Files
swift-mirror/lib/AST/Pattern.cpp
Joe Groff 7ba95cfd26 Add AST nodes for refutable patterns.
Introduce Pattern subclasses for the 'is T', 'T(<pattern>)', and '<expr>' pattern syntaxes we'll be introducing for pattern-matching "switch" statements. Also add an 'UnresolvedCalLPattern' to act as an intermediate for name lookup to resolve to a nominal type, oneof element, or function call expression pattern. Since we'll need to be able to rewrite patterns like we do expressions, add setters to AST nodes that contain references to subpatterns. Implement some basic walking logic in places we search patterns for var decls, but punt on any more complex type-checking or SILGen derived from these nodes until we actually use them.

Swift SVN r5780
2013-06-24 17:17:34 +00:00

292 lines
9.7 KiB
C++

//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Pattern class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Pattern.h"
#include "swift/AST/AST.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
// Metaprogram to verify that every concrete class implements
// a 'static bool classof(const Pattern*)'.
template <bool (&fn)(const Pattern*)> struct CheckClassOfPattern {
static const bool IsImplemented = true;
};
template <> struct CheckClassOfPattern<Pattern::classof> {
static const bool IsImplemented = false;
};
#define PATTERN(ID, PARENT) \
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
#ID "Pattern is missing classof(const Pattern*)");
#include "swift/AST/PatternNodes.def"
// Metaprogram to verify that every concrete class implements
// 'SourceRange getSourceRange()'.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
void Pattern::setType(Type ty) {
assert(!hasType() || getType()->isUnresolvedType() ||
ty->is<ErrorType>() ||
ty->getWithoutDefaultArgs(ty->getASTContext())->isEqual(
Ty->getWithoutDefaultArgs(Ty->getASTContext())));
Ty = ty;
}
/// getSourceRange - Return the full source range of the pattern.
SourceRange Pattern::getSourceRange() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
#ID "Pattern is missing getSourceRange()"); \
return cast<ID##Pattern>(this)->getSourceRange();
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("pattern type not handled!");
}
/// getLoc - Return the caret location of the pattern.
SourceLoc Pattern::getLoc() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
return cast<ID##Pattern>(this)->getLoc(); \
break;
#include "swift/AST/PatternNodes.def"
}
return getStartLoc();
}
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
switch (getKind()) {
case PatternKind::Any:
return;
case PatternKind::Named:
variables.push_back(cast<NamedPattern>(this)->getDecl());
return;
case PatternKind::Paren:
return cast<ParenPattern>(this)->getSubPattern()
->collectVariables(variables);
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(this);
for (auto elt : tuple->getFields()) {
elt.getPattern()->collectVariables(variables);
}
return;
}
case PatternKind::Typed:
return cast<TypedPattern>(this)->getSubPattern()
->collectVariables(variables);
case PatternKind::Isa:
return;
case PatternKind::UnresolvedCall:
return cast<UnresolvedCallPattern>(this)->getSubPattern()
->collectVariables(variables);
case PatternKind::NominalType:
return cast<NominalTypePattern>(this)->getSubPattern()
->collectVariables(variables);
case PatternKind::Expr:
return;
}
}
Pattern *Pattern::clone(ASTContext &context) const {
Pattern *result;
switch (getKind()) {
case PatternKind::Any:
result = new (context) AnyPattern(cast<AnyPattern>(this)->getLoc());
break;
case PatternKind::Named: {
auto named = cast<NamedPattern>(this);
VarDecl *var = new (context) VarDecl(named->getLoc(),
named->getBoundName(),
named->getDecl()->hasType()
? named->getDecl()->getType()
: Type(),
named->getDecl()->getDeclContext());
result = new (context) NamedPattern(var);
break;
}
case PatternKind::Paren: {
auto paren = cast<ParenPattern>(this);
return new (context) ParenPattern(paren->getLParenLoc(),
paren->getSubPattern()->clone(context),
