Files
swift-mirror/lib/Frontend/ModuleInterfaceSupport.cpp
Allan Shortlidge 7c1b150f39 ModuleInterface: Resolve inherited types when computing unsatisfiable conformances.
Previously, unsatisfiable conformances could be omitted from emitted
`.swiftinterface` files in lazy typechecking mode since inherited types might
be unresolved when gathering the conformances.

Adding these test cases also revealed that serialization restrictions needed to
be relaxed in order to accomodate unsatisfiable conformances.
2023-09-07 13:57:39 -07:00

873 lines
34 KiB
C++

//===------- ModuleInterfaceSupport.cpp - swiftinterface files ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
using namespace swift;
// MARK: Module interface header comments
version::Version swift::InterfaceFormatVersion({1, 0});
/// Prints to \p out a comment containing a format version number, tool version
/// string as well as any relevant command-line flags in \p Opts used to
/// construct \p M.
static void printToolVersionAndFlagsComment(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M,
llvm::SmallSet<StringRef, 4>
&AliasModuleNamesTargets) {
auto &Ctx = M->getASTContext();
auto ToolsVersion =
getSwiftInterfaceCompilerVersionForCurrentCompiler(Ctx);
out << "// " SWIFT_INTERFACE_FORMAT_VERSION_KEY ": "
<< InterfaceFormatVersion << "\n";
out << "// " SWIFT_COMPILER_VERSION_KEY ": "
<< ToolsVersion << "\n";
out << "// " SWIFT_MODULE_FLAGS_KEY ": "
<< Opts.Flags;
// Insert additional -module-alias flags
if (Opts.AliasModuleNames) {
StringRef moduleName = M->getNameStr();
AliasModuleNamesTargets.insert(M->getNameStr());
out << " -module-alias " << MODULE_DISAMBIGUATING_PREFIX <<
moduleName << "=" << moduleName;
ModuleDecl::ImportFilter filter = {ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::Exported};
if (Opts.PrintPrivateInterfaceContent)
filter |= ModuleDecl::ImportFilterKind::SPIOnly;
SmallVector<ImportedModule> imports;
M->getImportedModules(imports, filter);
M->getMissingImportedModules(imports);
for (ImportedModule import: imports) {
StringRef importedName = import.importedModule->getNameStr();
// Skip Swift as it's commonly used in inlinable code,
// and Builtin as it's imported implicitly by name.
if (importedName == STDLIB_NAME ||
importedName == BUILTIN_NAME)
continue;
if (AliasModuleNamesTargets.insert(importedName).second) {
out << " -module-alias " << MODULE_DISAMBIGUATING_PREFIX <<
importedName << "=" << importedName;
}
}
}
out << "\n";
if (!Opts.IgnorableFlags.empty()) {
out << "// " SWIFT_MODULE_FLAGS_IGNORABLE_KEY ": "
<< Opts.IgnorableFlags << "\n";
}
auto hasPrivateIgnorableFlags = Opts.PrintPrivateInterfaceContent && !Opts.IgnorablePrivateFlags.empty();
if (hasPrivateIgnorableFlags) {
out << "// " SWIFT_MODULE_FLAGS_IGNORABLE_PRIVATE_KEY ": "
<< Opts.IgnorablePrivateFlags << "\n";
}
}
std::string
swift::getSwiftInterfaceCompilerVersionForCurrentCompiler(ASTContext &ctx) {
return swift::version::getSwiftFullVersion(
ctx.LangOpts.EffectiveLanguageVersion);
}
llvm::Regex swift::getSwiftInterfaceFormatVersionRegex() {
return llvm::Regex("^// " SWIFT_INTERFACE_FORMAT_VERSION_KEY
": ([0-9\\.]+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceCompilerVersionRegex() {
return llvm::Regex("^// " SWIFT_COMPILER_VERSION_KEY
": (.+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceCompilerToolsVersionRegex() {
return llvm::Regex("Swift version ([0-9\\.]+)", llvm::Regex::Newline);
}
// MARK(https://github.com/apple/swift/issues/43510): Module name shadowing warnings
//
// When swiftc emits a module interface, it qualifies most types with their
// module name. This usually makes the interface less ambiguous, but if a type
// exists with the same name as a module, then references to that module will
// incorrectly look inside the type instead. This breakage is not obvious until
// someone tries to load the module interface, and may sometimes only occur in
// clients' module interfaces.
