTyped(Parser &P, Type type) {
switch (type->getKind()) {
// Any sort of non-structural type can be ignored here.
// Many of these are not actually possible to encounter in the
// parser, but it's okay.
case TypeKind::Error:
case TypeKind::BuiltinInteger:
case TypeKind::BuiltinFloat:
case TypeKind::NameAlias: // FIXME: underlying type could be non-fully-typed!
case TypeKind::Identifier:
case TypeKind::Protocol:
case TypeKind::OneOf:
case TypeKind::MetaType:
case TypeKind::Module:
case TypeKind::Dependent:
return false;
case TypeKind::Paren:
return checkFullyTyped(P, cast<ParenType>(type)->getUnderlyingType());
case TypeKind::LValue:
return checkFullyTyped(P, cast<LValueType>(type)->getObjectType());
case TypeKind::Array:
return checkFullyTyped(P, cast<ArrayType>(type)->getBaseType());
case TypeKind::Function: {
FunctionType *fn = cast<FunctionType>(type);
return checkFullyTyped(P, fn->getInput())
| checkFullyTyped(P, fn->getResult());
}
case TypeKind::Tuple: {
TupleType *tuple = cast<TupleType>(type);
bool isInvalid = false;
for (auto &elt : tuple->getFields()) {
if (elt.getType().isNull()) {
assert(elt.hasInit());
P.diagnose(elt.getInit()->getLoc(),
diag::untyped_tuple_elt_in_function_signature)
<< elt.getInit()->getSourceRange();
isInvalid = true;
} else {
isInvalid |= checkFullyTyped(P, elt.getType());
}
}
return isInvalid;
}
}
llvm_unreachable("bad type kind");
}
/// Check that the given pattern is fully-typed.
static bool checkFullyTyped(Parser &P, Pattern *pattern) {
switch (pattern->getKind()) {
// Any type with an explicit annotation is okay, as long as the
// annotation is fully-typed.
case PatternKind::Typed:
return checkFullyTyped(P, pattern->getType());
// Paren types depend on their parenthesized pattern.
case PatternKind::Paren: {
Pattern *sub = cast<ParenPattern>(pattern)->getSubPattern();
if (checkFullyTyped(P, sub)) return true;
pattern->setType(sub->getType());
return false;
}
// Tuple types can be built up from their components.
case PatternKind::Tuple: {
TuplePattern *tuple = cast<TuplePattern>(pattern);
SmallVector<TupleTypeElt, 8> typeElts;
typeElts.reserve(tuple->getNumFields());
for (const TuplePatternElt &elt : tuple->getFields()) {
Pattern *subpattern = elt.getPattern();
if (checkFullyTyped(P, subpattern))
return true;
typeElts.push_back(TupleTypeElt(subpattern->getType(),
subpattern->getBoundName(),
elt.getInit()));
}
tuple->setType(TupleType::get(typeElts, P.Context));
return false;
}
// Everything else is uninferrable.
case PatternKind::Named:
case PatternKind::Any:
P.diagnose(pattern->getLoc(), diag::untyped_pattern_in_function_signature)
<< pattern->getSourceRange();
return true;
}
llvm_unreachable("bad pattern kind");
}
/// Parse a function definition signature.
bool Parser::parseFunctionSignature(SmallVectorImpl<Pattern*> &params,
Type &type) {
// Parse curried function argument clauses as long as we can.
bool hasSemaError = false;
do {
ParseResult<Pattern> pattern = parsePatternTuple();
if (pattern.isParseError()) {
return true;
} else if (pattern.isSemaError()) {
hasSemaError = true;
} else {
params.push_back(pattern.get());
}
} while (Tok.is(tok::l_paren) || Tok.is(tok::l_paren_space));
// If there's a trailing arrow, parse the rest as the result type.
if (consumeIf(tok::arrow)) {
if (parseType(type))
return true;
checkFullyTyped(*this, type);
// Otherwise, we implicitly return ().