paren->getRParenLoc());
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(this);
SmallVector<TuplePatternElt, 2> elts;
elts.reserve(tuple->getNumFields());
for (const auto &elt : tuple->getFields())
elts.push_back(TuplePatternElt(elt.getPattern()->clone(context),
elt.getInit(), elt.getVarargBaseType()));
result = TuplePattern::create(context, tuple->getLParenLoc(), elts,
tuple->getRParenLoc());
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(this);
result = new(context) TypedPattern(typed->getSubPattern()->clone(context),
typed->getTypeLoc());
break;
}
case PatternKind::Isa: {
auto isa = cast<IsaPattern>(this);
result = new(context) IsaPattern(isa->getLoc(),
isa->getCastTypeLoc(),
isa->getCastKind());
break;
}
case PatternKind::UnresolvedCall: {
auto call = cast<UnresolvedCallPattern>(this);
result = UnresolvedCallPattern::create(context,
call->getNameComponents(),
call->getSubPattern()->clone(context));
break;
}
case PatternKind::NominalType: {
auto nom = cast<NominalTypePattern>(this);
result = new(context) NominalTypePattern(nom->getCastTypeLoc(),
nom->getSubPattern()->clone(context),
nom->getCastKind());
break;
}
case PatternKind::Expr: {
auto expr = cast<ExprPattern>(this);
result = new(context) ExprPattern(expr->getSubExpr(),
expr->getMatchFnExpr());
break;
}
}
if (hasType())
result->setType(getType());
return result;
}
/// Standard allocator for Patterns.
void *Pattern::operator new(size_t numBytes, ASTContext &C) {
return C.Allocate(numBytes, alignof(Pattern));
}
/// Find the name directly bound by this pattern. When used as a
/// tuple element in a function signature, such names become part of
/// the type.
Identifier Pattern::getBoundName() const {
const Pattern *P = this;
if (const TypedPattern *TP = dyn_cast<TypedPattern>(P))
P = TP->getSubPattern();
if (const NamedPattern *NP = dyn_cast<NamedPattern>(P))
return NP->getBoundName();
return Identifier();
}
void TuplePatternElt::revertToNonVariadic() {
assert(VarargBaseType && "Not a variadic element");
// Fix the pattern.
auto typedPattern = cast<TypedPattern>(ThePattern);
typedPattern->getTypeLoc()
= TypeLoc(VarargBaseType, typedPattern->getTypeLoc().getSourceRange());
// Clear out the variadic base type.
VarargBaseType = Type();
}
/// Allocate a new pattern that matches a tuple.
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elts,
SourceLoc rp) {
unsigned n = elts.size();
void *buffer = C.Allocate(sizeof(TuplePattern) + n * sizeof(TuplePatternElt),
alignof(TuplePattern));
TuplePattern *pattern = ::new(buffer) TuplePattern(lp, n, rp);
memcpy(pattern->getFieldsBuffer(), elts.data(), n * sizeof(TuplePatternElt));
return pattern;
}
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elements,
SourceLoc rp) {
if (elements.size() == 1 &&
elements[0].getInit() == nullptr &&
elements[0].getPattern()->getBoundName().empty() &&
!elements[0].isVararg()) {
auto &first = const_cast<TuplePatternElt&>(elements.front());
return new (C) ParenPattern(lp, first.getPattern(), rp);
}
return create(C, lp, elements, rp);
}
SourceRange TypedPattern::getSourceRange() const {
return { SubPattern->getSourceRange().Start, PatType.getSourceRange().End };
}
UnresolvedCallPattern::UnresolvedCallPattern(
ArrayRef<IdentifierType::Component> components,
Pattern *Sub)
: Pattern(PatternKind::UnresolvedCall),
NumComponents(components.size()), SubPattern(Sub)
{
MutableArrayRef<IdentifierType::Component> buf{getComponentsBuffer(),
NumComponents};
for (size_t i = 0, size = NumComponents; i < size; ++i) {
new (&buf[i]) IdentifierType::Component(components[i]);
}
}
/// Allocate a new UnresolvedCallPattern referring to a named path of
/// dotted identifier components.
UnresolvedCallPattern *
UnresolvedCallPattern::create(ASTContext &C,
ArrayRef<IdentifierType::Component> components,
Pattern *Sub) {
void *buf = UnresolvedCallPattern::operator new(
sizeof(UnresolvedCallPattern)
+ components.size() * sizeof(IdentifierType::Component), C);
return ::new (buf) UnresolvedCallPattern(components, Sub);
}