//
// Truly fixing this will require a new module-qualification syntax which
// completely ignores shadowing. In lieu of that, we detect and warn about three
// common examples which are relatively actionable:
//
// 1. An `import` statement written into the module interface will
// (transitively) import a type with the module interface's name.
//
// 2. The module interface declares a type with the same name as the module the
// interface is for.
//
// 3. The module interface declares a type with the same name as a module it has
// (transitively) imported without `@_implementationOnly`.
//
// We do not check for shadowing between imported module names and imported
// declarations; this is both much rarer and much more difficult to solve.
// We silence these warnings if you use the temporary workaround flag,
// '-module-interface-preserve-types-as-written'.
/// Emit a warning explaining that \p shadowingDecl will interfere with
/// references to types in \p shadowedModule in the module interfaces of
/// \p brokenModule and its clients.
static void
diagnoseDeclShadowsModule(ModuleInterfaceOptions const &Opts,
TypeDecl *shadowingDecl, ModuleDecl *shadowedModule,
ModuleDecl *brokenModule) {
if (Opts.PreserveTypesAsWritten || shadowingDecl == shadowedModule)
return;
shadowingDecl->diagnose(
diag::warning_module_shadowing_may_break_module_interface,
shadowingDecl->getDescriptiveKind(),
FullyQualified<Type>(shadowingDecl->getDeclaredInterfaceType()),
shadowedModule, brokenModule);
}
/// Check whether importing \p importedModule will bring in any declarations
/// that will shadow \p importingModule, and diagnose them if so.
static void
diagnoseIfModuleImportsShadowingDecl(ModuleInterfaceOptions const &Opts,
ModuleDecl *importedModule,
ModuleDecl *importingModule) {
using namespace namelookup;
SmallVector<ValueDecl *, 4> decls;
lookupInModule(importedModule, importingModule->getName(), decls,
NLKind::UnqualifiedLookup, ResolutionKind::TypesOnly,
importedModule, SourceLoc(),
NL_UnqualifiedDefault | NL_IncludeUsableFromInline);
for (auto decl : decls)
diagnoseDeclShadowsModule(Opts, cast<TypeDecl>(decl), importingModule,
importingModule);
}
/// Check whether \p D will shadow any modules imported by \p M, and diagnose
/// them if so.
static void diagnoseIfDeclShadowsKnownModule(ModuleInterfaceOptions const &Opts,
Decl *D, ModuleDecl *M) {
ASTContext &ctx = M->getASTContext();
// We only care about types (and modules, which are a subclass of TypeDecl);
// when the grammar expects a type name, it ignores non-types during lookup.
TypeDecl *TD = dyn_cast<TypeDecl>(D);
if (!TD)
return;
ModuleDecl *shadowedModule = ctx.getLoadedModule(TD->getName());
if (!shadowedModule || M->isImportedImplementationOnly(shadowedModule))
return;
diagnoseDeclShadowsModule(Opts, TD, shadowedModule, M);
}
// MARK: Import statements
/// Diagnose any scoped imports in \p imports, i.e. those with a non-empty
/// access path. These are not yet supported by module interfaces, since the
/// information about the declaration kind is not preserved through the binary
/// serialization that happens as an intermediate step in non-whole-module
/// builds.