} else {
type = TupleType::getEmpty(Context);
}
// Now build up the function type. We require all function
// signatures to be fully-typed: that is, all top-down paths to a
// leaf pattern must pass through a TypedPattern.
for (unsigned i = params.size(); i != 0; --i) {
Pattern *param = params[i - 1];
Type paramType;
if (checkFullyTyped(*this, param)) {
// Recover by ignoring everything.
paramType = TupleType::getEmpty(Context);
} else {
paramType = param->getType();
}
type = FunctionType::get(paramType, type, Context);
}
return false;
}
/// Parse a pattern.
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type-annotation
ParseResult<Pattern> Parser::parsePattern() {
// First, parse the pattern atom.
ParseResult<Pattern> pattern = parsePatternAtom();
if (pattern.isParseError()) return true;
// Now parse an optional type annotation.
if (consumeIf(tok::colon)) {
Type type;
if (parseTypeAnnotation(type))
return true;
if (!pattern.isSemaError())
pattern = new (Context) TypedPattern(pattern.get(), type);
}
return pattern;
}
/// Parse a pattern "atom", meaning the part that precedes the
/// optional type annotation.
///
/// pattern-atom ::= identifier
/// pattern-atom ::= pattern-tuple
ParseResult<Pattern> Parser::parsePatternAtom() {
switch (Tok.getKind()) {
case tok::l_paren:
case tok::l_paren_space:
return parsePatternTuple();
case tok::identifier: {
SourceLoc loc = Tok.getLoc();
StringRef text = Tok.getText();
consumeToken(tok::identifier);
// '_' is a special case which means 'ignore this'.
if (text == "_") {
return new (Context) AnyPattern(loc);
} else {
Identifier ident = Context.getIdentifier(text);
VarDecl *var = new (Context) VarDecl(loc, ident, Type(), nullptr,
CurDeclContext);
return new (Context) NamedPattern(var);
}
}
default:
diagnose(Tok, diag::expected_pattern);
return true;
}
}
/// Parse a tuple pattern.
///
/// pattern-tuple:
//// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
/// pattern-tuple-element:
/// pattern ('=' expr)?
ParseResult<Pattern> Parser::parsePatternTuple() {
assert(Tok.is(tok::l_paren) || Tok.is(tok::l_paren_space));
// We're looking at the left parenthesis; consume it.
SourceLoc lp = consumeToken();
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
bool hasSemaError = false;
if (Tok.isNot(tok::r_paren)) {
do {
ParseResult<Pattern> pattern = parsePattern();
Expr *init = nullptr;
if (pattern.isParseError()) {
skipUntil(tok::r_paren);
return true;
} else if (consumeIf(tok::equal)) {
ParseResult<Expr> initR = parseExpr(diag::expected_initializer_expr);
if (initR.isParseError()) {
skipUntil(tok::r_paren);
return true;
} else if (initR.isSemaError()) {
hasSemaError = true;
} else {
init = initR.get();
}
}
if (pattern.isSemaError()) {
hasSemaError = true;
} else {
elts.push_back(TuplePatternElt(pattern.get(), init));
}
} while (consumeIf(tok::comma));
if (Tok.isNot(tok::r_paren)) {
diagnose(Tok, diag::expected_rparen_tuple_pattern_list);
skipUntil(tok::r_paren);
return true;
}
}
// Consume the right parenthesis.
SourceLoc rp = consumeToken(tok::r_paren);
if (hasSemaError)
return ParseResult<Pattern>::getSemaError();
// A pattern which wraps a single anonymous pattern is not a tuple.
if (elts.size() == 1 &&
elts[0].getInit() == nullptr &&
elts[0].getPattern()->getBoundName().empty())
return new (Context) ParenPattern(lp, elts[0].getPattern(), rp);
return TuplePattern::create(Context, lp, elts, rp);
}