///
/// These come from declarations like `import class FooKit.MainFooController`.
static void diagnoseScopedImports(DiagnosticEngine &diags,
ArrayRef<ImportedModule> imports){
for (const ImportedModule &importPair : imports) {
if (importPair.accessPath.empty())
continue;
diags.diagnose(importPair.accessPath.front().Loc,
diag::module_interface_scoped_import_unsupported);
}
}
/// Prints the imported modules in \p M to \p out in the form of \c import
/// source declarations.
static void printImports(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M,
const llvm::SmallSet<StringRef, 4>
&AliasModuleNamesTargets) {
// FIXME: This is very similar to what's in Serializer::writeInputBlock, but
// it's not obvious what higher-level optimization would be factored out here.
ModuleDecl::ImportFilter allImportFilter = {
ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default};
// With -experimental-spi-imports:
// When printing the private swiftinterface file, print implementation-only
// imports only if they are also SPI. First, list all implementation-only
// imports and filter them later.
llvm::SmallSet<ImportedModule, 4, ImportedModule::Order> ioiImportSet;
if (Opts.PrintPrivateInterfaceContent && Opts.ExperimentalSPIImports) {
SmallVector<ImportedModule, 4> ioiImports, allImports;
M->getImportedModules(ioiImports,
ModuleDecl::ImportFilterKind::ImplementationOnly);
// Only consider modules imported consistently as implementation-only.
M->getImportedModules(allImports,
allImportFilter);
llvm::SmallSet<ImportedModule, 8, ImportedModule::Order> allImportSet;
allImportSet.insert(allImports.begin(), allImports.end());
for (auto import: ioiImports)
if (allImportSet.count(import) == 0)
ioiImportSet.insert(import);
allImportFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
}
/// Collect @_spiOnly imports that are not imported elsewhere publicly.
llvm::SmallSet<ImportedModule, 4, ImportedModule::Order> spiOnlyImportSet;
if (Opts.PrintPrivateInterfaceContent) {
SmallVector<ImportedModule, 4> spiOnlyImports, otherImports;
M->getImportedModules(spiOnlyImports,
ModuleDecl::ImportFilterKind::SPIOnly);
M->getImportedModules(otherImports,
allImportFilter);
llvm::SmallSet<ImportedModule, 8, ImportedModule::Order> otherImportsSet;
otherImportsSet.insert(otherImports.begin(), otherImports.end());
// Rule out inconsistent imports.
for (auto import: spiOnlyImports)
if (otherImportsSet.count(import) == 0)
spiOnlyImportSet.insert(import);
allImportFilter |= ModuleDecl::ImportFilterKind::SPIOnly;
}
SmallVector<ImportedModule, 8> allImports;
M->getImportedModules(allImports, allImportFilter);
if (Opts.PrintMissingImports)
M->getMissingImportedModules(allImports);
ImportedModule::removeDuplicates(allImports);
diagnoseScopedImports(M->getASTContext().Diags, allImports);
// Collect the public imports as a subset so that we can mark them with
// '@_exported'.
SmallVector<ImportedModule, 8> publicImports;
M->getImportedModules(publicImports, ModuleDecl::ImportFilterKind::Exported);
llvm::SmallSet<ImportedModule, 8, ImportedModule::Order> publicImportSet;
publicImportSet.insert(publicImports.begin(), publicImports.end());
for (auto import : allImports) {
auto importedModule = import.importedModule;
if (importedModule->isOnoneSupportModule()) {
continue;
}
// Unless '-enable-builtin-module' /
// '-enable-experimental-feature BuiltinModule' was passed, do not print
// 'import Builtin' in the interface. '-parse-stdlib' still implicitly
// imports it however...
if (importedModule->isBuiltinModule() &&
!M->getASTContext().LangOpts.hasFeature(Feature::BuiltinModule)) {
continue;
}
if (llvm::count(Opts.ModulesToSkipInPublicInterface,
importedModule->getName().str())) {
continue;
}
llvm::SmallSetVector<Identifier, 4> spis;
M->lookupImportedSPIGroups(importedModule, spis);
// Only print implementation-only imports which have an SPI import.
if (ioiImportSet.count(import)) {
if (spis.empty())
continue;
out << "@_implementationOnly ";
}
if (publicImportSet.count(import))
out << "@_exported ";
if (Opts.PrintPrivateInterfaceContent) {
// An import visible in the private swiftinterface only.
//
// In the long term, we want to print this attribute for consistency and
// to enforce exportability analysis of generated code.
// For now, not printing the attribute allows us to have backwards
// compatible swiftinterfaces and we can live without
// checking the generate code for a while.
if (spiOnlyImportSet.count(import))
out << "@_spiOnly ";
// List of imported SPI groups for local use.
for (auto spiName : spis)
out << "@_spi(" << spiName << ") ";
}
out << "import ";
if (Opts.AliasModuleNames &&
AliasModuleNamesTargets.contains(importedModule->getName().str()))
out << MODULE_DISAMBIGUATING_PREFIX;
importedModule->getReverseFullModuleName().printForward(out);
// Write the access path we should be honoring but aren't.
// (See diagnoseScopedImports above.)
if (!import.accessPath.empty()) {
out << "/*";
for (const auto &accessPathElem : import.accessPath)
out << "." << accessPathElem.Item;
out << "*/";
}
out << "\n";
diagnoseIfModuleImportsShadowingDecl(Opts, importedModule, M);
}
}
// MARK: Dummy protocol conformances
// FIXME: Copied from ASTPrinter.cpp...
static bool isPublicOrUsableFromInline(const ValueDecl *VD) {
AccessScope scope =
VD->getFormalAccessScope(/*useDC*/nullptr,
/*treatUsableFromInlineAsPublic*/true);
return scope.isPublic();
}
static bool isPublicOrUsableFromInline(Type ty) {
// Note the double negative here: we're looking for any referenced decls that
// are *not* public-or-usableFromInline.
return !ty.findIf([](Type typePart) -> bool {
// FIXME: If we have an internal typealias for a non-internal type, we ought
// to be able to print it by desugaring.
if (auto *aliasTy = dyn_cast<TypeAliasType>(typePart.getPointer()))
return !isPublicOrUsableFromInline(aliasTy->getDecl());
if (auto *nominal = typePart->getAnyNominal())
return !isPublicOrUsableFromInline(nominal);
return false;
});
}
namespace {
/// Collects protocols that are conformed to by a particular nominal. Since
/// ASTPrinter will only print the public ones, the non-public ones get left by
/// the wayside. This is a problem when a non-public protocol inherits from a
/// public protocol; the generated module interface still needs to make that
/// dependency public.
///
/// The solution implemented here is to generate synthetic extensions that
/// declare the extra conformances. This isn't perfect (it loses the sugared
/// spelling of the protocol type, as well as the locality in the file), but it
/// does work.
class InheritedProtocolCollector {
static const StringLiteral DummyProtocolName;
using AvailableAttrList = TinyPtrVector<const AvailableAttr *>;
using OriginallyDefinedInAttrList =
TinyPtrVector<const OriginallyDefinedInAttr *>;
using ProtocolAndAvailability =
std::tuple<ProtocolDecl *, AvailableAttrList, bool /*isUnchecked*/,
OriginallyDefinedInAttrList>;
/// Protocols that will be included by the ASTPrinter without any extra work.
SmallVector<ProtocolDecl *, 8> IncludedProtocols;
/// Protocols that will not be printed by the ASTPrinter, along with the
/// availability they were declared with.
SmallVector<ProtocolAndAvailability, 8> ExtraProtocols;
/// Protocols that can be printed, but whose conformances are constrained with
/// something that \e can't be printed.
SmallVector<const ProtocolType *, 8> ConditionalConformanceProtocols;
/// Helper to extract the `@available` attributes on a decl.
static AvailableAttrList
getAvailabilityAttrs(const Decl *D,
llvm::Optional<AvailableAttrList> &cache) {
if (cache.has_value())
return cache.value();
cache.emplace();
while (D) {
for (auto *nextAttr : D->getAttrs().getAttributes<AvailableAttr>()) {
// FIXME: This is just approximating the effects of nested availability
// attributes for the same platform; formally they'd need to be merged.
bool alreadyHasMoreSpecificAttrForThisPlatform =
llvm::any_of(*cache, [nextAttr](const AvailableAttr *existingAttr) {
return existingAttr->Platform == nextAttr->Platform;
});
if (alreadyHasMoreSpecificAttrForThisPlatform)
continue;
cache->push_back(nextAttr);
}
D = D->getDeclContext()->getAsDecl();
}
return cache.value();
}
static OriginallyDefinedInAttrList
getOriginallyDefinedInAttrList(const Decl *D) {
OriginallyDefinedInAttrList results;
while (D) {
for (auto *result :
D->getAttrs().getAttributes<OriginallyDefinedInAttr>()) {
results.push_back(result);
}
D = D->getDeclContext()->getAsDecl();
}
return results;
}
static bool canPrintProtocolTypeNormally(Type type, const Decl *D) {
return isPublicOrUsableFromInline(type);
}
static bool isUncheckedConformance(ProtocolConformance *conformance) {
if (auto normal = conformance->getRootNormalConformance())
return normal->isUnchecked();
return false;
}
/// For each type in \p directlyInherited, classify the protocols it refers to
/// as included for printing or not, and record them in the appropriate
/// vectors.
///
/// If \p skipExtra is true then avoid recording any extra protocols to
/// print, such as synthesized conformances or conformances to non-public
/// protocols.
void recordProtocols(InheritedTypes directlyInherited, const Decl *D,
bool skipExtra = false) {
llvm::Optional<AvailableAttrList> availableAttrs;
for (int i : directlyInherited.getIndices()) {
Type inheritedTy = directlyInherited.getResolvedType(i);
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
bool canPrintNormally = canPrintProtocolTypeNormally(inheritedTy, D);
if (!canPrintNormally && skipExtra)
continue;
auto inherited = directlyInherited.getEntry(i);
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolDecl *protoDecl : layout.getProtocols()) {
if (canPrintNormally)
IncludedProtocols.push_back(protoDecl);
else
ExtraProtocols.push_back(ProtocolAndAvailability(
protoDecl, getAvailabilityAttrs(D, availableAttrs),
inherited.isUnchecked, getOriginallyDefinedInAttrList(D)));
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
if (skipExtra)
return;
// Check for synthesized protocols, like Hashable on enums.
if (auto *nominal = dyn_cast<NominalTypeDecl>(D)) {
SmallVector<ProtocolConformance *, 4> localConformances =
nominal->getLocalConformances(ConformanceLookupKind::NonInherited);
for (auto *conf : localConformances) {
if (conf->getSourceKind() != ConformanceEntryKind::Synthesized)
continue;
ExtraProtocols.push_back(ProtocolAndAvailability(
conf->getProtocol(), getAvailabilityAttrs(D, availableAttrs),
isUncheckedConformance(conf), getOriginallyDefinedInAttrList(D)));
}
}
}
/// For each type directly inherited by \p extension, record any protocols
/// that we would have printed in ConditionalConformanceProtocols.
void recordConditionalConformances(const ExtensionDecl *extension) {
auto inheritedTypes = extension->getInherited();
for (unsigned i : inheritedTypes.getIndices()) {
Type inheritedTy = inheritedTypes.getResolvedType(i);
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolDecl *protoDecl : layout.getProtocols()) {
auto protoTy = protoDecl->getDeclaredInterfaceType()->castTo<ProtocolType>();
if (!isPublicOrUsableFromInline(protoTy))
continue;
ConditionalConformanceProtocols.push_back(protoTy);
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
}
public:
using PerTypeMap = llvm::MapVector<const NominalTypeDecl *,
InheritedProtocolCollector>;
/// Given that we're about to print \p D, record its protocols in \p map.
///
/// \sa recordProtocols
static void collectProtocols(PerTypeMap &map, const Decl *D) {
InheritedTypes directlyInherited = InheritedTypes(D);
const NominalTypeDecl *nominal;
const IterableDeclContext *memberContext;
auto shouldInclude = [](const ExtensionDecl *extension) {
if (extension->isConstrainedExtension()) {
// Conditional conformances never apply to inherited protocols, nor
// can they provide unconditional conformances that might be used in
// other extensions.
return false;
}
return true;
};
if ((nominal = dyn_cast<NominalTypeDecl>(D))) {
memberContext = nominal;
} else if (auto *extension = dyn_cast<ExtensionDecl>(D)) {
if (!shouldInclude(extension)) {
return;
}
nominal = extension->getExtendedNominal();
memberContext = extension;
} else {
return;
}
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordProtocols(directlyInherited, D);
// Collect protocols inherited from super classes
if (auto *CD = dyn_cast<ClassDecl>(D)) {
for (auto *SD = CD->getSuperclassDecl(); SD;
SD = SD->getSuperclassDecl()) {
map[nominal].recordProtocols(SD->getInherited(), SD,
/*skipExtra=*/true);
for (auto *Ext: SD->getExtensions()) {
if (shouldInclude(Ext)) {
map[nominal].recordProtocols(Ext->getInherited(), Ext,
/*skipExtra=*/true);
}
}
}
}
// Recurse to find any nested types.
for (const Decl *member : memberContext->getMembers())
collectProtocols(map, member);
}
/// If \p D is an extension providing conditional conformances, record those
/// in \p map.
///
/// \sa recordConditionalConformances
static void collectSkippedConditionalConformances(
PerTypeMap &map,
const Decl *D,
const PrintOptions &printOptions) {
auto *extension = dyn_cast<ExtensionDecl>(D);
if (!extension || !extension->isConstrainedExtension())
return;
// Skip SPI extensions in the public interface.
if (!printOptions.PrintSPIs && extension->isSPI())
return;
const NominalTypeDecl *nominal = extension->getExtendedNominal();
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordConditionalConformances(extension);
// No recursion here because extensions are never nested.
}
/// Returns true if the conformance of \p nominal to \p proto is declared in
/// module \p M.
static bool conformanceDeclaredInModule(ModuleDecl *M,
const NominalTypeDecl *nominal,
ProtocolDecl *proto) {
SmallVector<ProtocolConformance *, 4> conformances;
nominal->lookupConformance(proto, conformances);
return llvm::all_of(conformances,
[M](const ProtocolConformance *conformance) -> bool {
return M == conformance->getDeclContext()->getParentModule();
});
}
/// If there were any public protocols that need to be printed (i.e. they
/// weren't conformed to explicitly or inherited by another printed protocol),
/// do so now by printing a dummy extension on \p nominal to \p out.
void
printSynthesizedExtensionIfNeeded(raw_ostream &out,
const PrintOptions &printOptions,
ModuleDecl *M,
const NominalTypeDecl *nominal) const {
if (ExtraProtocols.empty())
return;
if (!printOptions.shouldPrint(nominal))
return;
/// is this nominal specifically an 'actor'?
bool actorClass = false;
if (auto klass = dyn_cast<ClassDecl>(nominal))
actorClass = klass->isActor();
SmallPtrSet<ProtocolDecl *, 16> handledProtocols;
// First record all protocols that have already been handled.
for (ProtocolDecl *proto : IncludedProtocols) {
proto->walkInheritedProtocols(
[&handledProtocols](ProtocolDecl *inherited) -> TypeWalker::Action {
handledProtocols.insert(inherited);
return TypeWalker::Action::Continue;
});
}
// Preserve the behavior of previous implementations which formatted of
// empty extensions compactly with '{}' on the same line.
PrintOptions extensionPrintOptions = printOptions;
extensionPrintOptions.PrintEmptyMembersOnSameLine = true;
// Then walk the remaining ones, and see what we need to print.
// FIXME: This will pick the availability attributes from the first sight
// of a protocol rather than the maximally available case.
for (const auto &protoAndAvailability : ExtraProtocols) {
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto isUnchecked = std::get<2>(protoAndAvailability);
auto otherAttrs = std::get<3>(protoAndAvailability);
proto->walkInheritedProtocols(
[&](ProtocolDecl *inherited) -> TypeWalker::Action {
if (!handledProtocols.insert(inherited).second)
return TypeWalker::Action::SkipChildren;
// If 'nominal' is an actor, we do not synthesize its conformance
// to the Actor protocol through a dummy extension.
// There is a special restriction on the Actor protocol in that
// it is only valid to conform to Actor on an 'actor' decl,
// not extensions of that 'actor'.
if (actorClass &&
inherited->isSpecificProtocol(KnownProtocolKind::Actor))
return TypeWalker::Action::SkipChildren;
if (inherited->isSPI() && !printOptions.PrintSPIs)
return TypeWalker::Action::Continue;
if (isPublicOrUsableFromInline(inherited) &&
conformanceDeclaredInModule(M, nominal, inherited) &&
!M->isImportedImplementationOnly(inherited->getParentModule())) {
auto protoAndAvailability = ProtocolAndAvailability(
inherited, availability, isUnchecked, otherAttrs);
printSynthesizedExtension(out, extensionPrintOptions, M, nominal,
protoAndAvailability);
return TypeWalker::Action::SkipChildren;
}
return TypeWalker::Action::Continue;
});
}
}
/// Prints a dummy extension on \p nominal to \p out for a public conformance
/// to the protocol contained by \p protoAndAvailability.
static void
printSynthesizedExtension(raw_ostream &out, const PrintOptions &printOptions,
ModuleDecl *M, const NominalTypeDecl *nominal,
ProtocolAndAvailability &protoAndAvailability) {
StreamPrinter printer(out);
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto isUnchecked = std::get<2>(protoAndAvailability);
auto originallyDefinedInAttrs = std::get<3>(protoAndAvailability);
// Create a synthesized ExtensionDecl for the conformance.
ASTContext &ctx = M->getASTContext();
auto inherits = ctx.AllocateCopy(llvm::makeArrayRef(InheritedEntry(
TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()), isUnchecked)));
auto extension =
ExtensionDecl::create(ctx, SourceLoc(), nullptr, inherits,
nominal->getModuleScopeContext(), nullptr);
extension->setImplicit();
// Build up synthesized DeclAttributes for the extension.
TinyPtrVector<const DeclAttribute *> clonedAttrs;
for (auto *attr : availability) {
clonedAttrs.push_back(attr->clone(ctx, /*implicit*/ true));
}
for (auto *attr : proto->getAttrs().getAttributes<SPIAccessControlAttr>()) {
clonedAttrs.push_back(attr->clone(ctx, /*implicit*/ true));
}
for (auto *attr : originallyDefinedInAttrs) {
clonedAttrs.push_back(attr->clone(ctx, /*implicit*/ true));
}
// Since DeclAttributes is a linked list where each added attribute becomes
// the head, we need to add these attributes in reverse order to reproduce
// the order in which previous implementations printed these attributes.
for (auto attr = clonedAttrs.rbegin(), end = clonedAttrs.rend();
attr != end; ++attr) {
extension->getAttrs().add(const_cast<DeclAttribute *>(*attr));
}
ctx.evaluator.cacheOutput(ExtendedTypeRequest{extension},
nominal->getDeclaredType());
ctx.evaluator.cacheOutput(ExtendedNominalRequest{extension},
const_cast<NominalTypeDecl *>(nominal));
extension->print(printer, printOptions);
printer << "\n";
}
/// If there were any conditional conformances that couldn't be printed,
/// make a dummy extension that conforms to all of them, constrained by a
/// fake protocol.
bool printInaccessibleConformanceExtensionIfNeeded(
raw_ostream &out, const PrintOptions &printOptions,
const NominalTypeDecl *nominal) const {
if (ConditionalConformanceProtocols.empty())
return false;
assert(nominal->isGenericContext());
if (printOptions.PrintSPIs)
out << "@_spi(" << DummyProtocolName << ")\n";
out << "@available(*, unavailable)\nextension ";
nominal->getDeclaredType().print(out, printOptions);
out << " : ";
llvm::interleave(
ConditionalConformanceProtocols,
[&out, &printOptions](const ProtocolType *protoTy) {
protoTy->print(out, printOptions);
},
[&out] { out << ", "; });
out << " where "
<< nominal->getGenericSignature().getGenericParams().front()->getName()
<< " : " << DummyProtocolName << " {}\n";
return true;
}
/// Print a fake protocol declaration for use by
/// #printInaccessibleConformanceExtensionIfNeeded.
static void printDummyProtocolDeclaration(raw_ostream &out) {
out << "\n@usableFromInline\ninternal protocol " << DummyProtocolName
<< " {}\n";
}
};
const StringLiteral InheritedProtocolCollector::DummyProtocolName =
"_ConstraintThatIsNotPartOfTheAPIOfThisLibrary";
} // end anonymous namespace
// MARK: Interface emission
bool swift::emitSwiftInterface(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M) {
assert(M);
llvm::SmallSet<StringRef, 4> aliasModuleNamesTargets;
printToolVersionAndFlagsComment(out, Opts, M, aliasModuleNamesTargets);
printImports(out, Opts, M, aliasModuleNamesTargets);
static bool forceUseExportedModuleNameInPublicOnly =
getenv("SWIFT_DEBUG_USE_EXPORTED_MODULE_NAME_IN_PUBLIC_ONLY");
bool useExportedModuleNameInPublicOnly =
M->getASTContext().LangOpts.hasFeature(Feature::ModuleInterfaceExportAs) ||
forceUseExportedModuleNameInPublicOnly;
bool useExportedModuleNames = !(useExportedModuleNameInPublicOnly &&
Opts.PrintPrivateInterfaceContent);
const PrintOptions printOptions = PrintOptions::printSwiftInterfaceFile(
M, Opts.PreserveTypesAsWritten, Opts.PrintFullConvention,
Opts.PrintPrivateInterfaceContent,
useExportedModuleNames,
Opts.AliasModuleNames, &aliasModuleNamesTargets);
InheritedProtocolCollector::PerTypeMap inheritedProtocolMap;
SmallVector<Decl *, 16> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
InheritedProtocolCollector::collectProtocols(inheritedProtocolMap, D);
if (!D->shouldPrintInContext(printOptions) ||
!printOptions.shouldPrint(D)) {
InheritedProtocolCollector::collectSkippedConditionalConformances(
inheritedProtocolMap, D, printOptions);
continue;
}
D->print(out, printOptions);
out << "\n";
diagnoseIfDeclShadowsKnownModule(Opts, const_cast<Decl *>(D), M);
}
// Print dummy extensions for any protocols that were indirectly conformed to.
bool needDummyProtocolDeclaration = false;
for (const auto &nominalAndCollector : inheritedProtocolMap) {
const NominalTypeDecl *nominal = nominalAndCollector.first;
const InheritedProtocolCollector &collector = nominalAndCollector.second;
collector.printSynthesizedExtensionIfNeeded(out, printOptions, M, nominal);
needDummyProtocolDeclaration |=
collector.printInaccessibleConformanceExtensionIfNeeded(out,
printOptions,
nominal);
}
if (needDummyProtocolDeclaration)
InheritedProtocolCollector::printDummyProtocolDeclaration(out);
if (Opts.DebugPrintInvalidSyntax)
out << "#__debug_emit_invalid_swiftinterface_syntax__\n";
return false;
}